Generation of Novel Bacterial Regulatory Proteins That

Applied and Environmental Microbiology 66, 163-169 DOI: 10.1128/aem.66.1.163-169.2000

Citation Report

#	Article	IF	CITATIONS
1	Bacterial promoters triggering biodegradation of aromatic pollutants. Current Opinion in Biotechnology, 2000, 11, 467-475.	6.6	151
2	The Use of Whole-Cell Biosensors to Detect and Quantify Compounds or Conditions Affecting Biological Systems. Microbial Ecology, 2001, 42, 483-494.	2.8	110
3	Role of the DmpR-Mediated Regulatory Circuit in Bacterial Biodegradation Properties in Methylphenol-Amended Soils. Applied and Environmental Microbiology, 2001, 67, 162-171.	3.1	44
4	<title>Optical imaging fiber-based recombinant bacterial biosensor</title> . , 2002, 4576, 68.		1
5	Exposing culprit organic pollutants: A review. Journal of Microbiological Methods, 2002, 49, 103-119.	1.6	83
6	Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiology Reviews, 2002, 26, 403-417.	8.6	5
7	Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiology Reviews, 2002, 26, 403-417.	8.6	99
8	Optical imaging fiber-based live bacterial cell array biosensor. Analytical Biochemistry, 2003, 315, 106-113.	2.4	114
9	Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environmental Microbiology, 2003, 5, 1226-1241.	3.8	98
10	The Potential of Site-Specific Recombinases as Novel Reporters in Whole-Cell Biosensors of Pollution. Advances in Applied Microbiology, 2003, 52, 29-74.	2.4	1
11	Stress Responsive Bacteria: Biosensors as Environmental Monitors. Advances in Microbial Physiology, 2004, 49, 131-174.	2.4	51
12	Design of new promoters and of a dual-bioreporter based on cross-activation by the two regulatory proteins XylR and HbpR. Environmental Microbiology, 2004, 6, 1186-1196.	3.8	17
13	Chapter 10 Non-affinity sensing technology: the exploitation of biocatalytic events for environmental analysis. Comprehensive Analytical Chemistry, 2005, , 429-537.	1.3	3
14	Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Current Opinion in Biotechnology, 2006, 17, 34-42.	6.6	131
15	Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochemistry, 2006, 41, 2010-2016.	3.7	81
16	Reporter Genes in Bacterial Inoculants Can Monitor Life Conditions and Functions in Soil. , 2006, , 375-395.		5
17	Selection of biocatalysts for chemical synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1693-1698.	7.1	90
18	Bacterial degradation of airborne phenol in the phyllosphere. Environmental Microbiology, 2007, 9, 383-392.	3.8	158

