Evidence of a Role for the Q151L Mutation and the Viral Multiple Dideoxynucleoside-Resistant Human Immuno

Journal of Virology 74, 9339-9346 DOI: 10.1128/jvi.74.20.9339-9346.2000

Citation Report

#	Article	IF	CITATIONS
1	Resistance of human immunodeficiency virus type 1 to reverse transcriptase and protease inhibitors: genotypic and phenotypic testing. Journal of Clinical Virology, 2001, 21, 197-212.	1.6	34
2	Increased ability for selection of zidovudine resistance in a distinct class of wild-type HIV-1 from drug-naive persons. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13907-13912.	3.3	122
3	The Molecular Mechanism of Multidrug Resistance by the Q151M Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Its Suppression Using α-Boranophosphate Nucleotide Analogues. Journal of Biological Chemistry, 2002, 277, 42097-42104.	1.6	91
4	Fitness of drug resistant HIV-1: methodology and clinical implications. Drug Resistance Updates, 2002, 5, 224-233.	6.5	82
5	Drug Resistance Profiles of Recombinant Reverse Transcriptases from Human Immunodeficiency Virus Type 1 Subtypes A/E, B, and C. AIDS Research and Human Retroviruses, 2003, 19, 743-753.	0.5	33
6	A novel TaqMan real-time PCR assay to estimate ex vivo human immunodeficiency virus type 1 fitness in the era of multi-target (pol and env) antiretroviral therapy. Journal of General Virology, 2003, 84, 2217-2228.	1.3	37
7	A Novel Genetic Pathway of Human Immunodeficiency Virus Type 1 Resistance to Stavudine Mediated by the K65R Mutation. Journal of Virology, 2003, 77, 5685-5693.	1.5	90
8	Pathways for the emergence of multi-dideoxynucleoside-resistant HIV-1 variants. Aids, 2003, 17, 1127-1137.	1.0	24
9	Long-Term Outcome of HIV-Infected Patients with Multinucleoside-Resistant Genotypes. HIV Clinical Trials, 2003, 4, 372-381.	2.0	7
10	Patterns of Resistance Emerging in HIV-1 From Antiretroviral-Experienced Patients Undergoing Intensification Therapy With Tenofovir Disoproxil Fumarate. Journal of Acquired Immune Deficiency Syndromes (1999), 2004, 37, 1340-1350.	0.9	43
11	Mechanistic Basis for Reduced Viral and Enzymatic Fitness of HIV-1 Reverse Transcriptase Containing Both K65R and M184V Mutations. Journal of Biological Chemistry, 2004, 279, 509-516.	1.6	147
12	Transmitted Human Immunodeficiency Virus Type 1 Carrying the D67N or K219Q/E Mutation Evolves Rapidly to Zidovudine Resistance In Vitro and Shows a High Replicative Fitness in the Presence of Zidovudine. Journal of Virology, 2004, 78, 7545-7552.	1.5	45
13	Natural resistance of human immunodeficiency virus type 2 to zidovudine. Virology, 2005, 336, 251-264.	1.1	31
14	Comparative Selection of the K65R and M184V/I Mutations in Human Immunodeficiency Virus Type 1-Infected Patients Enrolled in a Trial of First-Line Triple-Nucleoside Analog Therapy (Tonus IMEA 021). Journal of Virology, 2005, 79, 9572-9578.	1.5	41
15	Virus Fitness: Concept, Quantification, and Application to HIV Population Dynamics. , 2006, 299, 83-140.		65
16	Nucleoside and nucleotide inhibitors of HIV-1 replication. Cellular and Molecular Life Sciences, 2006, 63, 163-186.	2.4	74
17	Role of mathematical modeling on the optimal control of HIV-1 pathogenesis. AICHE Journal, 2006, 52, 856-884.	1.8	41
18	Why Do HIV-1 and HIV-2 Use Different Pathways to Develop AZT Resistance?. PLoS Pathogens, 2006, 2, e10.	2.1	62

