Conformational Diffusion and Helix Formation Kinetics

Physical Review Letters 85, 2637-2640 DOI: 10.1103/physrevlett.85.2637

Citation Report

#	Article	IF	CITATIONS
1	The folding thermodynamics and kinetics of crambin using an all-atom monte carlo simulation11Edited by A. R. Fersht. Journal of Molecular Biology, 2001, 308, 79-95.	2.0	141
2	Time-Resolved Infrared Study of the Helixâ°'Coil Transition Using13C-Labeled Helical Peptides. Journal of the American Chemical Society, 2001, 123, 12111-12112.	6.6	106
3	Helix nucleation kinetics from molecular simulations in explicit solvent. Proteins: Structure, Function and Bioinformatics, 2001, 42, 77-84.	1.5	101
4	Energy landscapes of model polyalanines. Journal of Chemical Physics, 2002, 117, 1363-1376.	1.2	78
5	Kinetic transition in model proteins with a denatured native spinodal. Physical Review E, 2002, 65, 041925.	0.8	4
6	Helix formation via conformation diffusion search. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2788-2793.	3.3	212
7	Peptide Loop-Closure Kinetics from Microsecond Molecular Dynamics Simulations in Explicit Solvent. Journal of the American Chemical Society, 2002, 124, 6563-6568.	6.6	126
8	Understanding protein folding with energy landscape theory Part I: Basic concepts. Quarterly Reviews of Biophysics, 2002, 35, 111-167.	2.4	179
9	Measuring Dynamic Flexibility of the Coil State of a Helix-forming Peptide. Journal of Molecular Biology, 2002, 319, 19-25.	2.0	48
10	Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics. Proteins: Structure, Function and Bioinformatics, 2002, 46, 225-234.	1.5	254
11	Â-Helical stabilization by side chain shielding of backbone hydrogen bonds. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2782-2787.	3.3	433
12	Early events in protein folding. Current Opinion in Structural Biology, 2003, 13, 75-81.	2.6	109
13	Helix–coil kinetics of two 14-residue peptides. Chemical Physics Letters, 2003, 370, 842-848.	1.2	36
14	Dynamics of stiff polymers mapped from an Ising model. Polymer, 2003, 44, 2829-2831.	1.8	0
15	Matrix models of discretely bending, stiff polymers. Polymer, 2003, 44, 3151-3164.	1.8	33
16	The role of α-, 310-, and ï€-helix in helix→coil transitions. Protein Science, 2003, 12, 1145-1157.	3.1	121
17	Spectroscopic Studies of Structural Changes in Two β-Sheet-Forming Peptides Show an Ensemble of Structures that Unfold Noncooperatively. Biochemistry, 2003, 42, 4321-4332.	1.2	47
18	Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias. Journal of Chemical Physics, 2003, 118, 4261-4271.	1.2	88

#	ARTICLE	IF	Citations
19	Role of Backbone Hydration and Salt-Bridge Formation in Stability of α-Helix in Solution. Biophysical Journal, 2003, 85, 3187-3193.	0.2	95
20	Folding of a Highly Conserved Diverging Turn Motif from the SH3 Domain. Biophysical Journal, 2003, 84, 1548-1562.	0.2	25
21	Kinetics of the coil-to-helix transition on a rough energy landscape. Physical Review E, 2003, 68, 051901.	0.8	12
22	Free energy landscapes of model peptides and proteins. Journal of Chemical Physics, 2003, 118, 3891-3897.	1.2	143
23	Investigating a link between all-atom model simulation and the Ising-based theory on the helix–coil transition. II. Nonstationary properties. Journal of Chemical Physics, 2003, 118, 10312-10322.	1.2	7
24	Picosecond conformational transition and equilibration of a cyclic peptide. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6452-6457.	3.3	156
25	Protein Folding Rates Correlate with Heterogeneity of Folding Mechanism. Physical Review Letters, 2004, 93, 208105.	2.9	16
26	Improved theoretical description of protein folding kinetics from rotations in the phase space of relevant order parameters. Journal of Chemical Physics, 2004, 121, 1114-1120.	1.2	7
27	Unfolded state of polyalanine is a segmented polyproline II helix. Proteins: Structure, Function and Bioinformatics, 2004, 55, 493-501.	1.5	94
28	The Principles of α-Helix Formation:  Explaining Complex Kinetics with Nucleationâ^'Elongation Theory. Journal of Physical Chemistry B, 2004, 108, 8497-8506.	1.2	37
29	Length Dependent Helixâ^'Coil Transition Kinetics of Nine Alanine-Based Peptides. Journal of Physical Chemistry B, 2004, 108, 15301-15310.	1.2	66
32	How Well Can Simulation Predict Protein Folding Kinetics and Thermodynamics?. Annual Review of Biophysics and Biomolecular Structure, 2005, 34, 43-69.	18.3	225
33	Protein folding by distributed computing and the denatured state ensemble. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16684-16689.	3.3	22
34	New Challenges. , 2005, , 461-538.		2
35	Exploring the Helix-Coil Transition via All-Atom Equilibrium Ensemble Simulations. Biophysical Journal, 2005, 88, 2472-2493.	0.2	624
36	Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations. New Journal of Physics, 2005, 7, 34-34.	1.2	434
37	Mechanism of Helix Nucleation and Propagation:Â Microscopic View from Microsecond Time Scale MD Simulations. Journal of Physical Chemistry B, 2005, 109, 20064-20067.	1.2	34
38	Protein Folding Thermodynamics and Dynamics:Â Where Physics, Chemistry, and Biology Meet. Chemical Reviews, 2006, 106, 1559-1588.	23.0	332

