Papel del Ã;cido fÃ-tico en las legumbres

Journal of Physiology and Biochemistry 56, 283-294 DOI: 10.1007/bf03179796

Citation Report

#	Article	IF	CITATIONS
1	Phytic acid (IP6), novel broad spectrum anti-neoplastic agent: a systematic review. Complementary Therapies in Medicine, 2002, 10, 229-234.	2.7	108
2	Bioactive substances of plant origin in food - impact on genomics. Reproduction, Nutrition, Development, 2002, 42, 461-477.	1.9	47
3	Separation of phytic acid and other related inositol phosphates by high-performance ion chromatography and its applications. Journal of Chromatography A, 2003, 1018, 41-52.	3.7	74
4	Nutritional Evaluation of Pea (Pisum sativumL.) Protein Diets after Mild Hydrothermal Treatment and without Added Phytase. Journal of Agricultural and Food Chemistry, 2003, 51, 2415-2420.	5.2	37
5	A moderately low phosphate intake may provide health benefits analogous to those conferred by UV light – a further advantage of vegan diets. Medical Hypotheses, 2003, 61, 543-560.	1.5	12
6	Phytochemicals and gastrointestinal health. , 2003, , 160-186.		1
7	PEAS AND LENTILS. , 2003, , 4433-4440.		9
8	Comparison of the Chemical Composition and Nutritional Value of Amaranthus cruentus Flour and Its Protein Concentrate. Plant Foods for Human Nutrition, 2004, 59, 15-21.	3.2	73
9	In vitro analysis of binding capacities of calcium to phytic acid in different food samples. European Food Research and Technology, 2004, 219, 409.	3.3	47
10	Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology, 2004, 63, 362-372.	3.6	187
11	Public health issues related with the consumption of food obtained from genetically modified organisms. Biotechnology Annual Review, 2004, 10, 85-122.	2.1	31
12	Low phytate lupin flour based biomass obtained by fermentation with a mutant of Aspergillus niger. Process Biochemistry, 2005, 40, 951-954.	3.7	26
13	Changes in chemical composition of lupin seeds (Lupinus angustifolius) after selective α-galactoside extraction. Journal of the Science of Food and Agriculture, 2005, 85, 2468-2474.	3.5	35
14	Phytic Acid Synthesis and Vacuolar Accumulation in Suspension-Cultured Cells of Catharanthus roseus Induced by High Concentration of Inorganic Phosphate and Cations. Plant Physiology, 2005, 138, 1607-1614.	4.8	51
15	Pinto Beans Are a Source of Highly Bioavailable Copper in Rats. Journal of Nutrition, 2006, 136, 2999-3004.	2.9	5
16	Nutritional evaluation of protein, phosphorus, calcium and magnesium bioavailability from lupin (Lupinus albus var. multolupa)-based diets in growing rats: effect of α-galactoside oligosaccharide extraction and phytase supplementation. British Journal of Nutrition, 2006, 95, 1102-1111.	2.3	16
17	Changes in the composition of phytate, phosphorus and other cations in soybean seeds with maturity. Grassland Science, 2006, 52, 99-104.	1.1	2
18	Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of α-galactosides. Food Chemistry, 2006, 98, 291-299.	8.2	107

