CITATION REPORT List of articles citing

Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization

DOI: 10.1128/aem.66.12.5141-5147.2000 Applied and Environmental Microbiology, 2000, 66, 5141-7.

Source: https://exaly.com/paper-pdf/31929208/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
257	Development of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2-dichloropropane. <i>FEMS Microbiology Ecology</i> , 2001 , 35, 189-196	4.3	21
256	Microbial dehalogenation. 2001 , 12, 254-8		142
255	Development of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2-dichloropropane. <i>FEMS Microbiology Ecology</i> , 2001 , 35, 189-196	4.3	7
254	Degradation and Transformation of Organic Fluorine Compounds. 2002, 137-202		4
253	Molecular characterization of the PceA reductive dehalogenase of desulfitobacterium sp. strain Y51. 2002 , 184, 3419-25		103
252	Occurrence of several genes encoding putative reductive dehalogenases in Desulfitobacterium hafniense/frappieri and Dehalococcoides ethenogenes. 2002 , 48, 697-706		35
251	Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. 2002 , 36, 4193-202		211
250	Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor. 2002 , 177, 420-6		92
249	Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria. <i>Environmental Science & Environmental Sc</i>	10.3	59
248	The quest for microbial reductive dechlorination of C (2) to C (4) chloroalkanes is warranted. 2003 , 61, 94-102		37
247	Detection by PCR of reductive dehalogenase motifs in a sulfidogenic 2-bromophenol-degrading consortium enriched from estuarine sediment. <i>FEMS Microbiology Ecology</i> , 2003 , 43, 317-24	4.3	30
246	Vinyl bromide as a surrogate for determining vinyl chloride reductive dechlorination potential. <i>Environmental Science & Environmental Science & Envir</i>	10.3	5
245	History and Ecology of Chloroethene Biodegradation: A Review. 2003 , 7, 81-109		162
244	Biological dehalogenation and halogenation reactions. 2003 , 52, 299-312		192
243	Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 4628-38	4.8	124
242	Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 996-1003	4.8	284
241	Reductive dehalogenation of chlorobenzene congeners in cell extracts of Dehalococcoides sp. strain CBDB1. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 2999-3001	4.8	66

240	Anaerobic dehalogenation of organohalide contaminants in the marine environment. 2003, 53, 61-84		29
239	Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 4159-66	4.8	103
238	Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5643-7	4.8	83
237	Purification, cloning and sequencing of an enzyme mediating the reductive dechlorination of 2,4,6-trichlorophenol from Desulfitobacterium frappieri PCP-1. 2003 , 373, 297-303		37
236	Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 7329-41	4.8	102
235	Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from Desulfitobacterium frappieri PCP-1. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4532-7	4.8	53
234	Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4880-8	4.8	275
233	Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5290-7	4.8	119
232	Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 6347-51	4.8	204
231	Anaerobic microbial dehalogenation. 2004 , 58, 43-73		396
231	Anaerobic microbial dehalogenation. 2004 , 58, 43-73 A biological method for synthesizing 14C-vinyl chloride. 2004 , 47, 903-910		396
Ĭ			396 16
230	A biological method for synthesizing 14C-vinyl chloride. 2004 , 47, 903-910	10.3	
230	A biological method for synthesizing 14C-vinyl chloride. 2004 , 47, 903-910 Dehalogenation. 2004 , Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately	10.3	16
230	A biological method for synthesizing 14C-vinyl chloride. 2004, 47, 903-910 Dehalogenation. 2004, Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Environmental Science & Camp; Technology, 2004, 38, 4300-3	10.3	16 52
230 229 228 227	A biological method for synthesizing 14C-vinyl chloride. 2004, 47, 903-910 Dehalogenation. 2004, Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Environmental Science & Environmental	10.3	16 52 17
230 229 228 227 226	A biological method for synthesizing 14C-vinyl chloride. 2004, 47, 903-910 Dehalogenation. 2004, Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Environmental Science & Diversity of Dechlorinating Bacteria. 2004, 53-87 Dehalogenation by Anaerobic Bacteria. 2004, 115-157	10.3	16 52 17

Performance Assessment and Demonstration of Bioremediation and Natural Attenuation. **2005**, 457-525

