Friction-stir welding effects on microstructure and fatig

Metallurgical and Materials Transactions A: Physical Metallurg 31, 2181-2192 DOI: 10.1007/s11661-000-0136-9

Citation Report

#	Article	IF	CITATIONS
1	Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 3023-3031.	1.1	264
2	Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 3033-3042.	1.1	257
3	Heterogeneity of crystallographic texture in friction stir welds of aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 2869-2877.	1.1	215
4	Corrosion–fatigue crack growth in friction stir welded Al 7050. Scripta Materialia, 2001, 45, 605-612.	2.6	139
5	Microstructural characteristics in friction stir welded aluminium alloys. Welding International, 2001, 15, 693-698.	0.3	1
6	Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 625-635.	1.1	394
7	Characterization of a friction-stir-welded aluminum alloy 6013. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2002, 33, 489-498.	1.0	190
8	Basal plane texture and flow pattern in friction stir weld of a magnesium alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 987-994.	1.1	293
9	Friction Stir Welding – Recent Developments in Tool and Process Technologies. Advanced Engineering Materials, 2003, 5, 485-490.	1.6	223
10	Mode I fracture and microstructure for 2024-T3 friction stir welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 354, 6-16.	2.6	67
11	Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 354, 298-305.	2.6	330
12	Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Materialia, 2003, 51, 713-729.	3.8	894
13	Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Materialia, 2003, 51, 4791-4801.	3.8	624
14	Relationship between mechanical properties and microstructure in friction stir welded Al alloys. Welding International, 2003, 17, 706-709.	0.3	4
15	Friction stir welding (FSW) process. Welding International, 2003, 17, 852-855.	0.3	14
16	Grain Refinement and Mechanical Property Improvements in Aluminum Alloys using the Friction Stir Process. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 547-554.	0.2	8
17	Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding. Scripta Materialia, 2004, 50, 57-60.	2.6	113
18	Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scripta Materialia, 2004, 50, 1233-1236.	2.6	373

#	Article	IF	CITATIONS
19	Friction Stir Welding of Ceramic Particle Reinforced Aluminium Based Metal Matrix Composites. Applied Composite Materials, 2004, 11, 399.	1.3	10
20	Microstructural evolution in the heat-affected zone of a friction stir weld. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1487-1499.	1.1	93
21	Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 364, 66-74.	2.6	93
22	Mechanical Property Improvements in Aluminum Alloy through Grain Refinement using Friction Stir Process. Materials Transactions, 2004, 45, 2304-2311.	0.4	12
23	æ'©æ''¦æ'¹æ‹Œãf—ãfã,»ã,¹ã,'å^©ç‴ã⊷ã¥ã,¢ãf«ãfŸãf‹ã,¦ãfå•ꇑã₽組è²å^¶å¾¡. Materia Japan, 2004, 43, 592	-59.7.	3
24	Effect of tool rotation speed on the microstructure of the friction stir weld of an Al-Cu-Mg-Si alloy. Keikinzoku/Journal of Japan Institute of Light Metals, 2005, 55, 63-67.	0.1	5
25	High-Strengthening of Mg–5.5 mass%Y–4.3 mass%Zn Cast Alloy by Friction Stir Processing. Materials Transactions, 2005, 46, 3081-3084.	0.4	29
26	Characteristics of the kissing-bond in friction stir welded Al alloy 1050. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 405, 333-338.	2.6	196
27	Friction stir welding and processing. Materials Science and Engineering Reports, 2005, 50, 1-78.	14.8	5,241
28	Recrystallization in type 304L stainless steel during friction stirring. Acta Materialia, 2005, 53, 637-645.	3.8	175
29	High temperature deformation of friction stir processed 7075 aluminium alloy. Materials Characterization, 2005, 55, 136-142.	1.9	69
30	Microstructure evolution during FSW/FSP of high strength aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 405, 277-286.	2.6	421
31	Mechanical response of 2024-7075 aluminium alloys joined by Friction Stir Welding. Journal of Materials Science, 2005, 40, 3669-3676.	1.7	82
32	Relationships between weld parameters, hardness distribution and temperature history in alloy 7050 friction stir welds. Science and Technology of Welding and Joining, 2005, 10, 190-199.	1.5	112
33	Microstructural characterisation of stir zone containing residual ferrite in friction stir welded 304 austenitic stainless steel. Science and Technology of Welding and Joining, 2005, 10, 550-556.	1.5	90
34	Determining penetration from topside weld bead and weld pool geometry in PGMAW. Science and Technology of Welding and Joining, 2005, 10, 744-749.	1.5	5
35	Effects of the local microstructures on the mechanical properties in FSWed joints of a 7075-T6 Al alloy. International Journal of Materials Research, 2005, 96, 940-947.	0.8	1
36	Review of the Applicability of FSW Processing to Aircraft Applications. , 2005, , .		13

#	Article	IF	CITATIONS
37	Microstructural Evolution during Friction Stir Welding of Ultrafine Grained Al Alloys. Materials Science Forum, 2006, 503-504, 169-174.	0.3	3
38	Hybrid Laser/GMA Welding Aluminium Alloy 7075. Welding in the World, Le Soudage Dans Le Monde, 2006, 50, 51-57.	1.3	15
39	Forming Property and Microstructure in Dissimilar Thickness Friction Stir Weld of Al Alloy 5052. , 0, ,		0
40	Effect of Dynamically Recrystallized Grain Size on the Tensile Properties and Vibration Fracture Resistance of Friction Stirred 5052 Alloy. Materials Transactions, 2006, 47, 2405-2412.	0.4	15
41	Microstructure and Mechanical Properties of Friction Stir Welded AA2024-T3 Aluminum Alloy. Materials Transactions, 2006, 47, 185-193.	0.4	58
42	Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld. Acta Materialia, 2006, 54, 4013-4021.	3.8	253
43	Comparative study on local and global mechanical properties of 2024 T351, 2024 T6 and 5251 O friction stir welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 415, 162-170.	2.6	97
44	MWCNTs/AZ31 surface composites fabricated by friction stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 419, 344-348.	2.6	354
45	Structure–properties relations in spot friction welded (also known as friction stir spot welded) 6111 aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 441, 79-96.	2.6	133
46	Dissimilar friction stir welds in AA5083–AA6082: The effect of process parameters on residual stress. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 441, 187-196.	2.6	161
47	Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding. International Journal of Machine Tools and Manufacture, 2006, 46, 588-594.	6.2	225
48	Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by Friction Stir Welding. Journal of Materials Processing Technology, 2006, 180, 263-270.	3.1	168
49	Characterization of 2024-T351 friction stir welding joints. Journal of Failure Analysis and Prevention, 2006, 6, 83-96.	0.5	19
50	Effect of zigzag line on the mechanical properties of friction stir welded joints of an Al–Cu alloy. Scripta Materialia, 2006, 55, 231-234.	2.6	95
51	Investigation of microstructures and fatigue properties of friction stir welded Al–Mg alloy. Materials Chemistry and Physics, 2006, 98, 285-290.	2.0	35
52	Effects of post-weld heat treatment on microstructure and mechanical properties of friction stir welded joints of 2219-O aluminium alloy. Materials Science and Technology, 2006, 22, 86-90.	0.8	59
53	Friction Stir Processing of Cast Mg-Y-Zn Alloy. Advanced Materials Research, 2006, 15-17, 369-374.	0.3	1
54	Effect of Welding Parameters on Mechanical and Microstructural Properties of Dissimilar AA6082-AA2024 Joints Produced by Friction Stir Welding. Materials Science Forum, 2006, 519-521, 1163-1168.	0.3	9

#	Article	IF	CITATIONS
55	High Strain-Rate Compressive Response of Friction Stir Welded AA7075-T651 Joints. Applied Mechanics and Materials, 2007, 7-8, 251-256.	0.2	1
56	Fatigue Crack Propagation Behavior of Friction Stir Welded 6061-T651 Al Alloy. Solid State Phenomena, 2007, 124-126, 1321-1324.	0.3	0
57	Microstructural Factors Governing Mechanical Properties in Friction Stir Welds. Key Engineering Materials, 2007, 345-346, 1493-1496.	0.4	2
58	Microstructural aspects in friction stir welding. Keikinzoku/Journal of Japan Institute of Light Metals, 2007, 57, 416-423.	0.1	18