#	Article	IF	CITATIONS
19	Virologic and Enzymatic Studies Revealing the Mechanism of K65R- and Q151M-Associated HIV-1 Drug Resistance Towards Emtricitabine and Lamivudine. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 89-107.	0.4	25
20	The Fitness Cost of Mutations Associated with Human Immunodeficiency Virus Type 1 Drug Resistance Is Modulated by Mutational Interactions. Journal of Virology, 2007, 81, 3037-3041.	1.5	109
21	Development and Evaluation of an Oligonucleotide Ligation Assay for Detection of Drug Resistance-Associated Mutations in the Human Immunodeficiency Virus Type 2 pol Gene. Journal of Clinical Microbiology, 2007, 45, 1565-1571.	1.8	9
22	Clinical Significance of Human Immunodeficiency Virus Type 1 Replication Fitness. Clinical Microbiology Reviews, 2007, 20, 550-578.	5.7	61
23	Virologic Characterization of HIV Type 1 With a Codon 70 Deletion in Reverse Transcriptase. Journal of Acquired Immune Deficiency Syndromes (1999), 2007, 45, 494-500.	0.9	8
24	HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: A view from the clinic and ex vivo. Virus Research, 2008, 134, 104-123.	1.1	125
25	The A62V and S68G Mutations in HIV-1 Reverse Transcriptase Partially Restore the Replication Defect Associated With the K65R Mutation. Journal of Acquired Immune Deficiency Syndromes (1999), 2008, 48, 428-436.	0.9	58
26	HIV Therapeutics: Antiretroviral Drugs and Immune-Based Therapies. , 2009, , 415-514.		0
27	Case report of the rare deletion at codon 69 of reverse transcriptase in a South African HIV-1 subtype C infected patient. Virus Genes, 2010, 41, 358-360.	0.7	0
28	The non-nucleoside reverse transcriptase inhibitor efavirenz stimulates replication of human immunodeficiency virus type 1 harboring certain non-nucleoside resistance mutations. Virology, 2010, 402, 228-237.	1.1	12
29	Human Immunodeficiency Virus Type 1 Protease Inhibitor Drug-Resistant Mutants Give Discordant Results When Compared in Single-Cycle and Multiple-Cycle Fitness Assays. Journal of Clinical Microbiology, 2010, 48, 4035-4043.	1.8	6
30	Generation and mucosal transmissibility of emtricitabine- and tenofovir-resistant SHIV162P3 mutants in macaques. Virology, 2011, 412, 435-440.	1.1	18
31	The evolution of HIV-1 reverse transcriptase in route to acquisition of Q151M multi-drug resistance is complex and involves mutations in multiple domains. Retrovirology, 2011, 8, 31.	0.9	12
32	Mechanism of Resistance to GS-9148 Conferred by the Q151L Mutation in HIV-1 Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2011, 55, 2662-2669.	1.4	9
33	Polymorphic Mutations Associated With the Emergence of the Multinucleoside/Tide Resistance Mutations 69 Insertion and Q151M. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 59, 105-112.	0.9	9
34	Rescue therapy planning based on HIV genotyping testing. Chemical Engineering Science, 2013, 93, 445-466.	1.9	8
35	Reverse transcriptase backbone can alter the polymerization and RNase activities of non-nucleoside reverse transcriptase mutants K101E+G190S. Journal of General Virology, 2013, 94, 2297-2308.	1.3	4
36	HIV-1 Protease, Reverse Transcriptase, and Integrase Variation. Journal of Virology, 2016, 90, 6058-6070.	1.5	72

#	Article	IF	CITATIONS
37	Ultra-Deep Sequencing Analysis on HIV Drug-Resistance-Associated Mutations Among HIV-Infected Individuals: First Report from the Philippines. AIDS Research and Human Retroviruses, 2017, 33, 1099-1106.	0.5	9
38	Evolution of tenofovir-resistant HIV-1 isolates exposed to tenofovir alafenamide dose escalation. Antiviral Research, 2017, 143, 22-29.	1.9	3
39	Nucleoside Analogue Inhibitors of Human Immunodeficiency Virus Reverse Transcriptase. , 0, , 51-70.		2
40	Primary HIV-1 resistance: Persistence of transmitted drug resistance mutations. Archives of Biological Sciences, 2012, 64, 1301-1309.	0.2	1
41	Virus population dynamics, fitness variations and the control of viral disease: an update. , 2001, 57, 77-115.		34
42	Genetic Diversity and Antiretroviral Drug Resistance among Drug-Naïve HIV-1 Infected Pregnant Women Attending Antenatal Clinics in Abidjan, Côte d'Ivoire. World Journal of AIDS, 2012, 02, 57-63.	0.1	3
43	HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Reviews, 2008, 10, 67-84.	0.5	218
44	K65R with and without S68: A New Resistance Profile in Vivo Detected in Most Patients Failing Abacavir, Didanosine and Stavudine. Antiviral Therapy, 2003, 8, 173-182.	0.6	57
45	Increasing Prevalence of HIV-1 Reverse Transcriptase Mutation K65R Correlates with Tenofovir Utilization. Antiviral Therapy, 2004, 9, 827-828.	0.6	16
46	Prevalence, Genotypic Associations and Phenotypic Characterization of K65R, L74V and other HIV-1 RT Resistance Mutations in a Commercial Database. Antiviral Therapy, 2008, 13, 189-198.	0.6	32
47	Evolution of Transmitted HIV-1 with Drug-Resistance Mutations in the Absence of Therapy: Effects on Cd4 ⁺ T-Cell Count and HIV-1 Rna Load. Antiviral Therapy, 2006, 11, 173-178.	0.6	28