221	Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. 2005 , 7, 1442-50		214
220	Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. 2005 , 23, 1269-73		253
219	Biodegradation of xenobiotics by anaerobic bacteria. 2005 , 67, 600-18		114
218	Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51: a review. 2005 , 32, 534-41		19
217	. 2005,		55
216	Multiple reductive-dehalogenase-homologous genes are simultaneously transcribed during dechlorination by Dehalococcoides-containing cultures. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 8257-64	4.8	109
215	Indications for acquisition of reductive dehalogenase genes through horizontal gene transfer by Dehalococcoides ethenogenes strain 195. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 2955-61	4.8	33
214	An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 3866-71	4.8	126
213	Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 1664-7	4.8	63
212	Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. 2005 , 307, 105-8	8	363
211	Enrichment, cultivation, and detection of reductively dechlorinating bacteria. 2005, 397, 77-111		66
210	Transcriptional expression of the tceA gene in a Dehalococcoides-containing microbial enrichment. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 7145-51	4.8	64
209	Electroenzymatic reactions. Investigation of a reductive dehalogenase by means of electrogenerated redox cosubstrates. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13583-8	16.4	22
208	Kinetics and Inhibition of Reductive Dechlorination of Chlorinated Ethylenes by Two Different Mixed Cultures. <i>Environmental Science & Environmental S</i>	10.3	95
207	Novel aerobic perchloroethylene degradation by the white-rot fungus Trametes versicolor. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	39
206	A modeling study and implications of competition between Dehalococcoides ethenogenes and other tetrachloroethene-respiring bacteria. <i>Environmental Science & Environmental Sc</i>	10.3	38
205	Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation. 2006 , 78, 2456-65		37

(2007-2006)

204	Transcription and mass-spectroscopic proteomic studies of electron transport oxidoreductases in Dehalococcoides ethenogenes. 2006 , 8, 1499-509		70
203	The Desulfitobacterium genus. 2006 , 30, 706-33		155
202	Harnessing microbial activities for environmental cleanup. 2006 , 17, 274-84		188
201	Electron transfer and bond breaking: Recent advances. 2006 , 324, 40-56		99
200	Transport and activity of Desulfitobacterium dichloroeliminans strain DCA1 during bioaugmentation of 1,2-DCA-contaminated groundwater. <i>Environmental Science & Environmental </i>	10.3	33
199	Isolation and transcriptional analysis of novel tetrachloroethene reductive dehalogenase gene from Desulfitobacterium sp. strain KBC1. 2006 , 69, 543-53		30
198	Emergence of two types of nondechlorinating variants in the tetrachloroethene-halorespiring Desulfitobacterium sp. strain Y51. 2006 , 70, 720-8		28
197	Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. 2006 , 81, 1463-1474		76
196	Oxygenases and dehalogenases: molecular approaches to efficient degradation of chlorinated environmental pollutants. 2006 , 70, 2335-48		38
195	Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 6161-8	4.8	94
194	Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 1980-7	4.8	213
193	Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 2765-74	4.8	341
192	Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 5877-83	4.8	121
191	Temporal expression of respiratory genes in an enrichment culture containing Dehalococcoides ethenogenes. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 5486-91	4.8	70
190	Comparative proteomics of Dehalococcoides spp. reveals strain-specific peptides associated with activity. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 320-6	4.8	101
189	Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 2847-53	4.8	154
188	Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 4439-45	4.8	94
187	Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. Applied and Environmental Microbiology, 2007, 73, 7717-24	4.8	119

186	Unusual codon bias in vinyl chloride reductase genes of Dehalococcoides species. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 2744-7	4.8	25
185	Stable carbon isotope fractionation of chloroethenes by dehalorespiring isolates. <i>Environmental Science & Environmental Scien</i>	10.3	59
184	Natural attenuation processes during in situ capping. <i>Environmental Science & Environmental &</i>	10.3	29
183	The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 2513-21	4.8	124
182	Growth of Dehalococcoides strains with chlorophenols as electron acceptors. <i>Environmental Science & Environmental & E</i>	10.3	122
181	Reductive dechlorination of chloroethenes by Dehalococcoides-containing cultures enriched from a polychlorinated-dioxin-contaminated microcosm. <i>ISME Journal</i> , 2007 , 1, 471-9	11.9	24
180	Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing. 2008 , 10, 31-46		46
179	Environmental distribution of the trichloroethene reductive dehalogenase gene (tceA) suggests lateral gene transfer among Dehalococcoides. <i>FEMS Microbiology Ecology</i> , 2007 , 59, 206-14	4.3	48
178	Enhanced bioremediation using whey powder for a trichloroethene plume in a high-sulfate, fractured granitic aquifer. 2008 , 18, 7-30		7
177	Real-time PCR quantification of Dehalococcoides populations: methods and applications. 2008 , 72, 1-1	1	75
176	A novel and rapid method for synthesizing positive controls and standards for quantitative PCR. 2008 , 73, 73-7		8
175	Bacterial metabolism of polychlorinated biphenyls. 2008 , 15, 121-38		165
175	Bacterial metabolism of polychlorinated biphenyls. 2008, 15, 121-38 Dechlorination of chloroethylenes by cob(l)alamin and cobalamin model complexes. 2008, 4191-201		16547
		10.3	
174	Dechlorination of chloroethylenes by cob(I)alamin and cobalamin model complexes. 2008 , 4191-201 Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. <i>Environmental</i>	10.3	47
174 173	Dechlorination of chloroethylenes by cob(l)alamin and cobalamin model complexes. 2008 , 4191-201 Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. <i>Environmental Science & Concurrent Prochamology</i> , 2008 , 42, 477-83 Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration.		47 59
174 173 172	Dechlorination of chloroethylenes by cob(l)alamin and cobalamin model complexes. 2008, 4191-201 Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. <i>Environmental Science & Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environmental Science & Concurrent & Co</i>	10.3	47 59 104