59 æ'©æ"¦æ"ªæ‹Œãƒ—ãƒã,»ã,¹â€•金属ææ–™ã®æ–°ã⊷ã,組ç1"å^¶å¾¡æŠ€è¡". Keikinzoku/Journal of Japan Instituta of Light3Metals, 2

60	High strain-rate compressive stress–strain response of friction stir welded 7075-T651 aluminum alloy joints in through-thickness direction. Keikinzoku/Journal of Japan Institute of Light Metals, 2007, 57, 518-523.	0.1	1
61	The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024–T351. Corrosion Science, 2007, 49, 877-909.	3.0	186
62	Experimental Characterization of FSW T-Joints of Light Alloys. Key Engineering Materials, 0, 344, 751-758.	0.4	23
63	Understanding Process and Property Relationships in Aluminum Alloy Friction Stir Welds. Materials Science Forum, 0, 539-543, 207-214.	0.3	4
64	The influence of artificial aging on the microstructure, mechanical properties, corrosion, and environmental cracking susceptibility of a 7075 frictionâ€stirâ€weld. Materials and Corrosion - Werkstoffe Und Korrosion, 2007, 58, 737-750.	0.8	23
65	Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints. International Journal of Fatigue, 2007, 29, 421-434.	2.8	181
66	The effect of controlled shot peening on the fatigue behaviour of 2024-T3 aluminium friction stir welds. International Journal of Fatigue, 2007, 29, 1531-1545.	2.8	72
67	Friction stir processing of AM60B magnesium alloy sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 393-397.	2.6	81
68	Microstructure and mechanical properties of AA7075(T6) hybrid laser/GMA welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 94-100.	2.6	89
69	Microstructure and mechanical property studies of AA6056 friction stir welded plate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 86-94.	2.6	95
70	The tensile deformation and fracture behavior of friction stir welded aluminum alloy 2024. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 466, 235-245.	2.6	65
71	Friction stir processing of a Zr-modified 2014 aluminium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 206-210.	2.6	27
72	Superplastic behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die cast. Journal of Materials Processing Technology, 2007, 184, 77-83.	3.1	114

#	Article	IF	Citations
73	Laser peening and shot peening effects on fatigue life and surface roughness of friction stir welded 7075-T7351 aluminum. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30, 115-130.	1.7	58
74	Friction stir welding of devitrified Al–4.0Y–4.0Ni–0.9Co alloy produced by amorphous powders. Scripta Materialia, 2007, 56, 971-974.	2.6	8
75	Fatigue crack propagation behavior of friction stir welded 5083-H32 Al alloy. Journal of Materials Science, 2007, 42, 9888-9893.	1.7	12
76	The microstructure and strength properties of MA957 nanostructured ferritic alloy joints produced by friction stir and electro-spark deposition welding. Journal of Nuclear Materials, 2007, 367-370, 1197-1202.	1.3	50
77	The effect of tensioning and sectioning on residual stresses in aluminium AA7749 friction stir welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 16-24.	2.6	66
78	The Effects of Laser Peening and Shot Peening on Mechanical Properties in Friction Stir Welded 7075-T7351 Aluminum. Journal of Materials Engineering and Performance, 2008, 17, 688-694.	1.2	33
79	Recent advances in friction-stir welding – Process, weldment structure and properties. Progress in Materials Science, 2008, 53, 980-1023.	16.0	1,729
80	Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 478, 163-172.	2.6	324
81	Fatigue crack propagation behavior of friction stir welded 5083-H32 and 6061-T651 aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 478, 56-64.	2.6	50
82	On the role of axial load and the effect of interface position on the tensile strength of a friction stir welded aluminium alloy. Materials & Design, 2008, 29, 791-797.	5.1	98
83	Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding. Journal of Materials Processing Technology, 2008, 200, 364-372.	3.1	157
84	Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding. Journal of Materials Processing Technology, 2008, 206, 249-255.	3.1	94
85	Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds. International Journal of Fatigue, 2008, 30, 463-472.	2.8	169
86	Modelling of crack coalescence in 2024-T351 Al alloy friction stir welded joints. International Journal of Fatigue, 2008, 30, 2030-2043.	2.8	14
87	Microstructural properties of friction stir welded and post-weld heat-treated 7449 aluminium alloy thick plate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 478, 351-360.	2.6	118
88	The role of friction stir welding tool on material flow and weld formation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 367-374.	2.6	393
89	The time–temperature–corrosion susceptibility in a 7050-T7451 friction stir weld. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 492, 250-254.	2.6	24
90	The strength of friction stir welded and friction stir processed aluminium alloys. Scripta Materialia, 2008, 58, 377-382.	2.6	134

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
91	A look in the corrosion of aluminum alloy friction stir welds. Scripta Materialia, 2008, 58	3, 383-387.	2.6	91
92	The Fatigue Behaviour of Friction Stir Welded Aluminium Joints. Welding in the World, I Dans Le Monde, 2008, 52, 69-74.	Le Soudage	1.3	5
93	Influence of Tool Geometry in Friction Stir Welding. Materials and Manufacturing Proce 188-194.	sses, 2008, 23,	2.7	78
94	Comparison of fatigue property between friction stir and TIG welds. International Journa Minerals, Metallurgy, and Materials, 2008, 15, 280-284.	al of	0.2	20
95	Properties of Friction-Stir Welded Aluminum Alloys 6111 and 5083. Journal of Engineer and Technology, Transactions of the ASME, 2008, 130, .	ng Materials	0.8	31
96	Fatigue Properties of Al-Li Plates Joined by Friction Stir Welding. Key Engineering Materi 849-852.	als, 0, 385-387,	0.4	1
97	The effect of cryogenic CO ₂ cooling on corrosion behaviour of friction stir AA2024-T351. Corrosion Engineering Science and Technology, 2009, 44, 425-432.	welded	0.7	15
98	Effect of initial base metal temper on mechanical properties in AA7050 friction stir welc Technology of Welding and Joining, 2009, 14, 282-287.	s. Science and	1.5	25
99	2198 Al–Li plates joined by Friction Stir Welding: Mechanical and microstructural beł & Design, 2009, 30, 3622-3631.	avior. Materials	5.1	139
100	Prediction of hardness minimum locations during natural aging in an aluminum alloy 60 stir weld. Journal of Materials Science, 2009, 44, 6302-6309.	61-T6 friction	1.7	29
101	Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels. N and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 625		1.1	71
102	Effect of Dispersed Intermetallic Particles on Microstructural Evolution in the Friction St a Fine-Grained Magnesium Alloy. Metallurgical and Materials Transactions A: Physical M Materials Science, 2009, 40, 2212-2219.	ir Weld of etallurgy and	1.1	28
103	The Effect of Ultrasonic Impact Treatment on the Fatigue Resistance of Friction Stir We Journal of Materials Engineering and Performance, 2009, 18, 1248-1257.	lded Panels.	1.2	9
104	Multi-pass friction stir welding in alloy 7050-T7451: Effects on weld response variables properties. Materials Science & amp; Engineering A: Structural Materials: Properties, Mic and Processing, 2009, 513-514, 115-121.	and on weld rostructure	2.6	94
105	Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456. Ma Science & Engineering A: Structural Materials: Properties, Microstructure and Proc 519, 1-8.		2.6	47
106	Fatigue behaviour of friction stir welds without neither welding flash nor flaw in several alloys. International Journal of Fatigue, 2009, 31, 1443-1453.	aluminium	2.8	93
107	Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer p friction stir processing. Materials Science & Engineering A: Structural Materials: Pro Microstructure and Processing, 2009, 500, 84-91.		2.6	332
108	Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Materials & Design, 2009, 3		5.1	198

