Application of a finite-element model to low-frequency

Journal of the Acoustical Society of America 108, 1741-1751 DOI: 10.1121/1.1310355

Citation Report

#	Article	IF	CITATIONS
1	Schallabsorber und SchalldÄ m pfer - Innovatorium für Maßnahmen zur LÃ m bekÃ m pfung und Raumakustik, Teil 1: Überblick, Passive Absorber. Bauphysik, 2002, 24, 102-113.	0.5	5
2	ACOUSTIC INSULATION OF SINGLE PANEL WALLS PROVIDED BY ANALYTICAL EXPRESSIONS VERSUS THE MASS LAW. Journal of Sound and Vibration, 2002, 257, 457-475.	3.9	45
3	ACOUSTIC INSULATION PROVIDED BY A SINGLE WALL SEPARATING TWO CONTIGUOUS TUNNELS VIA BEM. Journal of Sound and Vibration, 2002, 257, 945-965.	3.9	10
4	Development of an optimised, standard-compliant procedure to calculate sound transmission loss: design of transmission rooms. Applied Acoustics, 2002, 63, 1003-1029.	3.3	19
5	Assessing the effect of a barrier between two rooms subjected to low frequency sound using the boundary element method. Applied Acoustics, 2003, 64, 287-310.	3.3	10
6	Vibration transmission between coupled plates using finite element methods and statistical energy analysis. Part 1: Comparison of measured and predicted data for masonry walls with and without apertures. Applied Acoustics, 2003, 64, 955-973.	3.3	17
7	Development of an optimised, standard-compliant procedure to calculate sound transmission loss: numerical measurements. Applied Acoustics, 2003, 64, 1069-1085.	3.3	17
8	Analytical evaluation of the acoustic insulation provided by double infinite walls. Journal of Sound and Vibration, 2003, 263, 113-129.	3.9	50
9	Application of Computer Modelling Technique to the Study of the Effect of Vibratory Rooftop Equipment on Indoor Acoustical Environment. Architectural Science Review, 2003, 46, 187-191.	2.2	0
10	Variability of low frequency sound transmission measurements. Journal of the Acoustical Society of America, 2004, 115, 2986-2997.	1.1	31
11	Analysis of Sound Transmission Loss of Double-Leaf Walls in the Low-Frequency Range Using the Finite Element Method. Building Acoustics, 2004, 11, 239-257.	1.9	15
12	Piezoelectric–mechanical–acoustic couplings from a PZT-actuated vibrating beam and its sound radiation. Mechanical Systems and Signal Processing, 2004, 18, 929-945.	8.0	13
13	Using optimized surface modifications to improve low frequency response in a room. Applied Acoustics, 2004, 65, 841-860.	3.3	13
14	Field measurement of airborne sound insulation between rooms with non-diffuse sound fields at low frequencies. Applied Acoustics, 2005, 66, 1339-1382.	3.3	58
15	Sound Absorption at Low Frequencies: Modelling a Test Room. Building Acoustics, 2006, 13, 141-158.	1.9	6
16	Validation of an optimization procedure to improve low frequency characteristics of rooms. Applied Acoustics, 2006, 67, 529-540.	3.3	2
17	The experimental synthesis of random pressure fields: Methodology. Journal of the Acoustical Society of America, 2006, 120, 2702-2711.	1.1	28
18	Low-Frequency Sound Transmission between Adjacent Dwellings. , 0, , 1404-1409.		0

