Electromagnetic contributions to single-molecule sensi scattering

Physical Review E 62, 4318-4324 DOI: 10.1103/physreve.62.4318

Citation Report

#	Article	IF	CITATIONS
1	SURFACE-ENHANCED RAMAN SPECTROSCOPY. Analytical Chemistry, 1989, 61, 401A-411A.	3.2	43
2	Single Molecule Vibrational Fine-structure of Tyrosine Adsorbed on Ag Nano-Crystals. Single Molecules, 2000, 1, 239-248.	1.7	79
3	Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B, 2001, 64,	1.1	448
4	Time-Dependent Single-Molecule Raman Scattering as a Probe of Surface Dynamics. Journal of Physical Chemistry B, 2001, 105, 12348-12354.	1.2	270
5	Spectroscopy of adsorbed layers. Current Opinion in Colloid and Interface Science, 2001, 6, 313-320.	3.4	16
6	Theoretical evaluation of Raman spectra and enhancement factors for a molecule adsorbed on a complex-shaped metal particle. Chemical Physics Letters, 2001, 342, 135-140.	1.2	50
7	Nanostructured materials as biomolecular sensors for cell transport. , 0, , .		0
8	Optical Trapping of Single Fluorescent Molecules at the Detection Spots of Nanoprobes. Physical Review Letters, 2002, 89, 143603.	2.9	41
9	Surface enhanced Raman spectroscopy of carbon nanotubules deposited on a silver self-affine fractal surface. Journal of Applied Physics, 2002, 92, 3517-3523.	1.1	4
10	Optical filed enhancement by surface-plasmon resonance: theory and application to miro-bioelectronics. , 0, , .		0
11	Density functional theoretical (DFT) and surface-enhanced Raman spectroscopic study of guanine and its alkylated derivatives. Physical Chemistry Chemical Physics, 2002, 4, 5161-5170.	1.3	53
12	Anomalous Electroreflectance and Absorption Spectra of Viologen Radical Cation in Close Proximity of Cold Nanoparticles at Electrified Interfaces. Langmuir, 2002, 18, 6995-7001.	1.6	15
13	Electromagnetic mechanism in surface-enhanced Raman scattering from Gaussian-correlated randomly rough metal substrates. Optics Express, 2002, 10, 879.	1.7	24
15	Single-molecule chemistry. Journal of Chemical Physics, 2002, 117, 11033-11061.	1.2	618
16	Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: A theoretical study. Journal of Chemical Physics, 2002, 116, 1156-1164.	1.2	116
17	Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids. Journal of Applied Physics, 2002, 92, 4878-4884.	1.1	66
18	SERS mechanism of nickel electrode. Science Bulletin, 2002, 47, 1983.	1.7	12
19	Near-field Raman spectroscopy using a sharp metal tip. , 0, , .		1

TION RED

#	Article	IF	CITATIONS
20	Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates. Physical Review Letters, 2002, 89, 246802.	2.9	456
21	What is observed in single molecule SERS, and why?. Journal of Raman Spectroscopy, 2002, 33, 593-598.	1.2	224
22	Microscopic morphology and SERS activity of Ag colloidal particles. Vibrational Spectroscopy, 2002, 30, 17-23.	1.2	114
23	Surface-enhanced Raman scattering and biophysics. Journal of Physics Condensed Matter, 2002, 14, R597-R624.	0.7	802
24	Surface-Enhanced Raman Scattering:  From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures. Journal of Physical Chemistry B, 2002, 106, 9463-9483.	1.2	1,263
25	Resonant light scattering from individual Ag nanoparticles and particle pairs. Applied Physics Letters, 2002, 80, 1826-1828.	1.5	259
26	Polarization-Dependent Surface-Enhanced Raman Spectroscopy of Isolated Silver Nanoaggregates. ChemPhysChem, 2003, 4, 1001-1005.	1.0	170
27	Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities. Chemical Physics Letters, 2003, 367, 361-366.	1.2	35
28	On the chloride activation in SERS and single molecule SERS. Journal of Molecular Structure, 2003, 661-662, 501-514.	1.8	134
29	Temporal fluctuations in the SERRS spectra of single iron–protoporphyrin IX molecule. Chemical Physics, 2003, 290, 297-306.	0.9	39
30	Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy. Ultramicroscopy, 2003, 97, 89-102.	0.8	47
31	Nearâ€field and confocal surfaceâ€enhanced resonance Raman spectroscopy at cryogenic temperatures. Journal of Microscopy, 2003, 209, 162-166.	0.8	20
32	Near-field Raman spectroscopy using a sharp metal tip. Journal of Microscopy, 2003, 210, 234-240.	0.8	122
33	Once again on the enhanced Raman scattering of light from a molecule near a small object. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 95, 368-376.	0.2	3
34	A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 312, 411-419.	0.9	56
35	Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals. Journal of Physical Chemistry B, 2003, 107, 9964-9972.	1.2	814
36	Adsorption Characteristics of 1,4-Phenylene Diisocyanide on Gold Nanoparticles:Â Infrared and Raman Spectroscopy Study. Langmuir, 2003, 19, 6701-6710.	1.6	75
37	Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy. Journal of Physical Chemistry B, 2003, 107, 1574-1584.	1.2	129

#	Article	IF	CITATIONS
38	Correlated topographic and spectroscopic imaging beyond diffraction limit by atomic force microscopy metallic tip-enhanced near-field fluorescence lifetime microscopy. Review of Scientific Instruments, 2003, 74, 3347-3355.	0.6	46
39	Slow fluctuations in enhanced Raman scattering and surface roughness relaxation. Physical Review E, 2003, 67, 062402.	0.8	13
40	Plasmon Resonances in Nanowires with a Non—regular Cross-Section. , 2003, , 183-210.		27
41	Spontaneous light emission in complex nanostructures. Physical Review B, 2004, 69, .	1.1	115
42	Ratio of the surface-enhanced anti-Stokes scattering to the surface-enhanced Stokes-Raman scattering for molecules adsorbed on a silver electrode. Physical Review B, 2004, 69, .	1.1	69
43	Microscopic Theory of Surface-Enhanced Raman Scattering in Noble-Metal Nanoparticles Vitaliy. Materials Research Society Symposia Proceedings, 2004, 846, DD8.9.1.	0.1	Ο
44	Finite-Size Effects and Surface-Enhanced Raman Scattering in Noble-Metal Nanoparticles. Materials Research Society Symposia Proceedings, 2004, 818, 293.	0.1	0
45	Plasmonic Nanomaterials. Nanostructure Science and Technology, 2004, , 173-200.	0.1	16
46	UV–visible transmission–absorption spectral study of Au nanoparticles on a modified ITO electrode at constant potentials and under potential modulation. Journal of Electroanalytical Chemistry, 2004, 565, 335-342.	1.9	37
47	Correlated topographic and spectroscopic imaging by combined atomic force microscopy and optical microscopy. Journal of Luminescence, 2004, 107, 4-12.	1.5	15
48	Electromagnetic energy flow near nanoparticles—1: single spheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87, 53-67.	1.1	18
49	Spontaneous emission enhancement near nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 89, 37-42.	1.1	26
50	Raman scattering from single Ag aggregates in presence of EDTA. Chemical Physics Letters, 2004, 386, 244-247.	1.2	26
51	Correlation of optical properties with structure of immoblised nanoparticles—a method for probing the mechanism of SERRS. Analyst, The, 2004, 129, 950-955.	1.7	19
52	Finite Element Method Simulations of the Near-Field Enhancement at the Vicinity of Fractal Rough Metallic Surfaces. Journal of Physical Chemistry B, 2004, 108, 2939-2947.	1.2	13
53	Surface-Enhanced Nonresonance Raman Scattering of Rhodamine 6G Molecules Adsorbed on Gold Nanorod Films. Japanese Journal of Applied Physics, 2004, 43, L554-L556.	0.8	80
54	Direct Observation of Heterogeneous Photochemistry on Aggregated Ag Nanocrystals Using Raman Spectroscopy:  The Case of Photoinduced Degradation of Aromatic Amino Acids. Journal of Physical Chemistry A, 2004, 108, 4187-4193.	1.1	64
55	Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold. Journal of Applied Physics, 2004, 95, 2755-2762.	1.1	85

#	Article	IF	CITATIONS
56	Surface-Enhanced Nonresonance Raman Scattering from Size- and Morphology-Controlled Gold Nanoparticle Films. Journal of Physical Chemistry B, 2004, 108, 11660-11665.	1.2	128
57	Optical Properties of Metal Nanoshells. Journal of Physical Chemistry B, 2004, 108, 1224-1229.	1.2	282
58	Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy. Applied Physics Letters, 2004, 85, 5980-5982.	1.5	71
59	Polarized Surface Enhanced Raman Scattering from Aligned Silver Nanowire Rafts. Journal of Physical Chemistry B, 2004, 108, 12724-12728.	1.2	166
60	Surface-Enhanced Raman Scattering from Silver-Plated Porous Silicon. Journal of Physical Chemistry B, 2004, 108, 11654-11659.	1.2	182
61	Single molecule raman spectroscopy and local work function fluctuations. Israel Journal of Chemistry, 2004, 44, 385-390.	1.0	36
62	Unified Treatment of Fluorescence and Raman Scattering Processes near Metal Surfaces. Physical Review Letters, 2004, 93, 243002.	2.9	191
63	Surface-enhanced Raman scattering: phenomenological approach. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 429.	0.9	9
64	Tip-enhanced optical spectroscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 807-819.	1.6	106
65	Electromagnetic fields around silver nanoparticles and dimers. Journal of Chemical Physics, 2004, 120, 357-366.	1.2	1,732
66	Hyper-Rayleigh and hyper-Raman scattering from silver nanoparticles trapped by a near-infrared laser beam. , 2005, , .		1
67	Quantum-size effects in SERS from noble-metal nanoparticles. Microelectronics Journal, 2005, 36, 559-563.	1.1	19
68	Surface-enhanced Raman activity and stability study of silver films prepared by reduction of Ag+ ions in -dimethylformamide. Journal of Colloid and Interface Science, 2005, 292, 455-461.	5.0	13
69	Critical importance of the junction in touching Ag particles for single molecule sensitivity in SERS. Journal of Molecular Structure, 2005, 735-736, 75-84.	1.8	41
70	Two-state analysis of single-molecule Raman spectra of crystal violet. Chemical Physics, 2005, 318, 44-49.	0.9	27
71	Homogeneous surface-enhanced Raman scattering observed from self-assembled gold nanoparticle films deposited from the liquid–liquid interface. Vibrational Spectroscopy, 2005, 37, 189-193.	1.2	13
72	Single-molecule detection of yeast cytochrome c by Surface-Enhanced Raman Spectroscopy. Biophysical Chemistry, 2005, 113, 41-51.	1.5	89
73	Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters, 2005, 403, 62-67.	1.2	326

#	Article	IF	CITATIONS
74	Inelastic scattering and emission correlated with enormous SERS of dye adsorbed on Ag nanoparticles. Chemical Physics Letters, 2005, 412, 65-70.	1.2	23
75	Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: Do dye molecules adsorb preferentially on highly SERS-active sites?. Chemical Physics Letters, 2005, 414, 271-275.	1.2	175
76	Surface- and Resonance-Enhanced Micro-Raman Spectroscopy of Xanthene Dyes: From the Ensemble to Single Molecules. ChemPhysChem, 2005, 6, 154-163.	1.0	97
77	Inherent Complexities of Trace Detection by Surface-Enhanced Raman Scattering. ChemPhysChem, 2005, 6, 2473-2484.	1.0	97
78	Surface-enhanced resonance Raman scattering using pulsed and continuous-wave laser excitation. Journal of Raman Spectroscopy, 2005, 36, 600-605.	1.2	9
79	Elastic scattering and emission correlated with single-molecule SERS. Journal of Raman Spectroscopy, 2005, 36, 581-592.	1.2	34
80	Surface-enhanced resonance Raman scattering of rhodamine 6G on Pt nanoaggregates. Journal of Raman Spectroscopy, 2005, 36, 623-628.	1.2	26
81	Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy. Journal of Raman Spectroscopy, 2005, 36, 510-514.	1.2	79
82	Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy, 2005, 36, 485-496.	1.2	1,538
83	Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Analytical and Bioanalytical Chemistry, 2005, 382, 1751-1770.	1.9	396
84	Surface Enhanced Raman Spectroscopy Using Silver Nanoparticles: The Effects of Particle Size and Halide Ions on Aggregation. Journal of Cluster Science, 2005, 16, 39-51.	1.7	28
85	The New "p–n Junctionâ€+ Plasmonics Enables Photonic Access to the Nanoworld. MRS Bulletin, 2005, 30, 385-389.	1.7	80
86	Resonance contributions to anti-Stokes/Stokes ratios under surface enhanced Raman scattering conditions. Journal of Chemical Physics, 2005, 123, 084702.	1.2	21
87	Optical and structural investigation of In1â^'xGaxP free-standing microrods. Journal of Applied Physics, 2005, 98, 053506.	1.1	5
88	Site-specific Raman spectroscopy and chemical dynamics of nanoscale interstitial systems. Journal of Physics Condensed Matter, 2005, 17, R333-R355.	0.7	22
89	Scanning Near-Field Optical Microscopic Observation of Surface-Enhanced Raman Scattering Mediated by Metallic Particle-Surface Gap Modes. Japanese Journal of Applied Physics, 2005, 44, 5313-5318.	0.8	10
90	Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics, 2005, 98, 011101.	1.1	1,660
91	Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Physical Review B, 2005, 72	1.1	274

ARTICLE IF CITATIONS # Biological applications of localised surface plasmonic phenomenae. IET Nanobiotechnology, 2005, 152, 92 2.1 250 13. Enhancement of Dye Fluorescence by Gold Nanoparticles: Analysis of Particle Size Dependence. 0.8 Japanese Journal of Applied Physics, 2005, 44, 6833-6837. Identification and Characterization of Active and Inactive Species for Surface-Enhanced Resonance 94 1.2 31 Raman Scattering. Journal of Physical Chemistry B, 2005, 109, 3454-3459. Silver Nanodisks:〉 Optical Properties Study Using the Discrete Dipole Approximation Method. Journal 1.2 of Physical Chemistry B, 2005, 109, 23371-23377. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Physical 96 1.1 238 Review B, 2005, 71, . Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Physical Review B, 1.1 534 2005,7<u>1,</u>. RAMAN SPECTROSCOPY | Surface-Enhanced., 2005, , 110-118. 98 1 Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic 99 1.7 169 Nanostructures. MRS Bulletin, 2005, 30, 349-355. Uniform Gold Nanorod Arrays from Polyethylenimine-Coated Alumina Templates. Journal of Physical 100 1.2 71 Chemistry B, 2005, 109, 23336-23341. Surface-enhanced Raman spectroscopy of half-mustard agent. Analyst, The, 2006, 131, 568. 1.7 108 Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal 102 1.1 89 metal nanoparticles. Physical Review B, 2006, 73, . Surface-enhanced Raman scattering from transition metals with special surface morphology and 1.6 123 nanoparticle shape. Faraday Discussions, 2006, 132, 159-170. Studying SERS from Metal Nanoparticles and Nanoparticles Aggregates with Continuum Models., 104 5 2006, , 105-123. Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles. Faraday 1.6 Discussions, 2006, 132, 45-61. Probing strong optical fields in compact aggregates of silver nanoparticles by SERRS of 106 20 1.6 protoporphyrin IX. Faraday Discussions, 2006, 132, 121-134. Single-Molecule SERS Spectroscopy., 2006, , 261-277. 63 Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles. Journal of 108 6.7 62 Materials Chemistry, 2006, 16, 3920. Re-examining the origins of spectral blinking in single-molecule and single-nanoparticleSERS. Faraday Discussions, 2006, 132, 249-259.

#	Article	IF	CITATIONS
111	A study of local heating of molecules under Surface Enhanced Raman Scattering (SERS) conditions using the anti-Stokes/Stokes ratio. Faraday Discussions, 2006, 132, 77-83.	1.6	30
112	Control of near-infrared optical response of metal nano-structured film on glass substrate for intense Raman scattering. Faraday Discussions, 2006, 132, 179-190.	1.6	17
113	Variations in Steady-State and Time-Resolved Background Luminescence from Surface-Enhanced Resonance Raman Scattering-Active Single Ag Nanoaggregates. Journal of Physical Chemistry B, 2006, 110, 21536-21544.	1.2	43
114	A TEM and electron energy loss spectroscopy (EELS) investigation of active and inactive silver particles for surface enhanced resonance Raman spectroscopy (SERRS). Faraday Discussions, 2006, 132, 171-178.	1.6	29
115	Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials. Chemical Communications, 2006, , 1581.	2.2	160
116	Nanoscale imaging of carbon nanotubes using tip enhanced Raman spectroscopy in reflection mode. Faraday Discussions, 2006, 132, 215-225.	1.6	38
117	Template-Grown Metal Nanowires. Inorganic Chemistry, 2006, 45, 7555-7565.	1.9	194
118	Silver nanocrystal superlattice coating for molecular sensing by surface-enhanced Raman spectroscopy. Applied Physics Letters, 2006, 89, 131914.	1.5	39
119	All-optical switching and slow light in photonic-crystal waveguide-resonator structures. , 2006, , .		0
120	One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced raman scattering. Journal of Chemical Physics, 2006, 125, 081102.	1.2	36
121	Engineering Nanostructures for Single-Molecule Surface-Enhanced Raman Spectroscopy. Israel Journal of Chemistry, 2006, 46, 283-291.	1.0	1
122	Combining Micron-Size Glass Spheres with Silver Nanoparticles to Produce Extraordinary Field Enhancements for Surface-Enhanced Raman Scattering Applications. Israel Journal of Chemistry, 2006, 46, 293-297.	1.0	21
123	Surface-Enhanced Raman Spectroscopy: a Brief Perspective. , 2006, , 1-17.		110
124	Coupled Plasmonic Plasmon/Photonic Resonance Effects in SERS. , 2006, , 67-85.		15
125	SERS From Transition Metals and Excited by Ultraviolet Light. , 2006, , 125-146.		38
126	Electronic Mechanisms of SERS. , 2006, , 147-182.		41
127	Temperature-Dependent Anti-Stokes/Stokes Ratios under Surface-Enhanced Raman Scattering Conditions. Journal of Physical Chemistry B, 2006, 110, 6797-6803.	1.2	55
128	From Micro to Nano:Â Analysis of Surface-Enhanced Resonance Raman Spectroscopy Active Sites via Multiscale Correlations. Analytical Chemistry, 2006, 78, 224-230.	3.2	32

#	Article	IF	CITATIONS
129	Raman Spectroscopic Studies of Terthiophenes for Molecular Electronics. Journal of Physical Chemistry B, 2006, 110, 25671-25677.	1.2	17
130	Elucidation of Interaction between Metal-Free Tetraphenylporphine and Surface Ag Atoms through Temporal Fluctuation of Surface-Enhanced Resonance Raman Scattering and Background-Light Emission. Journal of Physical Chemistry B, 2006, 110, 9579-9585.	1.2	32
131	Electromagnetic modelling of Raman enhancement from nanoscale substrates: a route to estimation of the magnitude of the chemical enhancement mechanism in SERS. Faraday Discussions, 2006, 132, 201-213.	1.6	50
132	Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Physical Chemistry Chemical Physics, 2006, 8, 165-170.	1.3	438
133	Simulation of surface plasmon resonance of metallic nanoparticles by the boundary-element method. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 108.	0.8	24
134	Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: a semiclassical approach. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 1369.	0.8	25
135	Tip-Enhanced Raman Spectroscopy (TERS). , 2006, , 217-240.		52
136	Local-field enhancement in an optical force metallic nanotrap: application to single-molecule spectroscopy. Applied Optics, 2006, 45, 5185.	2.1	10
137	Enhancement of Raman Signals with Silver-Coated Tips. Applied Spectroscopy, 2006, 60, 1142-1147.	1.2	73
138	Single Molecule Raman Scattering. Applied Spectroscopy, 2006, 60, 322A-334A.	1.2	131
139	Creating Hot Nanoparticle Pairs for Surface-Enhanced Raman Spectroscopy through Optical Manipulation. Nano Letters, 2006, 6, 2639-2641.	4.5	253
140	On the importance of optical forces in surface-enhanced Raman scattering (SERS). Faraday Discussions, 2006, 132, 35-44.	1.6	42
141	Designing Plasmonic Nanomaterials as Sensors of Biochemical Transport. E-Journal of Surface Science and Nanotechnology, 2006, 4, 9-18.	0.1	13
142	Near-field Imaging of Surface-enhanced Raman Active Sites in Aggregated Gold Nanoparticles. Chemistry Letters, 2006, 35, 78-79.	0.7	47
143	Single Molecule Characterization with Raman Scattering Using Localized Surface Plasmon. The Review of Laser Engineering, 2006, 34, 236-240.	0.0	0
144	Single molecule sensitivity in surface enhanced Raman scattering using surface plasmon. Handai Nanophotonics, 2006, , 101-140.	0.0	1
145	Enhanced Raman scattering mediated by metallic surface-particle gap modes. Handai Nanophotonics, 2006, 2, 141-152.	0.0	1
146	Analysis of the surface plasmon resonance of a single core-shelled nanocomposite by surface integral equations. Engineering Analysis With Boundary Elements, 2006, 30, 734-745.	2.0	9

#	Article	IF	CITATIONS
147	Time-dependent study of single-molecule SERS signal from yeast cytochrome c. Chemical Physics, 2006, 326, 356-362.	0.9	26
148	Heat-induced morphological control of gold nanoparticle films for surface-enhanced Raman scattering (SERS) measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 388-394.	2.3	9
149	SERS monitoring of Pd-catalysed reduction processes of nitroarenes adsorbed on Ag/Pd colloidal nanoparticles. Chemical Physics Letters, 2006, 423, 35-38.	1.2	11
150	Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chemical Physics Letters, 2006, 427, 122-126.	1.2	193
151	pH dependent surface enhanced Raman study of Phe+Ag complex and DFT calculations for spectral analysis. Chemical Physics Letters, 2006, 431, 121-126.	1.2	11
152	Adsorption characteristics of 4,4′-bipyridine molecules on gold nanosphere films studied by surface-enhanced Raman scattering. Thin Solid Films, 2006, 496, 740-747.	0.8	43
153	Effective Mode Volume of Nanoscale Plasmon Cavities. Optical and Quantum Electronics, 2006, 38, 257-267.	1.5	74
154	Charge Transfer between Metal Nanoparticles Interconnected with a Functionalized Molecule Probed by Surface-Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2006, 45, 3970-3973.	7.2	196
155	In situ SERS study of Rhodamine 6G adsorbed on individually immobilized Ag nanoparticles. Journal of Raman Spectroscopy, 2006, 37, 762-770.	1.2	123
157	Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps. Advanced Materials, 2006, 18, 491-495.	11.1	469
158	Self-Assembly of Silver Nanoparticles:  Synthesis, Stabilization, Optical Properties, and Application in Surface-Enhanced Raman Scattering. Journal of Physical Chemistry B, 2006, 110, 13436-13444.	1.2	123
159	Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects. , 2006, , .		4
160	Probing the Raman Scattering Tensors of Individual Molecules. Journal of Physical Chemistry B, 2006, 110, 2459-2461.	1.2	63
161	Resonator induced plasmon filter: theoretical study. Journal of Physics Condensed Matter, 2006, 18, 9047-9054.	0.7	1
162	Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. Journal of Chemical Physics, 2006, 125, 204701.	1.2	334
163	Use of surface-enhanced Raman spectroscopy for the detection of human integrins. Journal of Biomedical Optics, 2006, 11, 024004.	1.4	33
164	Detection of Cell Surface Protein with Surface Enhanced Raman Spectroscopy. Materials Research Society Symposia Proceedings, 2006, 952, 4.	0.1	0
165	The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement. Journal of Chemical Physics, 2006, 125, 124707.	1.2	57