#	Article	IF	CITATIONS
39	Direct UV Raman Monitoring of 310-Helix and π-Bulge Premelting during α-Helix Unfolding. Journal of the American Chemical Society, 2006, 128, 13789-13795.	6.6	52
40	Infrared Temperature-Jump Study of the Folding Dynamics of $\hat{I}\pm$ -Helices and \hat{I}^2 -Hairpins. , 2007, 350, 1-20.		6
43	Dynamic coupling between coordinates in a model for biomolecular isomerization. Journal of Chemical Physics, 2006, 124, 144911.	1.2	37
44	Folding and unfolding of a photoswitchable peptide from picoseconds to microseconds. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5383-5388.	3.3	85
45	Simple off-lattice model to study the folding and aggregation of peptides. Molecular Physics, 2007, 105, 375-385.	0.8	5
46	Dehydration-driven solvent exposure of hydrophobic surfaces as a driving force in peptide folding. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15230-15235.	3.3	72
47	Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: On the structure and possible role of internal water. Journal of Structural Biology, 2007, 157, 524-533.	1.3	110
48	Shear-Induced Conformational Ordering in the Melt of Isotactic Polypropylene. Macromolecules, 2007, 40, 4740-4743.	2.2	101
49	UV Raman Spatially Resolved Melting Dynamics of Isotopically Labeled Polyalanyl Peptide:  Slow α-Helix Melting Follows 310-Helices and π-Bulges Premelting. Journal of Physical Chemistry B, 2007, 111, 3280-3292.	1.2	32
50	Thermal Denaturation of Polyalanine Peptide in Water by Molecular Dynamics Simulations and Theoretical Prediction of Infrared Spectra:Â Helixâ^'Coil Transition Kinetics. Journal of Physical Chemistry B, 2007, 111, 605-617.	1.2	19
51	Examination of the Folding of a Short Alanine-Based Helical Peptide with Salt Bridges Using Molecular Dynamics Simulationâ€. Journal of Physical Chemistry B, 2007, 111, 3508-3514.	1.2	15
52	Free-Energy Profiles of Membrane Insertion of the M2 Transmembrane Peptide from Influenza A Virus. Biophysical Journal, 2008, 95, 5021-5029.	0.2	17
53	Minimal Folding Pathways for Coarse-Grained Biopolymer Fragments. Biophysical Journal, 2008, 95, 5496-5507.	0.2	4
54	Salt-Specific Stability and Denaturation of a Short Salt-Bridge-Forming α-Helix. Journal of the American Chemical Society, 2008, 130, 14000-14007.	6.6	89
55	Calculation of Protein Heat Capacity from Replica-Exchange Molecular Dynamics Simulations with Different Implicit Solvent Models. Journal of Physical Chemistry B, 2008, 112, 15064-15073.	1.2	35
56	Peptide folding kinetics from replica exchange molecular dynamics. Physical Review E, 2008, 77, 030902.	0.8	104
57	Shear-Induced Conformational Ordering, Relaxation, and Crystallization of Isotactic Polypropylene. Journal of Physical Chemistry B, 2008, 112, 12256-12262.	1.2	71
58	Coarse Master Equations for Peptide Folding Dynamics. Journal of Physical Chemistry B, 2008, 112, 6057-6069.	1.2	444

