Biomaterials for tissue engineering

World Journal of Urology 18, 2-9 DOI: 10.1007/s003450050002

Citation Report

#	Article	IF	CITATIONS
1	Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999, 20, 45-53.	5.7	2,025
4	In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. Journal of Biomedical Materials Research Part B, 2001, 55, 33-39.	3.0	180
5	Tissue engineering: implications in the treatment of organ and tissue defects. , 2001, 2, 117-125.		46
6	Ureteral Segmental Replacement Using Multilayer Porcine Small-Intestinal Submucosa. Journal of Endourology, 2002, 16, 27-31.	1.1	46
7	Stretch and Growth: The Molecular and Physiologic Influences of Tissue Expansion. Plastic and Reconstructive Surgery, 2002, 109, 2450-2462.	0.7	168
8	In Vitro Biocompatibility Evaluation Of Naturally Derived And Synthetic Biomaterials Using Normal Human Bladder Smooth Muscle Cells. Journal of Urology, 2002, 167, 1867-1871.	0.2	138
9	Evaluation and treatment of the overactive bladder. Revista Do Hospital Das Clinicas, 2002, 57, 39-48.	0.5	28
10	22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model. Biomaterials, 2002, 23, 2179-2190.	5.7	137
11	Bladder reconstruction—from cells to materials. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2003, 217, 311-316.	1.0	23
13	Ultrastructural basement membrane topography of the bladder epithelium. Urological Research, 2003, 31, 341-346.	1.5	64
14	Using porcine small intestinal submucosa in intestinal regeneration. Pediatric Surgery International, 2003, 19, 588-592.	0.6	33
15	Vascularization and tissue infiltration of a biodegradable polyurethane matrix. Journal of Biomedical Materials Research Part B, 2003, 64A, 242-248.	3.0	57
16	Isolation and culture of adult and fetal rabbit bladder smooth muscle cells and their interaction with biopolymers. Journal of Pediatric Surgery, 2003, 38, 21-24.	0.8	29
17	A Review Of Polymeric Smart Materials For Biomedical Applications. Materials Technology, 2003, 18, 87-93.	1.5	11
18	Use of small intestine submucosa as ureteral allograft in pigs. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2004, 30, 327-335.	0.7	10
19	Surface properties of the substratum affect human mesenchymal stem cell differentiation. , 0, , .		2
20	In vitro assessment of decellularized porcine dermis as a matrix for urinary tract reconstruction. BJU International, 2004, 94, 859-866.	1.3	52
21	Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials, 2004, 25, 3541-3552.	5.7	202

TATION REDO

	CITATION		
#	Article	IF	CITATIONS
22	Advances in Tissue Engineering. Current Topics in Developmental Biology, 2004, 61, 113-134.	1.0	171
24	Bioartificial tracheal grafts: can tissue engineering keep its promise?. Expert Review of Medical Devices, 2004, 1, 241-250.	1.4	23
25	Expansion of chondrocytes in a three-dimensional matrix for tracheal tissue engineering. Annals of Thoracic Surgery, 2004, 78, 444-448.	0.7	26
27	Comparison of Small-Intestinal Submucosa and Expanded Polytetrafluoroethylene as a Vascular Conduit in the Presence of Gram-Positive Contamination. Annals of Surgery, 2005, 241, 995-1004.	2.1	61
28	Tissue response of defined collagen–elastin scaffolds in young and adult rats with special attention to calcification. Biomaterials, 2005, 26, 81-92.	5.7	65
29	Poly(lactic-co-glycolic acid) Microspheres as an Injectable Scaffold for Cartilage Tissue Engineering. Tissue Engineering, 2005, 11, 438-447.	4.9	111
30	A tissue-engineered suburethral sling in an animal model of stress urinary incontinence. BJU International, 2005, 96, 664-669.	1.3	40
31	Bioengineered tissues: the science, the technology, and the industry. Orthodontics and Craniofacial Research, 2005, 8, 134-140.	1.2	78
32	Poly(lactic-co-glycolic acid) microspheres as a potential bulking agent for urological injection therapy: Preliminary results. Journal of Biomedical Materials Research Part B, 2005, 72B, 166-172.	3.0	13
33	Analytically derived material properties of multilaminated extracellular matrix devices using the ball-burst test. Biomaterials, 2005, 26, 5518-5531.	5.7	44
34	Preparation of urethral extracellular matrix and its biocompatibility. Journal Wuhan University of Technology, Materials Science Edition, 2005, 20, 4-6.	0.4	0
35	Matrix Testing for Urothelial Tissue Engineering. European Journal of Pediatric Surgery, 2005, 15, 164-169.	0.7	17
36	Requirements for the Manufacturing of Scaffold Biomaterial With Features at Multiple Scales. , 2005, , 217.		0
37	Abdominal wall repair using a biodegradable scaffold seeded with cells. Journal of Pediatric Surgery, 2005, 40, 317-321.	0.8	41
38	Antibacterial Activity within Degradation Products of Biological Scaffolds Composed of Extracellular Matrix. Tissue Engineering, 2006, 12, 2949-2955.	4.9	213
39	Tissue Engineering: The Hope, the Hype, and the Future. Tissue Engineering, 2006, 12, 1143-1150.	4.9	137
40	Scaffold Seeded With Cells Is Essential in Urothelium Regeneration and Tissue Remodeling In Vivo After Bladder Augmentation Using in Vitro Engineered Graft. Transplantation Proceedings, 2006, 38, 133-135.	0.3	36
41	Tissue Engineering and the Challenges Within. Cell Transplantation, 2006, 15, 11-15.	1.2	3

#	Article	IF	CITATIONS
42	Standards and Guidelines for Biopolymers in Tissueâ€Engineered Medical Products. Annals of the New York Academy of Sciences, 2001, 944, 388-397.	1.8	107
43	Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials, 2006, 27, 5409-5419.	5.7	52
44	The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo. Biomaterials, 2006, 27, 2854-2864.	5.7	130
45	New Perspectives of Penile Enhancement Surgery: Tissue Engineering with Biodegradable Scaffolds. European Urology, 2006, 49, 139-147.	0.9	56
46	Effect of storage upon material properties of lyophilized porcine extracellular matrix derived from the urinary bladder. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 327-333.	1.6	54
47	Evaluation of functions and tissue compatibility of poly (D,L-lactic-co-glycolic acid) seeded with human dermal fibroblasts. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 151-162.	1.9	17
48	Tissue Engineered Venous Matrices for Potential Applications in the Urogenital Tract. Tissue Engineering, 2007, 13, 2475-2482.	4.9	4
49	Bladder tissue engineering. , 2007, , 445-465.		5
50	Biodegradable urethral stent in the treatment of post-traumatic urethral strictures in a war wound rabbit urethral model. Biomedical Materials (Bristol), 2007, 2, 263-268.	1.7	9
51	Augmentation ureterocystoplasty in boys with valve bladder syndrome. Journal of Pediatric Urology, 2007, 3, 433-437.	0.6	31
52	Induction of Myofibroblastic Differentiation <i>In Vitro</i> by Covalently Immobilized Transforming Growth Factor-I² ₁ . Tissue Engineering, 2007, 13, 2751-2760.	4.9	14
53	Bioactivity of polyurethane-based scaffolds coated with Bioglass®. Biomedical Materials (Bristol), 2007, 2, 93-101.	1.7	41
54	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	1.5	969
55	Investigations of the preparation technology for polyglycolic acid fiber with perfect mechanical performance. Journal of Applied Polymer Science, 2007, 105, 3444-3447.	1.3	9
56	Biomaterials for Tissue Engineering. Advanced Engineering Materials, 2007, 9, 1051-1060.	1.6	64
57	The effect of microsphere degradation rate on the efficacy of polymeric microspheres as bulking agents: An 18-month follow-up study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 253-259.	1.6	12
58	Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells. Biomaterials, 2007, 28, 3834-3842.	5.7	139
59	Elastin as a biomaterial for tissue engineering. Biomaterials, 2007, 28, 4378-4398.	5.7	416