#	ARTICLE	IF	CITATIONS
166	Saturation effect in the optical response of Ag-nanoparticle fractal aggregates. Physical Review B, 2006, 73, .	1.1	15
167	Scattering T-matrix theory in wave-vector space for surface-enhanced Raman scattering in clusters of nanoscale spherical metal particles. Physical Review B, 2006, 74, .	1.1	11
168	Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy. Applied Physics Letters, 2006, 88, 104101.	1.5	31
169	Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser. Applied Physics Letters, 2006, 88, 084102.	1.5	53
170	SERS of ultra-thin rhodamine 6G layers on Ag nanocrystals. , 2006, , .		0
171	Plasmon excitation in sets of nanoscale cylinders and spheres. Physical Review B, 2006, 73, .	1.1	37
172	Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles. Physical Review B, 2006, 73, .	1.1	32
174	Electromagnetic model and calculations of the surface-enhanced Raman-shifted emission from Langmuir-Blodgett films on metal nanostructures. Journal of Chemical Physics, 2007, 127, 044702.	1.2	6
175	Surface-enhanced Raman spectroscopy and correlated scanning electron microscopy of individual carbon nanotubes. Applied Physics Letters, 2007, 91, 223105.	1.5	55
176	Particle plasmons of metal nanospheres: Application of multiple scattering approach. Physical Review E, 2007, 76, 016609.	0.8	57
177	Raman properties of gold nanoparticle-decorated individual carbon nanotubes. Applied Physics Letters, 2007, 90, 173109.	1.5	31
178	Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography. Journal of Nanophotonics, 2007, 1, 011594.	0.4	14
179	Surface-enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution. Journal of Optics, 2007, 9, S164-S171.	1.5	19
180	Interaction between metal-free porphine and surface Ag atoms through temporal fluctuation of surface-enhanced resonance raman scattering and background-light emission. Handai Nanophotonics, 2007, 3, 161-174.	0.0	0
181	Imaging of optical field distributions and plasmon wavefunctions in metal nanoparticles. , 2007, , .		0
182	Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green's theorem surface integral equations in parametric form. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 2822.	0.8	65
183	Tuning the resonance frequency of Ag-coated dielectric tips. Optics Express, 2007, 15, 8309.	1.7	46
184	Controlling gold nanoparticle assemblies for efficient surface-enhanced Raman scattering and localized surface plasmon resonance sensors. Nanotechnology, 2007, 18, 255702.	1.3	124

#	Article	IF	CITATIONS
185	Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips. Journal of Physical Chemistry C, 2007, 111, 1733-1738.	1.5	314
186	Optical Effects of Metallic Nanoparticles. Australian Journal of Chemistry, 2007, 60, 447.	0.5	26
187	Surface-Enhanced Raman Spectroscopy and Nanogeometry:  The Plasmonic Origin of SERS. Journal of Physical Chemistry C, 2007, 111, 17985-17988.	1.5	248
188	Controllable colours and shapes of silver nanostructures based on pH: application to surface-enhanced Raman scattering. Nanotechnology, 2007, 18, 325602.	1.3	71
189	The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization. Nano Letters, 2007, 7, 1013-1017.	4.5	321
190	Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chemical Communications, 2007, , 3514.	2.2	379
191	Surfaceâ€enhanced Raman scattering for identification of organic pigments and dyes in works of art and cultural heritage material. Sensor Review, 2007, 27, 109-120.	1.0	96
192	Nanoscale Roughness on Metal Surfaces Can Increase Tip-Enhanced Raman Scattering by an Order of Magnitude. Nano Letters, 2007, 7, 1401-1405.	4.5	160
193	Enhanced Raman scattering from focused surface plasmons. Applied Physics Letters, 2007, 91, 081104.	1.5	37
194	Charge-Transfer Induced Surface-Enhanced Raman Scattering in Silver Nanoparticle Assemblies. Journal of Physical Chemistry C, 2007, 111, 1951-1954.	1.5	77
195	An optofluidic device for surface enhanced Raman spectroscopy. Lab on A Chip, 2007, 7, 630.	3.1	100
196	Tipâ€enhanced Raman spectroscopy reveals rich nanoscale adsorption chemistry of 2â€mercaptopyridine on Ag. Israel Journal of Chemistry, 2007, 47, 177-184.	1.0	16
197	Metal-insulator-metal plasmon nanocavities: Analysis of optical properties. Physical Review B, 2007, 75,	1.1	215
198	Near-Field Studies of Plasmon Wavefunctions and Optical Fields in Gold Nanoparticles. Molecular Science, 2007, 1, A0006.	0.2	3
199	Electromagnetic Modelling of Raman Enhancement from Nanoscale Structures as a Means to Predict the Efficacy of SERS Substrates. Journal of Nanomaterials, 2007, 2007, 1-10.	1.5	15
200	Contribution of Charge-Transfer Mechanisms to Surface-Enhanced Raman Scattering with Near-IR Excitation. ChemPhysChem, 2007, 8, 921-925.	1.0	18
201	Fabrication and characterization of SERS-active silver clusters on glassy carbon. Journal of Raman Spectroscopy, 2007, 38, 515-521.	1.2	36
202	Single-molecule detection of thionine on aggregated gold nanoparticles by surface enhanced Raman scattering. Journal of Raman Spectroscopy, 2007, 38, 568-573.	1.2	49

#	ARTICLE	IF	CITATIONS
203	Concentrationâ€dependent surfaceâ€enhanced Raman scattering and molecular dynamic study of dimethyl formamide. Journal of Raman Spectroscopy, 2007, 38, 1454-1460.	1.2	9
204	Non-resonance SERS effects of silver colloids with different shapes. Chemical Physics Letters, 2007, 446, 77-82.	1.2	180
205	New surface integral equations for the light scattering of multi-metallic nanoscatterers. Engineering Analysis With Boundary Elements, 2007, 31, 299-310.	2.0	8
206	Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles. Analytica Chimica Acta, 2007, 602, 236-243.	2.6	53
207	Single molecule SERS: Perspectives of analytical applications. Journal of Molecular Structure, 2007, 834-836, 42-47.	1.8	38
208	Recent progress of nano-technology with NSOM. Micron, 2007, 38, 409-426.	1.1	85
209	Electromagnetic energy flow near metal nanoparticles—II: Algorithms for the calculation of the light scattering of multi-spheres and photon energy transport via linear chains of Ag nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 103, 394-401.	1.1	31
210	Comprehensive T-matrix reference database: A 2004–06 update. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106, 304-324.	1.1	74
211	Electrochemically modified singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4021-4025.	0.7	10
212	Optimum Length of Silver Nanorods for Fabrication of Hot Spots. Journal of Physical Chemistry C, 2007, 111, 7906-7909.	1.5	49
213	SUBWAVELENGTH-SCALE PLASMON WAVEGUIDES. , 2007, , 87-104.		3
214	Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 2007, 388, 89-102.	1.9	23
215	Tip-Enhanced Raman Imaging and Nanospectroscopy: Sensitivity, Symmetry, and Selection Rules. Nanobiotechnology, 2007, 3, 172-196.	1.2	52
216	The Use of Polarization-dependent SERS from Scratched Gold Films to Selectively Eliminate Solution-phase Interference. Plasmonics, 2007, 2, 157-162.	1.8	13
217	pH dependent SERS and solvation studies of tyrosine adsorbed on silver colloidal nano particles combined with DFT calculations. Chemical Physics, 2007, 340, 69-78.	0.9	14
218	Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Analytical and Bioanalytical Chemistry, 2008, 391, 2469-2495.	1.9	469
219	Immunoassay using surface-enhanced Raman scattering based on aggregation of reporter-labeled immunogold nanoparticles. Analytical and Bioanalytical Chemistry, 2008, 392, 187-193.	1.9	30
220	Plasmon hybridization in nanorod dimers. Applied Physics B: Lasers and Optics, 2008, 93, 209-216.	1.1	119

#	Article	IF	CITATIONS
221	LSP spectral changes correlating with SERS activation andÂquenching for R6G on immobilized Ag nanoparticles. Applied Physics B: Lasers and Optics, 2008, 93, 117-130.	1.1	32
222	Individual Nanometer Hole–Particle Pairs for Surfaceâ€Enhanced Raman Scattering. Small, 2008, 4, 1296-1300.	5.2	78
223	Experimental study of plasmonically enhanced GaN nanowire light emitters. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 378-382.	0.8	9
224	SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles. Journal of Raman Spectroscopy, 2008, 39, 61-67.	1.2	74
225	Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. Journal of Raman Spectroscopy, 2008, 39, 1127-1134.	1.2	166
226	Preparation and SERS study of triangular silver nanoparticle selfâ€assembled films. Journal of Raman Spectroscopy, 2008, 39, 1673-1678.	1.2	39
227	Surfaceâ€plasmonâ€based optical manipulation. Laser and Photonics Reviews, 2008, 2, 47-57.	4.4	112
228	Metalâ€nanoparticle plasmonics. Laser and Photonics Reviews, 2008, 2, 136-159.	4.4	592
229	Perspectives for spatially resolved molecular spectroscopy – Raman on the nanometer scale. Journal of Biophotonics, 2008, 1, 377-389.	1.1	26
230	Tipâ€Enhanced Nearâ€Field Optical Microscopy. Angewandte Chemie - International Edition, 2008, 47, 8178-8191.	7.2	260
232	Self-assembly of λ-DNA networks/Ag nanoparticles: Hybrid architecture and active-SERS substrate. Journal of Colloid and Interface Science, 2008, 317, 183-190.	5.0	33
233	Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS. Journal of Colloid and Interface Science, 2008, 321, 288-293.	5.0	139
234	SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template. Applied Surface Science, 2008, 255, 1901-1905.	3.1	71
235	Single-molecule surface-enhanced Raman spectroscopy from a molecularly-bridged silver nanoparticle dimer. Chemical Physics Letters, 2008, 455, 131-134.	1.2	58
236	Porphyrins as SERRS spectral probes of chemically functionalized Ag nanoparticles. Vibrational Spectroscopy, 2008, 48, 44-52.	1.2	4
237	Influence of the microstructure of several substrates on the SERS effect of p-hyroxybenzoic absorbed on Ag nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 316, 253-257.	2.3	5
238	Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering. Science, 2008, 321, 388-392.	6.0	988
239	Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticleâ^'Nanowire Systems. Nano Letters, 2008, 8, 2497-2502.	4.5	268

#	Article	IF	CITATIONS
240	Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chemical Society Reviews, 2008, 37, 912.	18.7	1,023
241	Raman and nearâ€field spectroscopic study on localized surface plasmon excitation from the 2D nanostructure of gold nanoparticles. Journal of Microscopy, 2008, 229, 327-330.	0.8	22
242	Linear and Nonlinear Optical Phenomena of Metallic Nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1540-1551.	1.9	9
243	Synthesis and characterisation of monodispersed silver nanoparticles with controlled size ranges. Micro and Nano Letters, 2008, 3, 62.	0.6	18
244	Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles. Nanotechnology, 2008, 19, 275712.	1.3	62
245	Label-Free SERS Detection of Small Proteins Modified to Act as Bifunctional Linkers. Journal of Physical Chemistry C, 2008, 112, 4880-4883.	1.5	96
246	Chemical sensing and imaging with metallic nanorods. Chemical Communications, 2008, , 544-557.	2.2	496
247	Tailoring plasmonic substrates for surface enhanced spectroscopies. Chemical Society Reviews, 2008, 37, 898.	18.7	522
248	Nanoparticle Metalâ^'Semiconductor Charge Transfer in ZnO/PATP/Ag Assemblies by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 6093-6098.	1.5	117
249	Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption. ACS Nano, 2008, 2, 707-718.	7.3	730
250	A Hybrid Plasmonicâ^'Photonic Nanodevice for Label-Free Detection of a Few Molecules. Nano Letters, 2008, 8, 2321-2327.	4.5	215
251	SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion. Physical Chemistry Chemical Physics, 2008, 10, 2233.	1.3	27
252	A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics, 2008, 10, 6079.	1.3	476
253	Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. Journal of the American Chemical Society, 2008, 130, 12616-12617.	6.6	825
254	Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Physical Review B, 2008, 78, .	1.1	94
255	Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas. Optics Letters, 2008, 33, 899.	1.7	59
256	Single Gold-Nanoparticle-Enhanced Raman Scattering of Individual Single-Walled Carbon Nanotubes via Atomic Force Microscope Manipulation. Journal of Physical Chemistry C, 2008, 112, 7119-7123.	1.5	59
257	Optical response of linear chains of metal nanospheres and nanospheroids. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 2767.	0.8	24

#	Article	IF	CITATIONS
258	Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method. Optics Express, 2008, 16, 7397.	1.7	42
259	Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition. Optics Express, 2008, 16, 12362.	1.7	45
260	Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Optics Express, 2008, 16, 13287.	1.7	63
261	Surface-enhanced Raman scattering at a planar dielectric interface beyond critical angle. Optics Express, 2008, 16, 20117.	1.7	4
262	How Can a Resonant Nanogap Enhance Optical Fields by Many Orders of Magnitude?. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1565-1576.	1.9	29
263	Shaping Emission Spectra of Fluorescent Molecules with Single Plasmonic Nanoresonators. Physical Review Letters, 2008, 100, 203002.	2.9	391
264	SERS—a single-molecule and nanoscale tool for bioanalytics. Chemical Society Reviews, 2008, 37, 1052.	18.7	952
265	Controlled Interparticle Spacing for Surface-Modified Gold Nanoparticle Aggregates. Langmuir, 2008, 24, 5562-5568.	1.6	75
266	Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing. Accounts of Chemical Research, 2008, 41, 1653-1661.	7.6	683
267	Nanoparticle Plasmon-Assisted Two-Photon Polymerization Induced by Incoherent Excitation Source. Journal of the American Chemical Society, 2008, 130, 6928-6929.	6.6	314
268	Polarization-Dependent Surface-Enhanced Raman Scattering from a Silver-Nanoparticle-Decorated Single Silver Nanowire. Nano Letters, 2008, 8, 3244-3247.	4.5	133
269	Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 19302-19310.	1.5	73
270	Close Encounters between Two Nanoshells. Nano Letters, 2008, 8, 1212-1218.	4.5	462
271	Polarization-Dependent Surface Enhanced Raman Scattering from Silver 1D Nanoparticle Arrays. Journal of Physical Chemistry C, 2008, 112, 11609-11613.	1.5	41
272	Ion-Specific Effects on Laser Ablation of Silver in Aqueous Electrolyte Solutions. Journal of Physical Chemistry C, 2008, 112, 4435-4443.	1.5	25
273	Surface Enhanced Raman Scattering and Resonance Elastic Scattering from Capped Single Ag Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 19866-19871.	1.5	14
274	Enhancement at the Junction of Silver Nanorods. Langmuir, 2008, 24, 8934-8938.	1.6	34
275	Combinatorial and High-Throughput Development of Sensing Materials:  The First 10 Years. Chemical Reviews, 2008, 108, 770-813.	23.0	232

#	Article	IF	CITATIONS
276	Experiment and Theoretical Study of Poly(vinyl pyrrolidone)-controlled Gold Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 15656-15664.	1.5	61
277	Finite size effects on the electromagnetic field enhancement from low-dimensional silver nanoshell dimer arrays. Journal of Chemical Physics, 2008, 129, 204506.	1.2	3
278	Near-Field Optical Imaging of Nanoscale Optical Fields and Plasmon Waves. Japanese Journal of Applied Physics, 2008, 47, 6055.	0.8	17
279	Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16448-16453.	3.3	218
280	Revisiting the separation dependent surface enhanced Raman scattering. Applied Physics Letters, 2008, 93, .	1.5	40
281	Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates. Physical Review B, 2008, 78, .	1.1	41
282	Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam. Physical Review B, 2008, 77, .	1.1	44
283	The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. Journal of Chemical Physics, 2008, 128, 094705.	1.2	109
284	Enhanced Raman scattering in colloidal photonic crystals: A theoretical analysis. Physical Review B, 2008, 77, .	1.1	10
285	Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold. Applied Physics Letters, 2008, 92, .	1.5	47
286	A double substrate "sandwich―structure for fiber surface enhanced Raman scattering detection. Applied Physics Letters, 2008, 92, .	1.5	59
287	Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles. Applied Physics Letters, 2008, 92, 093110.	1.5	35
288	Plasmon resonances in linear atomic chains: Free-electron behavior and anisotropic screening of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>d</mml:mi></mml:math> electrons. Physical Review B, 2008, 78, .	1.1	135
289	Development of Novel Near-Field Microspectroscopy and Imaging of Local Excitations and Wave Functions of Nanomaterials. Bulletin of the Chemical Society of Japan, 2008, 81, 659-675.	2.0	38
290	Near-Field Raman Imaging and Electromagnetic Field Confinement in the Self-Assembled Monolayer Array of Gold Nanoparticles. Langmuir, 2008, 24, 9241-9244.	1.6	41
291	Fiber surface enhanced raman scattering (SERS) sensors based on a double substrate "sandwich" structure. , 2008, , .		0
292	Imaging of Plasmon Wavefunctions in Noble Metal Nanoparticles by Near-field Optical Microscopy. Hyomen Kagaku, 2008, 29, 336-343.	0.0	0
293	Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering. Applied Physics Letters, 2009, 94, .	1.5	72

#	Article	IF	CITATIONS
294	High surface-enhanced Raman scattering activity from Au-decorated individual and branched tin oxide nanowires. Journal of Applied Physics, 2009, 106, .	1.1	17
295	The role of the nanospine in the nanocomb arrays for surface enhanced Raman scattering. Applied Physics Letters, 2009, 94, .	1.5	12
296	Electronic Coupling and Optimal Gap Size between Two Metal Nanoparticles. Physical Review Letters, 2009, 102, 186804.	2.9	28
297	Structural Characterization and Photoelectrochemical Properties of Gold Nanoparticle Multistructures Prepared by Layer-by-Layer Deposition. Japanese Journal of Applied Physics, 2009, 48, 04C132.	0.8	13
298	Field-Enhanced Phenomena of Gold Nanoparticles. Journal of Physical Chemistry A, 2009, 113, 4416-4422.	1.1	25
299	Near-field investigations of nanoshell cylinder dimers. Journal of Chemical Physics, 2009, 131, 164704.	1.2	22
300	Phenomenological local field enhancement factor distributions around electromagnetic hot spots. Journal of Chemical Physics, 2009, 130, 181101.	1.2	55
301	Spectroscopic Imaging with Nanometer Resolution Using Near-Field Methods. , 0, , 473-499.		1
302	Nanoporous Copper with Tunable Nanoporosity for SERS Applications. Advanced Functional Materials, 2009, 19, 1221-1226.	7.8	336
303	Bioimaging with Twoâ€Photonâ€Induced Luminescence from Triangular Nanoplates and Nanoparticle Aggregates of Gold. Advanced Materials, 2009, 21, 2309-2313.	11.1	67
304	Highly Surfaceâ€roughened "Flowerâ€like―Silver Nanoparticles for Extremely Sensitive Substrates of Surfaceâ€enhanced Raman Scattering. Advanced Materials, 2009, 21, 4614-4618.	11.1	361
305	Singleâ€Domain Antibodyâ€Conjugated Nanoaggregateâ€Embedded Beads for Targeted Detection of Pathogenic Bacteria. Chemistry - A European Journal, 2009, 15, 9330-9334.	1.7	60
306	Size Effect of 3D Aggregates Assembled from Silver Nanoparticles on Surfaceâ€Enhanced Raman Scattering. ChemPhysChem, 2009, 10, 537-542.	1.0	26
307	Plasmonic nanoprobes for SERS biosensing and bioimaging. Journal of Biophotonics, 2010, 3, 89-102.	1.1	187
308	Sizeâ€dependent SERS enhancement of colloidal silver nanoplates: the case of 2â€aminoâ€5â€nitropyridine. Journal of Raman Spectroscopy, 2009, 40, 183-190.	1.2	57
309	Direct observation of surfaceâ€enhanced Raman scattering in ZnO nanocrystals. Journal of Raman Spectroscopy, 2009, 40, 1072-1077.	1.2	220
310	A highâ€ŧhroughput method for controlled hotâ€spot fabrication in SERSâ€active gold nanoparticle dimer arrays. Journal of Raman Spectroscopy, 2009, 40, 2171-2175.	1.2	91
311	Electromagnetic field enhancement in TERS configurations. Journal of Raman Spectroscopy, 2009, 40, 1343-1348.	1.2	187

#	Article	IF	CITATIONS
312	Aligned Nanorod Arrays: Additive and Emergent Properties. Journal of Cluster Science, 2009, 20, 429-451.	1.7	17
313	Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2009, 394, 1819-1825.	1.9	176
314	Surface-enhanced Raman scattering as a tool to probe cytochrome P450-catalysed substrate oxidation. Analytical and Bioanalytical Chemistry, 2009, 394, 1797-1801.	1.9	7
315	Plasmonics for near-field nano-imaging and superlensing. Nature Photonics, 2009, 3, 388-394.	15.6	705
316	Spectroscopic studies of plasmonic interactions in colloidal dimers fabricated by convective-capillary force assembly. Microelectronic Engineering, 2009, 86, 1089-1092.	1.1	20
317	Investigation on bonding interaction of benzonitrile with silver nano particles probed by surface enhanced Raman scattering and quantum chemical calculations. Chemical Physics, 2009, 355, 14-20.	0.9	15
318	Surface enhanced Raman spectroscopy of aromatic compounds on silver nanoclusters. Surface Science, 2009, 603, 788-793.	0.8	40
319	Surface-enhanced Raman scattering of 4,4′-bipyridine on silver by density functional theory calculations. Vibrational Spectroscopy, 2009, 49, 118-123.	1.2	19
320	Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst. Journal of Hazardous Materials, 2009, 170, 1110-1118.	6.5	280
321	Surface-enhanced Raman scattering from a single molecularly bridged silver nanoparticle aggregate. Journal of Molecular Structure, 2009, 924-926, 567-570.	1.8	28
322	Aligned silver nanorod arrays for surface-enhanced Raman spectroscopy. Physica B: Condensed Matter, 2009, 404, 1523-1526.	1.3	16
323	Effect of concentration of methanol for the control of particle size and size-dependent SERS studies. Journal of Colloid and Interface Science, 2009, 333, 699-706.	5.0	12
324	Nano-textured metallic surfaces for optical sensing and detection applications. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 126-134.	2.0	36
325	Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures. Progress in Surface Science, 2009, 84, 199-229.	3.8	66
326	Effect of layer structures of gold nanoparticle films on surface enhanced Raman scattering. Analytica Chimica Acta, 2009, 649, 111-116.	2.6	39
327	Electron Energy-Loss Spectroscopy (EELS) of Surface Plasmons in Single Silver Nanoparticles and Dimers: Influence of Beam Damage and Mapping of Dark Modes. ACS Nano, 2009, 3, 3015-3022.	7.3	322
328	Plasmonic Control of the Shape of the Raman Spectrum of a Single Molecule in a Silver Nanoparticle Dimer. ACS Nano, 2009, 3, 1988-1994.	7.3	111
329	Acousto-plasmonic Hot Spots in Metallic Nano-Objects. Nano Letters, 2009, 9, 3732-3738.	4.5	43