(2010-2008)

168	Complete dechlorination of tetrachloroethylene by use of an anaerobic Clostridium bifermentans DPH-1 and zero-valent iron. 2008 , 29, 381-91		5
167	Monitoring abundance and expression of "Dehalococcoides" species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 5695-703	4.8	106
166	Exploring the Correlation between Halorespirer Biomarker Concentrations and TCE Dechlorination Rates. 2008 , 134, 895-901		20
165	Quantifying genes and transcripts to assess the in situ physiology of "Dehalococcoides" spp. in a trichloroethene-contaminated groundwater site. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 272	8 ¹ 3 ⁵ 9	131
164	Biodiversity of dehalorespiring bacteria with special emphasis on polychlorinated biphenyl/dioxin dechlorinators. <i>Microbes and Environments</i> , 2008 , 23, 1-12	2.6	89
163	Performance Assessment of Bioremediation and Natural Attenuation. 2009 , 39, 209-270		51
162	Transcription analysis of genes encoding homologues of reductive dehalogenases in "Dehalococcoides" sp. strain CBDB1 by using terminal restriction fragment length polymorphism and quantitative PCR. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 1876-84	4.8	43
161	Biocatalytic dechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor. 2009 , 102, 995-1002		72
160	Anaerobic reductive dehalogenation of polychlorinated dioxins. 2009 , 84, 429-44		53
159	Absolute quantification of Dehalococcoides proteins: enzyme bioindicators of chlorinated ethene dehalorespiration. 2009 , 11, 2687-97		41
158	Phylogenetic and Transcriptional Analyses of a Tetrachloroethene-Dechlorinating "Dehalococcoides" Enrichment Culture TUT2264 and Its Reductive-Dehalogenase Genes. <i>Microbes and Environments</i> , 2009 , 24, 330-7	2.6	28
157	Dechlorinating and Iron Reducing Bacteria Distribution in a TCE-Contaminated Aquifer. 2010 , 30, 46-57		16
156	Concurrent hexachlorobenzene and chloroethene transformation by endogenous dechlorinating microorganisms in the Ebro River sediment. <i>FEMS Microbiology Ecology</i> , 2010 , 74, 682-92	4.3	7
155	Identification and transcriptional analysis of trans-DCE-producing reductive dehalogenases in Dehalococcoides species. <i>ISME Journal</i> , 2010 , 4, 1020-30	11.9	66
154	Reductive dehalogenation of brominated ethenes by Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE-S. 2010 , 12, 501-9		29
153	Bioremediation of Chlorinated Solvent Plumes. 2010 , 309-324		10
152	Identification and characterization of a novel CprA reductive dehalogenase specific to highly chlorinated phenols from Desulfitobacterium hafniense strain PCP-1. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7536-40	4.8	36
151	Characterizing the metabolism of Dehalococcoides with a constraint-based model. 2010 , 6, e1000887		43