	СІТАТ	ion Report	
#	Article	IF	Citations
20	Inhibition of chronic ulcerative colitis associated adenocarcinoma development in mice by inositol compounds. Carcinogenesis, 2006, 28, 446-454.	2.8	34
21	Quantitative Analysis of Phytate Globoids Isolated from Wheat Bran and Characterization of Their Sequential Dephosphorylation by Wheat Phytase. Journal of Agricultural and Food Chemistry, 2007, 55, 7547-7552.	5.2	84
22	Nitrogen Fractions and Mineral Content in Different Lupin Species (<i>Lupinus albus</i> , <i>Lupinus) Tj E Journal of Agricultural and Food Chemistry, 2007, 55, 7445-7452.</i>	TQq0 0 0 rgBT /Ov 5.2	verlock 10 T 11
23	Phytochemicals for Health, the Role of Pulses. Journal of Agricultural and Food Chemistry, 2007, 55, 7981-7994.	5.2	290
24	Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 2008, 17, 633-643.	2.4	166
25	Formation and stability of phytate complexes in solution. Coordination Chemistry Reviews, 2008, 252, 1108-1120.	18.8	180
26	Current and Future Biotechnological Applications of Bacterial Phytases and Phytase-Producing Bacteria. Microbes and Environments, 2008, 23, 182-191.	1.6	149
27	Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition and Food Research, 2009, 53, S330-75.	3.3	650
28	Speciation of Phytate Ion in Aqueous Solution. Thermodynamic Parameters for Zinc(II) Sequestration at Different Ionic Strengths and Temperatures. Journal of Solution Chemistry, 2009, 38, 115-134.	1.2	30
29	Nutritional quality of legume seeds as affected by some physical treatments 2.ÂAntinutritional factors. LWT - Food Science and Technology, 2009, 42, 1113-1118.	5.2	214
30	Iron Uptake and Transport in Plants: The Good, the Bad, and the Ionome. Chemical Reviews, 2009, 109, 4553-4567.	47.7	546
31	Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 2010, 120, 945-959.	8.2	623
32	Antimicrobial Agents Deriving from Indigenous Plants. Recent Patents on Food, Nutrition & Agriculture, 2010, 2, 83-92.	0.9	5
33	Effectiveness of Acidified Sodium Chlorite and Other Sanitizers to Control <i>Escherichia coli</i> O157:H7 on Tomato Surfaces. Foodborne Pathogens and Disease, 2010, 7, 629-635.	1.8	23
34	Papel de las leguminosas en la alimentación actual. Actividad Dietetica, 2010, 14, 72-76.	0.1	9
35	Role of oxate, phytate, tannins and cooking on iron bioavailability from foods commonly consumed in Mexico. International Journal of Food Sciences and Nutrition, 2010, 61, 29-39.	2.8	40
36	Equilibrium study on the interaction of phytic acid with polyamines and metal ions. Metallomics, 2011, 3, 735.	2.4	15
37	Assessment of the nutritional quality of raw and extruded Pisum sativum L. var. laguna seeds. LWT - Food Science and Technology, 2011, 44, 1303-1308.	5.2	53

#	Article	IF	CITATIONS
38	Influence of pH on the cytotoxic activity of inositol hexakisphosphate (IP6) in prostate cancer. Frontiers in Oncology, 2011, 1, 40.	2.8	1
39	Growth characteristics, phytate contents, and coagulation properties of soymilk from a low-phytate Japanese soybean (Glycine max(L.) Merr.) line. Soil Science and Plant Nutrition, 2011, 57, 674-680.	1.9	2
40	Transgenic soybean with low phytate content constructed by Agrobacterium transformation and pollen-tube pathway. Euphytica, 2011, 177, 375-382.	1.2	18
41	Content and distribution of protein, sugars and inositol phosphates during the germination and seedling growth of two cultivars of Vicia faba. Journal of Food Composition and Analysis, 2011, 24, 391-397.	3.9	38
42	Thermostable alkaline phytase from Bacillus sp. MD2: Effect of divalent metals on activity and stability. Journal of Inorganic Biochemistry, 2011, 105, 1000-1007.	3.5	28
43	New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy. Journal of Experimental Botany, 2011, 62, 3929-3939.	4.8	91
45	Interaction of Phytate with Ag ⁺ , CH ₃ Hg ⁺ , Mn ²⁺ , Fe ²⁺ , Co ²⁺ , and VO ²⁺ : Stability Constants and Sequestering Ability. Journal of Chemical & Engineering Data, 2012, 57, 2838-2847.	1.9	21
46	Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochemistry Reviews, 2012, 11, 227-244.	6.5	156
47	Sequestering Ability of Phytate toward Biologically and Environmentally Relevant Trivalent Metal Cations. Journal of Agricultural and Food Chemistry, 2012, 60, 8075-8082.	5.2	41
48	<i>Myo</i> â€inositol hexakisphosphate, isolated from female gametophyte tissue of loblolly pine, inhibits growth of earlyâ€stage somatic embryos. New Phytologist, 2012, 193, 313-326.	7.3	3
49	Phytate and phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition, 2012, 96, 335-364.	2.2	245
50	Potential probiotic properties of phytase-producing Lactobacillus salivarius FC113. Annals of Microbiology, 2013, 63, 555-560.	2.6	10
51	Factors Causing Compositional Changes in Soy Protein Hydrolysates and Effects on Cell Culture Functionality. Journal of Agricultural and Food Chemistry, 2013, 61, 10613-10625.	5.2	23
52	Variability of Antinutritive Compounds in Flaxseed Flours. International Journal of Plant Biology, 2013, 4, e3.	2.6	9
53	Isolation, morphological and molecular characterization of phytate-hydrolysing fungi by 18S rDNA sequence analysis. Brazilian Journal of Microbiology, 2013, 44, 317-323.	2.0	16
54	Study of thermal behavior of phytic acid. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 275-283.	1.2	74
55	Effect of preparation practices and the cowpea cultivar Vigna unguiculata L.Walp on the quality and content of myo-inositol phosphate in akara (fried bean paste). Food Science and Technology, 2014, 34, 243-248.	1.7	6
56	The effect of the tetraalkylammonium salts on the protonation thermodynamics of the phytate anion. Fluid Phase Equilibria, 2014, 383, 126-133.	2.5	8