#	Article	IF	CITATIONS
19	\tilde{A} € la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors. Molecular Microbiology, 2008, 42, 47-59.	2.5	72
20	Mutant HbpR transcription activator isolation for 2â€chlorobiphenyl via green fluorescent proteinâ€based flow cytometry and cell sorting. Microbial Biotechnology, 2008, 1, 68-78.	4.2	37
21	Tracing explosives in soil with transcriptional regulators of <i>Pseudomonas putida</i> evolved for responding to nitrotoluenes. Microbial Biotechnology, 2008, 1, 236-246.	4.2	79
22	Bacterial Biosensors for Measuring Availability of Environmental Pollutants. Sensors, 2008, 8, 4062-4080.	3.8	91
23	AraC Regulatory Protein Mutants with Altered Effector Specificity. Journal of the American Chemical Society, 2008, 130, 5267-5271.	13.7	132
26	Environmental Applications of Photoluminescence-Based Biosensors. Advances in Biochemical Engineering/Biotechnology, 2009, 116, 143-157.	1.1	7
27	Novel Use of a Whole Cell <i>E. coli</i> Bioreporter as a Urinary Exposure Biomarker. Environmental Science & Technology, 2009, 43, 423-428.	10.0	17
28	Three Dimensional Model for N-Terminal A Domain of DmpR (2-Dimethylphenol) Protein Based on Secondary Structure Prediction and Fold Recognition. In Silico Biology, 2010, 10, 223-233.	0.9	5
29	Improvement of an E. coli bioreporter for monitoring trace amounts of phenol by deletion of the inducible Ïf 54-dependent promoter. Biotechnology Letters, 2010, 32, 1265-1270.	2.2	12
30	Diversity of the transcriptional regulation of the pch gene cluster in two indigenous p-cresol-degradative strains of Pseudomonas fluorescens. FEMS Microbiology Ecology, 2010, 72, 464-475.	2.7	9
31	Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiology Reviews, 2010, 34, 842-865.	8.6	45
32	Where microbiology meets microengineering: design and applications of reporter bacteria. Nature Reviews Microbiology, 2010, 8, 511-522.	28.6	466
33	Biosensing Systems Based on Genetically Engineered Whole Cells. , 2010, , 565-598.		6
34	Biodegradation of Higher Concentration Phenol by Pseudomonas aeruginosa HS-D38. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
35	Biotreatment of Industrial Wastewaters under Transient-State Conditions: Process Stability with Fluctuations of Organic Load, Substrates, Toxicants, and Environmental Parameters. Critical Reviews in Environmental Science and Technology, 2010, 40, 147-197.	12.8	48
36	Bacterial Sensors: Synthetic Design and Application Principles. Synthesis Lectures on Synthetic Biology, 2010, 2, 1-167.	0.0	10
37	Cooperative amino acid changes shift the response of the σ ⁵⁴ â€dependent regulator XylR from natural <i>mâ€</i> xylene towards xenobiotic 2,4â€dinitrotoluene. Molecular Microbiology, 2011, 79, 1248-1259.	2.5	26
38	Engineering whole-cell biosensors to evaluate the effect of osmotic conditions on bacteria. Annals of Microbiology, 2013, 63, 1283-1290.	2.6	1

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
39	Microbial Biosensors: Engineered Microorganisms as the Sensing Machinery. Sensors, 2013, 13, 5777-5795.	3.8	165
40	Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays. Advances in Biochemical Engineering/Biotechnology, 2014, 144, 111-151.	1.1	12
41	Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium. Journal of Biotechnology, 2014, 189, 88-93.	3.8	13
42	The predicted σ54-dependent regulator EtpR is essential for expression of genes for anaerobic p-ethylphenol and p-hydroxyacetophenone degradation in "Aromatoleum aromaticum―EbN1. BMC Microbiology, 2015, 15, 251.	3.3	13
43	Rosetta comparative modeling for library design: Engineering alternative inducer specificity in a transcription factor. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1327-1340.	2.6	51
44	Catabolism of Phenol and Its Derivatives in Bacteria. Advances in Applied Microbiology, 2015, 93, 107-160.	2.4	46
45	Structural Analysis of the Phenol-Responsive Sensory Domain of the Transcription Activator PoxR. Structure, 2016, 24, 624-630.	3.3	15
46	Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives (Review). Applied Biochemistry and Microbiology, 2016, 52, 347-357.	0.9	8
47	Development of Colorimetric-Based Whole-Cell Biosensor for Organophosphorus Compounds by Engineering Transcription Regulator DmpR. ACS Synthetic Biology, 2016, 5, 1290-1298.	3.8	49
48	Engineering an allosteric transcription factor to respond to new ligands. Nature Methods, 2016, 13, 177-183.	19.0	274
49	Transcription factor-based biosensors in biotechnology: current state and future prospects. Applied Microbiology and Biotechnology, 2016, 100, 79-90.	3.6	178
50	Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives. World Journal of Microbiology and Biotechnology, 2017, 33, 174.	3.6	27
51	Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications. Biotechnology Advances, 2017, 35, 950-970.	11.7	97
52	Tailor-made transcriptional biosensors for optimizing microbial cell factories. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 623-645.	3.0	84
53	Transcription Factorâ€Based Biosensors in Highâ€Throughput Screening: Advances and Applications. Biotechnology Journal, 2018, 13, e1700648.	3.5	84
54	Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. Sensors and Actuators B: Chemical, 2018, 255, 2657-2689.	7.8	178
55	Development of fluorescent protein-based biosensing strains: A new tool for the detection of aromatic hydrocarbon pollutants in the environment. Ecotoxicology and Environmental Safety, 2019, 182, 109450.	6.0	18
56	Experimental Evolution of Novel Regulatory Activities in Response to Hydrocarbons and Related Chemicals. , 2019, , 737-749.		0

