Gossypol Prototype of Inhibitors Targeted to Dinucleot

Current Medicinal Chemistry 7, 479-498 DOI: 10.2174/0929867003375119

Citation Report

#	Article	IF	CITATIONS
1	Reversible Inhibition of Calcineurin by the Polyphenolic Aldehyde Gossypol. Journal of Biological Chemistry, 2001, 276, 47914-47921.	1.6	72
2	Spectroscopic and semiempirical studies of gossypol complexes with Fe2+ and Fe3+ cations. Journal of Molecular Structure, 2001, 569, 147-155.	1.8	34
3	The kinetic properties and sensitivities to inhibitors of lactate dehydrogenases (LDH1 and LDH2) from Toxoplasma gondii: comparisons with pLDH from Plasmodium falciparum. Molecular and Biochemical Parasitology, 2001, 118, 23-32.	0.5	62
4	Selective active site inhibitors of human lactate dehydrogenases A4, B4, and C411Abbreviations: LDH, lactate dehydrogenase; and LDH-A4, -B4, and -C4, human lactate dehydrogenases A4, B4, and C4 Biochemical Pharmacology, 2001, 62, 81-89.	2.0	127
5	The Schiff base of gossypol with 2-(aminomethyl)-15-crown-5 complexes with monovalent cations studied by MS,1H NMR, FT-IR and PM5 semiempirical methods. Physical Chemistry Chemical Physics, 2002, 4, 6137-6143.	1.3	39
6	Spectroscopic studies and PM3 semiempirical calculations of Schiff bases of gossypol withL-amino acid methyl esters. Biopolymers, 2002, 67, 61-69.	1.2	59
7	Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. Biochemical Pharmacology, 2003, 66, 93-103.	2.0	159
8	17-β-Hydroxysteroid dehydrogenase type 1: computational design of active site inhibitors targeted to the Rossmann fold. Chemico-Biological Interactions, 2003, 143-144, 481-491.	1.7	25
9	Spectroscopic study and PM5 semiempirical calculations of tautomeric forms of gossypol Schiff base with n-butylamine in the solid state and in the solution. Journal of Molecular Structure, 2003, 646, 161-168.	1.8	42
10	Crystal structure of Schiff base derivative of gossypol with 3,6,9-trioxa-decylamine. Journal of Molecular Structure, 2003, 655, 293-300.	1.8	35
11	New thioderivatives of gossypol and gossypolone, as prodrugs of cytotoxic agents. Bioorganic and Medicinal Chemistry, 2003, 11, 2001-2006.	1.4	20
12	Identification of Babesia bovis l-lactate dehydrogenase as a potential chemotherapeutical target against bovine babesiosis. Molecular and Biochemical Parasitology, 2004, 136, 165-172.	O.5	27
13	The schiff base of gossypol with 3,6,9,12,15,18,21,24-octaoxa-pentacosylamine complexes and monovalent cations studied by electrospray ionization-mass spectrometry,1H nuclear magnetic resonance, Fourier transform infrared, as well as PM5 semiempirical methods. Biopolymers, 2004, 74, 273-286.	1.2	23
14	The Schiff base of gossypol with 2-(aminomethyl)-18-crown-6 complexes and H+, Li+, Na+, K+, Rb+, Cs+ cations studied by ESI MS, 1H NMR, FT-IR and PM5 semiempirical methods. Journal of Molecular Structure, 2004, 699, 65-77.	1.8	25
15	Comparative Structural Analysis and Kinetic Properties of Lactate Dehydrogenases from the Four Species of Human Malarial Parasitesâ€. Biochemistry, 2004, 43, 6219-6229.	1.2	85
16	13C, 15N NMR and CP-MAS as well as FT-IR and PM5 studies of Schiff base of gossypol with I-phenylalanine methyl ester in solution and solid. Journal of Molecular Structure, 2005, 734, 123-128.	1.8	26
17	13C, 15N CP-MAS, FT–IR and PM5 studies of some Schiff bases of gossypol in solid. Journal of Molecular Structure, 2005, 748, 111-117.	1.8	25
18	Synthesis of gossypol atropisomers and derivatives and evaluation of their anti-proliferative and anti-oxidant activity. Bioorganic and Medicinal Chemistry, 2005, 13, 4228-4237.	1.4	53