<u></u>		D
	ON	REDUDT
CITAT		KLFOKI

#	Article	IF	CITATIONS
19	Sound Absorption at Low Frequencies: Room Contents as Obstacles. Building Acoustics, 2007, 14, 143-158.	1.9	2
20	Sound transmission between partitioned contiguous enclosures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223, 1091-1101.	2.1	2
21	Rigid body modeling issue in acoustical topology optimization. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 1017-1030.	6.6	23
22	Measurement of Sound Field for Floor Impact Sounds Generated by Heavy/Soft Impact Sources. Acta Acustica United With Acustica, 2010, 96, 761-772.	0.8	8
23	A Numerical Study of the Diffusion Performance of a Terraced Classroom. Acta Acustica United With Acustica, 2011, 97, 890-899.	0.8	0
24	3D Multi-Domain MFS Analysis of Sound Pressure Level Reduction Between Connected Enclosures. Archives of Acoustics, 2011, 36, .	0.8	4
25	Low frequency impact sound transmission in dwellings through homogeneous concrete floors and floating floors. Applied Acoustics, 2011, 72, 177-189.	3.3	53
26	Analysis of low frequency sound and sound induced vibration in a Norwegian wooden building. Noise Control Engineering Journal, 2011, 59, 383.	0.3	3
27	THE FINITE STRIP METHOD FOR ACOUSTIC AND VIBROACOUSTIC PROBLEMS. Journal of Computational Acoustics, 2011, 19, 353-378.	1.0	8
28	The forced sound transmission of finite single leaf walls using a variational technique. Journal of the Acoustical Society of America, 2012, 132, 1482-1493.	1.1	24
29	SOME OBSERVATIONS ON THE BEHAVIOR OF THE METHOD OF FUNDAMENTAL SOLUTIONS IN 3D ACOUSTIC PROBLEMS. International Journal of Computational Methods, 2012, 09, 1250049.	1.3	12
30	Influence of Wall Surface and Air Modelling in Finite-Element Analysis of Sound Transmission Between Rooms in Lightweight Buildings. , 2012, , .		1
31	On the Accuracy of Dynamic and Acoustic Analysis of Lightweight Panel Structures: A Comparison of ABAQUS and ANSYS. , 2012, , .		2
32	Numerical Evaluation of the Vibration Reduction Index for Structural Joints. Archives of Acoustics, 2012, 37, .	0.8	2
33	Predicting the broadband vibroacoustic response of systems subject to aeroacoustic loads by a Krylov subspace reduction. Applied Acoustics, 2013, 74, 1394-1405.	3.3	18
34	Technical Notes: Practical Concerns Associated with Single-Number Ratings in Measuring Sound Transmission Loss Properties of Partition Panels. Archives of Acoustics, 2013, 38, 115-124.	0.8	7
35	Parametric uncertainty quantification of sound insulation values. Journal of the Acoustical Society of America, 2014, 135, 1907-1918.	1.1	8
36	Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls. Journal of Sound and Vibration, 2014, 333, 6140-6155.	3.9	48

CITATION REPORT

#	Article	IF	CITATIONS
37	Parameters influencing low frequency impact sound transmission in dwellings. Applied Acoustics, 2014, 78, 77-88.	3.3	14
38	A hybrid finite element – statistical energy analysis approach to robust sound transmission modeling. Journal of Sound and Vibration, 2014, 333, 4621-4636.	3.9	38
39	Acoustic performance of cold-formed steel buildings. , 2016, , 173-182.		2
40	Predicting horizontal impact sound transmission for complex floor systems: Using EN 12354-2:2000, finite element method, statistical energy analysis and analytical techniques. Building Acoustics, 2017, 24, 53-73.	1.9	0
41	Simulating low frequency sound transmission through walls and windows by a two-way coupled fluid structure interaction model. Journal of Sound and Vibration, 2017, 396, 203-216.	3.9	20
42	Cross-frequency and band-averaged response variance prediction in the hybrid deterministic-statistical energy analysis method. Journal of Sound and Vibration, 2018, 428, 119-146.	3.9	17
43	Prediction of the sound insulation of panel structures based on the virtual testing room. IOP Conference Series: Materials Science and Engineering, 2019, 531, 012013.	0.6	0
44	A review of the different approaches to predict the sound transmission loss of building partitions. Building Acoustics, 2020, 27, 253-279.	1.9	12
46	Numerical analyses of the sound transmission at low frequencies of a calibrated domestic wooden window. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 2637-2650.	2.1	3
47	Numerical analyses of the sound transmission at low frequencies of a calibrated Insulating Glazing Unit. Applied Acoustics, 2021, 179, 108065.	3.3	5
48	Acoustic modeling and eigenanalysis of the coupled cavities with panels. Mechanical Systems and Signal Processing, 2022, 165, 108307.	8.0	13
49	An Experimental and Numerical Study of Tire/Pavement Noise on Porous and Nonporous Pavements. Journal of Environmental Informatics, 2008, 11, 62-73.	6.0	4
50	AN EXPERIMENTAL STUDY ON THE INFLUENCE OF INCIDENT CHARACTERISTICS ON SOUND INSULATION BETWEEN ROOMS. Journal of Environmental Engineering (Japan), 2019, 84, 893-902.	0.4	1
51	Effects of the absorber location on low-frequency noise control in typical dwelling layouts. Applied Acoustics, 2022, 186, 108465.	3.3	1
52	Validation of the Low-Frequency Procedure for Field Measurement of Façade Sound Insulation. Buildings, 2021, 11, 547.	3.1	1
53	An experimental study on the influence of incident characteristics on sound insulation between rooms: Study on the incident sound field in the insulation performance measurement for partition walls. Part 2. Japan Architectural Review, 0, , .	1.1	0
54	Uncertainty quantification of diffuse sound insulation values. Journal of Sound and Vibration, 2023, 544, 117404.	3.9	2
55	Analysis of the sound insulation performance of periodic wall structures by a virtual acoustic laboratory. Building Acoustics, 0, , 1351010X2211367.	1.9	1

#	Article	IF	CITATIONS
56	Evaluation of the dynamic response for scaled models of shaped concrete floor slabs. Building Acoustics, 2023, 30, 143-163.	1.9	2
57	A Review of Finite Element Methods for Room Acoustics. Acoustics, 2023, 5, 367-395.	1.4	4
58	Acoustic performance of cold-formed steel buildings. , 2024, , 291-302.		0

CITATION REPORT