#	Article	IF	CITATIONS
57	A Type IV Translocated Legionella Cysteine Phytase Counteracts Intracellular Growth Restriction by Phytate. Journal of Biological Chemistry, 2014, 289, 34175-34188.	3.4	24
58	Metabolite changes during natural and lactic acid bacteria fermentations in pastes of soybeans and soybean–maize blends. Food Science and Nutrition, 2014, 2, 768-785.	3.4	12
59	Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacognosy Reviews, 2014, 8, 147.	1.2	169
60	Lupin protein isolate versus casein modifies cholesterol excretion and mRNA expression of intestinal sterol transporters in a pig model. Nutrition and Metabolism, 2014, 11, 9.	3.0	19
61	Wheat Bran and Cadmium in Human Health. , 2014, , 241-260.		5
62	Antioxidant Properties of Wheat Bran against Oxidative Stress. , 2014, , 181-199.		26
63	Overexpression and functional characterization of an Aspergillus niger phytase in the fat body of transgenic silkworm, Bombyx mori. Transgenic Research, 2014, 23, 669-677.	2.4	3
64	Scientific Opinion on the potential reduction of the currently authorised maximum zinc content in complete feed. EFSA Journal, 2014, 12, 3668.	1.8	69
65	Impact of Radio Frequency, Microwaving, and High Hydrostatic Pressure at Elevated Temperature on the Nutritional and Antinutritional Components in Black Soybeans. Journal of Food Science, 2015, 80, C2732-9.	3.1	32
66	Thermal Behavior and Free-Radical-Scavenging Activity of Phytic Acid Alone and Incorporated in Cosmetic Emulsions. Cosmetics, 2015, 2, 248-258.	3.3	8
67	Phytic Acid and Inorganic Phosphate Composition in Soybean Lines with Independent IPK1 Mutations. Plant Genome, 2015, 8, eplantgenome2014.10.0077.	2.8	12
68	Effects of phytate on thyroid gland of rats intoxicated with cadmium. Toxicology and Industrial Health, 2015, 31, 1258-1268.	1.4	8
69	Enhanced activity of an alkaline phytase from Bacillus subtilis 168 in acidic and neutral environments by directed evolution. Biochemical Engineering Journal, 2015, 98, 137-143.	3.6	21
70	Determination of Phytic Acid in Juices and Milks by Developing a Quick Complexometric-Titration Method. Food Analytical Methods, 2015, 8, 1836-1841.	2.6	20
71	Reducing phytate content in wheat bran by directly removing the aleurone cell content with teeth roller mill and ultrasonic cleaner. Journal of Cereal Science, 2015, 64, 133-138.	3.7	11
72	On the interaction of phytate with proton and monocharged inorganic cations in different ionic media, and modeling of acid-base properties at low ionic strength. Journal of Chemical Thermodynamics, 2015, 90, 51-58.	2.0	8
73	Nutritional, chemical and microbiological changes during fermentation of tarhana formulated with different flours. Chemistry Central Journal, 2015, 9, 16.	2.6	18
74	Effect of sequential bio-processing conditions on the content and composition of vitamin K2 and isoflavones in fermented soy food. Journal of Food Science and Technology, 2015, 52, 8228-8235.	2.8	6