#	Article	IF	CITATIONS
330	Dithiocarbamate-Coated SERS Substrates: Sensitivity Gain by Partial Surface Passivation. Langmuir, 2009, 25, 13833-13839.	1.6	61
331	High-Fidelity Nano-Hole-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 11190-11197.	1.5	29
332	Surface Plasmon Excitation and Surface-Enhanced Raman Scattering Using Two-Dimensionally Close-Packed Gold Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 11689-11694.	1.5	24
333	Near-Infrared Continuous-Wave Light Driving a Two-Photon Photochromic Reaction with the Assistance of Localized Surface Plasmon. Journal of the American Chemical Society, 2009, 131, 12623-12627.	6.6	128
334	Surface-Enhanced Raman Scattering inside Metal Nanoshells. Journal of the American Chemical Society, 2009, 131, 3808-3809.	6.6	84
335	Surface-Coverage Dependence of Surface-Enhanced Raman Scattering from Gold Nanocubes on Self-Assembled Monolayers of Analyte. Journal of Physical Chemistry A, 2009, 113, 3973-3978.	1.1	85
336	Wavelength-Dependent Surface-Enhanced Resonance Raman Scattering by Excitation of a Transverse Localized Surface Plasmon. Journal of Physical Chemistry C, 2009, 113, 11877-11883.	1.5	5
337	Enhancement of optical properties of nanoscaled objects by metal nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2009, 26, B83.	0.9	79
338	Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). Optics Express, 2009, 17, 3741.	1.7	219
339	Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17, 13532.	1.7	74
339 340	Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17, 13532. Understanding near/far-field engineering of optical dimer antennas through geometry modification. Optics Express, 2009, 17, 21228.	1.7 1.7	74 35
339 340 341	Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17, 13532. Understanding near/far-field engineering of optical dimer antennas through geometry modification. Optics Express, 2009, 17, 21228. Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing. ACS Nano, 2009, 3, 1231-1237.	1.7 1.7 7.3	74 35 325
339340341342	Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17, 13532. Understanding near/far-field engineering of optical dimer antennas through geometry modification. Optics Express, 2009, 17, 21228. Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing. ACS Nano, 2009, 3, 1231-1237. Perchlorate Detection at Nanomolar Concentrations by Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2009, 63, 98-102.	1.7 1.7 7.3 1.2	74 35 325 58
 339 340 341 342 343 	Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17, 13532. Understanding near/far-field engineering of optical dimer antennas through geometry modification. Optics Express, 2009, 17, 21228. Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing. ACS Nano, 2009, 3, 1231-1237. Perchlorate Detection at Nanomolar Concentrations by Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2009, 63, 98-102. Aggregation of Gold Nanoframes Reduces, Rather Than Enhances, SERS Efficiency Due to the Trade-Off of the Inter- and Intraparticle Plasmonic Fields. Nano Letters, 2009, 9, 3025-3031.	1.7 1.7 7.3 1.2 4.5	74 35 325 58 119
 339 340 341 342 343 344 	Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17, 13532. Understanding near/far-field engineering of optical dimer antennas through geometry modification. Optics Express, 2009, 17, 21228. Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing. ACS Nano, 2009, 3, 1231-1237. Perchlorate Detection at Nanomolar Concentrations by Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2009, 63, 98-102. Aggregation of Cold Nanoframes Reduces, Rather Than Enhances, SERS Efficiency Due to the Trade-Off of the Inter- and Intraparticle Plasmonic Fields. Nano Letters, 2009, 9, 3025-3031. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. Journal of the American Chemical Society, 2009, 131, 14466-14472.	1.7 1.7 7.3 1.2 4.5 6.6	74 35 325 58 119 426
 339 340 341 342 343 344 345 	Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17, 13532. Understanding near/far-field engineering of optical dimer antennas through geometry modification. Optics Express, 2009, 17, 21228. Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing, ACS Nano, 2009, 3, 1231-1237. Perchlorate Detection at Nanomolar Concentrations by Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2009, 63, 98-102. Aggregation of Gold Nanoframes Reduces, Rather Than Enhances, SERS Efficiency Due to the Trade-Off of the Inter- and Intraparticle Plasmonic Fields. Nano Letters, 2009, 9, 3025-3031. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. Journal of the American Chemical Society, 2009, 131, 14466-14472. Plasmon-Enhanced Photocurrent Generation from Self-Assembled Monolayers of Phthalocyanine by Using Gold Nanoparticle Films. Langmuir, 2009, 25, 3887-3893.	1.7 1.7 7.3 1.2 4.5 6.6	 74 35 325 58 119 426 56
 339 340 341 342 343 344 345 346 	Purcell effect of nanoshell dimer on single molecule's fluorescence. Optics Express, 2009, 17, 13532. Understanding near/far-field engineering of optical dimer antennas through geometry modification. Optics Express, 2009, 17, 21228. Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing. ACS Nano, 2009, 3, 1231-1237. Perchlorate Detection at Nanomolar Concentrations by Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2009, 63, 98-102. Aggregation of Cold Nanoframes Reduces, Rather Than Enhances, SERS Efficiency Due to the Trade-Off of the Inter- and Intraparticle Plasmonic Fields. Nano Letters, 2009, 9, 3025-3031. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. Journal of the American Chemical Society, 2009, 131, 14466-14472. Plasmon-Enhanced Photocurrent Generation from Self-Assembled Monolayers of Phthalocyanine by Using Cold Nanoparticle Films. Langmuir, 2009, 25, 3887-3893. Remote-Excitation Surface-Enhanced Raman Scattering Using Propagating Ag Nanowire Plasmons. Nano Letters, 2009, 9, 2049-2053.	1.7 1.7 7.3 1.2 4.5 6.6 1.6 4.5	 74 35 325 58 119 426 56 209

#	Article	IF	CITATIONS
348	Nanostructured Gold Films for SERS by Block Copolymer-Templated Galvanic Displacement Reactions. Nano Letters, 2009, 9, 2384-2389.	4.5	133
349	Surface-Enhanced Raman Spectroscopy of Benzenethiol Adsorbed from the Gas Phase onto Silver Film over Nanosphere Surfaces: Determination of the Sticking Probability and Detection Limit Time. Journal of Physical Chemistry A, 2009, 113, 4581-4586.	1.1	141
350	Surface Enhanced Raman Scattering from an Ag Nanorod Array Substrate: The Site Dependent Enhancement and Layer Absorbance Effect. Journal of Physical Chemistry C, 2009, 113, 9664-9669.	1.5	63
351	Ag@SiO2 Coreâ^'Shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering. ACS Nano, 2009, 3, 3493-3496.	7.3	119
352	The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. Nanotechnology, 2009, 20, 245606.	1.3	58
353	A novel reversed reporting agent method for surface-enhanced Raman scattering; highly sensitive detection of glutathione in aqueous solutions. Analyst, The, 2009, 134, 2468.	1.7	45
354	Novel Approach for the Assembly of Highly Efficient SERS Substrates. ACS Applied Materials & Interfaces, 2009, 1, 2544-2550.	4.0	42
355	A Green Chemistry Approach for the Synthesis of Flower-like Ag-Doped MnO ₂ Nanostructures Probed by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 1386-1392.	1.5	111
356	STM fluorescence of porphyrin enhanced by a strong plasmonic field and its nanoscale confinement in an STM cavity. Physical Review B, 2009, 79, .	1.1	29
357	Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule. Journal of the American Chemical Society, 2009, 131, 849-854.	6.6	294
358	Controllable Nanofabrication of Aggregate-like Nanoparticle Substrates and Evaluation for Surface-Enhanced Raman Spectroscopy. ACS Nano, 2009, 3, 3845-3853.	7.3	70
359	Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Physical Review B, 2009, 79, .	1.1	104
360	Aggregation Kinetics of Gold Nanoparticles at the Silicaâ^'Water Interface. Journal of Physical Chemistry C, 2009, 113, 5514-5519.	1.5	9
361	Fano Resonances in Individual Coherent Plasmonic Nanocavities. Nano Letters, 2009, 9, 1663-1667.	4.5	665
362	Metallization of Silicon Nanowires and SERS Response from a Single Metallized Nanowire. Chemistry of Materials, 2009, 21, 3542-3548.	3.2	67
363	Coreâ^'Shell Nanopillars of Fullerene C ₆₀ /C ₇₀ Loading with Colloidal Au Nanoparticles: A Raman Scattering Investigation. Journal of Physical Chemistry A, 2009, 113, 9612-9616.	1.1	15
364	High-throughput fabrication of nanoantennae over large areas for biosensing and nanospectroscopy. Applied Physics Letters, 2009, 95, 231903.	1.5	4
365	Mode-Selective Surface-Enhanced Raman Spectroscopy Using Nanofabricated Plasmonic Dipole Antennas. Journal of Physical Chemistry C, 2009, 113, 14672-14675.	1.5	83

#	Article	IF	CITATIONS
366	Influence of Photostability on Single-Molecule Surface Enhanced Raman Scattering Enhancement Factors. Analytical Chemistry, 2009, 81, 682-688.	3.2	71
367	Decoration of Gold Nanoparticles on Surface-Grown Single-Walled Carbon Nanotubes for Detection of Every Nanotube by Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2009, 131, 14310-14316.	6.6	97
368	Stabilizing single-molecular Raman spectrum of a nonbonding molecule on Ag nanoparticles. Chemical Communications, 2009, , 1342.	2.2	18
369	Detection of Staphylococcus aureus using hydrothermally roughened substrates. , 2009, , .		1
370	Mixed Monolayers on Gold Nanoparticle Labels for Multiplexed Surface-Enhanced Raman Scattering Based Immunoassays. Analytical Chemistry, 2009, 81, 9643-9650.	3.2	120
371	Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays. ACS Nano, 2009, 3, 1190-1202.	7.3	375
372	Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing. ACS Nano, 2009, 3, 643-652.	7.3	469
373	Raman Spectroelectrochemistry of Molecules within Individual Electromagnetic Hot Spots. Journal of the American Chemical Society, 2009, 131, 14390-14398.	6.6	87
374	Near-Field Enhancement of Multipole Plasmon Resonances in Ag and Au Nanowires. Journal of Physical Chemistry A, 2009, 113, 4489-4497.	1.1	43
375	Surface-Enhanced Raman Scattering Enhancement by Aggregated Silver Nanocube Monolayers Assembled by the Langmuirâ^Blodgett Technique at Different Surface Pressures. Journal of Physical Chemistry C, 2009, 113, 5493-5501.	1.5	122
376	Multiple-Particle Nanoantennas for Enormous Enhancement and Polarization Control of Light Emission. ACS Nano, 2009, 3, 637-642.	7.3	137
377	Identification of Thiacyanine J-aggregates Adsorbed on Single Silver Nanoaggregates by Surface-Enhanced Raman Scattering and Emission Spectroscopy. Bulletin of the Chemical Society of Japan, 2009, 82, 1126-1132.	2.0	13
378	Control light propagation and polarization with plasmons for surface-enhanced Raman scattering. , 2009, , .		0
379	Propagating plasmons on silver nanowires. , 2010, , .		0
380	Engineering photonic-plasmonic aperiodic surfaces for optical biosensing. Proceedings of SPIE, 2010, ,	0.8	0
381	Controlling plasmonic resonances in binary metallic nanostructures. Journal of Applied Physics, 2010, 107, .	1.1	4
382	Near-field characterization of the optical properties in higher order plasmonic resonances. Proceedings of SPIE, 2010, , .	0.8	0
383	Electromagnetic forces on plasmonic nanoparticles induced by fast electron beams. Physical Review B, 2010, 82, .	1.1	36

#	Article	IF	CITATIONS
384	Charge-Transfer Enhancement Involved in the SERS of Adenine on Rh and Pd Demonstrated by Ultraviolet to Visible Laser Excitation. Journal of Physical Chemistry C, 2010, 114, 16588-16595.	1.5	63
385	Controlled Synthesis of Uniform Silver Nanospheres. Journal of Physical Chemistry C, 2010, 114, 7427-7431.	1.5	116
386	Single-Molecule Raman Spectroscopy: A Probe of Surface Dynamics and Plasmonic Fields. Accounts of Chemical Research, 2010, 43, 1135-1143.	7.6	107
387	Controlling near-field optical intensities in metal nanoparticle systems by polarization pulse shaping. Applied Physics B: Lasers and Optics, 2010, 100, 195-206.	1.1	3
388	Fluorescence enhancement of acridine orange in a water solution by Au nanoparticles. Science China: Physics, Mechanics and Astronomy, 2010, 53, 1799-1804.	2.0	13
389	Surface-enhanced Raman scattering on dual-layer metallic grating structures. Science Bulletin, 2010, 55, 2643-2648.	1.7	9
390	Infrared phononic nanoantennas: Localized surface phonon polaritons in SiC disks. Science Bulletin, 2010, 55, 2625-2628.	1.7	11
391	FDTD for plasmonics: Applications in enhanced Raman spectroscopy. Science Bulletin, 2010, 55, 2635-2642.	1.7	61
392	Near-field coupling and SERS effects of palladium nanoparticle dimers. Science Bulletin, 2010, 55, 2930-2936.	1.7	6
393	Chemical sensing based on the plasmonic response of nanoparticle aggregation: anion sensing in nanoparticles stabilized by amino-functional ionic liquid. Frontiers of Physics in China, 2010, 5, 330-336.	1.0	11
394	Surface Plasmon Resonances of Metallic Nanostars/Nanoflowers for Surface-Enhanced Raman Scattering. Plasmonics, 2010, 5, 99-104.	1.8	53
395	Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Advanced Materials, 2010, 22, 1805-1825.	11.1	909
396	Functional Nanostructured Plasmonic Materials. Advanced Materials, 2010, 22, 1102-1110.	11.1	109
398	Au Nanowire–Au Nanoparticles Conjugated System which Provides Micrometer Size Molecular Sensors. Chemistry - A European Journal, 2010, 16, 1351-1355.	1.7	31
399	Surfaceâ€enhanced Raman scattering from polystyrene on gold clusters. Journal of Raman Spectroscopy, 2010, 41, 745-751.	1.2	72
400	Siteâ€specific deposition of Ag nanoparticles on ZnO nanorod arrays via galvanic reduction and their SERS applications. Journal of Raman Spectroscopy, 2010, 41, 907-913.	1.2	54
401	A simple method for preparation of Ag nanofilm used as active, stable, and biocompatible SERS substrate by using electrostatic self-assembly. Journal of Colloid and Interface Science, 2010, 343, 52-57.	5.0	32
402	Fabrication of silver nanoparticles/single-walled carbon nanotubes composite for surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 2010, 351, 343-347.	5.0	25

#	Article	IF	CITATIONS
403	Enhancement or quenching effect of metallic nanodimer on spontaneous emission. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 454-465.	1.1	41
404	SERS-active substrates based on n-type porous silicon. Applied Surface Science, 2010, 256, 6969-6976.	3.1	69
405	Strain effects on the SERS enhancements for spherical silver nanoparticles. Nanotechnology, 2010, 21, 365704.	1.3	18
406	Influence of local environment on the intensity of the localized surface plasmon polariton of Ag nanoparticles. Chinese Physics B, 2010, 19, 047304.	0.7	11
407	Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13620-13625.	3.3	28
408	Enhancement of optical emission and absorption by metal nanoparticles. Proceedings of SPIE, 2010, , .	0.8	0
409	Molecular orbital view of the electronic coupling between two metal nanoparticles. Physical Review B, 2010, 82, .	1.1	6
410	Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures. Physical Review B, 2010, 81, .	1.1	152
411	Evanescent coupling between a Raman-active molecule and surface plasmons in ensembles of metallic nanoparticles. Physical Review B, 2010, 82, .	1.1	18
412	Spectral variations in background light emission of surface-enhanced resonance hyper Raman scattering coupled with plasma resonance of individual silver nanoaggregates. Journal of Chemical Physics, 2010, 133, 124704.	1.2	12
413	Acousto-Plasmonic Hot Spots: Driving Enhanced Raman Scattering in Metallic Nanoparticles. , 2010, , .		0
414	Spectral behavior of the linear polarization degree at right-angle scattering configuration for nanoparticle systems. New Journal of Physics, 2010, 12, 103031.	1.2	12
415	Optical Forces in Plasmonic Nanoparticle Dimers. Journal of Physical Chemistry C, 2010, 114, 7472-7479.	1.5	74
416	Highly Sensitive Surface-Enhanced Raman Scattering Substrate Made from Superaligned Carbon Nanotubes. Nano Letters, 2010, 10, 1747-1753.	4.5	157
417	Optimization of branched resonant nanostructures illuminated by a strongly focused beam. Applied Physics Letters, 2010, 97, 243103.	1.5	3
418	Leveraging Nanoscale Plasmonic Modes to Achieve Reproducible Enhancement of Light. Nano Letters, 2010, 10, 4150-4154.	4.5	145
419	Size Selection and Concentration of Silver Nanoparticles by Tangential Flow Ultrafiltration for SERS-Based Biosensors. Journal of the American Chemical Society, 2010, 132, 10970-10972.	6.6	93
420	Single-molecule surface- and tip-enhanced raman spectroscopy. Molecular Physics, 2010, 108, 2039-2059.	0.8	98

#	Article	IF	Citations
421	Gold Mesostructures with Tailored Surface Topography and Their Self-Assembly Arrays for Surface-Enhanced Raman Spectroscopy. Nano Letters, 2010, 10, 5006-5013.	4.5	295
422	Mapping the SERS Efficiency and Hot-Spots Localization on Gold Film over Nanospheres Substrates. Journal of Physical Chemistry C, 2010, 114, 11717-11722.	1.5	151
423	Tunable SERS in Gold Nanorod Dimers through Strain Control on an Elastomeric Substrate. Nano Letters, 2010, 10, 4488-4493.	4.5	186
424	Aromatic Amino Acid Monolayers Sandwiched between Gold and Silver: A Combined Tip-Enhanced Raman and Theoretical Approach. Journal of Physical Chemistry C, 2010, 114, 7412-7420.	1.5	58
425	Surface-Enhanced Raman and Resonant Rayleigh Scatterings From Adsorbate Saturated Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 7356-7363.	1.5	40
426	Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing. Journal of Physical Chemistry C, 2010, 114, 7480-7488.	1.5	105
427	Closely Adjacent Ag Nanoparticles Formed by Cationic Dyes in Solution Generating Enormous SERS Enhancement. Journal of Physical Chemistry C, 2010, 114, 7502-7508.	1.5	39
428	Exploiting SERS Hot Spots for Disease-Specific Enzyme Detection. Journal of Physical Chemistry C, 2010, 114, 7231-7235.	1.5	44
429	Multipolar Plasmon Resonances in Individual Ag Nanorice. ACS Nano, 2010, 4, 2649-2654.	7.3	146
430	Density Functional Theory Based Studies on the Nature of Raman and Resonance Raman Scattering of Nerve Agent Bound to Gold and Oxide-Supported Gold Clusters: A Plausible Way of Detection. Journal of Physical Chemistry A, 2010, 114, 4340-4353.	1.1	10
431	Enhanced Spectral Sensing by Electromagnetic Coupling With Localized Surface Plasmons on Subwavelength Structures. IEEE Sensors Journal, 2010, 10, 531-540.	2.4	43
432	Monodisperse, Micrometer-Scale, Highly Crystalline, Nanotextured Ag Dendrites: Rapid, Large-Scale, Wet-Chemical Synthesis and Their Application as SERS Substrates. ACS Applied Materials & Interfaces, 2010, 2, 2987-2991.	4.0	106
433	Aptamer-Mediated Surface-Enhanced Raman Spectroscopy Intensity Amplification. Nano Letters, 2010, 10, 4181-4185.	4.5	110
434	Electromagnetic enhancement by a single nano-groove in metallic substrate. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 1555.	0.8	18
435	Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Optics Express, 2010, 18, 165.	1.7	60
436	Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS. Optics Express, 2010, 18, 1959.	1.7	48
437	Metal Nanoparticles with Gain toward Single-Molecule Detection by Surface-Enhanced Raman Scattering. Nano Letters, 2010, 10, 243-249.	4.5	196
438	Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide. Journal of Materials Chemistry, 2010, 20, 5271.	6.7	89

#	Article	IF	CITATIONS
439	Surface-Enhanced Raman Scattering Captures Conformational Changes of Single Photoactive Yellow Protein Molecules under Photoexcitation. Journal of the American Chemical Society, 2010, 132, 429-431.	6.6	45
440	Adsorption and Aggregation Characteristics of Silver Nanoparticles onto a Poly(4-vinylpyridine) Film: A Comparison with Gold Nanoparticles. Langmuir, 2010, 26, 10827-10832.	1.6	41
441	Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering. Journal of Materials Chemistry, 2010, 20, 3688.	6.7	79
442	Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology, 2010, 21, 015604.	1.3	68
443	Dispersion in the SERS Enhancement with Silver Nanocube Dimers. ACS Nano, 2010, 4, 5763-5772.	7.3	142
444	Nanogap-Assisted Surface Plasmon Nanolithography. Journal of Physical Chemistry Letters, 2010, 1, 657-662.	2.1	94
445	Experimental Identification of Chemical Effects in Surface Enhanced Raman Scattering of 4-Aminothiophenol. Journal of Physical Chemistry C, 2010, 114, 7515-7520.	1.5	100
446	In vitro Self-Assembly of Gold Nanoparticle-Coated Poly(3-hydroxybutyrate) Granules Exhibiting Plasmon-Induced Thermo-Optical Enhancements. ACS Applied Materials & Interfaces, 2010, 2, 1804-1810.	4.0	11
447	Alignment, Rotation, and Spinning of Single Plasmonic Nanoparticles and Nanowires Using Polarization Dependent Optical Forces. Nano Letters, 2010, 10, 268-273.	4.5	244
448	Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas. Nano Letters, 2010, 10, 1006-1011.	4.5	426
449	Patterned Multiplex Pathogen DNA Detection by Au Particle-on-Wire SERS Sensor. Nano Letters, 2010, 10, 1189-1193.	4.5	351
450	Amplitude- and Phase-Resolved Near-Field Mapping of Infrared Antenna Modes by Transmission-Mode Scattering-Type Near-Field Microscopy. Journal of Physical Chemistry C, 2010, 114, 7341-7345.	1.5	91
451	Power-law statistics in blinking SERS of thiacyanine adsorbed on a single silver nanoaggregate. Physical Chemistry Chemical Physics, 2010, 12, 7457.	1.3	27
452	Electric field enhancement and concomitant Raman spectral effects at the edges of a nanometre-thin gold mesotriangle. Journal of Materials Chemistry, 2010, 20, 2108.	6.7	38
453	Numerical Studies of Metal–Dielectric–Metal Nanoantennas. IEEE Nanotechnology Magazine, 2010, 9, 701-707.	1.1	12
454	Excitation Profiles and the Continuum in SERS: Identification of Fano Line Shapes. Journal of Physical Chemistry C, 2010, 114, 7812-7815.	1.5	21
455	Fabrication and Characterization of Homogeneous Surface-Enhanced Raman Scattering Substrates by Single Pulse UV-Laser Treatment of Gold and Silver Films. Langmuir, 2010, 26, 18564-18569.	1.6	30
456	Actively Tuned Plasmons on Elastomerically Driven Au Nanoparticle Dimers. Nano Letters, 2010, 10, 1787-1792.	4.5	188

ARTICLE IF CITATIONS # Surface-enhanced Raman scattering from helical silver nanorod arrays. Chemical Communications, 457 2.2 46 2011, 47, 4466. Spectroscopy of molecular junctions. Chemical Society Reviews, 2011, 40, 2293. 18.7 Surface-enhanced Raman scattering with silver nanostructures generated in situ in a sporopollenin 459 2.2 21 biopolymer matrix. Chemical Communications, 2011, 47, 3236. High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence 460 microscopies. Journal Physics D: Applied Physics, 2011, 44, 464002. Dressing Plasmons in Particle-in-Cavity Architectures. Nano Letters, 2011, 11, 1221-1226. 461 4.5 101 Angular Distribution of Surface-Enhanced Raman Scattering from Individual Au Nanoparticle Aggregates. ACS Nano, 2011, 5, 2036-2041. 7.3 Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT 463 2.2 140 study of SERS. Chemical Communications, 2011, 47, 2520. High Tunability of the Surface-Enhanced Raman Scattering Response with a Metalâ⁻'Multiferroic 464 4.5 Composite. Nano Letters, 2011, 11, 1265-1269. Characterization of Tetrahexahedral Gold Nanocrystals: A Combined Study by Surface-Enhanced 465 Raman Spectroscopy and Computational Simulations. Journal of Physical Chemistry C, 2011, 115, 1.5 37 18061-18069. Getting a Bigger Picture in Less Time: Viewing Curriculum Reform in a Chinese Graduate Chemistry Program through the Lens of an Organic Structure Analysis Course. Journal of Chemical Education, 1.1 2011, 88, 1639-1643. Correlating Molecular Surface Coverage and Solution-Phase Nanoparticle Concentration to 467 1.5 46 Surface-Enhanced Raman Scattering Intensities. Journal of Physical Chemistry C, 2011, 115, 18511-18517. Metallic Membranes with Subwavelength Complementary Patterns: Distinct Substrates for Surface-Enhanced Raman Scattering. ACS Nano, 2011, 5, 5472-5477. Single-Step Aerosol Synthesis and Deposition of Au Nanoparticles with Controlled Size and 469 3.2 17 Separation Distributions. Chemistry of Materials, 2011, 23, 4612-4617. Surface-Enhanced Raman Spectroscopy Hot-Spots on Ostwald Ripened Silver Nanoparticles Prepared by Galvanic Displacement. Journal of Physical Chemistry C, 2011, 115, 1444-1449. 1.5 Proposed Substrates for Reproducible Surface-Enhanced Raman Scattering Detection. Journal of 471 9 1.5 Physical Chemistry C, 2011, 115, 4523-4532. Confined Optical Fields in Nanovoid Chain Structures Directly Visualized by Near-Field Optical Imaging. Journal of Physical Chemistry C, 2011, 115, 1548-1555. Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps. 473 1.2 50 New Journal of Physics, 2011, 13, 083013. Size Dependence of the Plasmon Ruler Equation for Two-Dimensional Metal Nanosphere Arrays. 474 1.5 Journal of Physical Chemistry C, 2011, 115, 15915-15926.