#	Article	IF	CITATIONS
109	Modelling the fatigue crack growth in friction stir welded joint of 2024-T351 Al alloy. Materials & Design, 2009, 30, 2928-2937.	5.1	26
110	Effect of anisotropy on fatigue properties of 2198 Al–Li plates joined by friction stir welding. Engineering Failure Analysis, 2009, 16, 1856-1865.	1.8	45
111	Friction stir welding of aluminium alloys. International Materials Reviews, 2009, 54, 49-93.	9.4	977
112	Fatigue Crack Propagation Behavior Relevant to Microstructural Inhomogeneity in A Friction Stir Weldment. Journal of Solid Mechanics and Materials Engineering, 2010, 4, 840-848.	0.5	4
113	Microstructure and Mechanical Properties of Friction Stir Spot Welded Galvanized Steel. Materials Transactions, 2010, 51, 1044-1050.	0.4	35
114	Structure–Properties Relations in Friction Stir Spot Welded Low Carbon Steel Sheets for Light Weight Automobile Body. Materials Transactions, 2010, 51, 399-403.	0.4	20
115	Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2233-2240.	2.6	230
116	Effect of Friction Stir Processing on Microstructure and Mechanical Properties of a Cast-Magnesium–Rare Earth Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 73-84.	1.1	73
117	Microstructure and Cyclic Deformation Behavior of a Friction-Stir-Welded 7075 Al Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 957-971.	1.1	111
118	Microstructure and Low-Cycle Fatigue of a Friction-Stir-Welded 6061 Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2626-2641.	1.1	84
119	Tensile and Fatigue Behavior of Friction-Stir Welded Tailor-Welded Blank of Aluminum Alloy 5754. Journal of Materials Engineering and Performance, 2010, 19, 1161-1171.	1.2	35
120	An Investigation into Microstructures and Mechanical Properties of AA7075-T6 during Friction Stir Welding at Relatively High Rotational Speeds. Journal of Materials Engineering and Performance, 2010, 19, 1256-1263.	1.2	87
121	Effects of thermal boundary conditions in friction stir welded AA7050-T7 sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1537-1543.	2.6	112
122	Material flow and mixing patterns during dissimilar FSW. Science and Technology of Welding and Joining, 2010, 15, 648-653.	1.5	31
123	Metallurgy and weld performance in friction stir welding. , 2010, , 314-410.		7
124	Fatigue Characterization and Modeling of Friction Stir Spot Welds in Magnesium AZ31 Alloy. Journal of Engineering Materials and Technology, Transactions of the ASME, 2010, 132, .	0.8	40
125	Effect of cryogenic cooling on corrosion of friction stir welded AA7010â€₹7651. Anti-Corrosion Methods and Materials, 2010, 57, 83-89.	0.6	19
126	Mechanical and micro structural behavior of 2024. , 2010, , .		3

#	Article	IF	CITATIONS
127	The Extrinsic Influence of Tool Plunge Depth on Friction Stir Welding of an Aluminum Alloy. Advanced Materials Research, 0, 410, 206-215.	0.3	4
128	Analytical and Numerical Investigation of Fatigue Crack Growth in Aluminum Alloy. Key Engineering Materials, 2011, 462-463, 1050-1055.	0.4	2
129	Corrosion protection of AA7449-T7951 friction stir welds by laser surface melting with an Excimer laser. Corrosion Science, 2011, 53, 3956-3969.	3.0	26
130	Developing friction stir welding window for AA2219 aluminium alloy. Transactions of Nonferrous Metals Society of China, 2011, 21, 2339-2347.	1.7	41
131	Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding between AA6061-T6 Al Alloy and AZ31 Mg Alloy. Journal of Materials Science and Technology, 2011, 27, 199-204.	5.6	149
132	The Role of Tool Design in Influencing the Mechanism for the Formation of Friction Stir Welds in Aluminum Alloy 7020. Materials and Manufacturing Processes, 2011, 26, 915-921.	2.7	31
133	A Simple Approach to the Study of the Ageing Behaviour of Laser Beam and Friction Stir Welds between Similar and Dissimilar Alloys. , 2011, , .		0
134	Effect of welding parameters on microstructure and mechanical properties of AA7075-T6 friction stir welded joints. Fatigue and Fracture of Engineering Materials and Structures, 2011, 34, 877-886.	1.7	31
135	Effect of grain size refinement and precipitation reactions on strengthening in friction stir processed Al–Cu alloys. Scripta Materialia, 2011, 65, 1057-1060.	2.6	95
136	Improvement of weld temperature distribution and mechanical properties of 7050 aluminum alloy butt joints by submerged friction stir welding. Materials & Design, 2011, 32, 4825-4831.	5.1	116
137	Microstructural aspects and mechanical properties of friction stir welded AA2024-T3 aluminium alloy sheet. Materials & Design, 2011, 32, 4684-4688.	5.1	52
138	Microstructures of dissimilar friction stir welded joints between 2024-T4 aluminum alloy and Al/Mg2Si metal matrix cast composite. Composites Part B: Engineering, 2011, 42, 2004-2012.	5.9	30
139	Effect of Process Parameters on Microstructure and Mechanical Properties in Friction Stir Welding of Aluminum Alloy. Transactions of the Indian Institute of Metals, 2011, 64, 325-330.	0.7	25
140	Development of nanocrystalline structure in Cu during friction stir processing (FSP). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5458-5464.	2.6	85
141	The Mechanism of Grain Coarsening in Friction-Stir-Welded AA5083 after Heat Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 488-507.	1.1	40
142	Interfacial Reaction during Friction Stir Welding of Al and Cu. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2290-2295.	1.1	97
143	Back-of-the-envelope calculations in friction stir welding – Velocities, peak temperature, torque, and hardness. Acta Materialia, 2011, 59, 2020-2028.	3.8	70
144	The microstructure and mechanical properties of friction stir welded Al–Zn–Mg alloy in as welded and heat treated conditions. Materials & Design, 2011, 32, 682-687.	5.1	129

#	Article	IF	CITATIONS
145	Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Materials & Design, 2011, 32, 535-549.	5.1	267
146	Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Materials & Design, 2011, 32, 4164-4172.	5.1	197
147	Softening behaviour of friction stir welded Al 6061-T6 and Mg AZ31B alloys. Science and Technology of Welding and Joining, 2011, 16, 267-272.	1.5	38
148	Friction stir welding of precipitation strengthened aluminium alloys: Scope and challenges. Science and Technology of Welding and Joining, 2011, 16, 343-347.	1.5	43
149	The Mixing Condition and Mechanical Property of Friction Stir Welded Dissimilar Formed 3003 and 6061 Al Alloys. Advanced Materials Research, 0, 418-420, 1346-1350.	0.3	1
150	Fatigue Crack Growth Rates in Friction Stir Welding Joints of 7075-T6 Al Alloy and Fatigue Life Prediction Based on AFGROW. Advanced Materials Research, 0, 337, 507-510.	0.3	3
151	Effect of rotational speeds on microstructure and mechanical properties of friction stir-welded 7075-T6 aluminium alloy. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225, 1761-1773.	1.1	22
152	Residual Stress Effects and Fatigue Behavior of Friction-Stir-Welded 2198-T8 Al-Li Alloy Joints. Journal of Aircraft, 2011, 48, 1238-1244.	1.7	16
153	Probabilistic Fatigue Crack Growth in Compact Tension Specimens from FSWed 7075-T651 Aluminum Alloys. Applied Mechanics and Materials, 0, 152-154, 293-296.	0.2	2
154	Corrosion protection of AA2024-T351 friction stir welds by laser surface melting with Excimer laser. Corrosion Engineering Science and Technology, 2012, 47, 188-202.	0.7	8
155	Heterogeneous Friction Stir Welding: Improved Properties in Dissimilar Aluminum Alloy Joints through Insertion of Copper Coupled with External Heating. Materials and Manufacturing Processes, 2012, 27, 1429-1436.	2.7	10
156	Microstructural Characterization and Mechanical Properties in Friction Stir Welding of Aa7075 Aluminium Alloy. Advanced Materials Research, 0, 622-623, 330-334.	0.3	2
157	Hybrid laser-arc welding of aerospace and other materials. , 2012, , 109-141.		5
158	Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy. Materials Characterization, 2012, 73, 114-123.	1.9	44
159	Influence of heat input on post weld microstructure and mechanical properties of friction stir welded HSLA-65 steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 51-59.	2.6	58
160	Influence of in-process cooling on tensile behaviour of friction stir welded joints of AA7039. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 479-487.	2.6	84
161	Effects of forge axis force and backing plate thermal diffusivity on FSW of AA6056. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 394-402.	2.6	40
162	Influence of Processing Parameters on Induced Energy, Mechanical and Corrosion Properties of FSW Butt Joint of 7475 AA. Journal of Materials Engineering and Performance, 2012, 21, 1645-1654.	1.2	33