CITATION REPORT

#	Article	IF	CITATIONS
19	Investigations on gossypol: past and present developments. Expert Opinion on Investigational Drugs, 2005, 14, 1419-1434.	1.9	133
20	Mapping the binding site for gossypol-like inhibitors of Plasmodium falciparum lactate dehydrogenase. Molecular and Biochemical Parasitology, 2005, 142, 137-148.	0.5	65
21	Enantiodivergent Formal Synthesis of (+)- and (â^')-Cyclophellitol fromd-Xylose Based on the Latent Symmetry Concept. Journal of Organic Chemistry, 2005, 70, 742-745.	1.7	28
22	Enantiodivergent synthesis of muricatacin related lactones from d-xylose based on the latent symmetry concept: preparation of twoÂnovel cytotoxic (+)- and (â^)-muricatacin 7-oxa analogs. Tetrahedron, 2006, 62, 11044-11053.	1.0	26
23	Reaction chemistry of gossypol and its derivatives. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 269-302.	0.8	96
24	Multinuclear magnetic resonance, electrospray ionization–mass spectroscopy, and parametric method 5 studies of a new derivative of gossypol with 2-thiophenecarbohydrazide as well as its complexes with LI+, Na+, K+, RB+, and Cs+ cations. Biopolymers, 2006, 83, 213-225.	1.2	11
25	Design, Synthesis, and Biological Evaluation of <i>Plasmodium falciparum</i> Lactate Dehydrogenase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 3841-3850.	2.9	54
26	Advances in the Discovery of New Antimalarials. , 2007, , 765-814.		5
27	Induction of hairy root cultures from Gossypium hirsutum and Gossypium barbadense to produce gossypol and related compounds. In Vitro Cellular and Developmental Biology - Plant, 2008, 44, 508-517.	0.9	41
28	CP/MAS spectroscopy in the determination of the tautomeric forms of gossypol, its Schiff bases and hydrazones in the solid state. Magnetic Resonance in Chemistry, 2008, 46, 534-544.	1.1	13
29	Structure of a new Schiff base of gossypol with 1-(3-aminopropyl)-2-pyrrolidinone studied by the X-ray, FT-IR, NMR, ESI-MS and PM5 methods. Journal of Molecular Structure, 2008, 889, 332-343.	1.8	13
30	Molecular Structures and Stability Constants of Gossypol and Its Aza-Derivative Complexes with Silver(I) Cations Studied by Potentiometric, ESI MS, NMR, and AM1d Semiempirical Methods. Journal of Physical Chemistry A, 2008, 112, 8061-8069.	1.1	16
31	The Fight Against Drug-Resistant Malaria: Novel Plasmodial Targets and Antimalarial Drugs. Current Medicinal Chemistry, 2008, 15, 161-171.	1.2	37
32	Transgenic Indian Cotton (Gossypium hirsutum) Harboring Rice Chitinase Gene (Chi II) Confers Resistance to Two Fungal Pathogens. American Journal of Biochemistry and Biotechnology, 2009, 5, 63-74.	0.1	32
33	Efficient Production of Gossypol from Hairy Root Cultures of Cotton (Gossypium hirsutum L.). Current Pharmaceutical Biotechnology, 2009, 10, 691-700.	0.9	23
34	Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots. Plant Cell, Tissue and Organ Culture, 2009, 98, 341-349.	1.2	46
35	Chiral gossypol derivatives: Evaluation of their anticancer activity and molecular modeling. European Journal of Medicinal Chemistry, 2009, 44, 3961-3972.	2.6	34
36	Chapter 6 Gossypol-A Polyphenolic Compound from Cotton Plant. Advances in Food and Nutrition Research, 2009, 58, 215-263.	1.5	102