#	Article	IF	CITATIONS
60	CO-alkene polymers are biocompatible scaffolds for primary urothelial cells in vitro and in vivo. BJU International, 2007, 99, 447-453.	1.3	7
61	Biocompatibility of compounds of extracellular matrix and thermally reversible hydrogel. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 439-442.	0.4	0
62	Cavernous nerve regeneration using acellular nerve grafts. World Journal of Urology, 2008, 26, 333-339.	1.2	43
63	Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 2008, 17, 467-479.	1.0	1,208
64	Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 408-414.	1.6	111
65	Natural Polymers in tissue engineering applications. , 2008, , 145-192.		29
66	Bioengineered Tissues for Urogenital Repair in Children. Pediatric Research, 2008, 63, 569-575.	1.1	53
67	The extracellular matrix as a biologic scaffold for tissue engineering. , 2008, , 121-143.		16
68	Chitosan Scaffold Enhances Nerve Regeneration within the in vitro Reconstructed Bladder Wall: An Animal Study. Urologia Internationalis, 2008, 81, 330-334.	0.6	23
69	Chapter 7 Mechanobiology of Adult and Stem Cells. International Review of Cell and Molecular Biology, 2008, 271, 301-346.	1.6	98
70	Vascularization strategies in tissue engineering. , 2008, , 761-780.		0
71	Adipose tissue engineering with cells in engineered matrices. Organogenesis, 2008, 4, 228-235.	0.4	79
72	Urogenital Repair. , 2008, , 655-676.		0
73	Chitosan Scaffold Enhances Angiogenesis within an in vitro Reconstructed Bladder Wall, an Animal Study. Current Urology, 2008, 1, 72-76.	0.4	3
74	The Properties of a Compound Nerve Scaffold Based on Acellular-Matrix and Poly (lactide-) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 5 0 182 Td
75	Regenerative medicine strategies for treatment of neurogenic bladder. Therapy: Open Access in Clinical Medicine, 2009, 6, 177-184.	0.2	17
76	Adipose tissue engineering <i>in vivo</i> with adiposeâ€derived stem cells on naturally derived scaffolds. Journal of Biomedical Materials Research - Part A, 2009, 89A, 929-941.	2.1	58
77	A study on the influence of biocompatible composites with bioactive ligands toward their effect on cell adhesion and growth for the application in bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 153-162.	1.6	13

#	Article	IF	CITATIONS
78	Novel 3D biomaterials for tissue engineering based on collagen and macroporous ceramics. Materialwissenschaft Und Werkstofftechnik, 2009, 40, 54-60.	0.5	9
79	Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z®RP platform. Biotechnology Progress, 2009, 25, 1762-1771.	1.3	42
80	RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. Journal of Materials Science: Materials in Medicine, 2009, 20, 2327-2336.	1.7	98
81	Plasma Polymer Coatings to Support Mesenchymal Stem Cell Adhesion, Growth and Differentiation on Variable Stiffness Silicone Elastomers. Plasma Processes and Polymers, 2009, 6, 831-839.	1.6	47
82	The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells. Biomaterials, 2009, 30, 1706-1714.	5.7	78
83	Preparation and biodegradation of clay composites of PLA. Reactive and Functional Polymers, 2009, 69, 371-379.	2.0	111
84	Collagen/hyaluronan membrane as a scaffold for chondrocytes cultivation. Biologia (Poland), 2009, 64, 1032-1038.	0.8	5
85	Polyphenol-Stabilized Tubular Elastin Scaffolds for Tissue Engineered Vascular Grafts. Tissue Engineering - Part A, 2009, 15, 2837-2851.	1.6	57
86	Regenerative Medicine and Tissue Engineering in Urology. Urologic Clinics of North America, 2009, 36, 199-209.	0.8	38
87	Burn Dressing Biomaterials and Tissue Engineering. , 2009, , 371-413.		1
87 88	Burn Dressing Biomaterials and Tissue Engineering. , 2009, , 371-413. Artificial biomaterials for urological tissue engineering. , 2009, , 243-254.		1
		0.5	
88	Artificial biomaterials for urological tissue engineering. , 2009, , 243-254.	0.5	3
88 89	Artificial biomaterials for urological tissue engineering. , 2009, , 243-254. Tissue-Engineered Tracheal Transplantation. Transplantation, 2010, 89, 485-491. Cell-delivery therapeutics for adipose tissue regenerationa ^{*+} . Advanced Drug Delivery Reviews, 2010, 62,		3 84
88 89 90	Artificial biomaterials for urological tissue engineering. , 2009, , 243-254. Tissue-Engineered Tracheal Transplantation. Transplantation, 2010, 89, 485-491. Cell-delivery therapeutics for adipose tissue regenerationâ~†. Advanced Drug Delivery Reviews, 2010, 62, 798-813. Optimization of the structure of polyurethanes for bone tissue engineering applications. Acta	6.6	3 84 79
88 89 90 91	Artificial biomaterials for urological tissue engineering. , 2009, , 243-254. Tissue-Engineered Tracheal Transplantation. Transplantation, 2010, 89, 485-491. Cell-delivery therapeutics for adipose tissue regenerationâ ⁺ t. Advanced Drug Delivery Reviews, 2010, 62, 798-813. Optimization of the structure of polyurethanes for bone tissue engineering applications. Acta Biomaterialia, 2010, 6, 2501-2510. Naturally derived materials-based cell and drug delivery systems in skin regeneration. Journal of	6.6 4.1	3 84 79 85
88 89 90 91 92	Artificial biomaterials for urological tissue engineering. , 2009, , 243-254. Tissue-Engineered Tracheal Transplantation. Transplantation, 2010, 89, 485-491. Cell-delivery therapeutics for adipose tissue regenerationâ ⁺ T. Advanced Drug Delivery Reviews, 2010, 62, 798-813. Optimization of the structure of polyurethanes for bone tissue engineering applications. Acta Biomaterialia, 2010, 6, 2501-2510. Naturally derived materials-based cell and drug delivery systems in skin regeneration. Journal of Controlled Release, 2010, 142, 149-159. Erectile Function Restoration After Repair of Excised Cavernous Nerves by Autologous Vein Graft in	6.6 4.1 4.8	3 84 79 85 317