#	Article	IF	Citations
475	Field enhancement and rectification of surface plasmons detected by scanning tunneling microscopy. Physical Review B, 2011, 83, .	1.1	16
476	Plasmonic logic gates and devices in silver nanowire networks. Proceedings of SPIE, 2011, , .	0.8	0
477	Surface Plasmon Resonance of a Few Particles Linear Arrays. Journal of Electromagnetic Analysis and Applications, 2011, 03, 458-464.	0.1	3
478	Nanoparticle SERS substrates with 3D Raman-active volumes. Chemical Science, 2011, 2, 1435.	3.7	68
479	Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale, 2011, 3, 4042.	2.8	228
480	A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy. Nano Letters, 2011, 11, 5013-5019.	4.5	173
481	Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles. Nanotechnology, 2011, 22, 395704.	1.3	27
482	Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers. Nanotechnology, 2011, 22, 105303.	1.3	28
483	Fluorescence enhancement at hot-spots: the case of Ag nanoparticle aggregates. Physical Chemistry Chemical Physics, 2011, 13, 16366.	1.3	64
484	Raman Markers from Silver Nanowire Crossbars. Journal of Physical Chemistry C, 2011, 115, 4387-4394.	1.5	31
485	Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chemical Reviews, 2011, 111, 3888-3912.	23.0	1,224
486	Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures. Journal of Materials Chemistry, 2011, 21, 2495-2501.	6.7	106
487	Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles. Chemical Communications, 2011, 47, 3505.	2.2	86
488	Surface-enhanced Raman scattering using silver nanocluster on anodic aluminum oxide template sensor toward protein detection. Biomedizinische Technik, 2011, 56, 235-240.	0.9	5
489	Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles. Chemical Society Reviews, 2011, 40, 1296-1304.	18.7	185
490	Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[<i>n</i>]uril "Glue― ACS Nano, 2011, 5, 3878-3887.	7.3	322
491	Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Expanding the Versatility of Surface-Enhanced Raman Scattering. Annual Review of Analytical Chemistry, 2011, 4, 129-150.	2.8	177
492	Photonic Nanoparticles for Cellular and Tissular Labeling. , 2011, , 59-104.		1

#	Article	IF	CITATIONS
493	Optical Properties and Surface Enhanced Raman Scattering of L-Shaped Silver Nanorod Arrays. Journal of Physical Chemistry C, 2011, 115, 14131-14140.	1.5	26
494	Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews, 2011, 111, 3913-3961.	23.0	2,663
495	Layer-multiple-scattering theory for metamaterials made from clusters of nanoparticles. Physical Review B, 2011, 84, .	1.1	18
496	Coupled subwavelength gratings for surface-enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 10946.	1.3	5
497	Silver Nanoparticles Coated Zinc Oxide Nanorods Array as Superhydrophobic Substrate for the Amplified SERS Effect. Journal of Physical Chemistry C, 2011, 115, 9977-9983.	1.5	118
498	Electromagnetic enhancement by a periodic array of nanogrooves in a metallic substrate. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 879.	0.8	17
499	Elucidation of Electrostatic Interaction between Cationic Dyes and Ag Nanoparticles Generating Enormous SERS Enhancement in Aqueous Solution. Journal of Physical Chemistry C, 2011, 115, 5271-5279.	1.5	50
500	Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation. Optics Express, 2011, 19, 10049.	1.7	19
501	Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces. Optics Express, 2011, 19, 12208.	1.7	28
502	Nanoplasmonics: past, present, and glimpse into future. Optics Express, 2011, 19, 22029.	1.7	978
503	Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives. Talanta, 2011, 83, 1023-1029.	2.9	76
504	Design and Implementation of Noble Metal Nanoparticle Cluster Arrays for Plasmon Enhanced Biosensing. Journal of Physical Chemistry C, 2011, 115, 24437-24453.	1.5	96
505	Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Reviews, 2011, 2, 5883.	3.7	373
506	Surface-Enhanced Raman Scattering Sensors based on Hybrid Nanoparticles. , 2011, , .		2
507	Electrochemical and optical biosensors based on nanomaterials and nanostructures: A Review. Frontiers in Bioscience - Scholar, 2011, S3, 1308.	0.8	52
508	Linear and nonlinear phenomena with resonating surface polariton waves and their applications. , 0, , 386-426.		1
509	Nanofocusing of mid-infrared energy with tapered transmission lines. Nature Photonics, 2011, 5, 283-287.	15.6	203
510	Apertureless near-field optical microscopy: Differences between heterodyne interferometric and non-interferometric images. Ultramicroscopy, 2011, 111, 1469-1474.	0.8	9

#	Article	IF	CITATIONS
511	Plasmon Enhancement of Luminescence by Metal Nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 110-118.	1.9	36
512	Plasmonic coupling in nondipolar gold colloidal dimers. Applied Physics Letters, 2011, 98, .	1.5	25
513	Surface-enhanced Raman scattering (SERS) based on surface plasmon resonance coupling techniques. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 341-354.	0.4	5
514	Synthesis by pulsed laser ablation in Ar and SERS activity of silver thin films with controlled nanostructure. Laser Physics, 2011, 21, 818-822.	0.6	18
515	Recent advancements in optical DNA biosensors: Exploiting the plasmonic effects of metal nanoparticles. Analyst, The, 2011, 136, 436-447.	1.7	121
516	Ultrafast Dynamics of Surface-Enhanced Raman Scattering Due to Au Nanostructures. Nano Letters, 2011, 11, 2648-2654.	4.5	39
517	An improved method of protein localization in artworks through SERS nanotag-complexed antibodies. Analytical and Bioanalytical Chemistry, 2011, 399, 2997-3010.	1.9	41
518	Self-assembled synthesis of Ag nanodendrites and their applications to SERS. Journal of Molecular Structure, 2011, 997, 64-69.	1.8	17
519	Advances of multiplex and high throughput biomolecular detection technologies based on encoding microparticles. Science China Chemistry, 2011, 54, 1185.	4.2	11
520	Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons. Frontiers of Physics, 2011, 6, 313-319.	2.4	1
521	Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles. Plasmonics, 2011, 6, 113-124.	1.8	31
522	Theoretical Analysis the Optical Properties of Multi-coupled Silver Nanoshell Particles. Plasmonics, 2011, 6, 705-713.	1.8	16
523	Multiple metallic-shell nanocylinders for surface-enhanced spectroscopes. Nanoscale Research Letters, 2011, 6, 173.	3.1	9
524	Surfaceâ€enhanced Raman scattering from gold deposited mesoporous silicon. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1471-1474.	0.8	8
525	Carbon Nanotubeâ€Tipped Endoscope for In Situ Intracellular Surfaceâ€Enhanced Raman Spectroscopy. Small, 2011, 7, 540-545.	5.2	54
526	pHâ€Triggered SERS via Modulated Plasmonic Coupling in Individual Bimetallic Nanocobs. Small, 2011, 7, 1192-1198.	5.2	40
527	Lithographically Fabricated Optical Antennas with Gaps Well Below 10 nm. Small, 2011, 7, 1761-1766.	5.2	128
528	Combining a Nanowire SERRS Sensor and a Target Recycling Reaction for Ultrasensitive and Multiplex Identification of Pathogenic Fungi. Small, 2011, 7, 3371-3376.	5.2	45

ARTICLE IF CITATIONS Fast and Costâ€Effective Purification of Gold Nanoparticles in the 20–250 nm Size Range by Continuous 529 5.2 20 Density Gradient Centrifugation. Small, 2011, 7, 2443-2448. Plasmonic Coupling Interference (PCI) Nanoprobes for Nucleic Acid Detection. Small, 2011, 7, 3067-3074. 5.2 531 In‧itu Partial Sintering of Goldâ€Nanoparticle Sheets for SERS Applications. Small, 2011, 7, 3487-3492. 5.2 16 Surfaceâ€enhanced Raman scattering study of human serum on PVAAg nanofilm prepared by using 1.2 electrostatic selfâ€essembly. Journal of Raman Spectroscopy, 2011, 42, 137-144. Singleâ€molecule surfaceâ€enhanced Raman scattering of fullerene C₆₀. Journal of Raman 533 1.2 19 Spectroscopy, 2011, 42, 319-323. Design of plasmonic bowtie nanoring array with high sensitivity and reproducibility for 534 1.2 surfaceâ€enhanced Raman scattering spectroscopy. Journal of Raman Spectroscopy, 2011, 42, 1263-1266. SERS activity of pulsed laser ablated silver thin films with controlled nanostructure. Journal of 535 1.2 34 Raman Spectroscopy, 2011, 42, 1298-1304. Surfaceâ€enhanced Raman spectroscopy of genomic DNA from <i>in vitro</i> grown plant species. Journal of Raman Spectroscopy, 2011, 42, 1925-1931. 536 1.2 537 Reversible Tuning of SERS Hot Spots with Aptamers. Advanced Materials, 2011, 23, 4152-4156. 11.1 75 Longâ€Term Stable Silver Subsurface Ionâ€Exchanged Glasses for SERS Applications. ChemPhysChem, 2011, 540 1.0 12, 1683-1688. Controlled Synthesis of Ag/Ag/C Hybrid Nanostructures and their Surfaceâ€Enhanced Raman Scattering 541 9 1.7 Properties. Chemistry - A European Journal, 2011, 17, 13386-13390. Improved surface-enhanced Raman scattering of patterned gold nanoparticles deposited on silicon nanoporous pillar arrays. Applied Surface Science, 2011, 257, 8089-8092. 3.1 Surface-enhanced Raman scattering of size-selected polyynes (C8H2) adsorbed on silver colloidal 543 1.2 13 nanoparticles. Chemical Physics Letters, 2011, 503, 118-123. A simple method to fabricate silver colloid clusters for surface-enhanced Raman scattering. Chemical 544 1.2 14 Physics Letters, 2011, 511, 121-125. Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron, 2011, 42, 545 140 1.1 207-227. Experimental indication of chemical effects in surface enhanced hyper Rayleigh scattering using 546 dye-adsorbed Ag nanoparticles. Optical Materials, 2011, 33, 920-923. Spatial distribution of enhanced optical fields in monolayered assemblies of metal nanoparticles: 547 Effects of interparticle coupling. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 2.0 10 154-159. Experimental demonstration of the electromagnetic mechanism underlying surface enhanced Raman 548 scattering using single nanoparticle spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 167-179.

#	Article	IF	CITATIONS
549	Detection of adsorption sites at the gap of a hetero-metal nano-dimer at the single molecule level. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 169-174.	2.0	21
550	Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 42-48.	1.0	18
551	Quantitative surface enhanced Raman scattering detection based on the "sandwich―structure substrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 625-630.	2.0	27
552	Tip-enhanced photoluminescence mapping of InGaN thin film. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 808-810.	1.3	2
553	Detecting very small quantity of molecular probes in solution using nano-mechanically made Au-cavities array with SERS-active effect. Sensors and Actuators B: Chemical, 2011, 153, 271-276.	4.0	11
554	Formation of single-domain homogeneous Au nanoparticle monolayer at the water/oil interface and its application to surface-enhanced Raman scattering. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 021801.	0.6	1
555	Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: A transformation optics approach. Physical Review B, 2011, 83, .	1.1	45
556	Portable surface-enhanced Raman spectroscopy for insecticide detection using silver nanorod film fabricated by magnetron sputtering. Proceedings of SPIE, 2011, , .	0.8	6
557	The edges and terrace effect of Ag particles on optical resonance absorption property. Chinese Physics B, 2011, 20, 097301.	0.7	0
558	Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire. Journal of Nanomaterials, 2012, 2012, 1-9.	1.5	3
559	Plasmonic excitation and manipulation with an electron beam. MRS Bulletin, 2012, 37, 752-760.	1.7	42
560	Near-field properties of a shell nanocylinder pair with gain materials. Chinese Physics B, 2012, 21, 117302.	0.7	0
561	Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis. Journal of Biomedical Optics, 2012, 17, 067003.	1.4	48
562	A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion. Optics Express, 2012, 20, 524.	1.7	28
563	Optimized plasmonic nanostructures for improved sensing activities. Optics Express, 2012, 20, 21278.	1.7	36
564	A combination of concave/convex surfaces for field-enhancement optimization: the indented nanocone. Optics Express, 2012, 20, 25201.	1.7	11
565	ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study. Journal of Applied Physics, 2012, 111, 033104.	1.1	31
566	Enhanced Raman scattering mediated by long wave vector surface plasmon polaritons. Physical Review B, 2012, 85, .	1.1	4

		CITATION REPORT		
#	Article		IF	CITATIONS
567	Actively tunable bistable optical Yagi-Uda nanoantenna. Optics Express, 2012, 20, 892	9.	1.7	58
568	Quantitative evaluation of blinking in surface enhanced resonance Raman scattering a fluorescence by electromagnetic mechanism. Journal of Chemical Physics, 2012, 136, 0	nd)24703.	1.2	72
569	TE-Wave Propagation through 2D Array of Metal Nanocylinders. Solid State Phenomen	a, 0, 190, 577-580.	0.3	2
570	Ecofriendly Synthesis of Anisotropic Gold Nanoparticles: A Potential Candidate of SERS International Journal of Electrochemistry, 2012, 2012, 1-6.	Studies.	2.4	14
571	Raman Spectroscopy for Homeland Security Applications. International Journal of Spec 2012, 1-12.	troscopy, 2012,	1.4	44
572	Controllable Excitation of Surface Plasmons in End-to-Trunk Coupled Silver Nanowire S Chinese Physics Letters, 2012, 29, 077302.	tructures.	1.3	7
573	Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circui Nanophotonics, 2012, 1, 155-169.	ts.	2.9	111
574	Selective transfer of nanostructured assemblies onto an arbitrary substrate by nanoim Proceedings of SPIE, 2012, , .	printing.	0.8	0
575	Biological Applications of SERS Using Functional Nanoparticles. ACS Symposium Series	s, 2012, , 181-234.	0.5	7
576	Simple Composite Dipole Model for the Optical Modes of Strongly-Coupled Plasmonic Aggregates. Journal of Physical Chemistry C, 2012, 116, 25044-25051.	Nanoparticle	1.5	35
577	Engineering Through Mode Shaping and Lithographical Nanofabrication of Ultrasensiti Nano-plasmonic Sensors for Molecular Detection. , 2012, , 267-287.	ve		1
578	Shedding Light on Surface-Enhanced Raman Scattering Hot Spots through Single-Mole Super-Resolution Imaging. Journal of Physical Chemistry Letters, 2012, 3, 1286-1294.	cule	2.1	80
579	How Chain Plasmons Govern the Optical Response in Strongly Interacting Self-Assemb Clusters of Nanoparticles. Langmuir, 2012, 28, 8881-8890.	led Metallic	1.6	77
580	Plasmonic Systems Unveiled by Fano Resonances. ACS Nano, 2012, 6, 1830-1838.		7.3	172
581	Label-free detection of proteins from dried-suspended droplets using surface enhanced scattering. Analyst, The, 2012, 137, 2651.	l Raman	1.7	52
582	Bridging quantum and classical plasmonics with a quantum-corrected model. Nature Communications, 2012, 3, 825.		5.8	797
583	Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity Reproducibility. ACS Nano, 2012, 6, 249-255.	and Excellent	7.3	281
584	High electric field enhancement near electron-doped semiconductor nanoribbons. Che Letters, 2012, 546, 99-105.	mical Physics	1.2	0

#	Article	IF	CITATIONS
585	Tailored SERS substrates obtained with cathodic arc plasma ion implantation of gold nanoparticles into a polymer matrix. Physical Chemistry Chemical Physics, 2012, 14, 2050.	1.3	21
586	Nanoscale interference patterns of gap-mode multipolar plasmonic fields. Scientific Reports, 2012, 2, 764.	1.6	40
587	Controlling surface plasmon interference in branched silver nanowire structures. Nanoscale, 2012, 4, 7149.	2.8	26
588	Single-step multiplex detection of toxic metal ions by Au nanowires-on-chip sensor using reporter elimination. Lab on A Chip, 2012, 12, 3077.	3.1	62
589	Gravure printed surface enhanced Raman spectroscopy (SERS) substrates for detection of toxic heavy metal compounds. , 2012, , .		0
590	Size-Dependent Validity Bounds on the Universal Plasmon Ruler for Metal Nanostructure Dimers. Journal of Physical Chemistry C, 2012, 116, 18944-18951.	1.5	15
591	Rational Design of Plasmonic Nanostructures for Biomolecular Detection: Interplay between Theory and Experiments. ACS Nano, 2012, 6, 3441-3452.	7.3	47
592	Interface synthesis of gold mesocrystals with highly roughened surfaces for surface-enhanced Raman spectroscopy. Journal of Materials Chemistry, 2012, 22, 1998-2006.	6.7	81
593	Revealing Plasmonic Gap Modes in Particle-on-Film Systems Using Dark-Field Spectroscopy. ACS Nano, 2012, 6, 1380-1386.	7.3	167
594	Fabrication of Deterministic Nanostructure Assemblies with Sub-nanometer Spacing Using a Nanoimprinting Transfer Technique. ACS Nano, 2012, 6, 6446-6452.	7.3	42
595	Tunable Plasmons in Shallow Silver Nanowell Arrays for Directional Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2012, 116, 23608-23615.	1.5	17
596	Three Dimensional Design of Large-Scale TiO ₂ Nanorods Scaffold Decorated by Silver Nanoparticles as SERS Sensor for Ultrasensitive Malachite Green Detection. ACS Applied Materials & Interfaces, 2012, 4, 3432-3437.	4.0	187
597	Single-Molecule Surface-Enhanced Raman Scattering: Can STEM/EELS Image Electromagnetic Hot Spots?. Journal of Physical Chemistry Letters, 2012, 3, 2303-2309.	2.1	62
598	Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nature Communications, 2012, 3, 684.	5.8	207
599	Graphene-Enabled Silver Nanoantenna Sensors. Nano Letters, 2012, 12, 4090-4094.	4.5	168
600	Tuning and Maximizing the Single-Molecule Surface-Enhanced Raman Scattering from DNA-Tethered Nanodumbbells. ACS Nano, 2012, 6, 9574-9584.	7.3	134
601	Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array. Applied Surface Science, 2012, 258, 5881-5885.	3.1	97
602	Electromagnetic Enhancement by a T-shaped Metallic Nanogroove: Impact of Surface Plasmon Polaritons and Other Surface Waves. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1669-1675.	1.9	4

	CHAIG	ON REPORT	
#	Article	IF	CITATIONS
603	Super-SERS-active and highly effective antimicrobial Ag nanodendrites. Nanoscale, 2012, 4, 5082.	2.8	51
604	Laser fabricated ripple substrates for surfaceâ€enhanced Raman scattering. Annalen Der Physik, 2012, 524, L5.	0.9	74
605	SERS Hot Spots. , 2012, , 215-260.		39
606	Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chemical Society Reviews, 2012, 41, 5780.	18.7	83
607	Single-Molecule Surface-Enhanced Raman Spectroscopy. Annual Review of Physical Chemistry, 2012, 63, 65-87.	4.8	632
608	Generation of Pronounced Resonance Profile of Charge-Transfer Contributions to Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2012, 116, 2515-2520.	1.5	32
609	Au/TiO ₂ /Au as a Plasmonic Coupling Photocatalyst. Journal of Physical Chemistry C, 2012, 116, 6490-6494.	1.5	220
610	Functional Nanoimprinted Plasmonic Crystals for Chemical Sensing and Imaging. , 2012, , 199-227.		1
611	Nanoparticle Cluster Arrays for High-Performance SERS through Directed Self-Assembly on Flat Substrates and on Optical Fibers. ACS Nano, 2012, 6, 2056-2070.	7.3	241
612	Photochemical Metallization at the Nanoscale. , 2012, , 155-176.		0
614	Silica encapsulated SERS nanoprobe conjugated to the bacteriophage tailspike protein for targeted detection ofSalmonella. Chemical Communications, 2012, 48, 1024-1026.	2.2	63
616	Light polarization properties of three fold symmetry gold nanoparticles: Model and experiments. Comptes Rendus Physique, 2012, 13, 830-836.	0.3	6
617	High-resolution microscopy of plasmon field distributions by scanning tunneling luminescence and photoemission electron microscopies. Comptes Rendus Physique, 2012, 13, 815-829.	0.3	4
618	Surface-enhanced Raman spectroscopy based on ordered nanocap arrays. Superlattices and Microstructures, 2012, 52, 750-758.	1.4	11
619	Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications. Nanotechnology, 2012, 23, 115501.	1.3	166
620	Figuration and detection of single molecules. Molecular Physics, 2012, 110, 1993-2000.	0.8	6
621	Biomedical Applications of Gold Nanoparticles. , 2012, , 101-145.		5
622	Exciting Bright and Dark Eigenmodes in Strongly Coupled Asymmetric Metallic Nanoparticle Arrays. Journal of Physical Chemistry C, 2012, 116, 17746-17752.	1.5	13