#	Article	IF	CITATIONS
75	Phytate in feed ingredients and potentials for improving the utilization of phosphorus in ruminant nutrition. Animal Feed Science and Technology, 2015, 209, 1-15.	2.2	41
76	Nutritional Value. Handbook of Plant Breeding, 2015, , 291-325.	0.1	17
77	Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition, 2015, 99, 605-625.	2.2	210
78	Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 2015, 52, 676-684.	2.8	534
79	Novel in situ evaluation of the role minerals play in the development of the hard-to-cook (HTC) defect of cowpeas and its effect on the in vitro mineral bioaccessibility. Food Chemistry, 2015, 174, 365-371.	8.2	29
80	Micronutrient and Functional Compounds Biofortification of Maize Grains. Critical Reviews in Food Science and Nutrition, 2015, 55, 123-139.	10.3	30
81	Horse gram- an underutilized nutraceutical pulse crop: a review. Journal of Food Science and Technology, 2015, 52, 2489-2499.	2.8	72
82	An Insight of Pulses: From Food to Cancer Treatment. Journal of Pharmacognosy & Natural Products, 2016, 1, .	0.4	1
83	Physical, Chemical and Phytoremediation Technique for Removal of Heavy Metals. Journal of Heavy Metal Toxicity and Diseases, 2016, 1, .	1.4	23
84	The Challenges and Opportunities Associated with Biofortification of Pearl Millet (Pennisetum) Tj ETQq1 1 0.784	314 rgBT 3.6	/Oyerlock 10
84 85		314 rgBT 3.6	/Oyerlock 10 50
	The Challenges and Opportunities Associated with Biofortification of Pearl Millet (Pennisetum) Tj ETQq1 1 0.784 Current Knowledge on Genetic Biofortification in Lentil. Journal of Agricultural and Food Chemistry,	0.0	
85	The Challenges and Opportunities Associated with Biofortification of Pearl Millet (Pennisetum) Tj ETQq1 1 0.784 Current Knowledge on Genetic Biofortification in Lentil. Journal of Agricultural and Food Chemistry, 2016, 64, 6383-6396. Cowpea (<i>Vigna unguiculata</i> L. Walp), a renewed multipurpose crop for a more sustainable agriâ€food system: nutritional advantages and constraints. Journal of the Science of Food and	5.2	50
85 86	The Challenges and Opportunities Associated with Biofortification of Pearl Millet (Pennisetum) Tj ETQq1 1 0.784 Current Knowledge on Genetic Biofortification in Lentil. Journal of Agricultural and Food Chemistry, 2016, 64, 6383-6396. Cowpea (<i>Vigna unguiculata</i> L. Walp), a renewed multipurpose crop for a more sustainable agriâ€food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 2016, 96, 2941-2951. Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition.	5.2 3.5	50 169
85 86 87	The Challenges and Opportunities Associated with Biofortification of Pearl Millet (Pennisetum) Tj ETQq1 1 0.784 Current Knowledge on Genetic Biofortification in Lentil. Journal of Agricultural and Food Chemistry, 2016, 64, 6383-6396. Cowpea (<i>Vigna unguiculata</i> L. Walp), a renewed multipurpose crop for a more sustainable agriâ€food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 2016, 96, 2941-2951. Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition. BMC Biotechnology, 2016, 16, 29. Metabolism of <i>myo</i> -Inositol by Legionella pneumophila Promotes Infection of Amoebae and	5.2 3.5 3.3	50 169 30
85 86 87 88	The Challenges and Opportunities Associated with Biofortification of Pearl Millet (Pennisetum) Tj ETQq1 1 0.784 Current Knowledge on Genetic Biofortification in Lentil. Journal of Agricultural and Food Chemistry, 2016, 64, 6383-6396. Cowpea (<i>Vigna unguiculata</i> L. Walp), a renewed multipurpose crop for a more sustainable agriâ€food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 2016, 96, 2941-2951. Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition. BMC Biotechnology, 2016, 16, 29. Metabolism of <i>myo</i> -Inositol by Legionella pneumophila Promotes Infection of Amoebae and Macrophages. Applied and Environmental Microbiology, 2016, 82, 5000-5014.	5.2 3.5 3.3	50 169 30 35
85 86 87 88 89	The Challenges and Opportunities Associated with Biofortification of Pearl Millet (Pennisetum) Tj ETQq1 1 0.784 Current Knowledge on Genetic Biofortification in Lentil. Journal of Agricultural and Food Chemistry, 2016, 64, 6383-6396. Cowpea (<i>>Vigna unguiculata</i> > L. Walp), a renewed multipurpose crop for a more sustainable agria€food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 2016, 96, 2941-2951. Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition. BMC Biotechnology, 2016, 16, 29. Metabolism of <i>>myo</i> -Inositol by Legionella pneumophila Promotes Infection of Amoebae and Macrophages. Applied and Environmental Microbiology, 2016, 82, 5000-5014. Biofortification of Food Crops., 2016, , .	5.2 3.5 3.3	50 50 169 30 35 39

	CITATION REPORT	
Article	IF	CITATIONS
The dietary replacement of marine ingredients by terrestrial animal and plant alternatives modulate the antiviral immune response of Atlantic salmon (Salmo salar). Fish and Shellfish Immunology, 2 64, 24-38.		68
The effect of ultrasound on some properties of pulse hulls. Journal of Food Science and Technolog 2017, 54, 2779-2788.	y, 2.8	25
The Role of Soil Microbes in Crop Biofortification. , 2017, , 333-356.		10
Rapid determination of phytic acid content in cottonseed meal via near infrared spectroscopy. Jou of Near Infrared Spectroscopy, 2017, 25, 188-195.	rnal 1.5	6
Toward greener polyolefins: Antioxidant effect of phytic acid from cereal waste. European Polymer Journal, 2017, 96, 190-199.	5.4	25
The efficacy of combined (NaClO and organic acids) washing treatments in controlling Escherichia coli O157:H7, Listeria monocytogenes and spoilage bacteria on shredded cabbage and bean sprou Food Science and Technology, 2017, 85, 1-8.		16
Intensified soy protein extraction by ultrasound. Chemical Engineering and Processing: Process Intensification, 2017, 113, 94-101.	3.6	63
Fermented Pulses in Nutrition and Health Promotion. , 2017, , 385-416.		16
The quality of leguminous vegetables as influenced by preharvest factors. Scientia Horticulturae, 2018, 232, 191-205.	3.6	34
Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian puls Food Research International, 2018, 107, 660-668.	es. 6.2	134
Modeling the effect of temperature on the hydration kinetic whole moong grain. Journal of the Sau Society of Agricultural Sciences, 2018, 17, 268-274.	udi 1.9	13
The uses of microbial phytase as a feed additive in poultry nutrition – a review. Annals of Animal Science, 2018, 18, 639-658.	1.6	66
Phytic Acid Reduction by Bioprocessing as a Tool To Improve the In Vitro Digestibility of Faba Bean Protein. Journal of Agricultural and Food Chemistry, 2018, 66, 10394-10399.	۱ 5.2	37
Purification and Biochemical Characterization of Phytase Enzyme from Lactobacillus coryniformis (MH121153), Molecular Biotechnology, 2018, 60, 783-790.	2.4	28