#	Article	IF	CITATIONS
163	Effect of Welding Parameters on Tensile Properties and Fatigue Behavior of Friction Stir Welded 2014-T6 Aluminum Alloy. Transactions of the Indian Institute of Metals, 2012, 65, 21-30.	0.7	24
164	Fatigue crack propagation behavior in friction stir welding of AA6063-T5: Roles of residual stress and microstructure. International Journal of Fatigue, 2012, 43, 23-29.	2.8	67
165	Top surface microstructure of friction-stir welded AA2524-T3 aluminum alloy joints. Materials Characterization, 2012, 65, 48-54.	1.9	15
166	Study on the microstructure in a friction stir welded 2519-T87 Al alloy. Materials & Design, 2012, 35, 603-608.	5.1	39
167	Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy. Materials & Design, 2012, 36, 379-390.	5.1	138
168	Micromechanical behavior study of forged 7050 aluminum alloy by microindentation. Materials & Design, 2012, 37, 491-499.	5.1	28
169	Explore the mechanism of high fatigue crack propagation rate in fine microstructure of friction stir welded aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 184-190.	2.6	16
170	An investigation on microstructure and mechanical properties of post-weld heat-treated friction stir welds in aluminum alloy 2024-W. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227, 649-662.	1.1	5
171	Fatigue behaviour of friction stir welded A7075-T6 aluminium alloy in air and 3% NaCl solution. Welding International, 2013, 27, 441-449.	0.3	4
172	Friction stir welding of a P/M Al–Al2O3 nanocomposite: Microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 222-232.	2.6	85
173	Fatigue behaviour of AA6082-T6 MIG welded butt joints improved by friction stir processing. Materials & Design, 2013, 51, 315-322.	5.1	57
174	Microstructure and mechanical properties of a friction stir processed Ti–6Al–4V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 573, 67-74.	2.6	72
175	Through thickness property variations in a thick plate AA7050 friction stir welded joint. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 678-682.	2.6	49
176	Contemporary approaches to reducing weld induced residual stress. Materials Science and Technology, 2013, 29, 4-18.	0.8	37
177	Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al–Zn–Mg alloy AA7039. Materials & Design, 2013, 43, 134-143.	5.1	112
178	The influence of stored energy on the fatigue crack propagation of friction stir welded aluminum alloy. , 2013, , 425-427.		0
179	Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy. Materials, 2013, 6, 5923-5941.	1.3	72
180	An Investigation into Microstructures and Properties of 7075-T6 during Friction Stir Welding. Advanced Materials Research, 0, 772, 94-97.	0.3	1

#	Article	IF	CITATIONS
181	Fatigue crack growth behavior in weld nugget zone of FSWed similar and dissimilar aluminum alloys joint. , 2013, , 225-230.		2
182	Friction Stir Processing in Wrought and Cast Aluminum Alloys. Materials Science Forum, 0, 765, 741-745.	0.3	1
183	Fatigue Crack Growth Behavior of FSWed Joint Joined with a Bobbin Type Tool in Different Aluminum Alloys. Applied Mechanics and Materials, 0, 446-447, 32-39.	0.2	1
184	Crystallographic Dependence on Deformation Characteristics of Friction Stir Processed Pure Aluminum. Materials Transactions, 2013, 54, 304-307.	0.4	1
185	Optimization of process parameters for friction Stir welding of dissimilar Aluminum alloys (AA2024) Tj ETQq0 0 C Computations, 2013, , 71-80.) rgBT /Ov 0.4	erlock 10 Tf 5 7
186	Microstructures and mechanical properties of friction spot welded Alclad 7B04-T74 aluminium alloy. Science and Technology of Welding and Joining, 2014, 19, 617-622.	1.5	34
188	Fatigue crack growth property of laser beam welded 6156 aluminium alloy. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 937-944.	1.7	13
189	Studies on salt fog corrosion behavior of friction stir welded AA7075–T651 aluminum alloy. International Journal of Materials Research, 2014, 105, 375-385.	0.1	14
190	FSW of Aluminum Alloys. , 2014, , 109-148.		9
191	Comparative investigation of friction stir welding and fusion welding of 6061 T6 – 5083 O aluminum alloy based on mechanical properties and microstructure. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62, 791-795.	0.8	26
192	High-cycle fatigue behavior of friction stir butt welded 6061 aluminium alloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 648-656.	1.7	24
193	Investigation into the Influence of Post-Weld Heat Treatment on the Friction Stir Welded AA6061 Al-Alloy Plates with Different Temper Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 864-877.	1.1	132
194	Welding equality and mechanical properties of aluminum alloys joints prepared by friction stir welding. Materials & Design, 2014, 56, 929-936.	5.1	32
195	Double side friction stir welding of AA6082 sheets: Microstructure and nanoindentation characterization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 590, 209-217.	2.6	50
196	Effect of self-support friction stir welding on microstructure and microhardness of 6082-T6 aluminum alloy joint. Materials & Design, 2014, 55, 197-203.	5.1	73
197	Mechanical Properties and Microstructure of 6082-T6 Aluminum Alloy Joints by Self-support Friction Stir Welding. Journal of Materials Science and Technology, 2014, 30, 1243-1250.	5.6	74
198	Recent Developments in Friction Stir Welding of Al-alloys. Journal of Materials Engineering and Performance, 2014, 23, 1936-1953.	1.2	331
199	Fatigue crack growth in the welding nugget of FSW joints of a 6060 aluminum alloy. Journal of Materials Processing Technology, 2014, 214, 2075-2084.	3.1	42

#	Article	IF	CITATIONS
200	Microstructural evolution and mechanical properties of friction-stir-welded Al–Mg–Si joint. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 595, 196-204.	2.6	25
201	Fatigue behavior of friction stir weld joints of Al–Zn–Mg alloy AA7039 developed using base metal in different temper condition. Materials & Design, 2014, 64, 334-344.	5.1	35
202	Friction Stir Welding and Processing. , 2014, , .		190
203	Microstructure and Strain Hardening of a Friction Stir Welded High-Strength Al–Zn–Mg Alloy. Acta Metallurgica Sinica (English Letters), 2014, 27, 723-729.	1.5	25
204	Solid State Friction Stir Welding Using Dovetail Groove Butt Joint. Procedia CIRP, 2014, 18, 174-179.	1.0	0
205	Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate. Materials & Design, 2014, 62, 334-343.	5.1	100
206	Texture evolution and deformation mechanism in friction stir welding of 2219Al. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 612, 267-277.	2.6	27
207	Effects of Ti-FPB Treatment on Fatigue Strength of FSWed Aluminum Alloy and on Its Mechanical Properties in Salt Water Environment. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2014, 78, 188-194.	0.2	2
208	Local fatigue crack propagation behavior of a two-pass friction stir welded aluminum alloy. Mechanical Engineering Journal, 2014, 1, SMM0057-SMM0057.	0.2	3
209	Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy. IOP Conference Series: Materials Science and Engineering, 2015, 103, 012034.	0.3	41
210	Microstructural characteristics and mechanical properties of friction stir lap welding joint of Alclad 7B04-T74 aluminum alloy. International Journal of Advanced Manufacturing Technology, 2015, 78, 1415-1425.	1.5	56
211	Corrosion behavior of spray formed 7055 aluminum alloy joint welded by underwater friction stir welding. Materials & Design, 2015, 68, 97-103.	5.1	65
212	Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys. Materials and Design, 2015, 83, 60-65.	3.3	157
213	Fatigue crack initiation behaviors throughout friction stir welded joints in AA7075-T6 in ultrasonic fatigue. International Journal of Fatigue, 2015, 81, 171-178.	2.8	33
214	Microstructure and mechanical properties of friction stir welded AA7075–T651 aluminum alloy thick plates. Transactions of Nonferrous Metals Society of China, 2015, 25, 1770-1778.	1.7	71
215	Effect of Post-Welded Heat Treatments on Microstructure and Mechanical Properties of Friction Stir Welded Joints of 7A04-O Aluminum Alloy. Materials Science Forum, 2015, 817, 212-218.	0.3	0
216	Elucidating of tool rotational speed in friction stir welding of 7020-T6 aluminum alloy. International Journal of Advanced Manufacturing Technology, 2015, 81, 1155-1164.	1.5	53
217	Friction stir processing of 7075 Al alloy and subsequent aging treatment. Transactions of Nonferrous Metals Society of China, 2015, 25, 2847-2855.	1.7	45