150	Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. <i>Environmental Science & Environmental Sc</i>	10.3	87
149	Microbial community- and metabolite dynamics of an anoxic dechlorinating bioreactor. <i>Environmental Science & Environmental Sc</i>	10.3	27
148	Cloning of a novel dehalogenase from environmental DNA. 2010 , 74, 1290-2		14
147	Effects of elevated temperature on Dehalococcoides dechlorination performance and DNA and RNA biomarker abundance. <i>Environmental Science & Environmental & En</i>	10.3	36
146	Kinetics and inhibition of reductive dechlorination of trichloroethene, cis-1,2-dichloroethene and vinyl chloride in a continuously fed anaerobic biofilm reactor. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 1569-78	10.3	17
145	Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. <i>Environmental Science & amp; Technology</i> , 2011 , 45, 1555-62	10.3	48
144	Stable carbon isotope enrichment factors for cis-1,2-dichloroethene and vinyl chloride reductive dechlorination by Dehalococcoides. <i>Environmental Science & Environmental Sci</i>	10.3	25
143	Microbial diversity and changes in the distribution of dehalogenase genes during dechlorination with different concentrations of cis-DCE. <i>Environmental Science & amp; Technology</i> , 2011 , 45, 5339-45	10.3	20
142	Comparative genomics of two newly isolated Dehalococcoides strains and an enrichment using a genus microarray. <i>ISME Journal</i> , 2011 , 5, 1014-24	11.9	49
141	Comparative study of microbial dechlorination of chlorinated ethenes in an aquifer and a clayey aquitard. 2011 , 124, 14-24		31
140	Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: Mass balance, PCR and compound-specific stable isotope analysis. 2011 , 126, 315-29		24
139	Reductive dechlorination of tetrachloroethene by two compost samples with different maturity. <i>Bioresource Technology</i> , 2011 , 102, 10498-504	11	3
138	Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities. 2011 , 22, 687-98		25
137	A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture. 2011 , 400, 1083-92		37
136	Design and verification of a pangenome microarray oligonucleotide probe set for Dehalococcoides spp. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5361-9	4.8	22
135	Global transcriptomic and proteomic responses of Dehalococcoides ethenogenes strain 195 to fixed nitrogen limitation. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 1424-36	4.8	21
134	Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9(T)) and comparison to "Dehalococcoides" strains. 2012 , 6, 251-64		45
133	- Abiotic Reactions: An Outline. 2012 , 34-83		

132 - Aliphatic Compounds. **2012**, 584-743

131	Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 6630-6	4.8	90
130	Relating chloroethene respiration rates in Dehalococcoides to protein and mRNA biomarkers. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	28
129	Growth of Dehalococcoides mccartyi strain CBDB1 by reductive dehalogenation of brominated benzenes to benzene. <i>Environmental Science & Environmental </i>	10.3	36
128	Metagenomic analysis of a stable trichloroethene-degrading microbial community. <i>ISME Journal</i> , 2012 , 6, 1702-14	11.9	48
127	Field distribution and activity of chlorinated solvents degrading bacteria by combining CARD-FISH and real time PCR. 2012 , 30, 23-32		25
126	Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites. <i>Frontiers in Microbiology</i> , 2012 , 3, 351	5.7	32
125	Bioaugmentation of an anaerobic biotrickling filter for enhanced conversion of trichloroethene to ethene. 2012 , 183, 98-103		19
124	Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments. 2012 , 5, 347-67		26
123	Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. 2012 , 95 Suppl, S306-	18	54
122	Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfitobacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors. 2012 , 39, 255-68		26
121	Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater. 2013 , 35, 535-49		16
120	Occurrence of Dehalococcoides and Reductive Dehalogenase Genes in Microcosms, a Constructed Wetland and Groundwater from a Chlorinated Ethene Contaminated Field Site as Indicators for In Situ Reductive Dehalogenation. 2013 , 224, 1		4
119	Global gene expression of Dehalococcoides within a robust dynamic TCE-dechlorinating community under conditions of periodic substrate supply. 2013 , 110, 1333-41		17
118	Dehalogenation of diverse halogenated substrates by a highly enriched Dehalococcoides-containing culture derived from the contaminated mega-site in Bitterfeld. <i>FEMS Microbiology Ecology</i> , 2013 , 83, 176-88	4.3	23
117	Stimulation of trichloroethene biodegradation in anaerobic three-phase microcosms. 2013 , 84, 126-133		15
116	Genomic insights into organohalide respiration. 2013 , 24, 498-505		60
115	Different activity levels of Dehalococcoides mccartyi revealed by FISH and CARD-FISH under non-steady and pseudo-steady state conditions. 2013 , 30, 756-62		17