96 Aneroe graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived 5.7 148 97 Merghological changes of annealed polySchi2Ceagnodes core by enzymatic degradation with lipase. Journal 2.4 99 98 Compressed cologon get: a novel scaffold for human bladder cells. Journal of Tissue Engineering and 1.3 51 99 Merghological Changes of Liver and Neuronal Tissue Engineering , 2010, 229-252. 2 100 BMP7 Leaded PCIA Microspheres as a New Dolway System for the Calibation of Human fonderocytes in a Collegen 199: 1 Cell The Common Nucle Mouse Model. International Journal of Acceles. Biological Engineering, 2010, 2, 30-40. 0.5 122 101 Collegen as Bomaterials. Recent Potents on Biomedical Engineering, 2010, 3, 0-40. 0.5 122 102 Biological Engineering. 2010, 2, 63-88. 1.1 13 13 103 Collegen as Bomaterials. Recent Potents on Biomedical Engineering, 2010, 3, 0-40. 0.5 122 103 Biological Engineering - Potenties of Extracellular Matrix-like Scaffolds for the Crowth and Differentiation of Endothellal 0.8 21 104 Properties of Extracellular Matrix-like Scaffolds for the Crowth and Differentiation of Endothellal 0.8 30 104 Reconstruction of Livi nitro (Di doggodation of PCL scaffolds forhe	#	Article	IF	CITATIONS
97 of Polymer Science, Part B: Polymer Physics, 2010, 48, 202211. 20 98 Compressed collagen get a newl coefficit for human bladder cells, Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 123-130. 1.3 51 99 Membrane Approaches for Liver and Neuronal Tissue Engineering, , 2010, -229-252. 2 100 BMP-7-Loaded PGLA Microspheres as a New Delivery System for the Cultivation of Human Chondrocytes in a Collagen Type I Cell. The Common Nude Mouse Model. International Journal of Artificial Organs, 2013, 3, 553. 28 101 Collagen as Biomaterial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: A Review. Biological Engineering, 2010, 2, 63-68. 1.6 28 102 Biodegradable Biomaterials. Recent Patents on Biomedical Engineering, 2010, 3, 30-40. 0.5 12 103 Outstitution Magnetic Resonance Imaging Assessment of Metrix Development in Cell-Seeded Natural Uninary Blodge Smooth Muscle Tissue'Engineering Constructs. Tissue Engineering. Part C: Methods. 1.1 18 104 Properites of Extracellular Matrix-Like Scaffolds for the Crowth and Differentiation of Endothelial Properites of Extracellular Matrix-Like Scaffolds for the Crowth and BioCtrusion act" Part 2: Influence of pore size and geometry. Virtual and Physical Prototyping. 2011, 6, 157-165. 6.3 30 104 Properites of Three-Dimensional Neourithia Using Lingual Keratinocytes and Corporal Smooth Influence of pore size and geometry. Virtual and Physical Prototyping. 2011, 17, 3011-301. 2.6 32 <tr< td=""><td>96</td><td></td><td>5.7</td><td>148</td></tr<>	96		5.7	148
138 Regenerative Medicine, 2010, 4, 123-130. 1.3 5.1 139 Membrane Approaches for Liver and Neuronal Tissue Engineering., 2010,, 229-252. 2 130 Chandrocytes in a Collagen Type I Cell. The Common Nude Mouse Model. International Journal of Artificial Organs, 2010, 33, 45-53. 0.7 28 131 Collagen as Biomaterial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: 1.6 29 132 Biodegradable Biomaterials. Recent Patents on Biomedical Engineering, 2010, 3, 30-40. 0.5 12 133 Diministrial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: 1.6 29 134 A Review. Biological Engineering, 2010, 2, 0338. 12 135 Diministrial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: 1.6 29 135 Diministrial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: 1.6 29 136 Diministrial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: 1.6 29 135 Diministrial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: 1.6 29 136 Diministrial for Medical Application-Drug Delivery and Scaffolds for Tissue Engineering. Part C: Methods, 1.1 13 137 Progenitis of Extenduluta Metrix Like Scaffolds for the Crowth and	97	Morphological changes of annealed polyâ€îµâ€caprolactone by enzymatic degradation with lipase. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 202-211.	2.4	39
100 BMP-7-Loaded PCLA Microspheres as a New Delivery System for the Cultivation of Human 0.7 28 101 Chendrocytes in a Collagen Type I Cel: The Common Nude Mouse Model. International Journal of Artificial Organs, 2010, 33, 45-53. 1.6 28 102 Collagen as Biomaterial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: 1.6 28 103 Biodegradable Biomaterials. Recent Patents on Biomedical Engineering, 2010, 3, 30-40. 0.5 12 103 Quantitative Magnetic Resonance Imaging Assessment of Matrix Development in Celi-Seeded Natural Urinary Blader Smooth Muscle Tissue-Engineered Constructs. Tissue Engineering -Part C: Methods, 211 13 104 Properties of Extracellular Matrix-Like Scaffolds for the Growth and Differentiation of Endothelial 0.8 21 105 Formation and In vitro Induction ability of apatite nanobelic coating on silicon. Transactions of Nonferrous Metals Society of China, 2010, 20, 1916-1920. 1.7 2 106 Evaluation of cip in vitro-(i)-degradation of PCL scaffolds fabricated via BioExtrusion &C ^{III} Part 2: 5.3 30 105 Reconstruction of Three-Dimensional Neourethra Using Lingual Kentinocytes and Corporal Smooth Muscle Cells Seeded Acellular Corporal Spongiosum. Tissue Engineering -Part A, 2011, 17, 3011-3019. 1.6 32 105 Skin Tissue Engineering , 2011, 187-205.	98		1.3	51
100 Chandrocytes in a Collagen Type I Cel: The Common Nude Mouse Model. International Journal of 0.7 28 101 Collagen as Biomaterial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: 1.6 28 102 Biodegradable Biomaterial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: 1.6 28 102 Biodegradable Biomaterial for Medical Application-Drug Delivery and Scaffolds for Tissue Regeneration: 1.6 28 102 Biodegradable Biomaterial for Medical Application-Drug Delivery and Scaffolds for The Sue delivery and Scaffold Natural 1.1 13 103 Unitary Biolder Smooth Muscle Tissue Engineered Constructs. Tissue Engineering - Part C: Methods, 2010, 16, 643-651. 1.1 13 104 Properties of Extracellular Matrix-Like Scaffolds for the Growth and Differentiation of Endothelial 0.8 21 105 Formation and in vitro induction ability of apatite nanobelt coating on silicon. Transactions of 1.7 2 106 Evaluation of Cills vitroc/Ib/degradation of PCL scaffolds fobricated via BioExtrusion 4C ^{ee} Part 2: 5.3 30 107 Reconstruction of Three-Dimensional Neourethra Using Lingual Keratinocytes and Corporal Smooth 1.6 32 108 Skin Tissue Engineering., 2011., 467-499. 15	99	Membrane Approaches for Liver and Neuronal Tissue Engineering. , 2010, , 229-252.		2
101 A Review. Biological Engineering, 2010, 2, 63-88. 103 103 103 103 102 Biodegradable Biomaterials. Recent Patents on Biomedical Engineering, 2010, 3, 30-40. 0.5 12 103 Quantifative Magnetic Resonance Imaging Assessment of Matrix Development in Cell-Seeded Natural 2010, 16, 643-651. 1.1 13 104 Properties of Extracellular Matrix-Like Scaffolds for the Growth and Differentiation of Endothelial 0.8 21 105 Formation and in vitro induction ability of apatite nanobelt coating on silkcon. Transactions of Nonferrous Metals Society of China, 2010, 20, 1916-1920. 1.7 2 106 Evaluation of (-) in vitro (-)/-> degradation of PCL scaffolds fabricated via BioExtrusion &E ^{en} Part 2: 1.6.3 30 107 Reconstruction of Three-Dimensional Neourethra Using Lingual Keratinocytes and Corporal Smooth Muscle Cells Seeded Acellular Corporal Spongtosum. Tissue Engineering - Part A, 2011, 17, 3011-3019. 1.6 32 109 Skin Tissue Engineering , 2011, 467-499. 15 15 110 Trachea., 2011, 691-711. 2 2 111 Polymers of Biological Origin., 2011, 137, 205. 2 2 112 Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns, 2011, 37, 626-630. 1.	100	Chondrocytes in a Collagen Type I Gel: The Common Nude Mouse Model. International Journal of	0.7	28
103 Uninary Bladder Smooth Muscle Tissue Engineered Constructs. Tissue Engineering - Part C: Methods, 1.1 13 104 Properties of Extracellular Matrix-Like Scaffolds for the Growth and Differentiation of Endothelial 0.8 21 105 Formation and in vitro induction ability of apatite nanobelt coating on silicon. Transactions of 1.7 2 106 Evaluation of civin vitro (i) degradation of PCL scaffolds fabricated via BioExtrusion Aé ^{en} Part 2: 5.3 30 107 Reconstruction of Three-Dimensional Neourethre Using Lingual Keratinocytes and Corporal Smooth 1.6 92 109 Skin Tissue Engineering., 2011,, 467-499. 15 110 Trachea., 2011,, 691-711. 2 111 Polymers of Biological Origin., 2011, 187-205. 2 112 Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and generation: the Role of Bioengineering., 0,,. 0 113 Liver Regeneration: the Role of Bioengineering., 0,,. 0	101	Collagen as Biomaterial for Medical ApplicationDrug Delivery and Scaffolds for Tissue Regeneration: A Review. Biological Engineering, 2010, 2, 63-88.	1.6	28
103 Urinary Bladder Smooth Muscle Tissue-Engineered Constructs. Tissue Engineering - Part C: Methods, 1.1 13 104 Properties of Extracellular Matrix-Like Scaffolds for the Growth and Differentiation of Endothelial 0.8 21 105 Formation and in vitro induction ability of apatite nanobelt coating on silicon. Transactions of 1.7 2 106 Evaluation of civin vitro civid civid apatite nanobelt coating on silicon. Transactions of 1.7 2 106 Evaluation of civin vitro civid civid epatite nanobelt coating on silicon. Transactions of 1.7 2 106 Evaluation of civin vitro civid egadation of PCL scaffolds fabricated via BioExtrusion &fe ^{re} Part 2: 5.3 30 107 Reconstruction of Three-Dimensional Neourethra Using Lingual Keratinocytes and Corporal Smooth 1.6 32 109 Skin Tissue Engineering. , 2011, , 467-499. 15 110 Trachea. , 2011, , 691-711. 2 111 Polymers of Biological Origin. , 2011, , 187-205. 2 112 Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns, 2011, 37, 626-630. 1.1 45 113 Liver Regeneration: the Role of Bioengineering. , 0, , . 0 0 0	102	Biodegradable Biomaterials. Recent Patents on Biomedical Engineering, 2010, 3, 30-40.	0.5	12
104 Progenitor Cells. Journal of Surgical Research, 2010, 164, 50-57. 0.8 21 105 Formation and in vitro induction ability of apatite nanobelt coating on silicon. Transactions of 1.7 2 106 Evaluation of (1) in vitro (1)> degradation of PCL scaffolds fabricated via BioExtrusion â€" Part 2: 5.3 30 107 Reconstruction of Three-Dimensional Neourethra Using Lingual Keratinocytes and Corporal Smooth 1.6 32 109 Skin Tissue Engineering., 2011, , 467-499. 15 110 Trachea., 2011, , 691-711. 2 111 Polymers of Biological Origin., 2011, , 187-205. 2 112 Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns, 2011, 37, 626-630. 1.1 45 113 Liver Regeneration: the Role of Bioengineering., 0, , . 0 0	103	Urinary Bladder Smooth Muscle Tissue-Engineered Constructs. Tissue Engineering - Part C: Methods,	1.1	13
105 Nonferrous Metals Society of China, 2010, 20, 1916-1920. 1.7 2 106 Evaluation of <i>>in vitro </i> > degradation of PCL scaffolds fabricated via BioExtrusion & 5.3 30 107 Reconstruction of Three-Dimensional Neourethra Using Lingual Keratinocytes and Corporal Smooth Muscle Cells Seeded Acellular Corporal Spongiosum. Tissue Engineering - Part A, 2011, 17, 3011-3019. 1.6 32 109 Skin Tissue Engineering., 2011, 467-499. 15 110 Trachea., 2011, 691-711. 2 111 Polymers of Biological Origin., 2011, 187-205. 2 112 Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns, 2011, 37, 626-630. 1.1 45 113 Liver Regeneration: the Role of Bioengineering., 0,,. 0 0	104		0.8	21
106Influence of pore size and geometry. Virtual and Physical Prototyping, 2011, 6, 157-165.5.330107Reconstruction of Three-Dimensional Neourethra Using Lingual Keratinocytes and Corporal Smooth Muscle Cells Seeded Acellular Corporal Spongiosum. Tissue Engineering - Part A, 2011, 17, 3011-3019.1.632109Skin Tissue Engineering., 2011,, 467-499.15110Trachea., 2011,, 691-711.2111Polymers of Biological Origin., 2011,, 187-205.2112Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns, 2011, 37, 626-630.1.145113Liver Regeneration: the Role of Bioengineering., 0, .0	105		1.7	2
107Muscle Cells Seeded Acellular Corporal Spongiosum. Tissue Engineering - Part A, 2011, 17, 3011-3019.1.632109Skin Tissue Engineering., 2011,, 467-499.15110Trachea., 2011,, 691-711.2111Polymers of Biological Origin., 2011,, 187-205.2112Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns, 2011, 37, 626-630.1.1113Liver Regeneration: the Role of Bioengineering., 0, , .0	106	Evaluation of <i>in vitro</i> degradation of PCL scaffolds fabricated via BioExtrusion – Part 2: Influence of pore size and geometry. Virtual and Physical Prototyping, 2011, 6, 157-165.	5.3	30
110Trachea., 2011,, 691-711.2111Polymers of Biological Origin., 2011,, 187-205.2112Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns, 2011, 37, 626-630.1.145113Liver Regeneration: the Role of Bioengineering., 0, , .0114Conditioning and Scaffolding of Chondrocytes: Smart Steps Towards Osteoarthritis Gene Therapy., 0, 00	107	Reconstruction of Three-Dimensional Neourethra Using Lingual Keratinocytes and Corporal Smooth Muscle Cells Seeded Acellular Corporal Spongiosum. Tissue Engineering - Part A, 2011, 17, 3011-3019.	1.6	32
111Polymers of Biological Origin., 2011,, 187-205.2112Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns, 2011, 37, 626-630.1.145113Liver Regeneration: the Role of Bioengineering., 0, , .0114Conditioning and Scaffolding of Chondrocytes: Smart Steps Towards Osteoarthritis Gene Therapy., 0,0	109	Skin Tissue Engineering. , 2011, , 467-499.		15
112 Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns, 2011, 37, 626-630. 1.1 45 113 Liver Regeneration: the Role of Bioengineering. , 0, , . 0 114 Conditioning and Scaffolding of Chondrocytes: Smart Steps Towards Osteoarthritis Gene Therapy. , 0, 0	110	Trachea. , 2011, , 691-711.		2
112 preadipocytes on a dermal template. Burns, 2011, 37, 626-630. 1.1 45 113 Liver Regeneration: the Role of Bioengineering. , 0, , . 0 114 Conditioning and Scaffolding of Chondrocytes: Smart Steps Towards Osteoarthritis Gene Therapy. , 0, 0 0	111	Polymers of Biological Origin. , 2011, , 187-205.		2
Conditioning and Scaffolding of Chondrocytes: Smart Steps Towards Osteoarthritis Gene Therapy. , 0, $_{ m 0}$	112		1.1	45
	113	Liver Regeneration: the Role of Bioengineering. , 0, , .		0
	114			0

