Comparison of Chebyshev, Faber, and Lanczos propagate resonances

Journal of Chemical Physics 112, 5263-5269

DOI: 10.1063/1.481096

Citation Report

#	Article	IF	Citations
1	A single Lanczos propagation method for calculating transition amplitudes. II. Modified QL and symmetry adaptation. Journal of Chemical Physics, 2001, 114, 1467-1472.	1.2	104
2	A new ab initio potential energy surface of HCN($11A\hat{a}\in^3$) and the predissociative resonances of HCN and DCN. Chemical Physics Letters, 2001, 345, 517-524.	1.2	12
3	A comparison of low-storage strategies for spectral analysis in dissipative systems: filter diagonalisation in the Lanczos representation and harmonic inversion of the Chebychev-order-domain autocorrelation function. Chemical Physics Letters, 2001, 347, 211-219.	1.2	15
4	Efficient calculation of resonance positions and widths using doubled Chebyshev autocorrelation functions. Chemical Physics Letters, 2001, 347, 443-450.	1.2	16
5	Doubling of Chebyshev correlation function for calculating narrow resonances using low-storage filter diagonalization. Chemical Physics Letters, 2001, 336, 143-148.	1.2	19
6	Ab initio characterization of low-lying triplet state potential-energy surfaces and vibrational frequencies in the Wulf band of ozone. Journal of Chemical Physics, 2001, 115, 10404.	1.2	20
7	A single Lanczos propagation method for calculating transition amplitudes. III. S-matrix elements with a complex-symmetric Hamiltonian. Journal of Chemical Physics, 2001, 115, 9637-9643.	1.2	14
8	Efficient time-independent wave packet scattering calculations within a Lanczos subspace: H+O2 (J=0) state-to-state reaction probabilities. Journal of Chemical Physics, 2002, 116, 2354-2360.	1.2	33
9	Theoretical study of predissociation dynamics of HCN/DCN in their first absorption bands. Journal of Chemical Physics, 2002, 116, 10626-10635.	1.2	26
10	Direct calculation of cumulative reaction probabilities from Chebyshev correlation functions. Journal of Chemical Physics, 2002, 116, 6391-6396.	1.2	20
11	A preconditioned inexact spectral transform method for calculating resonance energies and widths, as applied to HCO. Journal of Chemical Physics, 2002, 116, 1215-1227.	1.2	74
12	CALCULATION OF TRANSITION AMPLITUDES WITH A SINGLE LANCZOS PROPAGATION. Journal of Theoretical and Computational Chemistry, 2002, 01, 173-185.	1.8	36
13	Predissociation of HCN/DCN in Two Lowest-Lying Singlet Excited States:  Effect of Fermi Resonances on Spectra and Dynamics. Journal of Physical Chemistry A, 2002, 106, 10174-10183.	1.1	8
14	Effect of spectral range on convergence in Lanczos algorithm, a numerical study. Chemical Physics Letters, 2003, 369, 650-655.	1.2	11
15	Quantum dynamical characterization of unimolecular resonances. PhysChemComm, 2003, 6, 12-20.	0.8	1
16	On the convergence scaling laws of Lanczos and Chebyshev recursion methods. Journal of Chemical Physics, 2003, 119, 5762-5764.	1.2	14
17	State-specific dynamics of unimolecular dissociation. Comprehensive Chemical Kinetics, 2003, 39, 105-242.	2.3	23
18	Complex absorbing potentials. Physics Reports, 2004, 395, 357-426.	10.3	418

#	ARTICLE	IF	CITATIONS
19	Recent developments in the quantum dynamical characterization of unimolecular resonances. Physical Chemistry Chemical Physics, 2004, 6, 884.	1.3	5
20	Iterative quantum computations of HO2 bound states and resonances for $J = 4$ and 5. Physical Chemistry Chemical Physics, 2004, 6, 4240.	1.3	10
21	An ab initio potential energy surface and predissociative resonances of HArF. Journal of Chemical Physics, 2004, 120, 4273-4280.	1.2	21
22	Quantum tunneling dynamics in multidimensional systems: A matching-pursuit description. Journal of Chemical Physics, 2004, 121, 1676-1680.	1.2	50
23	Symmetry contaminations in reactive scattering through long-lived collision complexes. Chemical Physics, 2005, 308, 297-304.	0.9	0
24	Computing resonance energies, widths, and wave functions using a Lanczos method in real arithmetic. Journal of Chemical Physics, 2005, 122, 244107.	1.2	15
25	Matching-pursuit/split-operator-Fourier-transform computations of thermal correlation functions. Journal of Chemical Physics, 2005, 122, 064102.	1.2	10
26	Matching-pursuitâ^•split-operator Fourier-transform simulations of nonadiabatic quantum dynamics. Journal of Chemical Physics, 2005, 122, 114114.	1.2	22
27	Calculations of near-threshold cross sections for photodissociation of CH+ using the Lanczos algorithm. Journal of Chemical Physics, 2005, 122, 044108.	1.2	13
28	Chebyshev Propagation and Applications to Scattering Problems. , 2004, , 217-229.		0
29	Resonances of CH2(alfA11) and their roles in unimolecular and bimolecular reactions. Journal of Chemical Physics, 2005, 122, 124308.	1.2	15
30	Matching-pursuit/split-operator-Fourier-transform simulations of excited-state nonadiabatic quantum dynamics in pyrazine. Journal of Chemical Physics, 2006, 125, 124313.	1.2	61
31	Matching-pursuit split-operator Fourier-transform simulations of excited-state intramolecular proton transfer in 2-(2′-hydroxyphenyl)-oxazole. Journal of Chemical Physics, 2006, 124, 224305.	1.2	20
33	The MP/SOFT methodology for simulations of quantum dynamics: Model study of the photoisomerization of the retinyl chromophore in visual rhodopsin. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 274-282.	2.0	16
34	Simulations of the emission spectra of fac-tris(2-phenylpyridine) iridium and Duschinsky rotation effects using the Herman–Kluk semiclassical initial value representation method. Journal of Chemical Physics, 2008, 129, 214305.	1.2	7
35	Time-dependent and time-independent wavepacket approaches to reactive scattering and photodissociation dynamics. International Reviews in Physical Chemistry, 2008, 27, 507-539.	0.9	62
36	Quantum Dynamics of the Excitedâ€State Intramolecular Proton Transfer in 2â€(2′â€Hydroxyphenyl)benzothiazole. Israel Journal of Chemistry, 2009, 49, 187-197.	1.0	10
37	Higher-order split operator schemes for solving the SchrĶdinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations. Physical Chemistry Chemical Physics, 2012, 14, 1827.	1.3	38

#	Article	IF	CITATIONS
38	A complex guided spectral transform Lanczos method for studying quantum resonance states. Journal of Chemical Physics, 2014, 141, 244114.	1.2	2
39	Neural network iterative diagonalization method to solve eigenvalue problems in quantum mechanics. Physical Chemistry Chemical Physics, 2015, 17, 14071-14082.	1.3	8
40	A new set of potential energy surfaces for HCO: Influence of Renner-Teller coupling on the bound and resonance vibrational states. Journal of Chemical Physics, 2016, 144, 244301.	1.2	22
41	An Exact Propagator for Solving the Triatomic Reactive Schrödinger Equation. Chinese Journal of Chemical Physics, 2017, 30, 761-770.	0.6	1