#	ARTICLE	IF	CITATIONS
218	Microstructural and mechanical characterization of a dissimilar friction stir welded butt joint made of AA2024-T3 and AA2198-T3. Materials Characterization, 2015, 110, 242-251.	1.9	28
219	Effect of Process Parameters on Mechanical Characterization of Dissimilar Friction Stir Welded Aluminium Alloys. Applied Mechanics and Materials, 0, 766-767, 701-704.	0.2	10
220	Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al–Zn–Mg–Cu aluminum alloy. Materials & Design, 2015, 67, 483-491.	5.1	83
221	Establishing Mathematical Models to Predict Grain Size and Hardness of the Friction Stir-Welded AA 7020 Aluminum Alloy Joints. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 357-365.	1.0	36
222	Influence of pre-weld temper conditions of base metal on microstructure and mechanical properties of friction stir weld joints of Al–Zn–Mg alloy AA7039. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 107-119.	2.6	35
223	Microstructure, Mechanical and Corrosion Properties of Friction Stir Welding High Nitrogen Martensitic Stainless Steel 30Cr15Mo1N. Metals, 2016, 6, 301.	1.0	12
224	New Approaches to the Friction Stir Welding of Aluminum Alloys. , 2016, , .		2
225	A review on Friction Stir Welding: An environment friendly welding technique. , 2016, , .		4
226	Experimental Study of Stationary Shoulder Friction Stir Welded 7N01-T4 Aluminum Alloy. Journal of Materials Engineering and Performance, 2016, 25, 1228-1236.	1.2	18
227	Microstructural Characteristics and Mechanical Properties of 7050-T7451 Aluminum Alloy Friction Stir-Welded Joints. Journal of Materials Engineering and Performance, 2016, 25, 2542-2550.	1.2	20
228	Microstructural Evolution. , 2016, , 29-47.		0
230	A study on mechanical and microstructural properties of dissimilar FSWed joints of AA5251–AA5083 plates. International Journal of Materials Research, 2016, 107, 752-761.	0.1	11
231	Influence of Nano Reinforcement Volume Percentage on Fabrication of Surface Nanocomposite by FSP. Materials Science Forum, 2016, 879, 1369-1374.	0.3	2
232	Characterization of a Friction Stir Weld in Aluminum Alloy 7055 Using Microhardness, Electrical Conductivity, and Differential Scanning Calorimetry (DSC). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3522-3532.	1.1	7
233	Modeling of flow behavior for 7050-T7451 aluminum alloy considering microstructural evolution over a wide range of strain rates. Mechanics of Materials, 2016, 95, 146-157.	1.7	28
234	An analytical model of heat generation for eccentric cylindrical pin in friction stir welding. Journal of Materials Research and Technology, 2016, 5, 234-240.	2.6	53
235	Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4. Journal of Materials Processing Technology, 2016, 231, 382-388.	3.1	90
236	Investigations on temperature distribution, microstructure evolution, and property variations along thickness in friction stir welded joints for thick AA7075-T6 plates. International Journal of Advanced Manufacturing Technology, 2016, 86, 141-154.	1.5	38

#	Article	IF	CITATIONS
237	Non-destructive ultrasonic examination of root defects in friction stir welded butt-joints. NDT and E International, 2016, 80, 23-34.	1.7	51
238	Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding. International Journal of Advanced Manufacturing Technology, 2016, 83, 673-679.	1.5	69
239	Low-cycle fatigue of dissimilar friction stir welded aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 236-248.	2.6	45
240	Effects of microstructural heterogeneity on very high cycle fatigue properties of 7050-T7451 aluminum alloy friction stir butt welds. International Journal of Fatigue, 2016, 83, 100-108.	2.8	50
241	Microstructural evolutions and mechanical properties of friction stir welded AA2024-3. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230, 75-87.	0.7	4
242	Effect of interlayer on microstructure and mechanical properties of Al–Ti ultrasonic welds. Science and Technology of Welding and Joining, 2017, 22, 79-86.	1.5	16
243	Fatigue cracking characteristics of fiber Laser-VPTIG hybrid butt welded 7N01P-T4 aluminum alloy. International Journal of Fatigue, 2017, 98, 32-40.	2.8	25
244	Effect of Process Parameters on Microstructural Evolution, Mechanical Properties and Corrosion Behavior of Friction Stir Processed Al 7075 Alloy. Journal of Materials Engineering and Performance, 2017, 26, 1122-1134.	1.2	41
245	Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance. Journal of Alloys and Compounds, 2017, 712, 795-803.	2.8	103
246	Mechanical properties of friction stir welded armor grade Al–Zn–Mg alloy joints. Transactions of Nonferrous Metals Society of China, 2017, 27, 493-506.	1.7	34
247	Effect of Temperature on Microstructure and Fracture Mechanisms in Friction Stir Welded Al6061 Joints. Journal of Materials Engineering and Performance, 2017, 26, 2542-2554.	1.2	17
248	Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 693, 1-13.	2.6	47
249	Effect of tool dimensions and parameters on the microstructure of friction stir welded aluminum 7449 alloy of various thicknesses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 470-479.	2.6	31
250	Achieving high strength and ductility in double-sided friction stir processing 7050-T7451 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 193-198.	2.6	21
251	Microstructure and Mechanical Properties of Welded Joints of Aluminum Alloy AA7020-T6 Obtained by Friction Stir Welding. Metal Science and Heat Treatment, 2017, 59, 139-144.	0.2	6
252	Modeling of particle coarsening and precipitation free zones. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 085012.	0.8	6
253	Improvement of very high cycle fatigue properties in an AA7075 friction stir welded joint by ultrasonic peening treatment. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 460-468.	1.7	14
254	Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 1169-1176.	2.4	7

#	Article	IF	CITATIONS
255	Study of the Microstructure Evolution and Properties Response of a Friction-Stir-Welded Copper-Chromium-Zirconium Alloy. Metals, 2017, 7, 381.	1.0	13
256	Alloy Design for Advanced Manufacturing Processes. , 2017, , 407-449.		1
257	Microstructure and Salt Fog Corrosion Behavior of AA2219 Friction-Stir-Welded Aluminum Alloy. Metal Science and Heat Treatment, 2017, 59, 223-231.	0.2	3
259	Characterization of 3″ through-thickness friction stir welded 7050-T7451 Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 55-62.	2.6	20
260	Joining of 3D-printed AlSi10Mg by friction stir welding. Welding in the World, Le Soudage Dans Le Monde, 2018, 62, 675-682.	1.3	26
261	Effect of Welding Speed on Mechanical Properties of Friction Stir Welded AA 6082-T6 Al Alloy. Applied Mechanics and Materials, 2018, 877, 98-103.	0.2	1
262	Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 269-333.	6.8	223
263	High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 210-222.	1.1	39
264	Microstructure and fatigue properties of friction stir welded high-strength steel plates. Science and Technology of Welding and Joining, 2018, 23, 380-386.	1.5	18
265	Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. Journal of Manufacturing Processes, 2018, 36, 571-600.	2.8	256
266	Impact of initial temper of base metal on microstructure and mechanical properties of friction stir welded AA 7055 alloy. Materials Characterization, 2018, 146, 159-168.	1.9	21
267	Effect of Partial Substitution of Mn for Ni on Mechanical Properties of Friction Stir Processed Hypoeutectic Al-Ni Alloys. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 3007-3018.	1.0	9
268	Investigation of porosity reduction, microstructure and mechanical properties for joining of selective laser melting fabricated aluminium composite via friction stir welding. Journal of Manufacturing Processes, 2018, 36, 33-43.	2.8	29
269	Microstructural Investigation of VPPA–GMAW Welded 7A52 Aluminum Alloys. Journal of Materials Engineering and Performance, 2018, 27, 5571-5580.	1.2	5
270	Relationship between micro-structure and mechanical properties of dissimilar aluminum alloy plates by friction stir welding. Thermal Science, 2018, 22, 55-66.	0.5	6
271	Effect of Friction Stir Welding on Pitting and Stress Corrosion Cracking Behavior of AFNOR7020-T6 Aluminium Alloy. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 866-875.	0.3	2
272	The effect of tensile pre-straining on fatigue crack initiation mechanisms and mechanical behavior of AA7050 friction stir welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 228-238.	2.6	17
273	On microstructure, hardness, and fatigue properties of friction stir-welded AM60 cast magnesium alloy. International Journal of Advanced Manufacturing Technology, 2018, 98, 2157-2172.	1.5	12