# 115	ARTICLE Adipose Tissue Engineering. Annals of Plastic Surgery, 2011, 67, 484-488.	IF 0.5	CITATIONS
116	First Otoliths/Collagen/Bacterial Cellulose Nanocomposites as a Potential Scaffold for Bone Tissue Regeneration. Journal of Biomaterials and Nanobiotechnology, 2011, 02, 239-243.	1.0	29
117	Development and Characterization of a Fullâ€Thickness Acellular Porcine Cornea Matrix for Tissue Engineering. Artificial Organs, 2011, 35, 691-705.	1.0	80
118	Ex situ bioengineering of bioartificial endocrine glands: A new frontier in regenerative medicine of soft tissue organs. Annals of Anatomy, 2011, 193, 381-394.	1.0	22
119	Biomaterials Advances in Patches for Congenital Heart Defect Repair. Journal of Cardiovascular Translational Research, 2011, 4, 646-654.	1.1	55
120	Comparison of a poly- <scp>l</scp> -lactide-co- <i>É></i> -caprolactone and human amniotic membrane for urothelium tissue engineering applications. Journal of the Royal Society Interface, 2011, 8, 671-677.	1.5	33
121	Effect of stem cells seeded onto biomaterial on the progression of experimental chronic kidney disease. Experimental Biology and Medicine, 2011, 236, 746-754.	1.1	15
122	Novel Natural Transdermal Otoliths/Collagen/Bacterial Cellulose Patch for Osteoporosis Treatment. Journal of Nanotechnology in Engineering and Medicine, 2011, 2, .	0.8	2
123	A cost-effective and simple culture method for primary hepatocytes. Animal Cells and Systems, 2011, 15, 19-27.	0.8	5
124	Tissue-Engineering Hollow Noncardiac Intrathoracic Organs: State-of-the-Art 2010. , 2011, , 509-527.		1
125	Airway tissue engineering. Expert Opinion on Biological Therapy, 2011, 11, 1623-1635.	1.4	41
126	Resistance to Infection of Five Different Materials in a Rat Body Wall Model. Journal of Surgical Research, 2012, 173, 38-44.	0.8	30
127	A novel strategy for creating a large amount of engineered fat tissue with an axial vascular pedicle and a prefabricated scaffold. Medical Hypotheses, 2012, 79, 267-270.	0.8	12
128	Regenerative medicine strategies. Journal of Pediatric Surgery, 2012, 47, 17-28.	0.8	130
129	Tissue Engineered Tubular Construct for Urinary Diversion in a Preclinical Porcine Model. Journal of Urology, 2012, 188, 653-660.	0.2	37
130	Effects of Collagen Tripeptide Supplement on Photoaging and Epidermal Skin Barrier in UVB-exposed Hairless Mice. Preventive Nutrition and Food Science, 2012, 17, 245-253.	0.7	71
131	Mechanisms of Hepatocellular Dysfunction and Regeneration: Enzyme Inhibition by Nitroimidazole and Human Liver Regeneration. , 0, , .		0
132	Evaluation of a bioâ€based hydrophobic cellulose laurate film as biomaterial—Study on biodegradation and cytocompatibility. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1000-1008.	1.6	12