#	Article	IF	CITATIONS
57	Regulation of organohalide respiration. Advances in Microbial Physiology, 2019, 74, 191-238.	2.4	11
58	Machine learning linked evolutionary biosensor array for highly sensitive and specific molecular identification. Biosensors and Bioelectronics, 2020, 170, 112670.	10.1	21
59	Tetrameric architecture of an active phenol-bound form of the AAA+ transcriptional regulator DmpR. Nature Communications, 2020, 11, 2728.	12.8	12
60	Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiology Reviews, 2020, 44, 189-207.	8.6	10
61	A Microbial Electrochemical Technology to Detect and Degrade Organophosphate Pesticides. ACS Central Science, 2021, 7, 1718-1727.	11.3	26
62	Engineering of Sensory Proteins with New Ligand-Binding Capacities. , 2022, , 223-242.		0
63	Transcriptional Regulation and Catabolic Strategies of Phenol Degradative Pathways. , 2004, , 451-477.		14
64	Experimental Evolution of Novel Regulatory Activities in Response to Hydrocarbons and Related Chemicals. , 2016, , 1-13.		1
65	Random and Site-Directed Mutagenesis of Transcriptional Regulator Proteins Implicated in Hydrocarbon Degradation Pathways. , 2010, , 4429-4444.		6
66	Experimental Evolution of Novel Regulatory Activities in Response to Hydrocarbons and Related Chemicals. , 2010, , 1235-1245.		2
67	An Effective Strategy for a Whole-Cell Biosensor Based on Putative Effector Interaction Site of the Regulatory DmpR Protein. PLoS ONE, 2012, 7, e43527.	2.5	33
68	Bacterial Bioreporter Assays to Measure Hydrocarbons. , 2010, , 3641-3653.		1
69	Content of phenolic compounds in soils originating from two long-term fertilization experiments. Archives of Environmental Protection, 2016, 42, 104-113.	1.1	10
70	Engineering of Sensory Proteins with New Ligand-Binding Capacities. , 2019, , 1-21.		3
71	Luciferin Synthesis and Pesticide Detection by Luminescence Enzymatic Cascades. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
72	Luciferin Synthesis and Pesticide Detection by Luminescence Enzymatic Cascades. Angewandte Chemie, 2022, 134, .	2.0	3
73	Harnessing the Potential of Biological Recognition Elements for Water Pollution Monitoring. ACS Sensors, 2022, 7, 704-715.	7.8	13
74	Bacterial Biodegradation of Phenolic Hydrocarbons. Microorganisms for Sustainability, 2022, , 139-162.	0.7	1

	C	CITATION REPORT	
#	Δρτιςι ε	IF	CITATIONS
		"	CHAHONS
75	Genetic Engineering Concepts. Synthesis Lectures on Synthetic Biology, 2011, , 9-69.	0.0	0
77	Evolution of <i>Rhodopseudomonas palustris</i> to degrade halogenated aromatic compounds involves changes in pathway regulation and enzyme specificity. Applied and Environmental Microbiology, 2024, 90, .	3.1	ο
78	Seeing Colors: A Literature Review on Colorimetric Whole-Cell Biosensors. Fermentation, 2024, 10, 7	'9. 3.0	0