#	Article	IF	CITATIONS
274	Another Approach to Characterize Particle Distribution during Surface Composite Fabrication Using Friction Stir Processing. Metals, 2018, 8, 568.	1.0	19
275	Effects of in-process cryocooling on metallurgical and mechanical properties of friction stir processed Al7075 alloy. Materials Characterization, 2018, 144, 440-447.	1.9	30
276	A Microstructural Evaluation of Friction Stir Welded 7075 Aluminum Rolled Plate Heat Treated to the Semi-Solid State. Metals, 2018, 8, 41.	1.0	8
277	Effect of Heat Exposure on the Fatigue Properties of AA7050 Friction Stir Welds. Journal of Materials Engineering and Performance, 2018, 27, 3007-3013.	1.2	4
278	Conventional and in situ tensile test of friction stir welded steel – Optimization of processing parameters. Materialwissenschaft Und Werkstofftechnik, 2018, 49, 991-1005.	0.5	3
279	Effects of heterogeneity and coarse secondary phases on mechanical properties of 7050-T7451 aluminum alloy friction stir welding joint. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138223.	2.6	25
280	Evaluation of microstructure and tribological characterization of friction stir processed Al 6063 / B4C+SiO2 composites. AlP Conference Proceedings, 2019, , .	0.3	3
281	Effect of cooling environment and welding speed on fatigue properties of friction stir welded Al-Mg-Cr alloy. International Journal of Fatigue, 2019, 127, 551-563.	2.8	23
282	Influence of FSW Repairing Process on the Microstructures and Mechanical Properties of Friction Stir-Welded 6082Al Alloy. Journal of Materials Engineering and Performance, 2019, 28, 5299-5306.	1.2	6
283	Analysis of the mechanism of fatigue failure of the Refill Friction Stir Spot Welded overlap joints. Archives of Civil and Mechanical Engineering, 2019, 19, 1419-1430.	1.9	6
284	Anomalous enhancement of strength-ductility combination in FSW joints of AA7039. Manufacturing Letters, 2019, 22, 1-5.	1.1	5
285	Microstructure and Fracturing Behavior of AA7075–T651 Aluminum Alloy Cooled During Friction Stir Welding. Metal Science and Heat Treatment, 2019, 61, 379-386.	0.2	3
286	Improving mechanical properties of Mn-added hypoeutectic Al-4Ni alloy by friction stir processing. Transactions of Nonferrous Metals Society of China, 2019, 29, 460-472.	1.7	6
287	Recent developments in friction stir welding and resulting industrial practices. Advances in Materials and Processing Technologies, 2019, 5, 461-496.	0.8	34
288	Unusual fatigue behavior of friction-stir welded Al–Mg–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 277-286.	2.6	16
289	Cooling Environment Effect on the Microstructure and Mechanical Properties of Friction Stir-Welded Joints. Journal of Materials Engineering and Performance, 2019, 28, 3737-3747.	1.2	9
290	Post-FSW Cold-Rolling Simulation of ECAP Shear Deformation and Its Microstructure Role Combined to Annealing in a FSWed AA5754 Plate Joint. Materials, 2019, 12, 1526.	1.3	8
291	Friction-stir-welded overaged 7020-T6 alloy joint: an investigation on the effect of rotational speed on the microstructure and mechanical properties. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 622-633.	2.4	2

ARTICLE IF CITATIONS Green welding for various similar and dissimilar metals and alloys: present status and future 292 9.9 17 possibilities. Advanced Composites and Hybrid Materials, 2019, 2, 389-406. Corrosion behavior of friction stir processed AISI 430 ferritic stainless steel. Materials Research 293 0.8 Express, 2019, 6, 086532. Microstructure and Mechanical Behavior of Friction-Stir-Welded 2017A-T451 Aluminum Alloy. 294 0.7 7 Transactions of the Indian Institute of Metals, 2019, 72, 1853-1868. Analysis of grain refining and subsequent coarsening along on adjacent zone of friction stir welded 0.8 armour grade aluminium alloy joints. Materials Research Express, 2019, 6, 066566. Incredible improvement in fatigue resistance of friction stir welded 7075-T651 aluminum alloy via 296 2.8 35 surface mechanical rolling treatment. International Journal of Fatigue, 2019, 124, 15-25. Microstructre and mechanical properties of Mg/Al joints by pulse MIG assisted induction pre-heating with composite interlayers. IOP Conference Series: Material's Science and Engineering, 2019, 668, 0.3 012025. Formability and Grained Structure Refinement of Cold-Rolled Friction Stir Welded AA5754 Sheet. IOP 298 0.3 1 Conference Series: Materials Science and Engineering, 2019, 611, 012001. Production of AA6061-T6/Al₂0₃ reinforced nanocomposite using friction stir 200 0.8 welding. Engineering Research Express, 2019, 1, 025052. Effect of Process Parameters on Structure and Mechanical Properties of Friction Stir Welding Joint 300 0.3 2 of 5052 Aluminum Alloy. IOP Conference Series: Materials Science and Engineering, 2019, 585, 012009. Optimization of parameters for micro friction stir welding of aluminum 5052 using Taguchi 1.5 14 technique. International Journal of Advanced Manufacturing Technology, 2019, 102, 369-378. Novel study on keyhole less friction stir spot welding of Al 2024 reinforced with alumina 302 1.5 25 nanopowder. International Journal of Advanced Manufacturing Technology, 2019, 101, 3093-3106. Friction stir welding of aluminium alloys: An overview of experimental findings $\hat{a} \in \mathcal{C}$ Process, variables, development and applications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 1191-1226. Advances in friction stir spot welding. Critical Reviews in Solid State and Materials Sciences, 2020, 45, 304 6.8 110 457-534. Manufacturing Parameters, Materials, and Welds Properties of Butt Friction Stir Welded Joints–Overview. Materials, 2020, 13, 4940. 1.3 Fatigue resistance characterization of frictions stir welds between complex aluminum extrusions: An 306 2.8 14 experimental and finite element study. International Journal of Fatigue, 2020, 141, 105861. The Microstructure, Texture and Mechanical Properties of Friction Stir Welded Aluminum Alloy. Russian Journal of Non-Ferrous Metals, 2020, 61, 523-533. Optimization of Friction-Stir Welding of 6061-T6 Aluminum Alloy. Physical Mesomechanics, 2020, 23, 308 1.0 8 402-429. Fatigue Life Assessment of Refill Friction Stir Spot Welded Alclad 7075-T6 Aluminium Alloy Joints. 309 Metals, 2020, 10, 633.

ARTICLE IF CITATIONS A New Approach in Surface Modification and Surface Hardening of Aluminum Alloys Using Friction 310 1.321 Stir Process: Cu-Reinforced AA5083. Materials, 2020, 13, 1278. The Effects of Rotational Speed on Microstructure and Mechanical Properties of Friction Stir-Welded 7075-T6 Thin Sheet. Journal of Materials Engineering and Performance, 2020, 29, 2316-2323. 1.2 24 Tool rotational speed impact on temperature variations, mechanical properties and microstructure of friction stir welding of dissimilar high-strength aluminium alloys. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1. 312 0.8 23 Fatigue Crack Growth Properties of AA 5754 Aluminum Alloy Gas Tungsten Arc Welding and Friction Stir Welding Joints. Journal of Materials Engineering and Performance, 2020, 29, 2113-2124.