114	Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. 2013 , 15, 2293-305		32
113	Bioaugmentation with Dehalococcoides: a Decision Guide. 2013 , 117-140		7
112	Dehalococcoides and Reductive Dechlorination of Chlorinated Solvents. 2013, 39-88		34
111	Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. 2013 , 368, 20120322		201
110	Evaluation of Enhanced Reductive Dechlorination of Trichloroethylene Using Gene Analysis: Pilot-Scale Study. 2013 , 139, 428-437		13
109	Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 974-81	4.8	60
108	Diversity of reductive dehalogenase genes from environmental samples and enrichment cultures identified with degenerate primer PCR screens. <i>Frontiers in Microbiology</i> , 2013 , 4, 341	5.7	37
107	Microbial Degradation of Some Halogenated Compounds: Biochemical and Molecular Features. 2013 ,		3
106	New insights into Dehalococcoides mccartyi metabolism from a reconstructed metabolic network-based systems-level analysis of D. mccartyi transcriptomes. <i>PLoS ONE</i> , 2014 , 9, e94808	3.7	13
105	Processes, Assessment and Remediation of Contaminated Sediments. 2014,		13
105	Processes, Assessment and Remediation of Contaminated Sediments. 2014, In Situ Biotransformation of Contaminants in Sediments. 2014, 263-304		13 3
		4.3	
104	In Situ Biotransformation of Contaminants in Sediments. 2014 , 263-304 Inferring community dynamics of organohalide-respiring bacteria in chemostats by covariance of	4.3	3
104	In Situ Biotransformation of Contaminants in Sediments. 2014 , 263-304 Inferring community dynamics of organohalide-respiring bacteria in chemostats by covariance of rdhA gene abundance. <i>FEMS Microbiology Ecology</i> , 2014 , 87, 428-40 Determinants of the microbial community structure of eutrophic, hyporheic river sediments		3
104	In Situ Biotransformation of Contaminants in Sediments. 2014 , 263-304 Inferring community dynamics of organohalide-respiring bacteria in chemostats by covariance of rdhA gene abundance. <i>FEMS Microbiology Ecology</i> , 2014 , 87, 428-40 Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons. <i>FEMS Microbiology Ecology</i> , 2014 , 87, 715-32 Dehalogenimonas lykanthroporepellens BL-DC-9T simultaneously transcribes many rdhA genes during organohalide respiration with 1,2-DCA, 1,2-DCP, and 1,2,3-TCP as electron acceptors. 2014 ,		3 8 15
104 103 102	In Situ Biotransformation of Contaminants in Sediments. 2014, 263-304 Inferring community dynamics of organohalide-respiring bacteria in chemostats by covariance of rdhA gene abundance. FEMS Microbiology Ecology, 2014, 87, 428-40 Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons. FEMS Microbiology Ecology, 2014, 87, 715-32 Dehalogenimonas lykanthroporepellens BL-DC-9T simultaneously transcribes many rdhA genes during organohalide respiration with 1,2-DCA, 1,2-DCP, and 1,2,3-TCP as electron acceptors. 2014, 354, 111-8 Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated	4.3	3 8 15
104 103 102 101	In Situ Biotransformation of Contaminants in Sediments. 2014 , 263-304 Inferring community dynamics of organohalide-respiring bacteria in chemostats by covariance of rdhA gene abundance. <i>FEMS Microbiology Ecology</i> , 2014 , 87, 428-40 Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons. <i>FEMS Microbiology Ecology</i> , 2014 , 87, 715-32 Dehalogenimonas lykanthroporepellens BL-DC-9T simultaneously transcribes many rdhA genes during organohalide respiration with 1,2-DCA, 1,2-DCP, and 1,2,3-TCP as electron acceptors. 2014 , 354, 111-8 Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated groundwater: a pilot-scale study. <i>Journal of Hazardous Materials</i> , 2014 , 268, 92-101 Comparison of 1,2-dichloroethane, dichloroethene and vinyl chloride carbon stable isotope	4.3	3 8 15 14