CITATION REPORT

#	Article	IF	CITATIONS
37	Inhibitors of Lactate Dehydrogenase Isoforms and their Therapeutic Potentials. Current Medicinal Chemistry, 2010, 17, 672-697.	1.2	169
38	IDH mutations in glioma and acute myeloid leukemia. Trends in Molecular Medicine, 2010, 16, 387-397.	3.5	322
39	Oxamic acid analogues as LDH-C4-specific competitive inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 579-586.	2.5	22
40	Discovery of <i>N</i> -Hydroxyindole-Based Inhibitors of Human Lactate Dehydrogenase Isoform A (LDH-A) as Starvation Agents against Cancer Cells. Journal of Medicinal Chemistry, 2011, 54, 1599-1612.	2.9	195
41	Enzymes of mannitol metabolism in the human pathogenic fungus <i>Aspergillusâ€ffumigatus</i> â€f‑â€fkin properties of mannitolâ€lâ€phosphate 5â€dehydrogenase and mannitol 2â€dehydrogenase, and their physiological implications. FEBS Journal, 2011, 278, 1264-1276.	etic 2.2	10
42	Novel inhibitors of Mycobacterium tuberculosis dTDP-6-deoxy-l-lyxo-4-hexulose reductase (RmlD) identified by virtual screening. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7064-7067.	1.0	23
43	Structure and Mechanism of Human UDP-glucose 6-Dehydrogenase. Journal of Biological Chemistry, 2011, 286, 23877-23887.	1.6	58
44	Emerging Glycolysis Targeting and Drug Discovery from Chinese Medicine in Cancer Therapy. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-13.	0.5	32
45	Complementary and Alternative Medicine and Cancer Survivorship. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-2.	0.5	2
46	Design of Novel Dihydroxynaphthoic Acid Inhibitors of Plasmodium Falciparum Lactate Dehydrogenase. Medicinal Chemistry, 2012, 8, 970-984.	0.7	11
47	Small-molecule inhibitors of human LDH5. Future Medicinal Chemistry, 2013, 5, 1967-1991.	1.1	76
48	Targeting lactate metabolism for cancer therapeutics. Journal of Clinical Investigation, 2013, 123, 3685-3692.	3.9	809
49	Therapeutic potential of gossypol: An overview. Pharmaceutical Biology, 2014, 52, 124-128.	1.3	90
52	Drugs for Parasitic Infections: Advances in the Discovery of New Antimalarials. , 2016, , .		3
53	Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology, 2016, 78, 69-77.	1.2	45
55	Antiviral mechanism study of gossypol and its Schiff base derivatives based on reactive oxygen species (ROS). RSC Advances, 2016, 6, 87637-87648.	1.7	20
56	Discovery of 2-((3-cyanopyridin-2-yl)thio)acetamides as human lactate dehydrogenase A inhibitors to reduce the growth of MG-63 osteosarcoma cells: Virtual screening and biological validation. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3984-3987.	1.0	18
57	Dimeric Sesquiterpenoids. Progress in the Chemistry of Organic Natural Products, 2016, 101, 1-112.	0.8	17