CITATION REPORT

Numerical simulation for dendrite growth in directional solidification using LBM-CA (cellular) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 582 T

315	Recent Advances in Joining of Aluminum Alloys by Using Friction Stir Welding. , 2020, , .		5
316	Microstructure-strength relationship in friction-stir welded 6061-T6 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139858.	2.6	54
317	Microstructure, mechanical properties and fatigue crack growth behavior of friction stir welded joint of 6061-T6 aluminum alloy. International Journal of Fatigue, 2020, 135, 105556.	2.8	70
318	Effect of post-weld heat treatment on mechanical properties and fatigue crack growth rate in welded AA-2024. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 779, 139116.	2.6	43
319	Microstructures Evolution in Refill Friction Stir Spot Welding of Al-Zn-Mg-Cu Alloy. Metals, 2020, 10, 145.	1.0	7
320	A Study on Fatigue Crack Propagation for Friction Stir Welded Plate of 7N01 Al-Zn-Mg Alloy by EBSD. Materials, 2020, 13, 330.	1.3	13
321	Influence of cryogenic treatment on mechanical performance of friction stir Al-Zn-Cu alloy weldments. Journal of Manufacturing Processes, 2020, 56, 43-53.	2.8	29
322	Scrutinize on friction stir channeling performance in dissimilar aluminum amalgams. Materials Today: Proceedings, 2021, 39, 91-94.	0.9	1
323	The effect of residual stress on mixedâ€mode crack propagation behaviour in friction stir welded 7075â€ī6 aluminium alloy panel under biaxial loading. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 805-821.	1.7	7
324	Friction Stir Welding of 5052-H18 Aluminum Alloy: Modeling and Process Parameter Optimization. Journal of Materials Engineering and Performance, 2021, 30, 1838-1850.	1.2	16
325	Effect of Aluminum Arc Butt Joint Weld Geometry on Fatigue Strength. Journal of Welding and Joining, 2021, 39, 103-108.	0.6	2
326	Experimental Review on Friction Stir Welding of Aluminium Alloys with Nanoparticles. Metals, 2021, 11, 390.	1.0	17
327	Corrosion and corrosion-fatigue synergism on the base metal and nugget zone of the 2524-T3 Al alloy joined by FSW process. Corrosion Science, 2021, 182, 109253.	3.0	35

# 328	ARTICLE Precipitation-dependent corrosion analysis of heat treatable aluminum alloys via friction stir welding, a review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of	IF 1.1	CITATIONS
329	Wethanical Engineering Science, 2021, 235, 7600-7626. Flat hardness distribution in AA6061 joints by linear friction welding. Scientific Reports, 2021, 11, 11756.	1.6	15
330	Parametric optimization for friction stir processing in Al-Zn-Mg-Cu alloy. Materials and Manufacturing Processes, 2022, 37, 1-10.	2.7	8
331	A Critical Assessment on Rotary Friction Welded High Strength Armor Grade Aluminum Alloy Joints. Physics of Metals and Metallography, 2021, 122, 1401-1408.	0.3	2
332	Comparing the local-global deformation mechanism in different friction stir welding sequences of Ti-4Al-0.005B titanium alloy T-joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141698.	2.6	10
333	Al Alloy Tailor Welded Blank Fabrication by Friction Stir Welding: Effect of Double-Pass. Journal of Materials Engineering and Performance, 0, , 1.	1.2	3
334	Multi-response optimization of process parameters in friction stir welded aluminum 6061-T6 alloy using Taguchi grey relational analysis. World Journal of Engineering, 2022, 19, 707-716.	1.0	6
335	Combined effect of residual and mean stresses on fatigue behavior of welded aluminum 2024 alloy. International Journal of Fatigue, 2022, 155, 106565.	2.8	17
336	Developments in friction stir welding of aluminium to magnesium alloy. Journal of Adhesion Science and Technology, 2022, 36, 1365-1402.	1.4	20
337	Dissimilar FSW of AA2024 and AA7075: effect of materials positioning and tool deviation value on microstructure, global and local mechanical behavior. International Journal of Advanced Manufacturing Technology, 2022, 118, 2391-2403.	1.5	2
338	Towards finding an actual fatigue crack growth rate of friction stir processed AA2014 alloy. Materials Letters, 2021, 305, 130757.	1.3	7
339	Fatigue crack propagation of aeronautic AA7050-T7451 and AA2050-T84 aluminum alloys in air and saline environments. International Journal of Fatigue, 2022, 154, 106519.	2.8	13
340	Ultrasonic elastography for nondestructive evaluation of dissimilar material joints. Journal of Materials Processing Technology, 2022, 299, 117301.	3.1	8
341	Enhancement of Fatigue Life of TIG-Welded Joint by Friction Stir Processing. , 2019, , 51-59.		4
342	Effect of Lubrication on Energy Requirement and Joint Properties During FSSW of AA5052-H32 Aluminium Alloy. Lecture Notes on Multidisciplinary Industrial Engineering, 2020, , 315-328.	0.4	2
343	Assessing residual stresses in friction stir welding: neutron diffraction and nanoindentation methods. International Journal of Advanced Manufacturing Technology, 2017, 93, 3733-3747.	1.5	19
344	Surface remelting treatment of 7075 aluminum alloy—microstructural and technological aspects. Materials Research Express, 2020, 7, 016523.	0.8	8
345	Role of Threaded Tool Pin Profile and Rotational Speed on Generation of Defect Free Friction Stir AA 2014 Aluminium Alloy Welds. Defence Science Journal, 2016, 66, 57.	0.5	21

#	Article	IF	CITATIONS
346	Fatigue Crack Growth Behavior of Friction Stir Welded 2024-T3 Aluminum Alloy Tested under Accelerated Salt Fog Exposure. Materials Performance and Characterization, 2014, 3, 232-251.	0.2	5
347	Fatigue Behaviour of Friction Stir Welded A7075-T6 Aluminium Alloy in Air and 3% NaCl Solution. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2009, 27, 261-269.	0.1	7
348	Investigation on variations in hardness and microstructure of in-process cooled 7075 aluminum alloy friction stir welds. Materialpruefung/Materials Testing, 2017, 59, 155-160.	0.8	6
349	Effect of Ageing on Mechanical Properties of Dissimilar Friction Stir Welded Aluminum Alloy (AA2024) Tj ETQq1	1 0,7843 0 . 1	14 rgBT /Ove
350	A Review of Joining Processes for High Strength 7xxx Series Aluminum Alloys. Journal of Welding and Joining, 2017, 35, 79-88.	0.6	24
351	Electron Backscatter Diffraction of Aluminum Alloys. , 2005, , 519-573.		Ο
352	High Strain-Rate Compressive Stress-Strain Response of Friction Stir Welded AA2024-T3 Joints in Through-Thickness Direction. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 388-393.	0.1	0
354	Numerical Analysis of Crack Progress in Different Areas of a Friction Stir Welded Bead for an 5251 H14 Aluminum Alloy Specimen. Engineering, Technology & Applied Science Research, 2014, 4, 581-586.	0.8	1
355	INFLUENCES OF VARIOUS PROCESS PARAMETERS ON FRICTION STIR PROCESSING ZONE IN ALUMINIUM ALLOYS. International Journal of Design and Manufacturing Technology, 2014, 5, .	0.2	0
356	Some advantages of butt joints of thin wrought aluminium alloys AMg5M and AMg6M produced by FSW, compared to TIG-welded joints. The Paton Welding Journal, 2015, 2015, 16-21.	0.1	1
357	Mechanical and corrosion properties of friction stir welded joints of Al-Cu alloy 2219-T87. Materialpruefung/Materials Testing, 2015, 57, 733-743.	0.8	4
358	Microstructure and Salt Fog Corrosion Behaviour of AA2219 Friction Stir Welded Aluminium Alloy. Metallofizika I Noveishie Tekhnologii, 2016, 37, 539-554.	0.2	0
359	Salt fog corrosion behavior of friction stir welded AA2014-T651 aluminum alloy. Materialpruefung/Materials Testing, 2016, 58, 932-938.	0.8	13
360	The Role of Advanced Materials in the Development of Innovative Manufacturing Processes. , 2019, , 177-194.		0
361	Friction Stir Welding of High Tensile Strength Steel Plate Using SiAlON Tool. Materials Transactions, 2019, 60, 2506-2515.	0.4	2
362	The effect of prior adhesive bonding on the corrosion behavior of AA2024 FSWed single lap joints. Mechanics of Materials, 2021, , 104122.	1.7	4
363	Mechanical and Microstructural Behavior of Dissimilar AA2014-T6 and AA7075-T6 Aluminium Alloys Joined by Friction Stir Welding. Minerals, Metals and Materials Series, 2020, , 370-379.	0.3	2
364	Parameters governing in-service corrosion resistance. , 2020, , 323-355.		Ο