Phytochemical composition of smoothies combining pomegranate juice (<i>Punica granatum</i> L) and Mediterranean minor crop purées (<i>Ficus carica</i>, <i>Cydonia oblonga</i>, and <i>Ziziphus) Tj ETQq0 0 0 rg&5 /Overloade 10 Tf 50 108

109	Multifunctionalizing the marine diatom Phaeodactylum tricornutum for sustainable co-production of omega-3 long chain polyunsaturated fatty acids and recombinant phytase. Scientific Reports, 2019, 9, 11444.	3.3	35
110	Sesame: Bioactive Compounds and Health Benefits. Reference Series in Phytochemistry, 2019, , 181-200.	0.4	21
111	Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in sovbean. Scientific Reports, 2019, 9, 7744.	3.3	25

#

93

94

95

98

100

102

104

106

Pu (N

#	Article	IF	CITATIONS
112	Sesame oil and vitamin E co-administration may improve cardiometabolic risk factors in patients with metabolic syndrome: a randomized clinical trial. European Journal of Clinical Nutrition, 2019, 73, 1403-1411.	2.9	21
113	Effect of Phosphorus Fertilization on the Growth, Photosynthesis, Nitrogen Fixation, Mineral Accumulation, Seed Yield, and Seed Quality of a Soybean Low-Phytate Line. Plants, 2019, 8, 119.	3.5	61
114	Influence of germination on physicochemical, thermoâ€pasting, and antioxidant properties of moong grain (<i>Vigna radiata</i>). Journal of Food Processing and Preservation, 2019, 43, e13922.	2.0	15
115	Cooking with EDTA reduces nutritional value of Vicia faba beans. Biotechnology Reports (Amsterdam,) Tj ETQq1 🕻	1 0.78431 4.4	4 ggBT /Ove
116	Nutrient composition of a low-cost infant's diet formulated from five locally available foodstuffs in northern Nigeria. International Journal of Biological and Chemical Sciences, 2019, 13, 1411.	0.2	2
117	Mineral and phytochemical evaluation of Zea mays husk. Scientific African, 2020, 7, e00224.	1.5	9
118	Is There Such a Thing as "Anti-Nutrients� A Narrative Review of Perceived Problematic Plant Compounds. Nutrients, 2020, 12, 2929.	4.1	108
119	Use of Legumes in Extrusion Cooking: A Review. Foods, 2020, 9, 958.	4.3	85
120	Modification of In Vitro and In Vivo Antioxidant Activity by Consumption of Cooked Chickpea in a Colon Cancer Model. Nutrients, 2020, 12, 2572.	4.1	15
121	Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes. Critical Reviews in Food Science and Nutrition, 2022, 62, 1696-1712.	10.3	52
122	Seasonal Zinc Storage and a Strategy for Its Use in Buds of Fruit Trees. Plant Physiology, 2020, 183, 1200-1212.	4.8	12
123	The Effect of Diet Based on Legume Seeds and Rapeseed Meal on Pig Performance and Meat Quality. Animals, 2020, 10, 1084.	2.3	9
124	Growth performance, fast muscle development and chemical composition of juvenile lumpfish (Cyclopterus lumpus) fed diets incorporating soy and pea protein concentrates. Aquaculture Reports, 2020, 17, 100352.	1.7	10
125	Substitution of commercial feed with phytase-fermented rice bran and turmeric flour to increase EPA, DHA, and protein depositions in broiler meat. Biocatalysis and Agricultural Biotechnology, 2020, 24, 101535.	3.1	2
126	Both genetic and environmental conditions affect wheat grain texture: Consequences for grain fractionation and flour properties. Journal of Cereal Science, 2020, 92, 102917.	3.7	3
127	The combined treatment with lentil protein hydrolysate and a mixed training protocol is an efficient lifestyle intervention to manage cardiovascular and renal alterations in obese Zucker rats. European Journal of Nutrition, 2020, 59, 3473-3490.	3.9	6
128	Effect of antinutrients on heat-set gelation of soy, pea, and rice protein isolates. Journal of Food Science and Technology, 2020, 57, 4201-4210.	2.8	10
129	In Vitro Methods of Assessing Protein Quality for Poultry. Animals, 2020, 10, 551.	2.3	17