#	Article	IF	CITATIONS
133	<i>Retracted: </i> Histomorphometric and mineral degradation study of Ossceram [®] : a novel biphasic Bâ€ŧricalcium phosphate, in critical size defects in rabbits. Clinical Oral Implants Research, 2012, 23, 667-675.	1.9	34
134	Extrahepatic bile duct regeneration in pigs using collagen scaffolds loaded with human collagen-binding bFGF. Biomaterials, 2012, 33, 4298-4308.	5.7	42
135	Macroscale delivery systems for molecular and cellular payloads. Nature Materials, 2013, 12, 1004-1017.	13.3	251
136	Magnetic manipulation for spatially patternel alginate hydrogel microfibers. , 2013, , .		1
137	Evaluation of the potential application of three different biomaterials combined with bone morphological proteins for enhancing tendon–bone integration. Injury, 2013, 44, 550-557.	0.7	8
138	Elastomeric biomaterials for tissue engineering. Progress in Polymer Science, 2013, 38, 584-671.	11.8	450
139	Natural Polymers in Tissue Engineering Applications. , 2013, , 385-425.		19
140	Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 2013, 49, 1215-1233.	2.6	467
141	Small Intestinal Submucosa Segments as Matrix for Tissue Engineering: Review. Tissue Engineering - Part B: Reviews, 2013, 19, 279-291.	2.5	95
142	The Pivotal Role of Vascularization in Tissue Engineering. Annual Review of Biomedical Engineering, 2013, 15, 177-200.	5.7	277
143	Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity. , 2013, , .		2
144	Adipose and mammary epithelial tissue engineering. Biomatter, 2013, 3, .	2.6	13
145	Biomimetic materials in regenerative medicine. , 2013, , 3-45.		7
146	Tissue Engineering of Urinary Bladder and Urethra: Advances from Bench to Patients. Scientific World Journal, The, 2013, 2013, 1-13.	0.8	87
147	Tissue Engineering in Animal Models for Urinary Diversion: A Systematic Review. PLoS ONE, 2014, 9, e98734.	1.1	25
148	Nucleic Acid Aptamers for Biomaterials Development. , 2014, , 287-299.		7
149	Bladder tissue regeneration. , 2014, , 439-467.		1
150	Epithelial Wound Healing on Keratin Film, Amniotic Membrane and Polystyrene <i>In Vitro</i> . Current Eye Research, 2014, 39, 561-570.	0.7	32