#	Article	IF	CITATIONS
623	A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering. Frontiers of Physics, 2012, 7, 521-526.	2.4	22
624	Excitation and propagation of surface plasmons on metallic nanowires. Proceedings of SPIE, 2012, , .	0.8	0
625	Effect of Cavity Architecture on the Surface-Enhanced Emission from Site-Selective Nanostructured Cavity Arrays. Journal of Physical Chemistry C, 2012, 116, 1784-1788.	1.5	33
626	Free-Surface Microfluidics/Surface-Enhanced Raman Spectroscopy for Real-Time Trace Vapor Detection of Explosives. Analytical Chemistry, 2012, 84, 9700-9705.	3.2	96
627	Fabricating a Reversible and Regenerable Raman-Active Substrate with a Biomolecule-Controlled DNA Nanomachine. Journal of the American Chemical Society, 2012, 134, 19957-19960.	6.6	110
628	Formation of gold nanoparticles in polymeric nanowires by low-temperature thermolysis of gold mesitylene. Journal of Materials Chemistry, 2012, 22, 684-690.	6.7	6
629	Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Physical Chemistry Chemical Physics, 2012, 14, 8485.	1.3	242
630	Water-Based Assembly and Purification of Plasmon-Coupled Gold Nanoparticle Dimers and Trimers. International Journal of Optics, 2012, 2012, 1-5.	0.6	11
632	Facile Fabrication and Raman Scattering Enhancement Properties of Mixed Gold and Silver Nanoparticle Layers. E-Journal of Surface Science and Nanotechnology, 2012, 10, 157-160.	0.1	7
633	DEVELOPING LSPR DESIGN GUIDELINES. Progress in Electromagnetics Research, 2012, 126, 203-235.	1.6	28
634	Engineering "Hot―Nanoparticles for Surfaceâ€Enhanced Raman Scattering by Embedding Reporter Molecules in Metal Layers. Small, 2012, 8, 246-251.	5.2	128
635	Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Grapheneâ€Enhanced Raman Spectroscopy. Small, 2012, 8, 1365-1372.	5.2	105
636	Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment. Journal of Chemical Education, 2012, 89, 286-290.	1.1	57
637	Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres. Journal of Physical Chemistry C, 2012, 116, 10415-10423.	1.5	40
638	Surface-enhanced Raman spectroscopy (SERS): progress and trends. Analytical and Bioanalytical Chemistry, 2012, 403, 27-54.	1.9	712
639	Enhanced surface-enhanced Raman scattering performance by folding silver nanorods. Applied Physics Letters, 2012, 100,	1.5	54
640	Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings. Nanoscale, 2012, 4, 1606.	2.8	117
641	Surfaceâ€enhanced Raman scatteringâ€based approach for DNA detection at low concentrations via polyvinyl alcoholâ€protected silver grasslike patterns. Journal of Raman Spectroscopy, 2012, 43, 370-379.	1.2	9
#	Article	IF	CITATIONS
-----	---	------	-----------
642	Microwave monitoring of silver nanoparticle sintering for surfaceâ€enhanced Raman scattering substrates. Journal of Raman Spectroscopy, 2012, 43, 588-591.	1.2	5
643	Surfaceâ€enhanced Raman spectra of melamine and other chemicals using a 1550 nm (retinaâ€safe) laser. Journal of Raman Spectroscopy, 2012, 43, 701-705.	1.2	24
644	Surfaceâ€enhanced Raman measurements and DFT calculations for <scp>l</scp> â€ŧryptophan of varying pH in silver sol. Journal of Raman Spectroscopy, 2012, 43, 718-723.	1.2	7
645	Quantification of DNT isomers by capillary liquid chromatography using at-line SERS detection or multivariate analysis of SERS spectra of DNT isomer mixtures. Journal of Raman Spectroscopy, 2012, 43, 998-1002.	1.2	12
646	Application of calixarene to high active surfaceâ€enhanced Raman scattering (SERS) substrates suitable for <i>in situ</i> detection of polycyclic aromatic hydrocarbons (PAHs) in seawater. Journal of Raman Spectroscopy, 2012, 43, 1003-1009.	1.2	32
647	Influence of surface plasmon resonance wavelength on SERS activity of naturally grown silver nanoparticle ensemble. Journal of Raman Spectroscopy, 2012, 43, 1385-1391.	1.2	30
648	Distinguishable behavior of multiple and individual rhodamineâ€6G molecules on spherical Ag nanoparticles examined via time dependence of the SERS spectra. Journal of Raman Spectroscopy, 2012, 43, 1905-1912.	1.2	2
649	Nanoplasmonics: Engineering and observation of localized plasmon modes. Laser and Photonics Reviews, 2012, 6, 277-295.	4.4	65
650	Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates. Advanced Materials, 2012, 24, 5261-5266.	11.1	103
651	Confocal Surface-Enhanced Raman Microscopy at the Surface of Noble Metals. , 2012, , 167-190.		1
652	Tip-Enhanced Raman Spectroscopy: Near-Fields Acting on a Few Molecules. Annual Review of Physical Chemistry, 2012, 63, 379-399.	4.8	274
653	Localized Surface Plasmons: Basics and Applications in Field-Enhanced Spectroscopy. Springer Series in Optical Sciences, 2012, , 151-176.	0.5	9
654	Naturally grown Ag nanoparticles on quartz substrates as SERS substrate excited by a 488 nm diode laser system for SERDS. Applied Physics B: Lasers and Optics, 2012, 106, 835-839.	1.1	15
655	Exploring the origin of tipâ€enhanced Raman scattering; preparation of efficient TERS probes with high yield. Journal of Raman Spectroscopy, 2012, 43, 173-180.	1.2	51
656	Thermal detection of surface plasmons on gold nanohole arrays. Science Bulletin, 2012, 57, 68-71.	1.7	3
657	Ag@SiO ₂ core–shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering. Nanotechnology, 2013, 24, 335501.	1.3	29
658	Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	50
659	Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications. Nanoscale, 2013, 5, 6985.	2.8	78

#	Article	IF	CITATIONS
660	Dispersion Relation of Bloch Modes in Corrugated Metallic Thin Film With Square-Lattice Nanowell Array. Journal of Lightwave Technology, 2013, 31, 2314-2320.	2.7	0
661	Theragnostic pH-Sensitive Gold Nanoparticles for the Selective Surface Enhanced Raman Scattering and Photothermal Cancer Therapy. Analytical Chemistry, 2013, 85, 7674-7681.	3.2	85
662	Tailoring the SERS Enhancement Mechanisms of Silver Nanowire Langmuir–Blodgett Films via Galvanic Replacement Reaction. Journal of Physical Chemistry C, 2013, 117, 16187-16194.	1.5	23
663	The Effect of Ag Nanoparticles on Surface-Enhanced Luminescence from Au Nanovoid Arrays. Plasmonics, 2013, 8, 1567-1575.	1.8	28
664	Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering. Applied Physics Letters, 2013, 102, .	1.5	50
665	Gold mesoparticles with precisely controlled surface topographies for single-particle surface-enhanced Raman spectroscopy. Journal of Materials Chemistry C, 2013, 1, 5567.	2.7	51
666	Quantifying SERS enhancements. MRS Bulletin, 2013, 38, 631-640.	1.7	214
667	High-precision measurement-based correlation studies among atomic force microscopy, Rayleigh scattering, and surface-enhanced Raman scattering at the single-molecule level. Physical Chemistry Chemical Physics, 2013, 15, 4243.	1.3	11
668	Waveguide-Enhanced Surface Plasmons for Ultrasensitive SERS Detection. Journal of Physical Chemistry Letters, 2013, 4, 3153-3157.	2.1	39
669	Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS Regime. Journal of Physical Chemistry C, 2013, 117, 20139-20145.	1.5	63
670	DNA-Mediated Wirelike Clusters of Silver Nanoparticles: An Ultrasensitive SERS Substrate. ACS Applied Materials & Interfaces, 2013, 5, 7798-7807.	4.0	97
671	Surface-Enhanced Raman Scattering: A Technique of Choice for Molecular Detection. Materials Science Forum, 0, 754, 143-169.	0.3	15
672	Metalâ€Dielectric NT Nanowires for Femtomolar Chemical Detection by Surface Enhanced Raman Spectroscopy. Advanced Materials, 2013, 25, 4431-4436.	11.1	31
673	Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale, 2013, 5, 10794.	2.8	317
674	Cluster Size Effects in the Surface-Enhanced Raman Scattering Response of Ag and Au Nanoparticle Aggregates: Experimental and Theoretical Insight. Journal of Physical Chemistry C, 2013, 117, 23090-23107.	1.5	82
675	Ordered silver nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of vitamin C in serum. Sensors and Actuators A: Physical, 2013, 201, 416-420.	2.0	14
676	Near-Field Optical Microscopy of Plasmonic Nanostructures. , 2013, , 527-562.		0
677	NIR-SERS studies of DNA and DNA bases attached on polyvinyl alcohol (PVA) protected silver grass-like nanostructures. Vibrational Spectroscopy, 2013, 67, 71-79.	1.2	16

ARTICLE IF CITATIONS # Plasmon hybridization model generalized to conductively bridged nanoparticle dimers. Journal of 678 1.2 31 Chemical Physics, 2013, 139, 064310. Scanning near field optical microscopy of gold nano-disc arrays fabricated by electron beam 679 lithography and their application as surface enhanced Raman scattering substrates. Chemical Physics 1.2 Letters, 2013, 588, 160-166. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and 680 2.1 23 Electronic Excitations. Journal of Physical Chemistry Letters, 2013, 4, 1070-1078. Excitation of Surface Plasmon Resonance in Composite Structures Based on Single-Layer Superaligned Carbon Nanotube Films. Journal of Physical Chemistry C, 2013, 117, 23190-23197. Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy 682 3.1 39 (SERS). Applied Surface Science, 2013, 284, 549-555. Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible 2.8 surface-enhanced Raman scattering. Nanoscale, 2013, 5, 11620. Strong optical coupling between mutually orthogonal plasmon oscillations in a silver 684 1.3 6 nanosphere–nanowire joined system. Physical Chemistry Chemical Physics, 2013, 15, 4146-4153. Harvesting light with transformation optics. Science China Information Sciences, 2013, 56, 1-13. 2.7 Green synthesis and electrophoretic deposition of Ag nanoparticles on SiO2/Si(100). Nanotechnology, 686 1.3 4 2013, 24, 345501. Densely arranged two-dimensional silver nanoparticle assemblies with optical uniformity over vast areas as excellent surface-enhanced Raman scattering substrates. Physical Chemistry Chemical 1.3 Physics, 2013, 15, 15802. Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy. Nanoscale, 2013, 5, 688 2.8 134 10127. Ultraâ€Sensitive Grapheneâ€Plasmonic Hybrid Platform for Labelâ€Free Detection. Advanced Materials, 2013, 11.1 193 25, 4918-4924. The Use of Silver Nanorod Array-Based Surface-Enhanced Raman Scattering Sensor for Food Safety 690 0.5 9 Applications. ACS Symposium Series, 2013, , 85-108. Manufacture of glass nanoparticles by electrospraying. Journal of Micromechanics and 691 1.5 Microengineering, 2013, 23, 025023 Surface-enhanced Raman scattering from rhodamine 6G on gold-coated self-organized silicon 692 1.2 24 nanopyramidal array. Journal of Materials Research, 2013, 28, 3401-3407. Enhanced photoluminescence from SiOx–Au nanostructures. CrystEngComm, 2013, 15, 10116. Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy. Physical 694 1.346 Chemistry Chemical Physics, 2013, 15, 4130. Theory for self-consistent interplay between light and nanomaterials strongly modified by metallic 1.3 nanostructures. Physical Chemistry Chemical Physics, 2013, 15, 4214.

щ		IF	CITATIONS
#		IF	CHATIONS
696	Polaritonic metamaterial for super-resolution trapping and sensing. , 2013, , .		0
697	Influence of droplet drying configuration on surface-enhanced Raman scattering performance. RSC Advances, 2013, 3, 17829.	1.7	19
698	Surfaceâ€enhanced Raman scattering imaging using noble metal nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 180-189.	3.3	30
699	Spatial and temporal variation of surface-enhanced Raman scattering at Ag nanowires in aqueous solution. Physical Chemistry Chemical Physics, 2013, 15, 850-859.	1.3	15
700	Plasmonic Diagnostics for Tribology: In Situ Observations Using Surface Plasmon Resonance in Combination with Surface-Enhanced Raman Spectroscopy. Tribology Letters, 2013, 49, 95-102.	1.2	18
701	Spectral characterization and intracellular detection of Surfaceâ€Enhanced Raman Scattering (SERS)â€encoded plasmonic gold nanostars. Journal of Raman Spectroscopy, 2013, 44, 234-239.	1.2	128
702	Gold cluster coatings enhancing Raman scattering from surfaces: Ink analysis and document identification. Chemical Physics, 2013, 423, 73-78.	0.9	19
703	Synthesis of 3D hierarchical Ag microspheres assembled with dendritic morphology. Materials Chemistry and Physics, 2013, 138, 689-694.	2.0	7
704	Versatile one-pot synthesis of confeito-like Au nanoparticles and their surface-enhanced Raman scattering effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 380-385.	2.3	17
705	Single gold trimers and 3D superstructures exhibit a polarization-independent SERS response. Nanoscale, 2013, 5, 110-113.	2.8	32
706	Gigantic plasmon resonance effects on magneto-optical activity of molecularly thin ferromagnets near gold surfaces. Journal of Materials Chemistry C, 2013, 1, 2520.	2.7	9
707	Persistent misconceptions regarding SERS. Physical Chemistry Chemical Physics, 2013, 15, 5301.	1.3	261
708	Nanometal plasmonpolaritons. Surface Science Reports, 2013, 68, 1-67.	3.8	31
709	The Structure, Energy, Confinement, and Enhancement of Hot Spots between Two Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 7744-7750.	1.5	9
710	Nanostructured Potential of Optical Trapping Using a Plasmonic Nanoblock Pair. Nano Letters, 2013, 13, 2146-2150.	4.5	104
711	Temperature near Gold Nanoparticles under Photoexcitation: Evaluation Using a Fluorescence Correlation Technique. Journal of Physical Chemistry C, 2013, 117, 8388-8396.	1.5	19
712	Fabrication of stereo metallic resonant structures with polymer droplets as template. Applied Physics Letters, 2013, 102, 021904.	1.5	2
713	Plasmonic Resonances in Self-Assembled Reduced Symmetry Gold Nanorod Structures. Nano Letters, 2013, 13, 2220-2225.	4.5	41

#	Article	IF	CITATIONS
714	Surface-Enhanced Raman Spectroscopy of Polyelectrolyte-Wrapped Gold Nanoparticles in Colloidal Suspension. Journal of Physical Chemistry C, 2013, 117, 10677-10682.	1.5	23
715	A highly active SERS sensing substrate: core–satellite assembly of gold nanorods/nanoplates. Nanotechnology, 2013, 24, 235502.	1.3	12
716	Stepwise Molding, Etching, and Imprinting to Form Libraries of Nanopatterned Substrates. Langmuir, 2013, 29, 6737-6745.	1.6	10
717	Plasmonic nanoprobes for intracellular sensing and imaging. Analytical and Bioanalytical Chemistry, 2013, 405, 6165-6180.	1.9	56
718	Optical properties of single coupled plasmonic nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 4100.	1.3	31
719	A facile route of microwave to fabricate PVA-coating Ag nanofilm used as NIR-SERS active substrate. Applied Surface Science, 2013, 270, 495-502.	3.1	3
720	Surface plasmon-enhanced photochemical reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 15, 31-52.	5.6	189
721	Experimental investigations on the weakening effect of magnetic fields on surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2013, 44, 525-530.	1.2	7
722	Rational design and synthesis of SERS labels. Analyst, The, 2013, 138, 2224.	1.7	188
723	Plasmonic Amplifiers: Engineering Giant Light Enhancements by Tuning Resonances in Multiscale Plasmonic Nanostructures. Small, 2013, 9, 1939-1946.	5.2	16
724	Highly Efficient Construction of Silver Nanosphere Dimers on Poly(dimethylsiloxane) Sheets for Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2013, 117, 564-570.	1.5	11
725	Visualizing the Optical Field Structures in Metal Nanostructures. Journal of Physical Chemistry Letters, 2013, 4, 2230-2241.	2.1	45
726	Electrochemical Seed-Mediated Growth of Surface-Enhanced Raman Scattering Active Au(111)-Like Nanoparticles on Indium Tin Oxide Electrodes. Journal of Physical Chemistry C, 2013, 117, 15817-15828.	1.5	25
727	Large Area Metal Nanowire Arrays with Tunable Sub-20 nm Nanogaps. ACS Nano, 2013, 7, 5223-5234.	7.3	45
728	Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas. Physical Review Letters, 2013, 110, 203902.	2.9	144
729	Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498, 82-86.	13.7	1,437
730	Silver colloid nanoparticles: Ultrasound-assisted synthesis, electrical and rheological properties. Powder Technology, 2013, 237, 97-101.	2.1	45
701	Creating, characterizing, and controlling chemistry with SERS hot spots. Physical Chemistry Chemical	1.0	(01

#	Article	IF	CITATIONS
732	Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering. Nanotechnology, 2013, 24, 045608.	1.3	10
733	Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS. Nanoscale, 2013, 5, 5368.	2.8	51
734	Silver nanoclusters films for single molecule detection using Surface Enhanced Raman Scattering (SERS). Materials Chemistry and Physics, 2013, 137, 699-703.	2.0	62
735	Plasmonic Waveguide Modes of Film-Coupled Metallic Nanocubes. Nano Letters, 2013, 13, 5866-5872.	4.5	238
736	In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor. Nano Letters, 2013, 13, 5985-5990.	4.5	85
737	Single-Molecule and Single-Particle-Based Correlation Studies between Localized Surface Plasmons of Dimeric Nanostructures with â^¼1 nm Gap and Surface-Enhanced Raman Scattering. Nano Letters, 2013, 13, 6113-6121.	4.5	76
738	Steric hindrance in cationic and neutral rhodamine 6 G molecules adsorbed on Au nanoparticles. Journal of Raman Spectroscopy, 2013, 44, 406-411.	1.2	19
739	New progress of plasmonics in complex metal nanostructures. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2327-2336.	2.0	9
740	SERRS Spectra and Excitation Profiles of Ru(II) Polypyridine Complexes Attached to Ag Nanoparticle Aggregates: Structural, Electronic, and Resonance Damping Effects of Chemisorption. Journal of Physical Chemistry C, 2013, 117, 1044-1052.	1.5	18
741	SERS signal response and SERS/SERDS spectra of fluoranthene in water on naturally grown Ag nanoparticle ensembles. Journal of Raman Spectroscopy, 2013, 44, 717-722.	1.2	11
742	Robust and Reproducible Quantification of SERS Enhancement Factors Using a Combination of Time-Resolved Raman Spectroscopy and Solvent Internal Reference Method. Journal of Physical Chemistry C, 2013, 117, 3483-3488.	1.5	15
743	Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths. NPG Asia Materials, 2013, 5, e61-e61.	3.8	71
744	Exploring the Chemical Enhancement of Surface-Enhanced Raman Scattering with a Designed Silver/Silica Cavity Substrate. Journal of Physical Chemistry C, 2013, 117, 556-563.	1.5	18
745	Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. Optics Express, 2013, 21, 1270.	1.7	52
746	Effect of clustering on ellipsometric spectra of randomly distributed gold nanoparticles on a substrate. Optics Express, 2013, 21, 3091.	1.7	3
747	Optical transport and sensing in plexcitonic nanocavities. Optics Express, 2013, 21, 15847.	1.7	27
748	Large-area electromagnetic enhancement by a resonant excitation of surface waves on a metallic surface with periodic subwavelength patterns. Optics Express, 2013, 21, 24139.	1.7	5
749	Note: Mobile micro-Raman analyzer integrated with a lab-on-a-chip. Review of Scientific Instruments, 2013, 84, 056105.	0.6	5

#	Article	IF	CITATIONS
750	Localized Surface Plasmon Resonance of Single Silver Nano-Hemisphere. Advanced Materials Research, 0, 818, 137-140.	0.3	3
751	Facile Fabrication of Multiâ€ŧargeted and Stable Biochemical SERS Sensors. Chemistry - an Asian Journal, 2013, 8, 3010-3014.	1.7	19
752	An active surface enhanced Raman scattering substrate using carbon nanocoils. Journal of Materials Research, 2013, 28, 2113-2123.	1.2	6
753	Functional SU-8-PET composite microchip including Au microdot array fabricated by low temperature polymer bonding. , 2013, , .		Ο
754	Excitation laser energy dependence of surface-enhanced fluorescence showing plasmon-induced ultrafast electronic dynamics in dye molecules. Physical Review B, 2013, 87, .	1.1	39
755	Analytical model for luminescence enhancement by metal nanoparticles. , 2013, , .		0
756	Quantum dynamical simulations of local field enhancement in metal nanoparticles. Journal of Physics Condensed Matter, 2013, 25, 125304.	0.7	23
757	Metallic nanowires for subwavelength waveguiding and nanophotonic devices. Chinese Physics B, 2013, 22, 097305.	0.7	21
758	Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3templates. Science and Technology of Advanced Materials, 2013, 14, 055011.	2.8	20
759	Nanooptical Studies on Physical and Chemical Characteristics of Noble Metal Nanostructures. Bulletin of the Chemical Society of Japan, 2013, 86, 397-413.	2.0	5
760	Study of Raman signal from indium phosphide nanowire networks coated with gold. Proceedings of SPIE, 2013, , .	0.8	0
761	The Five Ws (and one H) of Super-Hydrophobic Surfaces in Medicine. Micromachines, 2014, 5, 239-262.	1.4	9
762	Optical Response of Metallic Nanoparticle Heteroaggregates with Subnanometric Gaps. Particle and Particle Systems Characterization, 2014, 31, 152-160.	1.2	36
763	Unidirectional emissions from dielectric photonic circuits decorated with plasmonic phased antenna arrays. Chinese Physics B, 2014, 23, 037301.	0.7	5
764	High-order plasmon resonances in an Ag/Al 2 O 3 core/shell nanorice. Chinese Physics B, 2014, 23, 027303.	0.7	8
765	An effective surface-enhanced Raman scattering template based on gold nanoparticle/silicon nanowire arrays. Chinese Physics B, 2014, 23, 067802.	0.7	4
766	Remote excitation and remote detection of a single quantum dot using propagating surface plasmons on silver nanowire. Chinese Physics B, 2014, 23, 097302.	0.7	14
767	SERS-based detection of biomolecules. Nanophotonics, 2014, 3, 383-411.	2.9	109

#	Article	IF	CITATIONS
770	Ultraâ€confined Modes in Metal Nanoparticle Arrays for Subwavelength Light Guiding and Amplification. Advanced Optical Materials, 2014, 2, 394-399.	3.6	10
771	Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications. Sensors, 2014, 14, 6056-6083.	2.1	44
772	Note: Raman microspectroscopy integrated with fluorescence and dark field imaging. Review of Scientific Instruments, 2014, 85, 056109.	0.6	24
773	Optical response of threaded chain plasmons: from capacitive chains to continuous nanorods. Optics Express, 2014, 22, 23851.	1.7	13
774	Detection and Quantification of Chloramphenicol in Milk and Honey Using Molecularly Imprinted Polymers: Canadian Pennyâ€Based SERS Nanoâ€Biosensor. Journal of Food Science, 2014, 79, N2542-9.	1.5	56
775	Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering. Journal of Applied Physics, 2014, 115, .	1.1	30
776	Nanogaps for SERS applications. MRS Bulletin, 2014, 39, 163-168.	1.7	99
777	The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 21, 26-39.	5.6	86
778	Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions. Journal of Chemical Physics, 2014, 140, 204506.	1.2	11
779	Enhanced Raman scattering assisted by ultrahigh order modes of the double metal cladding waveguide. Applied Physics Letters, 2014, 105, .	1.5	8
780	Controlling the radiation direction of propagating surface plasmons on silver nanowires. Laser and Photonics Reviews, 2014, 8, 596-601.	4.4	38
781	Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates. Analytical Chemistry, 2014, 86, 11819-11825.	3.2	39
782	Sensitive surface-enhanced Raman scattering active substrate based on gap surface plasmon polaritons. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 012601.	0.6	1
783	Surface-enhanced infrared absorption spectra of eicosanoic acid on confeito-like Au nanoparticle. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 3085-3089.	2.7	8
784	DNAzyme-Based Plasmonic Nanomachine for Ultrasensitive Selective Surface-Enhanced Raman Scattering Detection of Lead Ions via a Particle-on-a-Film Hot Spot Construction. Analytical Chemistry, 2014, 86, 11494-11497.	3.2	50
785	Recent Advances in Plasmonic Sensors. Sensors, 2014, 14, 7959-7973.	2.1	182
786	Liquid core capillary-based Raman probe for surface-enhanced Raman scattering detection. Laser Physics Letters, 2014, 11, 035603.	0.6	4
787	Surface Plasmon Resonance and Raman Scattering Activity of the Au/Ag x O/Ag Multilayer Film. Chinese Physics Letters, 2014, 31, 047302.	1.3	6