#	Article	IF	CITATIONS
130	New Frontiers for the Use of IP6 and Inositol Combination in Treating Diabetes Mellitus: A Review. Molecules, 2020, 25, 1720.	3.8	29
131	Biofortification of Plants by Using Microbes. , 2021, , 141-166.		0
132	The effects of phytochemicals on methanogenesis: insights from ruminant digestion and implications for industrial biogas digesters management. Phytochemistry Reviews, 2021, 20, 1245-1271.	6.5	11
133	Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Research International, 2021, 140, 110038.	6.2	66
134	Replacing fishmeal with pretreated Lima bean improves growth, feed utilization, whole-body composition and nutrient retention in Nile-tilapia fingerlings. Journal of Applied Aquaculture, 0, , 1-16.	1.4	1
135	Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Research International, 2021, 142, 110193.	6.2	99
136	Changes in anti-nutrient, phytochemical, and micronutrient contents of different processed rubber (<i>Hevea brasiliensis</i>) seed meals. PeerJ, 2021, 9, e11327.	2.0	11
137	Influence of cooking methods on antinutritional factors, oligosaccharides and protein quality of underutilized legume Macrotyloma uniflorum. Food Research International, 2021, 143, 110299.	6.2	15
138	Nutritional properties and health aspects of pulses and their use in plantâ€based yogurt alternatives. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3858-3880.	11.7	48
139	Zinc Biofortification in Food Crops Could Alleviate the Zinc Malnutrition in Human Health. Molecules, 2021, 26, 3509.	3.8	60
140	Evaluating nutritional content among Bambara groundnut lines. Journal of Food Composition and Analysis, 2021, 102, 104053.	3.9	13
141	Pulse-Cereal Blend Extrusion for Improving the Antioxidant Properties of a Gluten-Free Flour. Molecules, 2021, 26, 5578.	3.8	9
142	An insight into phytic acid biosynthesis and its reduction strategies to improve mineral bioavailability. Nucleus (India), 0, , 1.	2.2	2
143	Antinutrient to mineral molar ratios of raw common beans and their rapid prediction using near-infrared spectroscopy. Food Chemistry, 2022, 368, 130773.	8.2	10
145	Evaluation and optimization of functional and antinutritional properties of aquafaba. , 2020, 2, e30.		30
146	Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends in Food Science and Technology, 2020, 101, 213-222.	15.1	102
147	Content of phytic acid in selected sorts of legumes. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2014, 58, 217-222.	0.4	3
148	Variability in Antinutritional Compounds in Hempseed Meal of Italian and French Varieties. Plant, 2013, 1, 25.	0.3	53

#	Article	IF	CITATIONS
149	UTILISATION OF INFRARED STABILISED IMMATURE RICE GRAINS IN A CEREAL BASED FERMENTED FOOD: TARHANA. Acta Alimentaria, 2020, 49, 189-196.	0.7	1
150	Nutritional and Antinutritional Factors of Some Pulses Seed and Their Effects on Human Health. International Journal of Secondary Metabolite, 2018, 5, 331-342.	1.3	27
151	Wholegrains: Emerging Concepts, Controversies and Alternatives. Food and Nutrition Sciences (Print), 2012, 03, 1156-1161.	0.4	2
152	Biochemical characterization of legume seeds as ingredients in animal feed. Spanish Journal of Agricultural Research, 2016, 14, e0901.	0.6	12
153	Improved Apparent Digestibility Coefficient of Protein and Phosphorus by Supplementation of Microbial Phytase in Diets Containing Cottonseed and Soybean Meal for Juvenile Olive Flounder (Paralichthys olivaceus). Asian-Australasian Journal of Animal Sciences, 2008, 21, 1367-1375.	2.4	17
154	Effect of Processing and Fermentation on Functional Properties and on Anti-nutritional Factors in Horse Gram (Macrotyloma uniflorum). Current Journal of Applied Science and Technology, 0, , 38-45.	0.3	1
155	Limitations to Bambara Groundnut Utilisation. , 2021, , 61-84.		1
157	Nutritional and Hematological Effects of Flaxseed. , 2003, , .		1
158	Ernärungsmedizinische Aspekte der Lebensmittel. , 2006, , 73-83.		0
159	Cloning and sequencing of novel phy gene from pseudomonas syringae MTCC-2730. Advanced Studies in Biology, 0, 5, 465-471.	0.3	0
161	Redistribution of mineral elements in wheat grain when applying the complex enzyme preparations based on phytase. Potravinarstvo, 2016, 10, .	0.6	3
162	Sesame: Bioactive Compounds and Health Benefits. Reference Series in Phytochemistry, 2018, , 1-20.	0.4	0
163	Isolation, Identification and Molecular Characterization of Phytase Producing Bacteria, Pseudomonas Sp. aazad. Journal of Pure and Applied Microbiology, 2017, 11, 1845-1850.	0.9	0
164	Effect of Soaking and Cooking on Nutritional and Quality Properties of Faba Bean. Journal of Food and Dairy Sciences, 2019, 10, 389-395.	0.3	3
165	Analysis of Selected Antioxidant and Anti-nutrient Content and Palynological Evaluation of Honey Samples from Southern Guinea Savanna Vegetation of Nigeria. Journal of Advances in Biology & Biotechnology, 0, , 1-17.	0.2	1
166	Growth, Muscle Proximate Composition and Whole-Body Nutrient Status of Labeo rohita Fed Acidified and Phytase Pre-Treated Sunflower Meal Based Diet. Pakistan Journal of Zoology, 2020, 52, .	0.2	1
167	Sesame (Sesamum indicum) Seed. , 2021, , 305-330.		10