96	Removal of chlorinated organic compounds during wastewater treatment: achievements and limits. 2014 , 98, 6233-42		22
95	Quantitative and functional dynamics of Dehalococcoides spp. and its tceA and vcrA genes under TCE exposure. 2014 , 25, 493-504		4
94	A comparative genomics and reductive dehalogenase gene transcription study of two chloroethene-respiring bacteria, Dehalococcoides mccartyi strains MB and 11a. 2015 , 5, 15204		11
93	Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone. 2015 , 182, 78-90		13
92	SPINE: SParse elgengene NEtwork linking gene expression clusters in Dehalococcoides mccartyi to perturbations in experimental conditions. <i>PLoS ONE</i> , 2015 , 10, e0118404	3.7	3
91	Identity and Substrate Specificity of Reductive Dehalogenases Expressed in Dehalococcoides-Containing Enrichment Cultures Maintained on Different Chlorinated Ethenes. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 4626-33	4.8	19
90	Biochemical and EPR-spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3525-32	16.4	57
89	Genome sequence determination and metagenomic characterization of a Dehalococcoides mixed culture grown on cis-1,2-dichloroethene. 2015 , 120, 69-77		13
88	Development of a fluorescence-activated cell sorting method coupled with whole genome amplification to analyze minority and trace Dehalococcoides genomes in microbial communities. <i>Environmental Science & Environmental Sci</i>	10.3	9
87	Aliphatic organochlorine degradation in subsurface environments. 2015 , 14, 49-71		20
86	GeneCARD-FISH: detection of tceA and vcrA reductive dehalogenase genes in Dehalococcoides mccartyi by fluorescence in situ hybridization. 2015 , 110, 27-32		16
85	Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modeling. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	43
84	Primers That Target Functional Genes of Organohalide-Respiring Bacteria. 2015 , 177-205		7
83	Relating mRNA and protein biomarker levels in a Dehalococcoides and Methanospirillum-containing community. 2015 , 99, 2313-27		12
82	Chloroethene degradation and expression of Dehalococcoides dehalogenase genes in cultures originating from Yangtze sediments. 2015 , 22, 3138-48		17
81	Reductive Dehalogenases Come of Age in Biological Destruction of Organohalides. 2015 , 33, 595-610		65
8o	Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation. <i>Frontiers in Microbiology</i> , 2016 , 7, 249	5.7	87
79	Inferring Gene Networks for Strains of Dehalococcoides Highlights Conserved Relationships between Genes Encoding Core Catabolic and Cell-Wall Structural Proteins. <i>PLoS ONE</i> , 2016 , 11, e01662	3 3 :7	4

78	Experimental validation of in silico model-predicted isocitrate dehydrogenase and phosphomannose isomerase from Dehalococcoides mccartyi. 2016 , 9, 47-60		1
77	Overview of Known Organohalide-Respiring Bacteria Phylogenetic Diversity and Environmental Distribution. 2016 , 63-105		30
76	The Genus Dehalococcoides. 2016 , 107-136		13
75	Organohalide-Respiring Bacteria as Members of Microbial Communities: Catabolic Food Webs and Biochemical Interactions. 2016 , 309-341		7
74	Comparative Genomics and Transcriptomics of Organohalide-Respiring Bacteria and Regulation of rdh Gene Transcription. 2016 , 345-376		11
73	Genomic, transcriptomic and proteomic analyses of Dehalobacter UNSWDHB in response to chloroform. 2016 , 8, 814-824		14
72	Diversity, Evolution, and Environmental Distribution of Reductive Dehalogenase Genes. 2016 , 377-393		11
71	The MarR-Type Regulator Rdh2R Regulates rdh Gene Transcription in Dehalococcoides mccartyi Strain CBDB1. 2016 , 198, 3130-3141		10
70	Genome sequence of the organohalide-respiring Dehalogenimonas alkenigignens type strain (IP3-3(T)). 2016 , 11, 44		8
69	Loop-Mediated Isothermal Amplification (LAMP) for Rapid Detection and Quantification of Dehalococcoides Biomarker Genes in Commercial Reductive Dechlorinating Cultures KB-1 and SDC-9. <i>Applied and Environmental Microbiology</i> , 2016 , 82, 1799-1806	4.8	15
68	Dehalogenimonas sp. Strain WBC-2 Genome and Identification of Its trans-Dichloroethene Reductive Dehalogenase, TdrA. <i>Applied and Environmental Microbiology</i> , 2016 , 82, 40-50	4.8	25
67	Environmental Bioremediation: Biodegradation of Xenobiotic Compounds. 2017 , 347-371		5
66	Oxygen exposure effects on the dechlorinating activities of a trichloroethene-dechlorination microbial consortium. <i>Bioresource Technology</i> , 2017 , 240, 98-105	11	10
65	Transformation of carbon tetrachloride and chloroform by trichloroethene respiring anaerobic mixed cultures and supernatant. 2017 , 182, 65-75		5
64	Microbial degradation of chloroethenes: a review. 2017 , 24, 13262-13283		63
63	The dechlorination of TCE by a perchlorate reducing consortium. 2017 , 313, 1215-1221		20
62	A bacterial chloroform reductive dehalogenase: purification and biochemical characterization. 2017 , 10, 1640-1648		9
61	Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer. 2017 , 8, 158	58	41