	CITATION REF	ORT	
#	ARTICLE Submicron patterns obtained by thermal-induced reconstruction of self-assembled monolaver of Ag	IF	CITATIONS
788	nanoparticles and their application in SERS. Applied Surface Science, 2014, 309, 295-299.	3.1	9
789	Numerical investigation of radiative properties and surface plasmon resonance of silver nanorod dimers on a substrate. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 132, 28-35.	1.1	13
790	High-vacuum tip enhanced Raman spectroscopy. Frontiers of Physics, 2014, 9, 17-24.	2.4	14
791	Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing. Frontiers of Physics, 2014, 9, 31-46.	2.4	71
792	Optical Properties of Noncontinuous Gold Shell Engineered on Silica Mesosphere. Plasmonics, 2014, 9, 121-127.	1.8	12
793	Novel method to determine the actual surface area of a laser-nanotextured sensor. Applied Physics A: Materials Science and Processing, 2014, 114, 169-175.	1.1	17
794	Frontiers of Plasmonics. Frontiers of Physics, 2014, 9, 1-2.	2.4	10
795	Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate. Talanta, 2014, 123, 161-168.	2.9	40
796	Synthesis of size tunable monodispersed silver nanoparticles and the effect of size on SERS enhancement. Vibrational Spectroscopy, 2014, 71, 41-46.	1.2	41
797	Surfaceâ€Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angewandte Chemie - International Edition, 2014, 53, 4756-4795.	7.2	1,894
798	Facile synthesis of anisotropic silver nanoparticles and their surface-enhanced Raman scattering properties. Journal of Molecular Structure, 2014, 1060, 1-5.	1.8	10
802	Effect of Interparticle Field Enhancement in Self-Assembled Silver Aggregates on Surface-Enhanced Raman Scattering. Plasmonics, 2014, 9, 993-999.	1.8	7
803	Resolving Single Plasmons Generated by Multiquantum-Emitters on a Silver Nanowire. Nano Letters, 2014, 14, 3358-3363.	4.5	64
804	3D Nanostar Dimers with a Subâ€10â€nm Gap for Singleâ€∤Fewâ€Molecule Surfaceâ€Enhanced Raman Scattering Advanced Materials, 2014, 26, 2353-2358.	5 _{11.1}	263
805	Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale, 2014, 6, 4781.	2.8	92
806	Probing the Location of Hot Spots by Surface-Enhanced Raman Spectroscopy: Toward Uniform Substrates. ACS Nano, 2014, 8, 528-536.	7.3	136
807	Hotspotâ€Engineered 3D Multipetal Flower Assemblies for Surfaceâ€Enhanced Raman Spectroscopy. Advanced Materials, 2014, 26, 5924-5929.	11.1	74
808	Tip-enhanced near-field optical microscopy. Chemical Society Reviews, 2014, 43, 1248-1262.	18.7	124

	CITATION	CITATION REPORT	
#	ARTICLE Hierarchical Au–CuO nanocomposite from redox transformation reaction for surface enhanced	IF	CITATIONS
809	Raman scattering and clock reaction. CrystEngComm, 2014, 16, 883-893.	1.3	65
810	Three-dimensional noble-metal nanostructure: A new kind of substrate for sensitive, uniform, and reproducible surface-enhanced Raman scattering. Chinese Physics B, 2014, 23, 087801.	0.7	5
811	Plasmonics in composite nanostructures. Materials Today, 2014, 17, 372-380.	8.3	65
812	Facile synthesis of silver nanoparticles using unmodified cyclodextrin and their surface-enhanced Raman scattering activity. New Journal of Chemistry, 2014, 38, 2847.	1.4	27
813	Scaling Rules of SERS Intensity. Advanced Optical Materials, 2014, 2, 382-388.	3.6	44
814	Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 21, 81-104.	5.6	131
815	Raman spectroscopy of indium phosphide nanowire networks coated with gold clusters. Journal of Materials Science: Materials in Electronics, 2014, 25, 4867-4871.	1.1	3
816	Sub-5 nm nanobowl gaps electrochemically templated by SiO ₂ -coated Au nanoparticles as surface-enhanced Raman scattering hot spots. Chemical Communications, 2014, 50, 3958-3961.	2.2	10
817	Free energy landscape and localization of nanoparticles at block copolymer model defects. Soft Matter, 2014, 10, 3284.	1.2	10
818	Surfaceâ€Enhanced Raman Scattering (SERS) Substrate Based on Largeâ€Area Wellâ€Defined Gold Nanoparticle Arrays with High SERS Uniformity and Stability. ChemPlusChem, 2014, 79, 1622-1630.	1.3	23
819	In situ aqueous synthesis of silver nanoparticles supported on titanium as active electrocatalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2014, 39, 19519-19540.	3.8	61
820	Nanoparticle Surface-Enhanced Raman Scattering of Bacteriorhodopsin Stabilized by Amphipol A8-35. Journal of Membrane Biology, 2014, 247, 971-980.	1.0	8
821	The mechanism of N–Ag bonding determined tunability of surface-enhanced Raman scattering of pyridine on MAg (M = Cu, Ag, Au) diatomic clusters. Physical Chemistry Chemical Physics, 2014, 16, 20665-20671.	1.3	21
822	High sensitivity molecule detection by plasmonic nanoantennas with selective binding at electromagnetic hotspots. Nanoscale, 2014, 6, 1416-1422.	2.8	36
823	Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates. Nanoscale, 2014, 6, 11112-11120.	2.8	87
824	Nanoscopic Study on Developing Optical Activity with Increasing Chirality for Two-Dimensional Metal Nanostructures. ACS Photonics, 2014, 1, 732-738.	3.2	43
825	Observation of Molecular Diffusion in Polyelectrolyte-Wrapped SERS Nanoprobes. Langmuir, 2014, 30, 8931-8937.	1.6	14
826	Ag films annealed in a nanoscale limited area for surface-enhanced Raman scattering detection. Nanotechnology, 2014, 25, 235301.	1.3	2

#	Article	IF	CITATIONS
827	Tunable Enhancement of Raman Scattering in Grapheneâ€Nanoparticle Hybrids. Advanced Functional Materials, 2014, 24, 6348-6358.	7.8	31
828	Stacked Gold Nanorectangles with Higher Order Plasmonic Modes and Top-Down Plasmonic Coupling. Journal of Physical Chemistry C, 2014, 118, 5453-5462.	1.5	6
829	Comparison of Surface-Enhanced Raman Spectroscopy on Absorbing and Nonabsorbing Nanostructured Substrates. Journal of Physical Chemistry C, 2014, 118, 18693-18699.	1.5	5
830	Optical properties and sensing in plexcitonic nanocavities: from simple molecular linkers to molecular aggregate layers. Nanotechnology, 2014, 25, 035201.	1.3	16
831	Cold Nanorods with Subâ€Nanometer Separation using Cucurbit[<i>n</i>]uril for SERS Applications. Small, 2014, 10, 4298-4303.	5.2	50
832	Are Hot Spots between Two Plasmonic Nanocubes of Silver or Gold Formed between Adjacent Corners or Adjacent Facets? A DDA Examination. Journal of Physical Chemistry Letters, 2014, 5, 2229-2234.	2.1	35
833	Monitoring of Silver Electrodeposition onto HOPG Electrodes in the Presence of Picolinic Acid by in Situ Surface-Enhanced Raman Spectra Measurements. Journal of Physical Chemistry C, 2014, 118, 4167-4180.	1.5	3
834	Detecting organic molecules using Au nanoparticle dimers with supramolecular interactions. , 2014, , \cdot		0
835	Identification of Metalloporphyrins with High Sensitivity Using Graphene-Enhanced Resonance Raman Scattering. Langmuir, 2014, 30, 2960-2967.	1.6	10
836	Probing Local Strain at MX ₂ –Metal Boundaries with Surface Plasmon-Enhanced Raman Scattering. Nano Letters, 2014, 14, 5329-5334.	4.5	118
838	A novel alternating least-squares method based on fixed region scanning evolving factor analysis (FRSEFA) and its application in process monitoring. Analytical Methods, 2014, 6, 7883-7890.	1.3	4
839	Designing and fabricating double resonance substrate with metallic nanoparticles–metallic grating coupling system for highly intensified surface-enhanced Raman spectroscopy. Analyst, The, 2014, 139, 4799-4805.	1.7	23
840	Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering. Journal of Physical Chemistry Letters, 2014, 5, 3768-3780.	2.1	12
842	Tunable Raman Selectivity via Randomization of a Rectangular Pattern of Nanodisks. ACS Photonics, 2014, 1, 1006-1012.	3.2	16
843	Identification, Localization, and Quantification of Neuronal Cell Membrane Receptors with Plasmonic Probes: Role of Protein Kinase D1 in Their Distribution. ACS Nano, 2014, 8, 8942-8958.	7.3	17
844	Plasmonic Nanosnowmen with a Conductive Junction as Highly Tunable Nanoantenna Structures and Sensitive, Quantitative and Multiplexable Surface-Enhanced Raman Scattering Probes. Nano Letters, 2014, 14, 6217-6225.	4.5	127
845	Exploring the Effect of Intermolecular H-Bonding: A Study on Charge-Transfer Contribution to Surface-Enhanced Raman Scattering of <i>p</i> -Mercaptobenzoic Acid. Journal of Physical Chemistry C, 2014, 118, 10191-10197.	1.5	91
846	Modular Plasmonic Antennas Built of Ultrathin Silica-Shell Silver-Core Nanoparticles. Langmuir, 2014, 30, 7919-7927.	1.6	22

#	Article	IF	CITATIONS
847	Obviously Angular, Cuboid-Shaped TiO2 Nanowire Arrays Decorated with Ag Nanoparticle as Ultrasensitive 3D Surface-Enhanced Raman Scattering Substrates. Journal of Physical Chemistry C, 2014, 118, 22711-22718.	1.5	30
848	Role of hybrid wave in electromagnetic enhancement by a metallic groove doublet. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 1194.	0.8	2
849	Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics. Drug Metabolism Reviews, 2014, 46, 155-175.	1.5	54
850	MGITC Facilitated Formation of AuNP Multimers. Langmuir, 2014, 30, 8342-8349.	1.6	24
851	Tuning Two-Photon Photoluminescence of Gold Nanoparticle Aggregates with DNA and Its Application as Turn-on Photoluminescence Probe for DNA Sequence Detection. ACS Applied Materials & Interfaces, 2014, 6, 13149-13156.	4.0	31
852	Three-Dimensional and Time-Ordered Surface-Enhanced Raman Scattering Hotspot Matrix. Journal of the American Chemical Society, 2014, 136, 5332-5341.	6.6	293
853	Hybrid nanoparticle–nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances. Nanotechnology, 2014, 25, 085202.	1.3	6
854	A Surface-Enhanced Raman Scattering Optrode Prepared by <i>in Situ</i> Photoinduced Reactions and Its Application for Highly Sensitive On-Chip Detection. ACS Applied Materials & Interfaces, 2014, 6, 11706-11713.	4.0	18
855	Evaluation of nonlinear optical parameters of TiN/PVA nanocomposite – A comparison between semi empirical relation andÂZ-Scan results. Current Applied Physics, 2014, 14, 93-98.	1.1	26
856	Robust and Versatile Light Absorption at Near-Infrared Wavelengths by Plasmonic Aluminum Nanorods. ACS Photonics, 2014, 1, 538-546.	3.2	93
857	Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography. Nanoscale, 2014, 6, 8606-8611.	2.8	58
858	Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film–Metal Nanoparticle Coupling System. Advanced Functional Materials, 2014, 24, 3114-3122.	7.8	171
859	Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosensors and Bioelectronics, 2014, 61, 232-240.	5.3	269
860	Plasmonically Enhanced Electron Escape from Gold Nanoparticles and Their Polarization-Dependent Excitation Transfer along DNA Nanowires. Nano Letters, 2014, 14, 3809-3816.	4.5	17
861	Simple Fabrication of One-Dimensional Metal Nanostructures and Their Application for SERS Analysis. Analytical Sciences, 2014, 30, 151-156.	0.8	5
863	Scaling rules for Surface Enhanced Raman Scattering. , 2014, , .		0
864	Determination of Antimony by Surface-Enhanced Raman Spectroscopy. Applied Spectroscopy, 2014, 68, 297-306.	1.2	15
865	Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps. Physical Review A, 2015, 92, .	1.0	113

#	Article	IF	CITATIONS
866	Singular perturbations approach to localized surface-plasmon resonance: Nearly touching metal nanospheres. Physical Review B, 2015, 92, .	1.1	12
867	Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate. Scientific Reports, 2015, 5, 14502.	1.6	55
868	Silver Nanorods Wrapped with Ultrathin Al2O3 Layers Exhibiting Excellent SERS Sensitivity and Outstanding SERS Stability. Scientific Reports, 2015, 5, 12890.	1.6	89
870	Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis. Journal of Applied Physics, 2015, 118, .	1.1	24
871	Directional side scattering of light by a single plasmonic trimer. Laser and Photonics Reviews, 2015, 9, 530-537.	4.4	47
872	SERS microRaman spectral probing of adsorbate-containing, liquid-overlayed nanosponge Ag aggregates assembled from fractal aggregates. Journal of Raman Spectroscopy, 2015, 46, 559-565.	1.2	1
873	Mapping the near fields of plasmonic nanoantennas by scatteringâ€ŧype scanning nearâ€field optical microscopy. Laser and Photonics Reviews, 2015, 9, 637-649.	4.4	81
874	Threeâ€dimensional information storage of polymer doped with nanoâ€silver. Microwave and Optical Technology Letters, 2015, 57, 2662-2665.	0.9	0
875	Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials, 2015, 8, 3024-3052.	1.3	193
876	Surface-enhanced terahertz spectroscopy using gold rod structures resonant with terahertz waves. Optics Express, 2015, 23, 28584.	1.7	20
877	Homogeneous large-scale crystalline nanoparticle-covered substrate with high SERS performance. Nanotechnology, 2015, 26, 245302.	1.3	17
878	Plasmonic Nanostructures for Biomedical and Sensing Applications. , 2015, , 133-173.		3
879	Trace detection of tetrabromobisphenol A by SERS with DMAP-modified magnetic gold nanoclusters. Nanoscale, 2015, 7, 10931-10935.	2.8	34
880	Ultrasensitive Ag-coated TiO ₂ nanotube arrays for flexible SERS-based optofluidic devices. Journal of Materials Chemistry C, 2015, 3, 6868-6875.	2.7	54
881	Surface-enhanced Raman spectroscopy using linearly arranged gold nanoparticles embedded in nanochannels. Japanese Journal of Applied Physics, 2015, 54, 06FL03.	0.8	11
882	Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chemical Society Reviews, 2015, 44, 5552-5595.	18.7	209
883	Determination of Sudan I in paprika powder by molecularly imprinted polymers–thin layer chromatography–surface enhanced Raman spectroscopic biosensor. Talanta, 2015, 143, 344-352.	2.9	103
884	Mathematical model for biomolecular quantification using surface-enhanced Raman spectroscopy based signal intensity distributions. , 2015, , .		0

#	Article	IF	CITATIONS
885	Failure and Reexamination of the Raman Scattering Enhancement Factor Predicted by the Enhanced Local Electric Field in a Silver Nanorod. Journal of Physical Chemistry C, 2015, 119, 27683-27687.	1.5	8
886	Determination of histamine in canned tuna by molecularly imprinted polymers-surface enhanced Raman spectroscopy. Analytica Chimica Acta, 2015, 901, 68-75.	2.6	75
887	Hierarchical Nanoflowers on Nanograss Structure for a Non-wettable Surface and a SERS Substrate. Nanoscale Research Letters, 2015, 10, 505.	3.1	16
888	Single particle SERS signal on gold nanorods: comparative study of diarylethene photochromic isomers. Journal of Optics (United Kingdom), 2015, 17, 114018.	1.0	6
889	Recent advances in plasmonic nanostructures for sensing: a review. Optical Engineering, 2015, 54, 100902.	0.5	101
890	The Morphology of Narrow Gaps Modifies the Plasmonic Response. ACS Photonics, 2015, 2, 295-305.	3.2	99
891	A novel surface-enhanced Raman spectroscopy substrate based on hybrid structure of monolayer graphene and Cu nanoparticles for adenosine detection. Applied Surface Science, 2015, 332, 614-619.	3.1	38
892	Surface-enhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet. Applied Surface Science, 2015, 331, 241-247.	3.1	98
893	Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers. Advanced Materials, 2015, 27, 1751-1758.	11.1	59
894	A sensitive SERS substrate based on Au/TiO2/Au nanosheets. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 142, 50-54.	2.0	23
895	Dependence of Raman intensity on the surface coverage of silver nanocubes in SERS active monolayers. Applied Surface Science, 2015, 325, 242-250.	3.1	18
896	Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations. Journal of Physical Chemistry C, 2015, 119, 2053-2062.	1.5	71
897	Electrokinetic Preconcentration of Small Molecules Within Volumetric Electromagnetic Hotspots in Surface Enhanced Raman Scattering. Small, 2015, 11, 2487-2492.	5.2	23
898	Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Physical Chemistry Chemical Physics, 2015, 17, 21072-21093.	1.3	246
899	Nonlinear Chiro-Optical Amplification by Plasmonic Nanolens Arrays Formed via Directed Assembly of Gold Nanoparticles. Nano Letters, 2015, 15, 1836-1842.	4.5	51
900	Local optical responses of plasmon resonances visualised by near-field optical imaging. Physical Chemistry Chemical Physics, 2015, 17, 6192-6206.	1.3	20
901	Enhanced multi-phonon Raman scattering and nonlinear optical power limiting in ZnO:Au nanostructures. RSC Advances, 2015, 5, 13590-13597.	1.7	48
902	Improved Raman and photoluminescence sensitivity achieved using bifunctional Ag@SiO ₂ nanocubes. Physical Chemistry Chemical Physics, 2015, 17, 21226-21235.	1.3	30

#	Article	IF	CITATIONS
903	SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces. Physical Chemistry Chemical Physics, 2015, 17, 21331-21336.	1.3	17
904	Tuning the photoluminescence and ultrasensitive trace detection properties of few-layer MoS2 by decoration with gold nanoparticles. RSC Advances, 2015, 5, 24188-24193.	1.7	52
905	Detection of pesticides in foods by enzymatic biosensors. , 2015, , 147-160.		5
906	Detection and analysis of SERS effect of nano gold by self-assembly chemical plating composite method. Applied Surface Science, 2015, 353, 750-756.	3.1	22
907	Electroless deposition of Ag through-void arrays for integrated extraordinary optical transmission-based plasmonic sensing and surface-enhanced Raman scattering. Chemical Physics Letters, 2015, 636, 78-83.	1.2	6
908	Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection. Nanoscale, 2015, 7, 15487-15494.	2.8	34
909	Graphene-based hybrid films for plasmonic sensing. Nanoscale, 2015, 7, 14561-14576.	2.8	46
910	Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. Journal of Materials Chemistry C, 2015, 3, 9024-9037.	2.7	113
911	Rapid fabrication of SERS substrate and superhydrophobic surface with different micro/nano-structures by electrochemical shaping of smooth Cu surface. Applied Surface Science, 2015, 353, 1277-1284.	3.1	15
912	Sequentially Self-Assembled Rings-in-Mesh Nanoplasmonic Arrays for Surface-Enhanced Raman Spectroscopy. Chemistry of Materials, 2015, 27, 5007-5013.	3.2	28
913	Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)–Ag(shell) nanospheres. Physical Chemistry Chemical Physics, 2015, 17, 21182-21189.	1.3	45
914	An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy. Nanoscale, 2015, 7, 12318-12324.	2.8	29
915	Effect of adsorbed molecules on surface-enhanced Raman scattering of metal/molecule/metal junctions. RSC Advances, 2015, 5, 55720-55726.	1.7	1
916	Surface Plasmon Resonance-Induced Stiffening of Silver Nanowires. Scientific Reports, 2015, 5, 10574.	1.6	2
917	Importance of Gold Nanorods' Aggregation in Surface Plasmon Coupling with a Photochromic Film in Hybrid Structures. Plasmonics, 2015, 10, 1863-1868.	1.8	3
918	Surface Enhanced Raman Scattering of Amino Acids Assisted by Gold Nanoparticles and Gd ³⁺ Ions. Journal of Physical Chemistry A, 2015, 119, 4127-4135.	1.1	14
919	Nano material-Involved Optical Imaging/Spectroscopy Methods for Single-Molecule Detections in Biomedicine. Frontiers in Nanobiomedical Research, 2015, , 135-156.	0.1	0
920	High performance immunochromatographic assay combined with surface enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 2015, 213, 209-214.	4.0	20

#	Article	IF	CITATIONS
921	Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced Raman spectroscopy and chemometric analysis. Talanta, 2015, 139, 96-103.	2.9	67
922	Toward the Design of Highly Stable Small Colloidal SERS Substrates with Supramolecular Host–Guest Interactions for Ultrasensitive Detection. Journal of Physical Chemistry C, 2015, 119, 8876-8888.	1.5	30
923	Explosive and chemical threat detection by surface-enhanced Raman scattering: A review. Analytica Chimica Acta, 2015, 893, 1-13.	2.6	252
924	Surface enhanced Raman scattering based on Au nanoparticles/layered double hydroxide ultrathin films. Journal of Materials Chemistry C, 2015, 3, 5167-5174.	2.7	26
925	One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering. Nanotechnology, 2015, 26, 185702.	1.3	37
926	SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure. Applied Surface Science, 2015, 347, 668-672.	3.1	65
927	Bioinspired optical antennas: gold plant viruses. Light: Science and Applications, 2015, 4, e267-e267.	7.7	30
928	Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics, 2015, 17, 21046-21071.	1.3	155
929	Large-scale synthesis of gold dendritic nanostructures for surface enhanced Raman scattering. CrystEngComm, 2015, 17, 4200-4204.	1.3	18
930	Surface plasmon-enhanced photochemical reactions on noble metal nanostructures. Science China Chemistry, 2015, 58, 574-585.	4.2	31
931	Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERSâ€Based Molecule Detection. Advanced Optical Materials, 2015, 3, 404-411.	3.6	53
932	Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography. Nanoscale, 2015, 7, 9405-9410.	2.8	98
933	Adjustable plasmonic optical properties of hollow gold nanospheres monolayers and LSPR-dependent surface-enhanced Raman scattering of hollow gold nanosphere/graphene oxide hybrids. RSC Advances, 2015, 5, 42653-42662.	1.7	15
934	Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 21348-21355.	1.3	10
935	Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS. Physical Chemistry Chemical Physics, 2015, 17, 10176-10181.	1.3	40
936	Membrane Surface-Enhanced Raman Spectroscopy for Sensitive Detection of Molecular Behavior of Lipid Assemblies. Analytical Chemistry, 2015, 87, 4772-4780.	3.2	38
937	The Coupling between Gold or Silver Nanocubes in Their Homo-Dimers: A New Coupling Mechanism at Short Separation Distances. Nano Letters, 2015, 15, 3391-3397.	4.5	70
938	Hybrid Au–SiO ₂ Core–Satellite Colloids as Switchable SERS Tags. Chemistry of Materials, 2015, 27, 2540-2545.	3.2	60

ARTICLE IF CITATIONS Mathematical model for biomolecular quantification using large-area surface-enhanced Raman 939 1.7 8 spectroscopy mapping. RSC Advances, 2015, 5, 85845-85853. The Raman enhancement effect on a thin GaSe flake and its thickness dependence. Journal of Materials 940 2.7 Chemistry C, 2015, 3, 11129-11134. Optical properties and surface-enhanced Raman scattering activity of hexagonally arranged gold 941 1.2 2 nanoparticle trimers. Chemical Physics Letters, 2015, 638, 253-257. Significance of chemical enhancement effects in surface-enhanced Raman scattering (SERS) signals of 942 aniline and aminobiphenyl isomers. Vibrational Spectroscopy, 2015, 81, 22-31. Surface-enhanced Raman scattering on silvered porous alumina templates: role of multipolar surface 943 1.3 20 plasmon resonant modes. Physical Chemistry Chemical Physics, 2015, 17, 31780-31789. Surfaceâ€Enhanced Raman Scattering Based on Controllableâ€Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection. ChemPhysChem, 2015, 16, 2953-2960. 944 1.0 Lab-on-fiber technology: a new vision for chemical and biological sensing. Analyst, The, 2015, 140, 945 1.7 168 8068-8079. Electrochemical fabrication of decomposable three-dimensional Au nano-coral structure and its 946 2.0 surface-enhanced Raman scattering (SERS). Materials Chemistry and Physics, 2015, 163, 529-536. SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chemical 947 23.0 712 Reviews, 2015, 115, 10489-10529. Tuning the surface enhanced Raman scattering activity of gold nanocubes by silver coating. Applied 948 3.1 Surface Science, 2015, 357, 487-492. Single molecule level plasmonic catalysis – a dilution study of p-nitrothiophenol on gold dimers. 949 2.2 86 Chemical Communications, 2015, 51, 3069-3072. Improving surface enhanced Raman signal reproducibility using gold-coated silver nanospheres 950 1.0 encapsulated in silica membranes. Journal of Optics (United Kingdom), 2015, 17, 114017. How hottest geometries and adsorptive parameters influence the SER(R)S spectra of Methylene Blue molecules adsorbed on nanocolloidal gold particles of varied sizes?. Spectrochimica Acta - Part A: 951 2.0 9 Molecular and Biomolecular Spectroscopy, 2015, 151, 796-806. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed 1.3 16 self-assembled monolayers. Physical Chemistry Chemical Physics, 2015, 17, 32328-32334. Directionally-Controlled Periodic Collimated Beams of Surface Plasmon Polaritons on Metal Film in Ag Nanowire/Al₂O₃/Ag Film Composite Structure. Nano Letters, 2015, 15, 953 37 4.5 560-564. Silver nano-dendritic crystal film: a rapid dehydration SERS substrate of totally new concept. RSC 954 Advances, 2015, 5, 4578-4585. Three-dimensional plasmonic hydrogel architecture: facile synthesis and its macroscale effective 955 1.7 11 space. RSC Advances, 2015, 5, 2231-2238. Watching individual molecules flex within lipid membranes using SERS. Scientific Reports, 2014, 4, 48 5940.