			_
#	ARTICLE	IF	CITATIONS
169	Phytate as a Phosphorus Nutrient with Impacts on Iron Stress-Related Gene Expression for Phytoplankton: Insights from the Diatom <i>Phaeodactylum tricornutum</i> . Applied and Environmental Microbiology, 2022, 88, AEM0209721.	3.1	11
170	Soil amendments for improving grain quality of grass pea (Lathyrus sativus L.) under drought. JSFA Reports, 2022, 2, 27-36.	0.8	1
172	Phytic acid and its reduction in pulse matrix: Structure–function relationship owing to bioavailability enhancement of micronutrients. Journal of Food Process Engineering, 2022, 45, .	2.9	14
173	Effect of High Temperature Stress During the Reproductive Stage on Grain Yield and Nutritional Quality of Lentil (Lens culinaris Medikus). Frontiers in Nutrition, 2022, 9, 857469.	3.7	15
176	Comparative evaluation of the nutritional value of faba bean flours and protein isolates with major legumes in the market. Cereal Chemistry, 2022, 99, 1013-1029.	2.2	5
177	Mineral and nutritional assessments of soybean, buckwheat, spelt, and maize grains grown conventionally and organically. , 2022, 29, 646-658.		1
178	Effects of phytase supplementation of high-plant-protein diets on growth, phosphorus utilization, antioxidant, and digestion in red swamp crayfish (Procambarus clarkii). Fish and Shellfish Immunology, 2022, 127, 797-803.	3.6	9
179	Kinetics of phytate hydrolysis during storage of red kidney beans and the implication in hard-to-cook development. Food Research International, 2022, 159, 111581.	6.2	3
180	Microbial engineering for the production and application of phytases to the treatment of the toxic pollutants: A review. Environmental Pollution, 2022, 308, 119703.	7.5	5
181	Importance of binary and ternary complex formation on the functional andÂnutritional properties of legume proteins in presence of phytic acid andÂcalcium. Critical Reviews in Food Science and Nutrition, 2023, 63, 12036-12058.	10.3	8
182	Performance and failure process of green recycling solutions for preparing high degradation resistance coating on biomedical magnesium alloys. Green Chemistry, 2022, 24, 8113-8130.	9.0	69
183	Integrated breeding approaches to enhance the nutritional quality of food legumes. Frontiers in Plant Science, 0, 13, .	3.6	4
184	Phytate and mineral profile evolutions to explain the textural hardening of common beans (Phaseolus) Tj ETQq0 (0 0 rgBT /C 8.2)verlock 10 7 3
	classification approach. Food Chemistry, 2023, 404, 134531.		
185	Impacts and Industrial Applications of Phytic Acid and Phytase. Journal of Pure and Applied Microbiology, 2022, 16, 2292-2302.	0.9	2
187	Novel insights into the role of the pectin-cation-phytate mechanism in ageing induced cooking texture changes of Red haricot beans through a texture-based classification and in situ cell wall associated mineral quantification. Food Research International, 2023, 163, 112216.	6.2	2
188	Effects of high hydrostatic pressure on nutritional composition and cooking quality of whole grains and legumes. Innovative Food Science and Emerging Technologies, 2023, 83, 103239.	5.6	6
189	Impact of ultrasound processing on alternative protein systems: Protein extraction, nutritional effects and associated challenges. Ultrasonics Sonochemistry, 2022, 91, 106234.	8.2	14
190	Legume Consumption and Risk of All-Cause and Cause-Specific Mortality: A Systematic Review and Dose–Response Meta-Analysis of Prospective Studies. Advances in Nutrition, 2023, 14, 64-76.	6.4	11