#	Article	IF	Citations
151	In VivoMagnetic Resonance Imaging of Type I Collagen Scaffold in Rat: Improving Visualization of Bladder and Subcutaneous Implants. Tissue Engineering - Part C: Methods, 2014, 20, 964-971.	1.1	11
152	Cytotoxicity testing of scaffolds potentially suitable for the preparation of three-dimensional skin substitutes. Cell and Tissue Banking, 2014, 15, 345-355.	0.5	11
153	Cellulose film regenerated from Styela clava tunics have biodegradability, toxicity and biocompatibility in the skin of SD rats. Journal of Materials Science: Materials in Medicine, 2014, 25, 1519-1530.	1.7	22
154	Role of Polymeric Biomaterials as Wound Healing Agents. International Journal of Lower Extremity Wounds, 2014, 13, 180-190.	0.6	92
155	Walking through trabecular meshwork biology: Toward engineering design of outflow physiology. Biotechnology Advances, 2014, 32, 971-983.	6.0	36
156	Chapter 3: Decellularized Scaffolds: Concepts, Methodologies, and Applications in Cardiac Tissue Engineering and Whole-Organ Regeneration. Frontiers in Nanobiomedical Research, 2014, , 77-124.	0.1	8
157	Bone neoâ€formation and mineral degradation of 4Bone. [®] Part I: material characterization and <scp>SEM</scp> study in critical size defects in rabbits. Clinical Oral Implants Research, 2015, 26, 1165-1169.	1.9	6
158	New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice. International Journal of Medical Sciences, 2015, 12, 154-162.	1.1	25
159	Cell viability and angiogenic potential of a bioartificial adipose substitute. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 702-713.	1.3	2
160	Biotechnology of Tissues and Materials in Dentistry $\hat{a} \in \mathbb{C}$ Future Prospects. , 2015, , .		0
161	Experimental research Supportive features of a new hybrid scaffold for urothelium engineering. Archives of Medical Science, 2015, 2, 438-445.	0.4	6
162	Ingestion of hyaluronans (molecular weights 800 k and 300 k) improves dry skin conditions: a randomized, double blind, controlled study. Journal of Clinical Biochemistry and Nutrition, 2015, 56, 66-73.	0.6	19
164	Responsive cell–material interfaces. Nanomedicine, 2015, 10, 849-871.	1.7	54
165	Translational Regenerative Medicine—Hepatic Systems. , 2015, , 469-484.		0
166	A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Biofabrication, 2015, 7, 045003.	3.7	36
168	Tissue-Engineered Urinary Conduits. Current Urology Reports, 2015, 16, 8.	1.0	27
169	Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Research and Therapy, 2015, 6, 107.	2.4	78
170	Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute full-thickness wound repair. Burns, 2015, 41, 1764-1774.	1.1	52

#	ARTICLE	IF	CITATIONS
171	Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein and Cell, 2015, 6, 638-653.	4.8	64
172	Tissue-Engineered Peripheral Nerve Guide Fabrication Techniques. , 2015, , 971-992.		4
173	<i>In vitro</i> cellular response to oxidized collagen-PLLA hybrid scaffolds designed for the repair of muscular tissue defects and complex incisional hernias. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E454-E466.	1.3	6
174	Soft tissue engineering and microbial infections. , 2016, , 1-29.		5
175	Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. International Journal of Molecular Sciences, 2016, 17, 1974.	1.8	402
176	Design Advances in Particulate Systems for Biomedical Applications. Advanced Healthcare Materials, 2016, 5, 1687-1723.	3.9	19
178	Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications. Biomaterials Science, 2016, 4, 1682-1690.	2.6	43
179	Growth behavior of endothelial cells according to electrospun poly(D,L-lactic-co-glycolic acid) fiber diameter as a tissue engineering scaffold. Tissue Engineering and Regenerative Medicine, 2016, 13, 343-351.	1.6	26
180	Creation of an injectable in situ gelling native extracellular matrix for nucleus pulposus tissue engineering. Spine Journal, 2017, 17, 435-444.	0.6	36
181	Advanced Application of Polymer based Biomaterials. Materials Today: Proceedings, 2017, 4, 3534-3541.	0.9	49
182	Smart Biopolymers and their Biomedical Applications. Procedia Manufacturing, 2017, 12, 263-279.	1.9	104
183	Sulfated Alginate as a Mimic of Sulfated Glycosaminoglycans: Binding of Growth Factors and Effect on Stem Cell Behavior. Advanced Biology, 2017, 1, e1700043.	3.0	34
184	6.20 Skin Tissue Engineering â~†. , 2017, , 334-382.		3
186	Polymers for oral and dental tissue engineering. , 2017, , 25-46.		13
187	6.21 Tissue-Engineering Hollow Noncardiac Intrathoracic Organs: State-of-the-Art 2010. , 2017, , 383-402.		0
188	Synthetic Biomaterial for Regenerative Medicine Applications. , 2017, , 901-921.		11
189	Pluripotent Stem Cells for Retinal Tissue Engineering: Current Status and Future Prospects. Stem Cell Reviews and Reports, 2018, 14, 463-483.	5.6	56
190	Tissue Engineering and Conduit Substitution. Urologic Clinics of North America, 2018, 45, 133-141.	0.8	9