#	Article	IF	CITATIONS
957	A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Faraday Discussions, 2015, 178, 151-183.	1.6	151
958	Mode Conversion of Propagating Surface Plasmons in Nanophotonic Networks Induced by Structural Symmetry Breaking. Scientific Reports, 2014, 4, .	1.6	45
959	Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles. Biosensors and Bioelectronics, 2015, 64, 227-233.	5.3	71
960	Nanoplasmonics: Fundamentals and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2015, , 3-102.	0.2	8
961	Design of plasmonic probes through bioconjugation and their applications in biomedicine. , 2016, , 131-161.		4
962	Metal-enhanced fluorescence of single shell-isolated alloy metal nanoparticle. Applied Optics, 2016, 55, 9131.	2.1	15
963	Investigating Polymer–Metal Interfaces by Grazing Incidence Small-Angle X-Ray Scattering from Gradients to Real-Time Studies. Nanomaterials, 2016, 6, 239.	1.9	31
964	Optical Aptasensors for Adenosine Triphosphate. Theranostics, 2016, 6, 1683-1702.	4.6	43
965	Comparing the Contribution of Visible-Light Irradiation, Gold Nanoparticles, and Titania Supports in Photocatalytic Nitroaromatic Coupling and Aromatic Alcohol Oxidation. Particle and Particle Systems Characterization, 2016, 33, 628-634.	1.2	8
966	Solvent Effects on the Dynamic Polarizability and Raman Response of Molecule–Metal Oxide Hybrid Clusters. ChemPhysChem, 2016, 17, 2590-2595.	1.0	4
967	Probing single molecules and molecular aggregates: Raman spectroscopic advances. Journal of Raman Spectroscopy, 2016, 47, 623-635.	1.2	19
968	Enhancement factor statistics of surface enhanced Raman scattering in multiscale heterostructures of nanoparticles. Journal of Chemical Physics, 2016, 145, 054708.	1.2	15
969	Full vectorial mapping of the complex electric near-fields of THz resonators. APL Photonics, 2016, 1, .	3.0	31
970	All Platinum Made Gap Mode Nanostructure for Surface Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 13701-13705.	1.5	4
971	Facile fabrication of silver nanoparticles with temperature-responsive sizes as highly active SERS substrates. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	7
972	Controllable fabrication of large-scale hierarchical silver nanostructures for long-term stable and ultrasensitive SERS substrates. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	6
973	Influence of tip geometry on the spatial resolution of tip enhanced Raman mapping. Chinese Physics B, 2016, 25, 095203.	0.7	7
974	Plasmonic Properties of Two Silver Nanocubes: Dependence on Separation Distance, Relative Orientation, Refractive Index of the Substrate, and Exciting Light Propagation Direction. ACS Symposium Series, 2016, , 21-40.	0.5	1

#	ARTICLE	IF	CITATIONS
975	Near-Field Interaction between Single Molecule and an Electromagnetic Field at "Hotspot―Generated by Plasmon Resonance. ACS Symposium Series, 2016, , 23-37.	0.5	1
976	Organic vapor-modulated surface enhanced Raman scattering spectroscopy. RSC Advances, 2016, 6, 58694-58697.	1.7	1
977	Detection of cocaine using gravure printed silver nanoparticle based SERS substrate. , 2016, , .		3
978	Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism. Analyst, The, 2016, 141, 5000-5009.	1.7	42
979	Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures. Frontiers of Physics, 2016, 11, 1.	2.4	13
980	Study of Surface Enhanced Raman Scattering of Single Molecule Adsorbed on the Surface of Metal Nanogeometries: Electrostatic Approach. Plasmonics, 2016, 11, 1343-1349.	1.8	12
981	Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities. ACS Nano, 2016, 10, 6291-6298.	7.3	133
982	Ion beam induced optical and surface modification in plasmonic nanostructures. Nuclear Instruments & Methods in Physics Research B, 2016, 379, 42-47.	0.6	8
983	Optimizing SERS from Gold Nanoparticle Clusters: Addressing the Near Field by an Embedded Chain Plasmon Model. Journal of Physical Chemistry C, 2016, 120, 10512-10522.	1.5	46
984	A Multiscale Approach to Modeling Plasmonic Nanorod Biosensors. Journal of Physical Chemistry C, 2016, 120, 20692-20701.	1.5	13
985	Interesting polarization-independent SERS detection performance induced by the rotation symmetry of multiparticle nanostructures. Nanotechnology, 2016, 27, 045702.	1.3	7
986	Single-site surface-enhanced Raman scattering beyond spectroscopy. Frontiers of Physics, 2016, 11, 1.	2.4	8
987	Phase modification and surface plasmon resonance of Au/WO3 system. Applied Surface Science, 2016, 379, 505-515.	3.1	24
988	Periodic array of regular Ag nanoparticle trimers: a reliable polarization-independent surface-enhanced Raman spectroscopy substrate. RSC Advances, 2016, 6, 83273-83279.	1.7	8
989	On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap. Nanoscale, 2016, 8, 15730-15736.	2.8	20
990	Photo-Induced or Plasmon-Induced Reaction: Investigation of the Light-Induced Azo-Coupling of Amino Groups. Journal of Physical Chemistry C, 2016, 120, 20978-20983.	1.5	41
991	Surface-enhanced Raman scattering measurement from a lipid bilayer encapsulating a single decahedral nanoparticle mediated by an optical trap. Nanoscale, 2016, 8, 16395-16404.	2.8	9
992	Trapping analyte molecules in hotspots with modified free-standing silver bowtie nanostructures for SERS detection. RSC Advances, 2016, 6, 84480-84484.	1.7	10

#	Article	IF	CITATIONS
993	Controlled plasmon enhanced fluorescence by silver nanoparticles deposited onto nanotube arrays. Journal of Physics Condensed Matter, 2016, 28, 364004.	0.7	4
994	Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	11
995	Facile and sensitive detection of influenza viruses using SERS antibody probes. RSC Advances, 2016, 6, 84415-84419.	1.7	24
996	Large near-to-far field spectral shifts for terahertz resonances. Physical Review B, 2016, 93, .	1.1	16
997	"Green―seed-mediated synthesis and morphology of Au nanoparticles using β-cyclodextrin. Gold Bulletin, 2016, 49, 45-51.	1.1	2
998	Nanoembossed gold nanoshell with a fluorescence-like strong SERS signal. Nanotechnology, 2016, 27, 175704.	1.3	3
999	Integrated optical sensor using hybrid plasmonics for lab on chip applications. Journal of Optics (United Kingdom), 2016, 18, 085803.	1.0	32
1000	Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels. Nano Letters, 2016, 16, 7857-7864.	4.5	35
1001	Nanoantenna effect of surface-enhanced Raman scattering: managing light with plasmons at the nanometer scale. Advances in Physics: X, 2016, 1, 492-521.	1.5	10
1002	Design and preparation of a recyclable microfluidic SERS chip with integrated Au@Ag/TiO ₂ NTs. RSC Advances, 2016, 6, 113115-113122.	1.7	18
1003	Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nature Communications, 2016, 7, 11495.	5.8	605
1004	Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Accounts of Chemical Research, 2016, 49, 2746-2755.	7.6	331
1005	Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles. Scientific Reports, 2016, 6, 30320.	1.6	31
1006	Probing thermal expansion coefficients of monolayers using surface enhanced Raman scattering. RSC Advances, 2016, 6, 99053-99059.	1.7	20
1007	Exciton-plasmon coupling of a single quantum dot and a metal nanowire. , 2016, , .		1
1008	Form and identify plasmonic dimer antennas: emitting-polarization resolved scattering from classical to quantum regime. Proceedings of SPIE, 2016, , .	0.8	0
1009	Monitoring the penetration and accumulation of gold nanoparticles in rat skin <i>ex vivo</i> using surface-enhanced Raman scattering spectroscopy. Journal of Innovative Optical Health Sciences, 2016, 09, 1650026.	0.5	5
1010	Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?. Journal of Physical Chemistry C, 2016, 120, 13675-13683.	1.5	36

#	Apticie	IE	CITATIONS
#	ARTICLE	IF	CHATIONS
1011	Sensing. Applied Spectroscopy, 2016, 70, 1375-1383.	1.2	8
1012	Terahertz field enhancement in asymmetric and tapered nano-gaps. Optics Express, 2016, 24, 2065.	1.7	12
1013	Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate. Journal of Biological Engineering, 2016, 10, 2.	2.0	15
1014	Development of ordered metal nanoparticle arrangements on solid supports by combining a green nanoparticle synthetic method and polymer templating for sensing applications. RSC Advances, 2016, 6, 60502-60512.	1.7	6
1015	Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics. ACS Photonics, 2016, 3, 269-277.	3.2	43
1016	Highly dispersed Ag nanoparticles embedded in alumina nanobelts as excellent surface-enhanced Raman scattering substrates. RSC Advances, 2016, 6, 8580-8583.	1.7	2
1017	Inorganic/polymer hybrid nanoparticles for sensing applications. Advances in Colloid and Interface Science, 2016, 233, 25-37.	7.0	32
1018	Research on the influence of alkyl ammonium bromides on the properties of Ag/AgBr/GO composites. New Journal of Chemistry, 2016, 40, 1323-1329.	1.4	5
1019	Development of SERS substrates for immunoassay applications. , 2016, , .		0
1020	Plasmon-Mediated Reduction of Aqueous Platinum Ions: The Competing Roles of Field Enhancement and Hot Charge Carriers. Journal of Physical Chemistry C, 2016, 120, 6750-6755.	1.5	49
1021	High resolution scanning near field mapping of enhancement on SERS substrates: comparison with photoemission electron microscopy. Physical Chemistry Chemical Physics, 2016, 18, 9405-9411.	1.3	17
1022	The Sensitivity of the Distance Dependent Plasmonic Coupling between Two Nanocubes to their Orientation: Edge-to-Edge versus Face-to-Face. Journal of Physical Chemistry C, 2016, 120, 4564-4570.	1.5	29
1023	A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates. Analyst, The, 2016, 141, 1721-1733.	1.7	20
1024	Optical characteristics of rounded silver nanoprisms. Optical Review, 2016, 23, 260-264.	1.2	6
1025	Basics of Surface-Enhanced Raman Scattering (SERS). Biological and Medical Physics Series, 2016, , 21-59.	0.3	4
1026	Single molecule Raman spectra of porphycene isotopologues. Nanoscale, 2016, 8, 3337-3349.	2.8	25
1027	Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst, The, 2016, 141, 756-793.	1.7	159
1028	Optomechanics goes molecular. Nature Nanotechnology, 2016, 11, 114-115.	15.6	12

#	Article	IF	CITATIONS
1029	Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 152, 336-342.	2.0	27
1030	Surface-Enhanced Raman Scattering (SERS), Applications. , 2017, , 389-395.		1
1031	Scaffold-Based Multi-nanoparticle Clusters as Tunable LSPR Substrates for SERS Applications. Plasmonics, 2017, 12, 9-17.	1.8	8
1032	Optimal design of gold nanomatryoshkas with embedded Raman reporters. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 190, 89-102.	1.1	19
1033	Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper. Applied Surface Science, 2017, 404, 334-341.	3.1	45
1034	Role of Sputter Deposition Rate in Tailoring Nanogranular Gold Structures on Polymer Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 5629-5637.	4.0	64
1035	Hot‧pot Engineering in 3D Multiâ€Branched Nanostructures: Ultrasensitive Substrates for Surfaceâ€Enhanced Raman Spectroscopy. Advanced Optical Materials, 2017, 5, 1600836.	3.6	32
1036	Highly Selective and Repeatable Surface-Enhanced Resonance Raman Scattering Detection for Epinephrine in Serum Based on Interface Self-Assembled 2D Nanoparticles Arrays. ACS Applied Materials & Interfaces, 2017, 9, 7772-7779.	4.0	56
1037	Plasmonic Particles with Unique Optical Interaction and Mechanical Motion Properties. Particle and Particle Systems Characterization, 2017, 34, 1600380.	1.2	7
1038	Detection of surface-linked polychlorinated biphenyls using surface-enhanced Raman scattering spectroscopy. Vibrational Spectroscopy, 2017, 90, 1-6.	1.2	12
1039	Advances in Tip-Enhanced Near-Field Raman Microscopy Using Nanoantennas. Chemical Reviews, 2017, 117, 4945-4960.	23.0	103
1040	Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance.Part 1: Diagnosis. Drug Metabolism Reviews, 2017, 49, 212-252.	1.5	17
1041	Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst, The, 2017, 142, 1022-1047.	1.7	158
1042	Plasmonic Nanolenses: Electrostatic Self-Assembly of Hierarchical Nanoparticle Trimers and Their Response to Optical and Electron Beam Stimuli. ACS Nano, 2017, 11, 1604-1612.	7.3	37
1043	Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars. Analyst, The, 2017, 142, 951-958.	1.7	49
1045	Non-symmetric hybrids of noble metal-semiconductor: Interplay of nanoparticles and nanostructures in formation dynamics and plasmonic applications. Progress in Natural Science: Materials International, 2017, 27, 157-168.	1.8	19
1046	Rapid and sensitive detection of sodium saccharin in soft drinks by silver nanorod array SERS substrates. Sensors and Actuators B: Chemical, 2017, 251, 272-279.	4.0	78
1047	Fabrication of self-organized precisely tunable plasmonic SERS substrates via glancing angle deposition. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700088.	0.8	2

#	Article	IF	CITATIONS
1048	Further expanding versatility of surface-enhanced Raman spectroscopy: from non-traditional SERS-active to SERS-inactive substrates and single shell-isolated nanoparticle. Faraday Discussions, 2017, 205, 457-468.	1.6	15
1049	Photothermal Microscopy of Coupled Nanostructures and the Impact of Nanoscale Heating in Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 11623-11631.	1.5	38
1050	Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system. Frontiers of Physics, 2017, 12, 1.	2.4	1
1051	Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances. Chemical Reviews, 2017, 117, 6447-6466.	23.0	308
1052	Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA. Sensors and Actuators B: Chemical, 2017, 249, 439-450.	4.0	83
1053	Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. Journal of Colloid and Interface Science, 2017, 505, 467-475.	5.0	23
1054	Office paper decorated with silver nanostars - an alternative cost effective platform for trace analyte detection by SERS. Scientific Reports, 2017, 7, 2480.	1.6	86
1055	Linking classical and molecular optomechanics descriptions of SERS. Faraday Discussions, 2017, 205, 31-65.	1.6	47
1056	Engineering two-wire optical antennas for near field enhancement. Photonics and Nanostructures - Fundamentals and Applications, 2017, 25, 72-76.	1.0	11
1057	Droplet-Confined Electroless Deposition of Silver Nanoparticles on Ordered Superhydrophobic Structures for High Uniform SERS Measurements. ACS Applied Materials & Interfaces, 2017, 9, 21548-21553.	4.0	25
1058	Development of optimized nanogap plasmonic substrate for improved SERS enhancement. AIP Advances, 2017, 7, .	0.6	8
1059	Chemical sensing dependence on metal oxide thickness for high temperature plasmonics-based sensors. Sensors and Actuators B: Chemical, 2017, 251, 1104-1111.	4.0	14
1060	Observing the dynamic "hot spots―on two-dimensional Au nanoparticles monolayer film. Chemical Communications, 2017, 53, 6788-6791.	2.2	29
1061	Surfactantâ€Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis. Advanced Materials, 2017, 29, 1605622.	11.1	77
1063	Plasmon-assisted site-selective growth of Ag nanotriangles and Ag-Cu2O hybrids. Scientific Reports, 2017, 7, 44806.	1.6	3
1064	Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nature Communications, 2017, 8, 14891.	5.8	138
1065	Mechanical control of the plasmon coupling with Au nanoparticle arrays fixed on the elastomeric film via chemical bond. Japanese Journal of Applied Physics, 2017, 56, 035201.	0.8	6
1066	Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots. Nano Letters, 2017, 17, 2667-2673.	4.5	49

#	Article	IF	CITATIONS
1067	Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 13457-13470.	4.0	104
1068	A classical description of subnanometer resolution by atomic features in metallic structures. Nanoscale, 2017, 9, 391-401.	2.8	108
1069	Prosperity to challenges: recent approaches in SERS substrate fabrication. Reviews in Analytical Chemistry, 2017, 36, .	1.5	44
1070	Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy. Nanotechnology, 2017, 28, 045303.	1.3	22
1071	The SERS effect in coordination chemistry. Coordination Chemistry Reviews, 2017, 333, 108-131.	9.5	30
1072	A silica-based SERS chip for rapid and ultrasensitive detection of fluoride ions triggered by a cyclic boronate ester cleavage reaction. Nanoscale, 2017, 9, 1599-1606.	2.8	36
1073	Polarization control of spontaneous emission for rapid quantum-state initialization. Physical Review A, 2017, 95, .	1.0	5
1074	Recent progress and perspective of trace antibiotics detection in aquatic environment by surface-enhanced Raman spectroscopy. Trends in Environmental Analytical Chemistry, 2017, 16, 16-23.	5.3	20
1075	Tunable Black Gold: Controlling the Nearâ€Field Coupling of Immobilized Au Nanoparticles Embedded in Mesoporous Silica Capsules. Advanced Optical Materials, 2017, 5, 1700617.	3.6	20
1076	Tailoring plasmonic properties of metal nanoparticle-embedded dielectric thin films: the sandwich method of preparation. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	3
1077	Quantitative SERS by hot spot normalization – surface enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance. Faraday Discussions, 2017, 205, 491-504.	1.6	31
1078	Plasmonic behaviour of phenylenediamine functionalised silver nanoparticles. Materials Research Express, 2017, 4, 095018.	0.8	5
1079	Plasmonic Fields Focused to Molecular Size. ChemNanoMat, 2017, 3, 843-856.	1.5	9
1080	Key role of surface concentration on reproducibility and optimization of SERS sensitivity. Journal of Raman Spectroscopy, 2017, 48, 1190-1195.	1.2	11
1081	In Situ Twoâ€Step Photoreduced SERS Materials for Onâ€Chip Singleâ€Molecule Spectroscopy with High Reproducibility. Advanced Materials, 2017, 29, 1702893.	11.1	79
1082	Characterization method for relative Raman enhancement for surface-enhanced Raman spectroscopy using gold nanoparticle dimer array. Japanese Journal of Applied Physics, 2017, 56, 06GK03.	0.8	8
1083	Real-time monitoring of plasmon-induced proton transfer of hypoxanthine in serum. Nanoscale, 2017, 9, 12307-12310.	2.8	12
1084	How nonlocal damping reduces plasmon-enhanced fluorescence in ultranarrow gaps. Physical Review B, 2017, 96, .	1.1	33

#	Article	IF	CITATIONS
1085	Single-molecule surface-enhanced Raman spectroscopy of 4,4′-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers. Japanese Journal of Applied Physics, 2017, 56, 06GK01.	0.8	13
1086	Plasmonic Near-Field Localization of Silver Core–Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering. ACS Applied Materials & Interfaces, 2017, 9, 41577-41585.	4.0	34
1087	Template-Assisted Electrodeposition of Urchin-Like Ag-Nanoplate-Assembled Nanorod Arrays and Their Structurally Enhanced SERS Performance. Journal of the Electrochemical Society, 2017, 164, D895-D900.	1.3	6
1088	Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering. Physical Review B, 2017, 96, .	1.1	3
1089	One-dimensional plasmonic hotspots located between silver nanowire dimers evaluated by surface-enhanced resonance Raman scattering. Physical Review B, 2017, 95, .	1.1	43
1090	Oblique Colloidal Lithography for the Fabrication of Nonconcentric Features. ACS Nano, 2017, 11, 6594-6604.	7.3	14
1091	A new route for the synthesis of a Ag nanopore–inlay–nanogap structure: integrated Ag-core@graphene-shell@Ag-jacket nanoparticles for high-efficiency SERS detection. Chemical Communications, 2017, 53, 8691-8694.	2.2	11
1092	Anisotropic Optical Response of Silver Nanorod Arrays: Surface Enhanced Raman Scattering Polarization and Angular Dependences Confronted with Ellipsometric Parameters. Scientific Reports, 2017, 7, 4293.	1.6	10
1093	Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2017, 46, 4042-4076.	18.7	1,020
1094	SERS enhancement dependence on the diameter of Au nanoparticles. Journal of Physics: Conference Series, 2017, 844, 012030.	0.3	3
1094 1095	SERS enhancement dependence on the diameter of Au nanoparticles. Journal of Physics: Conference Series, 2017, 844, 012030.Computational and experimental evaluation of selective substitution of thiolated coumarin derivatives on gold nanoparticles: Surface enhancing Raman scattering and electrochemical studies. Applied Surface Science, 2017, 396, 695-704.	0.3 3.1	3
1094 1095 1096	SERS enhancement dependence on the diameter of Au nanoparticles. Journal of Physics: Conference Series, 2017, 844, 012030.Computational and experimental evaluation of selective substitution of thiolated coumarin derivatives on gold nanoparticles: Surface enhancing Raman scattering and electrochemical studies. Applied Surface Science, 2017, 396, 695-704.HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. Small, 2017, 13, 1600918.	0.3 3.1 5.2	3 7 16
1094 1095 1096 1097	SERS enhancement dependence on the diameter of Au nanoparticles. Journal of Physics: Conference Series, 2017, 844, 012030. Computational and experimental evaluation of selective substitution of thiolated coumarin derivatives on gold nanoparticles: Surface enhancing Raman scattering and electrochemical studies. Applied Surface Science, 2017, 396, 695-704. HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. Small, 2017, 13, 1600918. Realâ€Time Probing Nanoporeâ€inâ€Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surfaceâ€Enhanced Raman Spectroscopy. Advanced Functional Materials, 2017, 27, 1603233.	0.3 3.1 5.2 7.8	3 7 16 50
1094 1095 1096 1097	SERS enhancement dependence on the diameter of Au nanoparticles. Journal of Physics: Conference Series, 2017, 844, 012030. Computational and experimental evaluation of selective substitution of thiolated coumarin derivatives on gold nanoparticles: Surface enhancing Raman scattering and electrochemical studies. Applied Surface Science, 2017, 396, 695-704. HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. Small, 2017, 13, 1600918. Realâ€Time Probing Nanoporeâ€inâ€Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surfaceâ€Enhanced Raman Spectroscopy. Advanced Functional Materials, 2017, 27, 1603233. Ultraâ€thin layer chromatography with integrated silver colloidâ€based SERS detection. Electrophoresis, 2017, 38, 361-367.	0.3 3.1 5.2 7.8 1.3	3 7 16 50
1094 1095 1096 1097 1098	SERS enhancement dependence on the diameter of Au nanoparticles. Journal of Physics: Conference Series, 2017, 844, 012030. Computational and experimental evaluation of selective substitution of thiolated coumarin derivatives on gold nanoparticles: Surface enhancing Raman scattering and electrochemical studies. Applied Surface Science, 2017, 396, 695-704. HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. Small, 2017, 13, 1600918. Realâ€Time Probing Nanoporeâ€inâ€Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surfaceâ€Enhanced Raman Spectroscopy. Advanced Functional Materials, 2017, 27, 1603233. Ultraâ€thin layer chromatography with integrated silver colloidâ€based SERS detection. Electrophoresis, 2017, 38, 361-367. Performance Improving Method of Aligned Silver Nanorod by Grafting Au@Ag Core–Shell Nanoparticles for Surface-Enhanced Raman Scattering. Nano, 2017, 12, 1750131.	0.3 3.1 5.2 7.8 1.3 0.5	3 7 16 50 6 15
1094 1095 1096 1097 1098	SERS enhancement dependence on the diameter of Au nanoparticles. Journal of Physics: Conference Series, 2017, 844, 012030. Computational and experimental evaluation of selective substitution of thiolated coumarin derivatives on gold nanoparticles: Surface enhancing Raman scattering and electrochemical studies. Applied Surface Science, 2017, 396, 695-704. HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. Small, 2017, 13, 1600918. Reala€Time Probing Nanoporeâ€inâ€Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surfaceâ€Enhanced Raman Spectroscopy. Advanced Functional Materials, 2017, 27, 1603233. Ultraâ€thin layer chromatography with integrated silver colloidâ€based SERS detection. Electrophoresis, 2017, 38, 361-367. Performance Improving Method of Aligned Silver Nanorod by Grafting Au@Ag Coreâ€"Shell Nanoparticles for Surface-Enhanced Raman Scattering. Nano, 2017, 12, 1750131. Enhancement of Raman scattering from single-walled carbon nanotubes on densely-arranged two-dimensional gold nanoparticle assemblies. Molecular Crystals and Liquid Crystals, 2017, 654, 151-156.	0.3 3.1 5.2 7.8 1.3 0.5	3 7 16 50 6 15
 1094 1095 1096 1097 1098 1099 1100 1102 	SERS enhancement dependence on the diameter of Au nanoparticles. Journal of Physics: Conference Series, 2017, 844, 012030. Computational and experimental evaluation of selective substitution of thiolated coumarin derivatives on gold nanoparticles: Surface enhancing Raman scattering and electrochemical studies. Applied Surface Science, 2017, 396, 695-704. HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. Small, 2017, 13, 1600918. Realâ€Time Probing Nanoporeâ€inâ€Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surfaceâ€Enhanced Raman Spectroscopy. Advanced Functional Materials, 2017, 27, 1603233. Ultraâ€thin layer chromatography with integrated silver colloidâ€based SERS detection. Electrophoresis, 2017, 38, 361-367. Performance Improving Method of Aligned Silver Nanorod by Grafting Au@Ag Coreâ€"Shell Nanoparticles for Surface-Enhanced Raman Scattering. Nano, 2017, 12, 1750131. Enhancement of Raman scattering from single-walled carbon nanotubes on densely-arranged two-dimensional gold nanoparticle assemblies. Molecular Crystals and Liquid Crystals, 2017, 654, 151-156. Gap width-independent spectra in 4-aminothiophenol surface enhanced Raman scattering stimulated in Au-gap array. Japanese Journal of Applied Physics, 2017, 56, 065202.	0.3 3.1 5.2 7.8 1.3 0.5 0.4 0.8	3 7 16 50 6 15 0