			0
#	ARTICLE Discovery of a novel human lactate dehydrogenase A (LDHA) inhibitor as an anti-proliferation agent	IF	CITATIONS
58	against MIA PaCa-2 pancreatic cancer cells. RSC Advances, 2016, 6, 23218-23222.	1.7	3
59	Recent Update on Human Lactate Dehydrogenase Enzyme 5 (<i>h</i> LDH5) Inhibitors: A Promising Approach for Cancer Chemotherapy. Journal of Medicinal Chemistry, 2016, 59, 487-496.	2.9	114
60	Recent advances in gossypol derivatives and analogs: a chemistry and biology view. Future Medicinal Chemistry, 2017, 9, 1243-1275.	1.1	44
61	Computer-aided discovery and biological characterization of human lactate dehydrogenase 5 inhibitors with anti-osteosarcoma activity. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2229-2233.	1.0	8
62	Glucose Metabolism in Cancer. Advances in Experimental Medicine and Biology, 2018, 1063, 3-12.	0.8	139
63	Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. International Journal of Radiation Biology, 2019, 95, 408-426.	1.0	48
64	Lactate Dehydrogenases as Metabolic Links between Tumor and Stroma in the Tumor Microenvironment. Cancers, 2019, 11, 750.	1.7	172
65	Tautomerism and stereodynamics in Schiff bases from gossypol and hemigossypol with <i>N</i> -aminoheterocycles. Organic and Biomolecular Chemistry, 2019, 17, 6229-6250.	1.5	13
66	Feeding effects of cottonseed and its co-products on the meat proteome from ram lambs. Scientia Agricola, 2019, 76, 463-472.	0.6	14
67	Structures of Complexes of Gossypol with Ferrous Sulfate Based on Highâ€Performance Liquid Chromatography Separation, Spectroscopic Analysis, and PM3 calculations. ChemistrySelect, 2019, 4, 5484-5488.	0.7	0
68	Investigating Stability and Tautomerization of Gossypol—A Spectroscopy Study. Molecules, 2019, 24, 1286.	1.7	10
69	The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Seminars in Cancer Biology, 2020, 60, 238-248.	4.3	65
70	Revisiting lactate dynamics in cancer—a metabolic expertise or an alternative attempt to survive?. Journal of Molecular Medicine, 2020, 98, 1397-1414.	1.7	10
71	Extraction of Natural Pigment Gossypol from Defatted Cottonseed Using 2-Propanol-Water Green Solvent, Its Kinetics and Thermodynamic Study. Arabian Journal for Science and Engineering, 2020, 45, 7539-7550.	1.7	2
72	Lactic acid and its transport system. , 2020, , 99-123.		0
73	Discovery of a novel lactate dehydrogenase tetramerization domain using epitope mapping and peptides. Journal of Biological Chemistry, 2021, 296, 100422.	1.6	7
74	Leishmanicidal potentials of Gossypium hirsutum extract and its fractions on Leishmania major in a murine model: parasite burden, gene expression, and histopathological profile. Journal of Medical Microbiology, 2021, 70, .	0.7	3
75	A Gossypol-hydrazone compound and its sensing properties towards metal ions and nitro-phenolic compounds. Journal of Molecular Structure, 2021, 1236, 130310.	1.8	4

CITATION REPORT

CITATION	DEDODT
CITATION	KEPORT

#	Article	IF	CITATIONS
76	Endophytic bacterial biocontrol agents degrade a putative toxin of Alternaria macrospora responsible for the severity of cotton leaf blight. Journal of Plant Pathology, 2021, 103, 1283-1293.	0.6	1
77	A review on the important phytochemicals and their role in psoriasis. Journal of Applied and Natural Science, 2021, 13, 880-896.	0.2	1
78	Glucose Metabolism in Cancer: The Warburg Effect and Beyond. Advances in Experimental Medicine and Biology, 2021, 1311, 3-15.	0.8	76
79	Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics. PLoS Pathogens, 2015, 11, e1005250.	2.1	48
80	Lactate Dehydrogenase Inhibition: Biochemical Relevance and Therapeutical Potential. Current Medicinal Chemistry, 2019, 26, 3242-3252.	1.2	33
81	Synthesis and Anti-Tumor Activities of Fluoride-Containing Gossypol Derivatives Compounds. Natural Science, 2017, 09, 312-318.	0.2	1
82	lloneoside, an antimalarial pregnane glycoside isolated from Gongronema latifolium leaf, potentiates the activity of chloroquine against multidrug resistant Plasmodium falciparum. Molecular and Biochemical Parasitology, 2022, 249, 111474.	0.5	1
83	Lactate Dehydrogenase as a Potential Therapeutic Drug Target to Control Babesia bigemina. Frontiers in Cellular and Infection Microbiology, 2022, 12, 870852.	1.8	2
84	Structure, properties of gossypol and its derivatives—from physiological activities to drug discovery and drug design. Natural Product Reports, 2022, 39, 1282-1304.	5.2	19
85	GhMYC2 activates cytochrome P450 gene CYP71BE79 to regulate gossypol biosynthesis in cotton. Planta, 2022, 256, .	1.6	6
86	Recent Progress in the Therapeutic Modulation of Lactate for Cancer Treatment. Advanced Therapeutics, 0, , 2200254.	1.6	0
87	Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell International, 2023, 23, .	1.8	3
88	Evaluation of Antimalarial Activity of Ethanolic Extract of <i>Annona muricata L</i> .: An <i>in vivo</i> and an <i>in silico</i> Approach. Journal of Evidence-based Integrative Medicine, 2023, 28, 2515690X2311651.	1.4	1