#	ARTICLE	IF	CITATIONS
191	Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Materials Science and Engineering C, 2018, 84, 140-147.	3.8	107
192	Inorganic apatite nanomaterial: Modified surface phenomena and its role in developing collagen based polymeric bio-composite (Coll-PLGA/HAp) for biological applications. Colloids and Surfaces B: Biointerfaces, 2018, 172, 734-742.	2.5	15
193	Bilayered PLGA/PLGA-HAp Composite Scaffold for Osteochondral Tissue Engineering and Tissue Regeneration. ACS Biomaterials Science and Engineering, 2018, 4, 3506-3521.	2.6	82
194	Membrane-Based Bioartificial Liver Devices. , 2018, , 149-178.		0
195	The Influence of Physical Activity on Functional Performance and Urinary Incontinence in Elderly Women. Journal of Morphological Sciences, 2018, 35, 1-8.	0.2	3
196	Hydrolytic Degradation and Erosion of Polyester Biomaterials. ACS Macro Letters, 2018, 7, 976-982.	2.3	275
197	Acellular Cauda Equina Allograft as Main Material Combined with Biodegradable Chitin Conduit for Regeneration of Longâ€Distance Sciatic Nerve Defect in Rats. Advanced Healthcare Materials, 2018, 7, e1800276.	3.9	26
198	Use of nanostructured materials in soft tissue engineering. , 2018, , 465-480.		1
199	Hydrogels for biomedical applications. , 2018, , 403-438.		32
200	The sulfation of biomimetic glycosaminoglycan substrates controls binding of growth factors and subsequent neural and glial cell growth. Biomaterials Science, 2019, 7, 4283-4298.	2.6	17
201	Scaffolds for tissue engineering of the urethra. , 2019, , 549-561.		1
202	Advances in injectable self-healing biomedical hydrogels. Acta Biomaterialia, 2019, 90, 1-20.	4.1	226
203	Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules, 2019, 9, 750.	1.8	138
204	Nanocomposites for improved orthopedic and bone tissue engineering applications. , 2019, , 145-177.		15
205	Nanoengineered biomaterials for pancreas regeneration. , 2019, , 443-457.		0
206	Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review. International Materials Reviews, 2019, 64, 91-126.	9.4	133
207	Boron for tissue regeneration-it's loading into chitosan/collagen hydrogels and testing on chorioallantoic membrane to study the effect on angiogenesis. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 525-534.	1.8	19
208	Fabrication and characterization of electrospun polyurethane blended with dietary grapes for skin tissue engineering. Journal of Industrial Textiles, 2020, 50, 655-674.	1.1	12

#	Article	IF	CITATIONS
209	Angiogenic effects of mesenchymal stem cells in combination with different scaffold materials. Microvascular Research, 2020, 127, 103925.	1.1	9
210	Quantitative evaluation of the <i>in vivo</i> biocompatibility and performance of freeze-cast tissue scaffolds. Biomedical Materials (Bristol), 2020, 15, 055003.	1.7	4
211	Biocompatibility of allogenic canine fascia lata: In vitro evaluation and small case series. Veterinary Surgery, 2020, 49, 310-320.	0.5	7
212	3D printing in tissue engineering: a state of the art review of technologies and biomaterials. Rapid Prototyping Journal, 2020, 26, 1313-1334.	1.6	67
213	Introduction to biomedical manufacturing. , 2020, , 3-29.		2
214	Liver Tissue Engineering. , 2020, , 1-30.		0
215	Alginate-based scaffolds for drug delivery in tissue engineering. , 2020, , 359-386.		8
216	Electrospinning: Application and Prospects for Urologic Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 579925.	2.0	15
218	Investigating materials and orientation parameters for the creation of a 3D musculoskeletal interface co-culture model. International Journal of Energy Production and Management, 2020, 7, 413-425.	1.9	6
219	Alginate Sulfate Substrates Control Growth Factor Binding and Growth of Primary Neurons: Toward Engineered 3D Neural Networks. Advanced Biology, 2020, 4, 2000047.	3.0	7
220	Phospholipid Polymer Hydrogel Matrices with Dually Immobilized Cytokines for Accelerating Secretion of the Extracellular Matrix by Encapsulated Cells. Macromolecular Bioscience, 2020, 20, 2000114.	2.1	3
221	A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells. Advances in Experimental Medicine and Biology, 2020, 1288, 61-85.	0.8	17
222	Hydroxybutyl Chitosan Centered Biocomposites for Potential Curative Applications: A Critical Review. Biomacromolecules, 2020, 21, 1351-1367.	2.6	32
223	Evaluation of paraffin wax and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blend patch for tissue engineering. Materials Technology, 2021, 36, 105-117.	1.5	2
224	Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 2021, 116, 100712.	16.0	35
225	Poloxamer additive as luminal surface modification to modulate wettability and bioactivities of small-diameter polyurethane/polycaprolactone electrospun hollow tube for vascular prosthesis applications. Materials Today Communications, 2021, 26, 101771.	0.9	11
226	Processing of bio-based polymers for industrial and medical applications. , 2021, , 191-238.		4
227	Post-decellularization techniques ameliorate cartilage decellularization process for tissue engineering applications. Journal of Tissue Engineering, 2021, 12, 204173142098356.	2.3	20

# 228	ARTICLE Smart biopolymers and their applications. , 2021, , 145-167.	IF	CITATIONS 3
229	Evaluation of Human Mesenchymal Stem Cells Differentiation to Neural Cells on Polycaprolactone Nanofiber Scaffolds. Journal of Human Genetics and Genomics, 2021, In Press, .	0.0	0
230	Liver Tissue Engineering. Reference Series in Biomedical Engineering, 2021, , 143-172.	0.1	0
231	Biomatrix from goat-waste in sponge/gel/powder form for tissue engineering and synergistic effect of nanoceria. Biomedical Materials (Bristol), 2021, 16, 025008.	1.7	19
232	Reconstruction of Vascular and Urologic Tubular Grafts by Tissue Engineering. Processes, 2021, 9, 513.	1.3	8
233	Recent Developments in Polyurethane-Based Materials for Bone Tissue Engineering. Polymers, 2021, 13, 946.	2.0	37
234	Zebrafish as a potential biomaterial testing platform for bone tissue engineering application: A special note on chitosan based bioactive materials. International Journal of Biological Macromolecules, 2021, 175, 379-395.	3.6	10
235	Biomechanical properties of acellular scar ECM during the acute to chronic stages of myocardial infarction. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104342.	1.5	10
236	Liver bioengineering: Recent trends/advances in decellularization and cell sheet technologies towards translation into the clinic. Life Sciences, 2021, 276, 119373.	2.0	15
237	Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732130.	2.0	11
238	Comparison of morphological and functional restoration between asymmetric bilayer chitosan and bladder acellular matrix graft for bladder augmentation in a rat model. RSC Advances, 2017, 7, 42579-42589.	1.7	10
239	Tissue Engineering: The Hope, the Hype, and the Future. Tissue Engineering, 2006, .	4.9	1
240	In Vitro Biocompatibility Evaluation Of Naturally Derived And Synthetic Biomaterials Using Normal Human Bladder Smooth Muscle Cells. Journal of Urology, 2002, , 1867-1871.	0.2	7
241	Polymeric Scaffolds for Tissue Engineering Applications. , 2007, , 8-1-8-18.		5
242	Prevention of polydimethylsiloxane microsphere migration using a mussel-inspired polydopamine coating for potential application in injection therapy. PLoS ONE, 2017, 12, e0186877.	1.1	7
243	Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds. Journal of the Turkish Chemical Society, Section A: Chemistry, 2016, 3, .	0.4	21
244	Preparation of Poly(l-lactic acid) Scaffolds by Thermally Induced Phase Separation: Role of Thermal History. International Polymer Processing, 2018, 33, 300-313.	0.3	1
245	A Bovine Collagen Type I-Based Biodegradable Matrix as a Carrier for Tissue-Engineered Urothelium. Journal of Stem Cell Research & Therapy, 2015, 05, .	0.3	2

