A Case for Evolutionary Genomics and the Comprehens Biodiversity

Molecular Biology and Evolution 17, 1776-1788

DOI: 10.1093/oxfordjournals.molbev.a026278

Citation Report

#	Article	IF	Citations
1	Evolutionary biology meets genomics. Trends in Ecology and Evolution, 2001, 16, 15-16.	4.2	3
2	Evolution in Health and Disease: Work in Progress. Quarterly Review of Biology, 2001, 76, 417-432.	0.0	101
3	Current Awareness on Comparative and Functional Genomics. Comparative and Functional Genomics, 2001, 2, 265-272.	2.0	0
4	Mitogenomic Exploration of Higher Teleostean Phylogenies: A Case Study for Moderate-Scale Evolutionary Genomics with 38 Newly Determined Complete Mitochondrial DNA Sequences. Molecular Biology and Evolution, 2001, 18, 1993-2009.	3.5	360
5	Evaluation of Methods for Determination of a Reconstructed History of Gene Sequence Evolution. Molecular Biology and Evolution, 2001, 18, 2040-2047.	3.5	61
6	A Comprehensive Vertebrate Phylogeny Using Vector Representations of Protein Sequences from Whole Genomes. Molecular Biology and Evolution, 2002, 19, 554-562.	3.5	95
7	Phylogeny Reconstruction and Functional Constraints in Organellar Genomes: Plastid atpB and rbcL Sequences Versus Animal Mitochondrion. Systematic Biology, 2002, 51, 638-647.	2.7	16
8	Increased Taxon Sampling Is Advantageous for Phylogenetic Inference. Systematic Biology, 2002, 51, 664-671.	2.7	394
9	Pika and vole mitochondrial genomes increase support for both rodent monophyly and glires. Gene, 2002, 294, 119-129.	1.0	80
11	Population biology and bioinformatics. , 2004, , 94-103.		O
12	First-Generation Linkage Map of the Gray, Short-Tailed Opossum, Monodelphis domestica, Reveals Genome-Wide Reduction in Female Recombination Rates. Genetics, 2004, 166, 307-329.	1.2	54
13	Total evidence phylogeny of Gasterosteidae: combining molecular, morphological and behavioral data. Cladistics, 2004, 20, 14-22.	1.5	21
14	Palaeoecology of Triassic stem turtles sheds new light on turtle origins. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1-5.	1.2	177
15	Genome-scale data, angiosperm relationships, and â€~ending incongruence': a cautionary tale in phylogenetics. Trends in Plant Science, 2004, 9, 477-483.	4.3	176
16	DEVELOPING A PROTOCOL FOR THE CONVERSION OF RANK-BASED TAXON NAMES TO PHYLOGENETICALLY DEFINED CLADE NAMES, AS EXEMPLIFIED BY TURTLES. Journal of Paleontology, 2004, 78, 989-1013.	0.5	368
18	Divergence, recombination and retention of functionality during protein evolution. Human Genomics, 2005, 2, 158.	1.4	5
19	Ecological perspectives on the sequenced genome collection. Ecology Letters, 2005, 8, 1334-1345.	3.0	28
20	Magic bullets and golden rules: Data sampling in molecular phylogenetics. Zoology, 2005, 108, 329-336.	0.6	43