#	Article	IF	CITATIONS
365	Application of Artificial Neural Network to Friction Stir Welding Process of AA7050 Aluminum Alloy. Lecture Notes in Mechanical Engineering, 2021, , 407-414.	0.3	1
366	Fabrication of surface composites on different aluminium alloys via friction stir process - A review report. Australian Journal of Mechanical Engineering, 0, , 1-24.	1.5	4
368	Strengthening Mechanism of High-Pressure Linear Friction Welded Aa7075-T6 Joint. SSRN Electronic Journal, O, , .	0.4	0
369	Center Stir Zone Investigations of Dissimilar AA6082, AA2014 and AA7075 Welds. , 0, , .		Ο
370	Effect of tool rotational speed on the friction stir welded aluminum alloys: A review. Materials Today: Proceedings, 2022, 62, 245-250.	0.9	6
371	Influence of process parameters and its effects on friction stir welding of dissimilar aluminium alloy and its composites – a review. Journal of Adhesion Science and Technology, 2023, 37, 767-800.	1.4	10
372	Effect of post–weld heat treatment on multi-scale microstructures and mechanical properties of friction stir welded T-joints of Al–Mg–Si alloys. Journal of Materials Research and Technology, 2022, 18, 496-507.	2.6	14
373	Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints. Journal of Materials Science and Technology, 2022, 123, 92-112.	5.6	21
374	Effect of applied pressure on microstructure and mechanical properties of linear friction welded AA1050-H24 and AA5052-H34 joints. Science and Technology of Welding and Joining, 2022, 27, 92-102.	1.5	11
375	Microstructure evolution and stress corrosion cracking sensitivity of friction stir welded high strength AA7085 joint. Materials and Design, 2021, 212, 110297.	3.3	14
376	On the Heterogeneous Distribution of Secondary Precipitates in Friction-Stir-Welded 2519 Aluminium Alloy. Metals, 2022, 12, 671.	1.0	4
377	Crack Coalescence Modelling of FSW Joints. , 0, , 163-164.		Ο
378	Strengthening Mechanism of High-Pressure Linear Friction Welded Aa7075-T6 Joint. SSRN Electronic Journal, O, , .	0.4	0
379	Influence of welding parameters on mechanical, microstructure, and corrosion behavior of friction stir welded Al 7017 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143303.	2.6	13
380	Microstructure evaluation of dissimilar AA2024 and AA7050 aluminum joints made by corner stationary-shoulder friction stir welding. Welding in the World, Le Soudage Dans Le Monde, 2022, 66, 1623-1635.	1.3	3
381	Effects of biaxial residual stress components on mixed-mode fatigue crack propagation behavior in friction stir welded 7075-T6 aluminium alloy panel. Theoretical and Applied Fracture Mechanics, 2022, 121, 103437.	2.1	8
382	A Survey of Machine Learning in Friction Stir Welding, including Unresolved Issues and Future Research Directions. Material Design and Processing Communications, 2022, 2022, 1-28.	0.5	17
383	Estimation of fatigue crack growth rate in different zones of friction stir welded AA7039. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892211112.	1.4	0

#	Article	IF	CITATIONS
384	Strengthening mechanism of high-pressure linear friction welded AA7075-T6 joint. Materials Characterization, 2022, 191, 112112.	1.9	8
385	A critical review on process metrics–microstructural evolution–process performance correlation in additive friction stir deposition (AFS-D). Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	0.8	10
386	Quality index for friction stir welds in 7050 aluminum plates. Materials and Design, 2022, 222, 111052.	3.3	2
387	Surface hardening of an Al-Si-Cu-Ni-Mg aluminum alloy by friction stir processing and T6 heat treatment. Letters on Materials, 2022, 12, 255-260.	0.2	1
388	Effect of weld geometry on fatigue performance of 6061-T6 aluminum GMAW: part 1. Butt joint. Journal of Mechanical Science and Technology, 2022, 36, 5201-5208.	0.7	2
389	Effect of weld geometry on fatigue performance of 6061-T6 aluminum GMAW: part 3. T-fillet joint. Journal of Mechanical Science and Technology, 2022, 36, 5215-5221.	0.7	1
390	Effect of weld geometry on fatigue performance of 6061-T6 aluminum GMAW: part 2. Lap joint. Journal of Mechanical Science and Technology, 2022, 36, 5209-5214.	0.7	1
391	Influence of the Tool Rotational Speed on Physical and Chemical Properties of Dissimilar Friction-Stir-Welded AA5083/AA6060 Joints. Metals, 2022, 12, 1658.	1.0	8
392	Characterization and evaluation of stable localized corrosion in a 7075-T6 aluminum alloy FSW joint before and after anodizing treatment. Materials Research Express, 0, , .	0.8	0
393	Effect of tool rotating rate and subsequent artificial aging on microstructure and mechanical properties of 7050-T7451 alloy. Materials Today Communications, 2022, 33, 104639.	0.9	0
394	Fatigue Characteristics of 7050-T7451 Aluminum Alloy Friction Stir Welding Joints and the Stress Ratio Effect. Materials, 2022, 15, 8010.	1.3	0
395	A review of residual stress effects on fatigue properties of friction stir welds. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 775-813.	6.8	2
396	Mechanisms of abnormal grain growth in friction-stir-welded aluminum alloy 6061-T6. Materials Characterization, 2022, 194, 112473.	1.9	12
397	Failure modes of Al-Li alloy friction stir welded stiffened panels subjected to shear load. Engineering Failure Analysis, 2023, 144, 106965.	1.8	2
398	Study of the Effect on Friction Welded Surface on Copper Aluminium Juncture. Key Engineering Materials, 0, 935, 93-98.	0.4	0
399	Changes in thermal properties of 7075 aluminium alloy by aging heat treatment. Materials Science and Technology, 2023, 39, 1208-1213.	0.8	0
400	Effect of tool pin profiles on fatigue crack growth rate of friction stir welded joint of Al alloy 7075-T651. Canadian Metallurgical Quarterly, 0, , 1-10.	0.4	0
401	The effects of friction stir welding on microstructure and formability of 7075-T6 sheet. Results in Engineering, 2023, 18, 101041.	2.2	7

#	Article	IF	CITATIONS
402	Effect of microstructure and stress ratio on fatigue crack propagation behavior of A7N01 aluminum alloy fiber laser-VPTIG hybrid butt welded. Optics and Laser Technology, 2023, 162, 109296.	2.2	3
403	Post Weld Heat Treatment Optimization of Dissimilar Friction Stir Welded AA2024-T3 and AA7075-T651 Using Machine Learning and Metaheuristics. Materials, 2023, 16, 2081.	1.3	6
404	Enhancement of microstructure and mechanical properties of similar and dissimilar aluminium alloy by friction stir welding/processing using nanoparticles: a review. Journal of Adhesion Science and Technology, 2023, 37, 3125-3166.	1.4	5
411	Influence of post-weld heat treatment on FSW of Al alloy is impacted via tool rotation. AIP Conference Proceedings, 2023, , .	0.3	0