#	Article	IF	CITATIONS
246	Recent Strategies for the Development of Biosourced-Monomers, Oligomers and Polymers-Based Materials: A Review with an Innovation and a Bigger Data Focus. Journal of Biomaterials and Nanobiotechnology, 2016, 07, 167-213.	1.0	15
247	Regenerative Medicine Strategies for Treating Neurogenic Bladder. International Neurourology Journal, 2011, 15, 109-119.	0.5	40
248	Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications. , 0, , .		78
249	Tissue Engineering of Craniofacial Tissues – A Review. Journal of Regenerative Medicine & Tissue Engineering, 2013, 2, 6.	1.5	8
250	Fabrication and optimization of bioactive cylindrical scaffold prepared by electrospinning for vascular tissue engineering. Iranian Polymer Journal (English Edition), 0, , 1.	1.3	7
251	Retina stem cells, hopes and obstacles. World Journal of Stem Cells, 2021, 13, 1446-1479.	1.3	6
252	Is There a Need for TEMP Standards? A Perspective from a Biomaterials Manufacturer. Journal of ASTM International, 2004, 1, 1-13.	0.2	0
253	NERVE IMPLANTS. , 2006, , 441-447.		0
254	Antibacterial Activity within Degradation Products of Biological Scaffolds Composed of Extracellular Matrix. Tissue Engineering, 2006, .	4.9	0
256	Extracting the Elastic Modulus of Compliant Materials Using a Novel Plate Bulge Testing Technique. , 2008, , .		0
257	Towards the Use of CHO Produced Recombinant Extracellular Matrix Proteins as Bioactive Elements in a 3-D Scaffold for Tissue Engineering. , 2010, , 13-18.		0
258	TISSUE ENGINEERING IN PEDIATRIC UROLOGY. , 2010, , 205-211.		0
259	Preliminary investigation of tensile properties of welded type I collagen to be used as surgical sealant. International Journal of Physical Sciences, 2011, 6, .	0.1	0
260	Liver Regeneration and Bioengineering - The Emergence of Whole Organ Scaffolds. , 0, , .		0
261	Scaffolds, Polymeric: Tissue Engineering. , 0, , 7072-7084.		0
262	Foams: Polylactic Acid-Based System for Tissue Engineering. , 0, , 3469-3488.		0
263	In Vitro Vascularization: Tissue Engineering Constructs. , 0, , 4043-4062.		0
264	Smart Biomaterials in Tissue-Engineering Applications. , 2016, , 125-150.		Ο

#	Article	IF	CITATIONS
265	Treatment of Hepatic Malignances and Disorders: The Role of Liver Bioengineering. Pancreatic Islet Biology, 2017, , 249-276.	0.1	0
266	In vitroVascularization: Tissue Engineering Constructs. , 2017, , 723-742.		0
267	Liver Tissue Engineering. , 2018, , 301-327.		0
268	INTERACTION OF NATURAL AND SYNTHETIC POLYELECTROLYTES WITH BOVINE SERUM ALBUMIN. ChemChemTech, 2019, 62, 45-51.	0.1	0
269	Tissue Engineering in Urethral Reconstruction. , 2020, , 437-445.		0
270	Burn Dressing Biomaterials and Tissue Engineering. , 2021, , 537-580.		2
271	Advances toward tissue engineering for the treatment of stress urinary incontinence. Reviews in Urology, 2004, 6, 51-7.	0.9	7
272	The Role of Biomaterials in Peripheral Nerve and Spinal Cord Injury: A Review. International Journal of Molecular Sciences, 2022, 23, 1244.	1.8	24
273	Biodegradable two-dimensional nanomaterials for cancer theranostics. Coordination Chemistry Reviews, 2022, 458, 214415.	9.5	31
274	Biodegradable Materials for Medicinal Applications. Materials Horizons, 2022, , 247-261.	0.3	0
275	Engineering strategies to achieve efficient <i>in vitro</i> expansion of haematopoietic stem cells: development and improvement. Journal of Materials Chemistry B, 2022, 10, 1734-1753.	2.9	8
276	Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering. Polymers for Advanced Technologies, 2022, 33, 2044-2068.	1.6	11
277	Pectin-Based Scaffolds for Tissue Engineering Applications. , 0, , .		4
279	Surface chemistry mediated albumin adsorption, conformational changes and influence on innate immune responses. Applied Surface Science, 2022, 596, 153518.	3.1	7
280	NERVE IMPLANTS. , 0, , 432-440.		0
281	Development and Characterization of Oxidatively Responsive Thiol–Ene Networks for Bone Graft Applications. ACS Applied Bio Materials, 2022, 5, 2633-2642.	2.3	3
282	Bioprinting Applications in Craniofacial Regeneration. , 2022, , 211-232.		0
283	Modeling surface segregation of smart PU coatings at hydrophilic and hydrophobic interfaces via coarse-grained molecular dynamics and mesoscopic simulations. Progress in Organic Coatings, 2023, 174, 107279.	1.9	2

#	Article	IF	CITATIONS
284	Urinary Bladder Patch Made with Decellularized Vein Scaffold Seeded with Adipose-Derived Mesenchymal Stem Cells: Model in Rabbits. Biomedicines, 2022, 10, 2814.	1.4	1
285	The Application of Biomaterials in Spinal Cord Injury. International Journal of Molecular Sciences, 2023, 24, 816.	1.8	9
286	Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Military Medical Research, 2023, 10, .	1.9	23
287	Kappa-Carrageenan/Chitosan/Gelatin Scaffolds Provide a Biomimetic Microenvironment for Dentin-Pulp Regeneration. International Journal of Molecular Sciences, 2023, 24, 6465.	1.8	4
291	Smart Biodegradable and Bio-Based Polymeric Biomaterials for Biomedical Applications. Advances in Chemical and Materials Engineering Book Series, 2023, , 56-82.	0.2	7
292	Use of Biodegradable Polymers and Plastics- A Suitable Alternate to Prevent Environmental Contamination. , 2023, , 160-197.		0
293	Role of Stem Cells in the Delivery of Essential Pharmaceuticals. , 2023, , 859-876.		0
300	Design of Additive Manufactured Devices with Tailored Properties: Tackling Biomedical Challenges. Lecture Notes in Mechanical Engineering, 2024, , 77-83.	0.3	0