60	Biochemistry of Catabolic Reductive Dehalogenation. 2017, 86, 357-386		62
59	Isolation and genomic characterization of a Dehalococcoides strain suggests genomic rearrangement during culture. 2017 , 7, 2230		9
58	Triple-element compound-specific stable isotope analysis of 1,2-dichloroethane for characterization of the underlying dehalogenation reaction in two Dehalococcoides mccartyi strains. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	15
57	Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	7
56	Reconstructed genomes of novel Dehalococcoides mccartyi strains from 1,2,3,4-tetrachlorodibenzo-p-dioxin-dechlorinating enrichment cultures reveal divergent reductive dehalogenase gene profiles. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	9
55	Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions. <i>Microbes and Environments</i> , 2017 , 32, 188-200	2.6	42
54	Identification of Multiple Dehalogenase Genes Involved in Tetrachloroethene-to-Ethene Dechlorination in a -Dominated Enrichment Culture. <i>BioMed Research International</i> , 2017 , 2017, 91910.	8 <i>6</i> ³	10
53	Microbe-Mediated Bioremediation: An Eco-friendly Sustainable Approach for Environmental Clean-Up. <i>Microorganisms for Sustainability</i> , 2018 , 145-163	1.1	9
52	Advances in Soil Microbiology: Recent Trends and Future Prospects. <i>Microorganisms for Sustainability</i> , 2018 ,	1.1	6
51	Stable carbon isotope fractionation of chlorinated ethenes by a microbial consortium containing multiple dechlorinating genes. <i>Bioresource Technology</i> , 2018 , 261, 133-141	11	4
50	Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	6
49	Normalized Quantitative PCR Measurements as Predictors for Ethene Formation at Sites Impacted with Chlorinated Ethenes. <i>Environmental Science & Environmental Science & Envir</i>	10.3	18
48	Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications. <i>Molecules</i> , 2018 , 23,	4.8	36
47	An Aminoimidazole Radical Intermediate in the Anaerobic Biosynthesis of the 5,6-Dimethylbenzimidazole Ligand to Vitamin B12. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12798-12807	16.4	4
46	Functional Expression and Characterization of Tetrachloroethene Dehalogenase From sp. <i>Frontiers in Microbiology</i> , 2018 , 9, 1774	5.7	8
45	Chlorinated Electron Acceptor Abundance Drives Selection of () Strains in Dechlorinating Enrichment Cultures and Groundwater Environments. <i>Frontiers in Microbiology</i> , 2018 , 9, 812	5.7	11
44	Acceleration of Microbial Dehalorespiration with Electrical Stimulation. 2019, 73-92		1
43	Microorganisms: an asset for decontamination of soil. 2019 , 319-345		5

42	Isolation, characterization and bioaugmentation of an acidotolerant 1,2-dichloroethane respiring Desulfitobacterium species from a low pH aquifer. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	5
41	Estimating bioaugmentation efficacy of TCE dechlorination using long-term field well-to-well tests in a highly recharged and TCE-contaminated aquifer. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2019 , 54, 208-218	2.3	1
40	Mechanistic Dichotomy in Bacterial Trichloroethene Dechlorination Revealed by Carbon and Chlorine Isotope Effects. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	17
39	Regulation of organohalide respiration. <i>Advances in Microbial Physiology</i> , 2019 , 74, 191-238	4.4	6
38	Influence of non-dechlorinating microbes on trichloroethene reduction based on vitamin B synthesis in anaerobic cultures. <i>Environmental Pollution</i> , 2020 , 259, 113947	9.3	8
37	Dual Element (C/Cl) Isotope Analysis Indicates Distinct Mechanisms of Reductive Dehalogenation of Chlorinated Ethenes and Dichloroethane in Strain BTF08 With Defined Reductive Dehalogenase Inventories. <i>Frontiers in Microbiology</i> , 2020 , 11, 1507	5.7	4
36	Biorelevant Chemistry of Cobalamin. 2020,		
35	Insights into origins and function of the unexplored majority of the reductive dehalogenase gene family as a result of genome assembly and ortholog group classification. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 663-678	4.3	13
34	Metagenome-Guided Proteomic Quantification of Reductive Dehalogenases in the -Containing Consortium SDC-9. <i>Journal of Proteome Research</i> , 2020 , 19, 1812-1823	5.6	9
33	Preparation and characterization of site-specific dechlorinating microbial inocula capable of complete dechlorination enriched in anaerobic microcosms amended with clay mineral. <i>World Journal of Microbiology and Biotechnology</i> , 2020 , 36, 29	4.4	1
32	Physiological and molecular basis of plants tolerance to linear halogenated hydrocarbons. 2021 , 591-6	02	2
31	Interspecies metabolite transfer and aggregate formation in a co-culture of Dehalococcoides and Sulfurospirillum dehalogenating tetrachloroethene to ethene. <i>ISME Journal</i> , 2021 , 15, 1794-1809	11.9	4
30	Biological effects of tourmaline treatment on spp. during the reductive dechlorination of trichloroethylene <i>RSC Advances</i> , 2021 , 11, 12086-12094	3.7	0
29	Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing. <i>Environmental Science & Environmental Scien</i>	10.3	8
28	Effects of ferrous iron supplementation on reductive dechlorination of tetrachloroethene and on methanogenic microbial community. <i>FEMS Microbiology Ecology</i> , 2021 , 97,	4.3	1
27	Iron Sulfide Enhanced the Dechlorination of Trichloroethene by Strain 195. <i>Frontiers in Microbiology</i> , 2021 , 12, 665281	5.7	1
26	A Microcosm Treatability Study for Evaluating Wood Mulch-Based Amendments as Electron Donors for Trichloroethene (TCE) Reductive Dechlorination. <i>Water (Switzerland)</i> , 2021 , 13, 1949	3	3
25	Degradation and Transformation of Organic Bromine and Iodine Compounds: Comparison with their Chlorinated Analogues. <i>Handbook of Environmental Chemistry</i> , 2003 , 1-74	0.8	1