Т

#	Article	IF	Citations
191	Combinatorial effect of heat processing and phytic acid on mineral bioavailability in rice grain. , 2023, 2, 100232.		11
192	Application of Extrusion-Cooking for Processing of White and Red Bean to Create Specific Functional Properties. Applied Sciences (Switzerland), 2023, 13, 1671.	2.5	2
194	Eftazymo: A Traditional Greek Bread Leavened with Fermented Chickpeas. , 2023, , 137-160.		0
195	Role of phytases from lactic acid bacterial species in level upgradation of bioavailable micronutrients in food applications. , 2023, , 219-237.		0
196	Inositol phosphates' synthesis in pea <i>Pisum sativum</i> L. root seedlings at the early stages after <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> inoculation. Ecological Genetics, 2023, 21, 5-17.	0.5	0
197	Quality and Nutrition. , 2023, , 203-217.		0
198	Effects of low phytate soymilk intake on calcium, iron and zinc status in male Sprague-Dawley rats. Journal of Functional Foods, 2023, 106, 105595.	3.4	0
200	Cellular and Molecular Activities of IP6 in Disease Prevention and Therapy. Biomolecules, 2023, 13, 972.	4.0	2
202	Nordic Crops as Alternatives to Soy—An Overview of Nutritional, Sensory, and Functional Properties. Foods, 2023, 12, 2607.	4.3	1
203	Identification of <i>Macrosperma</i> and <i>Microsperma</i> Lentil (<i>Lens culinaris</i> Medik) Genotypes with Superior Nutritional, Industrial, and Productive Traits to Get Transgressive Segregants. ACS Agricultural Science and Technology, 0, , .	2.3	0
205	Two-sided effects of the organic phosphorus phytate on a globally important marine coccolithophorid phytoplankton. Microbiology Spectrum, 2023, 11, .	3.0	0
206	Development and Process Optimization of a Ready-to-Eat Snack from Rice-Cowpea Composite by a Twin Extruder. Processes, 2023, 11, 2159.	2.8	0
207	Interplay between soluble and insoluble protein/calcium/phytic acid complexes in dispersions of faba bean and pea protein concentrates around neutral pH. Food Hydrocolloids, 2024, 147, 109273.	10.7	3
208	Phosphorus nutrition strategies in a Symbiodiniacean species: Implications in coralâ€alga symbiosis facing increasing phosphorus deficiency in future warmer oceans. Global Change Biology, 2023, 29, 6558-6571.	9.5	1
209	Assessment of the Phytoremediation Activity of the Rhizobacterial Flora of Arachis hypogaea (Groundnut) on Hydrocarbon Contaminated Soil. UMYU Journal of Microbiology Research, 2019, 4, 26-33.	0.1	0
210	Protein composition and nutritional aspects of pea protein fractions obtained by a modified isoelectric precipitation method using fermentation. Frontiers in Nutrition, 0, 10, .	3.7	1
211	Changes in Polar Metabolites during Seed Germination and Early Seedling Development of Pea, Cucumber, and Wheat. Agriculture (Switzerland), 2023, 13, 2278.	3.1	0
212	Enhancing the Production Performance and Nutrient Utilization of Laying Hens by Augmenting Energy, Phosphorous and Calcium Deficient Diets with Fungal Phytase (Trichoderma reesei) Supplementation. Animals, 2024, 14, 376.	2.3	0

#	Article	IF	CITATIONS
213	Potential contribution of <i>Sulla spinosissima</i> subsp. <i>capitata</i> and <i>Sulla pallida</i> as a forage crop in arid Mediterranean regions. Arid Land Research and Management, 0, , 1-27.	1.6	0
214	Assessing the digestibility and estimated bioavailability/ bioaccessibility of plant-based proteins and minerals from soy, pea, and faba bean ingredients. LWT - Food Science and Technology, 2024, 197, 115893.	5.2	Ο
215	Effect of dietary phytase and protease supplementation on the growth performance and apparent nutrient digestibility in juvenile Pacific white shrimp (Litopenaeus vannamei) fed fish meal–free and phosphorus limiting diets. Aquaculture International, 0, , .	2.2	0
216	Phytic Acid, Protein, and Oil Contents and Their Relationship With Seed Quality During Seed Maturation of Bambara Nut (<scp><i>Vigna subterranea</i></scp> (L.) Verdc.) Landraces. , 2024, 6, .		Ο