#	ARTICLE	IF	CITATIONS
21	Complete Genome Sequence of the Grouper Iridovirus and Comparison of Genomic Organization with Those of Other Iridoviruses. Journal of Virology, 2005, 79, 2010-2023.	1.5	101
22	Phylogenetics of modern birds in the era of genomics. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 979-992.	1.2	83
23	Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Research, 2005, 15, 665-673.	2.4	53
24	Status and applications of genomic resources for the gray, short-tailed opossum, Monodelphis domestica, an American marsupial model for comparative biology. Australian Journal of Zoology, 2006, 54, 173.	0.6	31
25	The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus: A detailed genomic comparison among closely related species of the Gadidae family. Gene, 2006, 383, 12-23.	1.0	35
26	A novel mitochondrial intergenic spacer reflecting population structure of Pacific oyster. Journal of Applied Genetics, 2006, 47, 119-123.	1.0	19
27	EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity. BMC Bioinformatics, 2006, 7, S7.	1.2	6
28	Observations of Amino Acid Gain and Loss during Protein Evolution Are Explained by Statistical Bias. Molecular Biology and Evolution, 2006, 23, 1444-1449.	3.5	42
29	Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2767-2772.	3.3	126
30	A Mutual Information Based Sequence Distance For Vertebrate Phylogeny Using Complete Mitochondrial Genomes. , 2007, , .		11
31	Log-correlation Distance And Fourier Transform With Kullback-Leibler Divergence Distance For Construction Of Vertebrate Phylogeny Using Complete Mitochondrial Genomes., 2007,,.		9
32	Bio-STEER: A Semantic Web workflow tool for Grid computing in the life sciences. Future Generation Computer Systems, 2007, 23, 497-509.	4.9	34
33	The opossum genome: Insights and opportunities from an alternative mammal. Genome Research, 2008, 18, 1199-1215.	2.4	40
34	The complete mitochondrial genome of the large yellow croaker, Larimichthys crocea (Perciformes,) Tj ETQq1 1 Gene, 2009, 432, 33-43.	0.784314 1.0	rgBT /Overlo 103
35	Harnessing genomics for evolutionary insights. Trends in Ecology and Evolution, 2009, 24, 192-200.	4.2	124
36	From Reptilian Phylogenomics to Reptilian Genomes: Analyses of c- <i>Jun</i> and <i>DJ-1</i> Proto-Oncogenes. Cytogenetic and Genome Research, 2009, 127, 79-93.	0.6	18
39	Rapid Likelihood Analysis on Large Phylogenies Using Partial Sampling of Substitution Histories. Molecular Biology and Evolution, 2010, 27, 249-265.	3.5	23
40	Proper Distance Metrics for Phylogenetic Analysis Using Complete Genomes without Sequence Alignment. International Journal of Molecular Sciences, 2010, 11, 1141-1154.	1.8	24

#	Article	IF	Citations
41	Prospects for the Use of Next-Generation Sequencing Methods in Ornithology. Auk, 2010, 127, 4-15.	0.7	49
42	Temporal Bone Arrangements in Turtles: An Overview. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 235-249.	0.6	29
43	The complete mitochondrial genome sequences of Chelodina rugosa and Chelus fimbriata (Pleurodira:) Tj ETQq0 Biology Reports, 2012, 39, 2097-2107.	0 0 rgBT / 1.0	Overlock 10 ⁻ 13
44	Deep Sequencing of Mixed Total DNA without Barcodes Allows Efficient Assembly of Highly Plastic Ascidian Mitochondrial Genomes. Genome Biology and Evolution, 2013, 5, 1185-1199.	1.1	56
45	Species Based Synonymous Codon Usage in Fusion Protein Gene of Newcastle Disease Virus. PLoS ONE, 2014, 9, e114754.	1.1	12
46	A method based on the improved inter-nucleotide distances of genomes to construct vertebrates phylogeny tree. , $2014, \ldots$		2
47	Fishing for barcodes in the Torrent: from COI to complete mitogenomes on NGS platforms. DNA Barcodes, $2015, 3, .$	1.2	18
48	The origin of turtles: A paleontological perspective. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 181-193.	0.6	48
49	The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?. Briefings in Functional Genomics, 2016, 15, elv027.	1.3	83
50	The importance of being genomic: Non-coding and coding sequences suggest different models of toxin multi-gene family evolution. Toxicon, 2015, 107, 344-358.	0.8	16
51	On nonepistemic values in conservation biology. Conservation Biology, 2017, 31, 48-55.	2.4	17
52	Genomics-based plant germplasm research (GPGR). Crop Journal, 2017, 5, 166-174.	2.3	28
53	Insights into the phylogeny of Hemiptera from increased mitogenomic taxon sampling. Molecular Phylogenetics and Evolution, 2019, 137, 236-249.	1,2	59
54	Gene-wise resampling outperforms site-wise resampling in phylogenetic coalescence analyses. Molecular Phylogenetics and Evolution, 2019, 131, 80-92.	1.2	33
55	Alignment-free inference of hierarchical and reticulate phylogenomic relationships. Briefings in Bioinformatics, 2019, 20, 426-435.	3.2	74
56	Bayesian Phylogeny on Grid. Communications in Computer and Information Science, 2008, , 404-416.	0.4	9
57	Likelihood Analysis of Asymmetrical Mutation Bias Gradients in Vertebrate Mitochondrial Genomes. Genetics, 2003, 165, 735-745.	1.2	91
58	Chaos Game Representation of Mitochondrial Genomes. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 28-38.	0.2	0

CITATION REPORT

#	Article	IF	CITATIONS
60	Genomic biodiversity, phylogenetics and coevolution in proteins. Applied Bioinformatics, 2002, 1, 81-92.	1.7	15
61	Increasing Taxa Sampling Provides New Insights on the Phylogenetic Relationship Between Eriobotrya and Rhaphiolepis. Frontiers in Genetics, 2022, 13, 831206.	1.1	7