24	Anaerobic Utilization of Halohydrocarbons. 2010 , 2049-2064		1
23	Genetic System of Organohalide-Respiring Bacteria. 2014 , 59-81		2
22	Chlorinated electron acceptor availability selects for specificDehalococcoidespopulations in dechlorinating enrichment cultures and in groundwater.		1
21	Eight new genomes of organohalide-respiring Dehalococcoides mccartyi reveal evolutionary trends in reductive dehalogenase enzymes.		2
20	Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. <i>PLoS Genetics</i> , 2009 , 5, e1000714	6	135
19	Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene. <i>PLoS ONE</i> , 2014 , 9, e100654	3.7	31
18	Detoxification of 1,1,2-trichloroethane to ethene by desulfitobacterium and identification of its functional reductase gene. <i>PLoS ONE</i> , 2015 , 10, e0119507	3.7	18
17	Microbial Reductive Dehalogenation and Its Role in Bioremediation. 2021 , 205-226		
16	Dehalococcoides mccartyi NIT01, a novel isolate, dechlorinates high concentrations of chloroethenes by expressing at least six different reductive dehalogenases. <i>Environmental Research</i> , 2021 , 112150	7.9	0
15	Modeling Fate and Transport of Chlorinated Organic Compounds in the Subsurface. 2003,		
14	Interspecies metabolite transfer and aggregate formation in a co-culture of Dehalococcoides and Sulfurospirillum dehalogenating tetrachloroethene to ethene.		
13	Bioelectrochemical system for dehalogenation: A review. Environmental Pollution, 2021, 293, 118519	9.3	5
12	-Containing Enrichment Cultures Transform Two Chlorinated Organophosphate Esters <i>Environmental Science & Environmental Scie</i>	10.3	2
11	Efficient biodegradation of tetrabromobisphenol A by the novel strain Enterobacter sp. T2 with good environmental adaptation: Kinetics, pathways and genomic characteristics <i>Journal of Hazardous Materials</i> , 2022 , 429, 128335	12.8	1
10	Long-Term Dechlorination of Polychlorinated Biphenyls (PCBs) in Taihu Lake Sediment Microcosms: Identification of New Pathways, PCB-Driven Shifts of Microbial Communities, and Insights into Dechlorination Potential <i>Environmental Science & Enpy: Technology</i> , 2021 ,	10.3	0
9	Data_Sheet_1.pdf. 2018 ,		
8	Data_Sheet_1.PDF. 2018 ,		
7	Data_Sheet_1.PDF. 2020 ,		

6	The potential for bacteria from carbon-limited deep terrestrial environments to participate in chlorine cycling <i>FEMS Microbiology Ecology</i> , 2022 ,	4.3	О
5	Mini-review: effect of temperature on microbial reductive dehalogenation of chlorinated ethenes: a review. FEMS Microbiology Ecology,	4.3	1
4	Substrate-restricted methanogenesis and limited volatile organic compound degradation in highly diverse and heterogeneous municipal landfill microbial communities. <i>ISME Communications</i> , 2022 , 2,		2
3	The biogeochemical cycling of chlorine. <i>Geobiology</i> ,	4.3	
2	Recent advances and trends of trichloroethylene biodegradation: A critical review. 13,		0