# 59	ARTICLE Membrane Insertion Profiles of Peptides Probed by Molecular Dynamics Simulations. , 2008, , .	IF	CITATIONS
60	Theoretical study of the three-phase contact line and its tension in adsorbed colloid-polymer mixtures. Journal of Chemical Physics, 2008, 128, 104902.	1.2	13
61	Rethinking Leucine Zipper – a ubiquitous signal transduction motif. Nature Precedings, 2009, , .	0.1	6
62	Structural alignment using the generalized Euclidean distance between conformations. International Journal of Quantum Chemistry, 2009, 109, 3217-3228.	1.0	5
63	Functionally Important Conformations of the Met20 Loop in Dihydrofolate Reductase are Populated by Rapid Thermal Fluctuations. Journal of the American Chemical Society, 2009, 131, 5642-5647.	6.6	56
64	Salt-Specific Stability of Short and Charged Alanine-Based α-Helices. Journal of Physical Chemistry B, 2009, 113, 16689-16694.	1.2	21
65	Ion Specificity in α-Helical Folding Kinetics. Journal of Physical Chemistry B, 2010, 114, 13815-13822.	1.2	22
66	Molecular Insights into the Ion-Specific Kinetics of Anionic Peptides. Journal of Physical Chemistry B, 2010, 114, 7098-7103.	1.2	12
67	Helix Formation in a Pentapeptide: Experiment and Force-field Dependent Dynamics. Journal of Physical Chemistry A, 2010, 114, 12391-12402.	1.1	39
68	Protein Simulations with an Optimized Water Model: Cooperative Helix Formation and Temperature-Induced Unfolded State Collapse. Journal of Physical Chemistry B, 2010, 114, 14916-14923.	1.2	233
69	Molecular dynamics study of reaction kinetics in viscous media. Molecular Physics, 2011, 109, 1901-1909.	0.8	9
70	What Is the Time Scale for α-Helix Nucleation?. Journal of the American Chemical Society, 2011, 133, 6809-6816.	6.6	68
71	Diffusion models of protein folding. Physical Chemistry Chemical Physics, 2011, 13, 16902.	1.3	76
72	Experiments and Comprehensive Simulations of the Formation of a Helical Turn. Journal of Physical Chemistry B, 2012, 116, 6598-6610.	1.2	22
73	Energy landscape of the small protein Ace-(Ala)10-NMe. Journal of the Korean Physical Society, 2012, 61, 697-701.	0.3	0
74	Essential dynamics: foundation and applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 762-770.	6.2	99
75	Di-cysteine S,S-tetrazine: A potential ultra-fast photochemical trigger to explore the early events of peptide/protein folding. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 234, 156-163.	2.0	21
76	Catch bond-like kinetics of helix cracking: Network analysis by molecular dynamics and Milestoning. Journal of Chemical Physics, 2013, 139, 121902.	1.2	25

#	Article	IF	CITATIONS
77	Hydrogen transfer reactions in viscous media — Potential and free energy surfaces in solvent–solute coordinates and their kinetic implications. Canadian Journal of Chemistry, 2013, 91, 787-794.	0.6	0
78	Side-chain–side-chain interactions and stability of the helical state. Physical Review E, 2014, 89, 012723.	0.8	3
79	Equilibrium thermodynamics and folding kinetics of a short, fast-folding, beta-hairpin. Physical Chemistry Chemical Physics, 2014, 16, 6422.	1.3	4
80	Computational study of thermal and mechanical properties of nylons and bio-based furan polyamides. Polymer, 2014, 55, 166-174.	1.8	37
81	Theoretical volume profiles as a tool for probing transition states: Folding kinetics. Journal of Chemical Physics, 2014, 140, 124105.	1.2	4
82	Robust Estimation of Diffusion-Optimized Ensembles for Enhanced Sampling. Journal of Chemical Theory and Computation, 2014, 10, 543-553.	2.3	12
83	Native Contact Density and Nonnative Hydrophobic Effects in the Folding of Bacterial Immunity Proteins. PLoS Computational Biology, 2015, 11, e1004260.	1.5	34
84	Dynamic properties of force fields. Journal of Chemical Physics, 2015, 142, 084101.	1.2	70
85	Coupling of Multiscale Orderings during Flow-Induced Crystallization of Isotactic Polypropylene. Macromolecules, 2017, 50, 1991-1997.	2.2	40
86	Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. Journal of Molecular Biology, 2017, 429, 1722-1732.	2.0	9
87	Advanced simulation techniques for the thermodynamic and kinetic characterization of biological systems. Advances in Physics: X, 2018, 3, 1477531.	1.5	29
88	Stretch-Induced Coil–Helix Transition in Isotactic Polypropylene: A Molecular Dynamics Simulation. Macromolecules, 2018, 51, 3994-4002.	2.2	27
89	Conformational Equilibria of Multimodal Chromatography Ligands in Water and Bound to Protein Surfaces. Journal of Physical Chemistry B, 2019, 123, 4833-4843.	1.2	6
90	Position-, disorder-, and salt-dependent diffusion in binding-coupled-folding of intrinsically disordered proteins. Physical Chemistry Chemical Physics, 2019, 21, 5634-5645.	1.3	18
92	Dynamics of Biomolecules. , 2003, , 95-158.		0
93	Free energy of helix propagation in short polyalanine chains determined from peptide growth simulations of La3+-binding model peptides. Comparison with experimental data Acta Biochimica Polonica, 2019, 53, 121-129.	0.3	0
95	Recent progress in flowâ€induced polymer crystallization. Journal of Polymer Science, 2022, 60, 3149-3175.	2.0	9