#	Article	IF	CITATIONS
1104	Surface regeneration and signal increase in surface-enhanced Raman scattering substrates. Applied Optics, 2017, 56, B198.	2.1	18
1105	Enhanced Raman spectroscopy by a double cavity metal-cladding waveguide. Applied Optics, 2017, 56, 115.	2.1	5
1106	High-performance surface-enhanced Raman scattering substrate prepared by self-assembling of silver nanoparticles into the nanogaps of silver nanoislands. Applied Optics, 2017, 56, 5751.	0.9	9
1107	Formation of gold nanoparticle dimers on silicon by sacrificial DNA origami technique. Micro and Nano Letters, 2017, 12, 854-859.	0.6	7
1108	Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application. Nanomaterials, 2017, 7, 398.	1.9	64
1109	Ag Nanorods-Oxide Hybrid Array Substrates: Synthesis, Characterization, and Applications in Surface-Enhanced Raman Scattering. Sensors, 2017, 17, 1895.	2.1	8
1110	Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles. Sensors, 2017, 17, 2563.	2.1	19
1111	Surface-Enhanced Spectroscopy for Surface Characterization. , 2017, , 115-154.		0
1112	Enhanced second-harmonic generation and photon drag effect in a doped graphene placed on a two-dimensional diffraction grating. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 740.	0.9	4
1114	Amphiphilic Functionalized Acupuncture Needle as SERS Sensor for In Situ Multiphase Detection. Analytical Chemistry, 2018, 90, 3826-3832.	3.2	43
1115	Effect of nanostructured silicon on surface enhanced Raman scattering. RSC Advances, 2018, 8, 6629-6633.	1.7	16
1116	Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms. Journal of Materials Chemistry C, 2018, 6, 5314-5335.	2.7	206
1117	Review—Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. Journal of the Electrochemical Society, 2018, 165, B3098-B3118.	1.3	147
1118	Graphene as a local probe to investigate near-field properties of plasmonic nanostructures. Physical Review B, 2018, 97, .	1.1	12
1119	Platzierung einzelner Proteine in den SERSâ€Hotâ€Spots selbstorganisierter Silbernanolinsen. Angewandte Chemie, 2018, 130, 7566-7569.	1.6	4
1120	Placement of Single Proteins within the SERS Hot Spots of Selfâ€Assembled Silver Nanolenses. Angewandte Chemie - International Edition, 2018, 57, 7444-7447.	7.2	58
1121	Plasmon Waveguiding in Nanowires. Chemical Reviews, 2018, 118, 2882-2926.	23.0	179
1122	Ultrasensitive SERS-Based Immunoassay of Tumor Marker in Serum Using Au–Ag Alloy Nanoparticles and Ag/AgBr Hybrid Nanostructure. Nano, 2018, 13, 1850001.	0.5	10

#	Article	IF	CITATIONS
1123	Searching the Theoretical Ultimate Limits of Probing Surface-Enhanced Raman Optical Activity. ACS Omega, 2018, 3, 1170-1177.	1.6	13
1124	Hybrids of Two-dimensional Colloidal Crystals and Gold Nanoparticle Assemblies for Effective Surface-enhanced Raman Scattering with High Spatial Reproducibility. Chemistry Letters, 2018, 47, 429-432.	0.7	4
1125	Rapid identification of gutter oil by detecting the capsaicin using surface enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2018, 49, 472-481.	1.2	33
1126	Integrating Subâ€3 nm Plasmonic Gaps into Solidâ€ S tate Nanopores. Small, 2018, 14, e1703307.	5.2	31
1127	Gold Nanostructures for Plasmonic Enhancement of Hyper-Raman Scattering. Journal of Physical Chemistry C, 2018, 122, 2931-2940.	1.5	32
1128	A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system. Sensors and Actuators B: Chemical, 2018, 261, 1-10.	4.0	41
1129	Thermal stability of ultrathin and high dielectric ta films coated with Ag nanostructures for SERS. Journal of Raman Spectroscopy, 2018, 49, 431-437.	1.2	3
1130	Highly sensitive and reproducible SERS substrates of bilayer Au and Ag nano-island arrays by thermal evaporation deposition. Surface and Coatings Technology, 2018, 350, 823-830.	2.2	19
1131	Remote excitation and detection of surface-enhanced Raman scattering from graphene. Nanoscale, 2018, 10, 10498-10504.	2.8	18
1132	Surface Enhanced Raman Spectroscopy for Medical Diagnostics. , 2018, , 1-66.		6
1132 1133	Surface Enhanced Raman Spectroscopy for Medical Diagnostics. , 2018, , 1-66. Near-Field Response on the Far-Field Wavelength-Scanned Surface-Enhanced Raman Spectroscopic Study of Methylene Blue Adsorbed on Gold Nanocolloidal Particles. Journal of Physical Chemistry C, 2018, 122, 10981-10991.	1.5	6 33
1132 1133 1135	Surface Enhanced Raman Spectroscopy for Medical Diagnostics. , 2018, , 1-66. Near-Field Response on the Far-Field Wavelength-Scanned Surface-Enhanced Raman Spectroscopic Study of Methylene Blue Adsorbed on Gold Nanocolloidal Particles. Journal of Physical Chemistry C, 2018, 122, 10981-10991. Study of Surface-Enhanced Raman Scattering of Plasmonic Coupled Biomolecule: Role of Multi-Layered Nanosphere. Plasmonics, 2018, 13, 221-229.	1.5	6 33 3
1132 1133 1135 1136	Surface Enhanced Raman Spectroscopy for Medical Diagnostics. , 2018, , 1-66.Near-Field Response on the Far-Field Wavelength-Scanned Surface-Enhanced Raman Spectroscopic Study of Methylene Blue Adsorbed on Gold Nanocolloidal Particles. Journal of Physical Chemistry C, 2018, 122, 10981-10991.Study of Surface-Enhanced Raman Scattering of Plasmonic Coupled Biomolecule: Role of Multi-Layered Nanosphere. Plasmonics, 2018, 13, 221-229.Studying Properties of Composite Nano-PAA-Au Array for the Optimal SERS Sensitivity. Plasmonics, 2018, 13, 631-638.	1.5 1.8 1.8	6 33 3 0
1132 1133 1135 1136 1137	Surface Enhanced Raman Spectroscopy for Medical Diagnostics. , 2018, , 1-66. Near-Field Response on the Far-Field Wavelength-Scanned Surface-Enhanced Raman Spectroscopic Study of Methylene Blue Adsorbed on Gold Nanocolloidal Particles. Journal of Physical Chemistry C, 2018, 122, 10981-10991. Study of Surface-Enhanced Raman Scattering of Plasmonic Coupled Biomolecule: Role of Multi-Layered Nanosphere. Plasmonics, 2018, 13, 221-229. Studying Properties of Composite Nano-PAA-Au Array for the Optimal SERS Sensitivity. Plasmonics, 2018, 13, 631-638. Facile synthesis of gold nanostars over a wide size range and their excellent surface enhanced Raman scattering properties. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 03E101.	1.5 1.8 1.8 0.6	6 33 3 0 8
1132 1133 1135 1136 1137 1138	Surface Enhanced Raman Spectroscopy for Medical Diagnostics. , 2018, , 1-66.Near-Field Response on the Far-Field Wavelength-Scanned Surface-Enhanced Raman Spectroscopic Study of Methylene Blue Adsorbed on Gold Nanocolloidal Particles. Journal of Physical Chemistry C, 2018, 122, 10981-10991.Study of Surface-Enhanced Raman Scattering of Plasmonic Coupled Biomolecule: Role of Multi-Layered Nanosphere. Plasmonics, 2018, 13, 221-229.Studying Properties of Composite Nano-PAA-Au Array for the Optimal SERS Sensitivity. Plasmonics, 2018, 13, 631-638.Facile synthesis of gold nanostars over a wide size range and their excellent surface enhanced Raman scattering and fluorescence quenching properties. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 03E101.Nanoplasmonic sensors for detecting circulating cancer biomarkers. Advanced Drug Delivery Reviews, 2018, 125, 48-77.	1.5 1.8 1.8 0.6 6.6	6 33 3 0 8 88
 1132 1133 1135 1136 1137 1138 1139 	Surface Enhanced Raman Spectroscopy for Medical Diagnostics. , 2018, , 1-66. Near-Field Response on the Far-Field Wavelength-Scanned Surface-Enhanced Raman Spectroscopic Study of Methylene Blue Adsorbed on Gold Nanocolloidal Particles. Journal of Physical Chemistry C, 2018, 122, 10981-10991. Study of Surface-Enhanced Raman Scattering of Plasmonic Coupled Biomolecule: Role of Multi-Layered Nanosphere. Plasmonics, 2018, 13, 221-229. Studying Properties of Composite Nano-PAA-Au Array for the Optimal SERS Sensitivity. Plasmonics, 2018, 13, 631-638. Facile synthesis of gold nanostars over a wide size range and their excellent surface enhanced Raman scattering and fluorescence quenching properties. Journal of Vacuum Science and Technology BiNanotechnology and Microelectronics, 2018, 36, 03E101. Nanoplasmonic sensors for detecting circulating cancer biomarkers. Advanced Drug Delivery Reviews, 2018, 125, 48-77. Effect of diaminostilbene as a molecular linker on Ag nanoparticles: SERS study of aggregation and interparticle hot spots in various environments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 542-548.	1.5 1.8 1.8 0.6 6.6 2.3	6 33 3 0 8 8 8 8 8
 1132 1133 1135 1136 1137 1138 1139 1140 	Surface Enhanced Raman Spectroscopy for Medical Diagnostics., 2018,, 1-66. Near-Field Response on the Far-Field Wavelength-Scanned Surface-Enhanced Raman Spectroscopic Study of Methylene Blue Adsorbed on Gold Nanocolloidal Particles. Journal of Physical Chemistry C, 2018, 122, 10981-10991. Study of Surface-Enhanced Raman Scattering of Plasmonic Coupled Biomolecule: Role of Multi-Layered Nanosphere. Plasmonics, 2018, 13, 221-229. Studying Properties of Composite Nano-PAA-Au Array for the Optimal SERS Sensitivity. Plasmonics, 2018, 13, 631-638. Facile synthesis of gold nanostars over a wide size range and their excellent surface enhanced Raman scattering properties. Journal of Vacuum Science and Technology BiNanotechnology and Microelectronics, 2018, 36, 03E101. Nanoplasmonic sensors for detecting circulating cancer biomarkers. Advanced Drug Delivery Reviews, 2018, 125, 48-77. Effect of diaminostilbene as a molecular linker on Ag nanoparticles: SERS study of aggregation and interparticle hot spots in various environments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 542-548. Emitting-polarization of surface plasmons coupling in metallic nanoantennas. Journal of Optics (United Kingdom), 2018, 20, 014002.	1.5 1.8 1.8 0.6 6.6 2.3 1.0	6 33 3 3 0 8 8 8 8 8 8 8 8 8 8 3

#	Article	IF	CITATIONS
1142	Optical Conduction Resonance in Self-Assembled Metal Nanoparticle Array-Dielectric Thin Films. Journal of Nanomaterials, 2018, 2018, 1-9.	1.5	0
1143	Evaluation of 3D gold nanodendrite layers obtained by templated galvanic displacement reactions for SERS sensing and heterogeneous catalysis. Nanoscale, 2018, 10, 20671-20680.	2.8	14
1144	One-step synthesis of highly-branched gold nanostructures and its application in fabrication of SERS-active substrates. AIP Advances, 2018, 8, 105133.	0.6	6
1145	Surface-Nanostructured Single Silver Nanowire: A New One-Dimensional Microscale Surface-Enhanced Raman Scattering Interface. Langmuir, 2018, 34, 15160-15165.	1.6	15
1146	Glancing Angle Deposition for Biosensing Applications. , 2018, , 129-137.		2
1147	Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips. Sensors, 2018, 18, 3212.	2.1	6
1148	Catalyzed Deposition of Signal Reporter for Highly Sensitive Surface-Enhanced Raman Spectroscopy Immunoassay Based on Tyramine Signal Amplification Strategy. Analytical Chemistry, 2018, 90, 13159-13162.	3.2	28
1149	Tunable porous silver nanostructures for efficient surface-enhanced Raman scattering detection of trace pesticide residues. New Journal of Chemistry, 2018, 42, 17750-17755.	1.4	9
1150	Mie excitons: Understanding strong coupling in dielectric nanoparticles. Physical Review B, 2018, 98, .	1.1	40
1151	Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications. Chinese Physics B, 2018, 27, 107403.	0.7	34
1152	Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime. ACS Nano, 2018, 12, 10393-10402.	7.3	151
1153	Dark dimer mode excitation and strong coupling with a nanorod dipole. Photonics Research, 2018, 6, 887.	3.4	20
1154	Large-scale flexible metal-covered polymer nanopillar arrays as highly uniform and reproducible SERS substrates for trace analysis. Nanotechnology, 2018, 29, 465701.	1.3	7
1155	Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light: Science and Applications, 2018, 7, 56.	7.7	94
1156	<scp>SILAR</scp> grown Ag nanoparticles as an efficient large area <scp>SERS</scp> substrate. Journal of Raman Spectroscopy, 2018, 49, 1274-1287.	1.2	13
1157	Rapid fabrication of flexible and transparent gold nanorods/poly (methyl methacrylate) membrane substrate for SERS nanosensor application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 202, 376-381.	2.0	23
1158	Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews, 2018, 118, 5539-5580.	23.0	80
1159	Morphology dependent near-field response in atomistic plasmonic nanocavities. Nanoscale, 2018, 10, 11410-11417.	2.8	34

#	Article	IF	CITATIONS
1160	A Review on Applications of Two-Dimensional Materials in Surface-Enhanced Raman Spectroscopy. International Journal of Spectroscopy, 2018, 2018, 1-9.	1.4	26
1161	Sub-micrometer-scale chemical analysis by nanosecond-laser-induced tip-enhanced ablation and ionization time-of-flight mass spectrometry. Nano Research, 2018, 11, 5989-5996.	5.8	14
1162	Mesoscopic and Microscopic Strategies for Engineering Plasmon‣nhanced Raman Scattering. Advanced Optical Materials, 2018, 6, 1701097.	3.6	58
1163	Analysis of a Plasmonic Pole-Absorber Using a Periodic Structure. IEICE Transactions on Electronics, 2018, E101.C, 495-500.	0.3	Ο
1164	Tunable Plasmonic Properties and Absorption Enhancement in Terahertz Photoconductive Antenna Based on Optimized Plasmonic Nanostructures. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 1028-1038.	1.2	26
1165	Nanoporous Ag-Au Bimetallic Triangular Nanoprisms Synthesized by Galvanic Replacement for Plasmonic Applications. Journal of Nanomaterials, 2018, 2018, 1-7.	1.5	6
1166	Raman Spectroscopy—Surface-Enhanced. , 2018, , 76-76.		0
1167	Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure. Photonics Research, 2018, 6, 77.	3.4	19
1168	Semianalytical model for the electromagnetic enhancement by a rectangular nanowire optical antenna on metallic substrate. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 880.	0.8	4
1169	Surface-enhanced Raman spectroscopy in modern chemical analysis: advances and prospects. Russian Chemical Reviews, 2018, 87, 741-770.	2.5	40
1170	2D Materials-Coated Plasmonic Structures for SERS Applications. Coatings, 2018, 8, 137.	1.2	27
1171	Polarization- and Angular-Resolved Optical Response of Molecules on Anisotropic Plasmonic Nanostructures. Nanomaterials, 2018, 8, 418.	1.9	12
1172	Sculpting Extreme Electromagnetic Field Enhancement in Free Space for Molecule Sensing. Small, 2018, 14, e1801146.	5.2	36
1173	Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations. Scientific Reports, 2018, 8, 9589.	1.6	41
1174	Facile room temperature synthesis of multifunctional CTAB coated gold nanoparticles. Chemical Physics, 2018, 510, 30-36.	0.9	31
1175	Atomic Force Microscopy Based Tip-Enhanced Raman Spectroscopy in Biology. International Journal of Molecular Sciences, 2018, 19, 1193.	1.8	24
1176	Small morphology variations effects on plasmonic nanoparticle dimer hotspots. Journal of Materials Chemistry C, 2018, 6, 9607-9614.	2.7	37
1177	Nanoscale plasmonic slot waveguides for enhanced Raman spectroscopy. Physical Review B, 2018, 98, .	1.1	10

#	Article	IF	CITATIONS
1178	Block-copolymer assisted fabrication of anisotropic plasmonic nanostructures. Nanotechnology, 2018, 29, 355303.	1.3	2
1179	Solution-Phase Synthesis of Branched Metallic Nanoparticles for Plasmonic Applications ^{ } . Journal of Oleo Science, 2018, 67, 689-696.	0.6	7
1180	Labelâ€free and nonâ€invasive BS‧ERS detection of liver cancer based on the solid device of silver nanofilm. Journal of Raman Spectroscopy, 2018, 49, 1426-1434.	1.2	27
1181	Chalcogenide–gold dual-layers coupled to gold nanoparticles for reconfigurable perfect absorption. Nanoscale, 2019, 11, 20546-20553.	2.8	15
1182	A DFT study on grapheneâ€based surfaceâ€enhanced Raman spectroscopy of Benzenedithiol adsorbed on gold/graphene. Journal of Raman Spectroscopy, 2019, 50, 1510-1518.	1.2	14
1183	Selecting the Mechanism of Surface-Enhanced Raman Scattering Effect using Shell Isolated Nanoparticles and an Oxo–Triruthenium Acetate Cluster Complex. Inorganic Chemistry, 2019, 58, 10399-10407.	1.9	3
1184	Modifying Plasmonic-Field Enhancement and Resonance Characteristics of Spherical Nanoparticles on Metallic Film: Effects of Faceting Spherical Nanoparticle Morphology. Coatings, 2019, 9, 387.	1.2	15
1185	Optoplasmonics: basic principles and applications. Journal of Optics (United Kingdom), 2019, 21, 113001.	1.0	30
1186	Hierarchical Laser-Patterned Silver/Graphene Oxide Hybrid SERS Sensor for Explosive Detection. ACS Omega, 2019, 4, 17691-17701.	1.6	32
1187	Waferâ€Scale Polymerâ€Based Transparent Nanocorals with Excellent Nanoplasmonic Photothermal Stability for Highâ€Power and Superfast SERS Imaging. Advanced Optical Materials, 2019, 7, 1901413.	3.6	16
1188	A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics, 2019, 8, 2065-2089.	2.9	275
1189	Detection of IL-8 in human serum using surface-enhanced Raman scattering coupled with highly-branched gold nanoparticles and gold nanocages. New Journal of Chemistry, 2019, 43, 1733-1742.	1.4	16
1190	Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement. Chinese Physics B, 2019, 28, 107802.	0.7	2
1191	Quantum description of surface-enhanced resonant Raman scattering within a hybrid-optomechanical model. Physical Review A, 2019, 100, .	1.0	27
1192	Concentric microring structures containing gold nanoparticles for SERS-based applications. Applied Surface Science, 2019, 497, 143752.	3.1	19
1193	Membrane Surface-Enhanced Raman Spectroscopy for Cholesterol-Modified Lipid Systems: Effect of Cold Nanoparticle Size. ACS Omega, 2019, 4, 13687-13695.	1.6	21
1194	Simultaneous Surface-Enhanced Resonant Raman and Fluorescence Spectroscopy of Monolayer MoSe ₂ : Determination of Ultrafast Decay Rates in Nanometer Dimension. Nano Letters, 2019, 19, 6284-6291.	4.5	71
1195	Plasmonic nanoparticle simulations and inverse design using machine learning. Nanoscale, 2019, 11, 17444-17459.	2.8	79

#	ARTICLE	IF	CITATIONS
1196	Raman Techniques: Fundamentais and Frontiers. Nanoscale Research Letters, 2019, 14, 231.	3.1	368
1197	Spontaneous implantation of gold nanoparticles on graphene oxide for salivary SERS sensing. Analytical Methods, 2019, 11, 5089-5097.	1.3	20
1198	High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nature Nanotechnology, 2019, 14, 981-987.	15.6	115
1199	Controllable synthesis of sea urchin-like gold nanoparticles and their optical characteristics. Applied Surface Science, 2019, 498, 143864.	3.1	26
1200	Surface- and Tip-Enhanced Raman Scattering in Tribology and Lubricant Detection—A Prospective. Lubricants, 2019, 7, 81.	1.2	10
1201	The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering. Faraday Discussions, 2019, 214, 309-323.	1.6	33
1202	Phase controlled SERS enhancement. Scientific Reports, 2019, 9, 744.	1.6	17
1203	Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property. ACS Applied Materials & Interfaces, 2019, 11, 6363-6373.	4.0	31
1204	Femtomolar response of a plasmon-coupled ZnO/graphene/silver hybrid whispering-gallery mode microcavity for SERS sensing. Journal of Materials Chemistry C, 2019, 7, 2710-2716.	2.7	19
1205	Flexible and smart fibers decorated with Ag nanoflowers for highly active surfaceâ€enhanced Raman scattering detection. Journal of Raman Spectroscopy, 2019, 50, 1468-1476.	1.2	14
1206	Linear acene molecules in plasmonic cavities: mapping evolution of optical absorption spectra and electric field intensity enhancements. New Journal of Chemistry, 2019, 43, 10774-10783.	1.4	13
1207	Cold nanoparticle superlattice monolayer with tunable interparticle gap for surface-enhanced Raman spectroscopy. Nanoscale, 2019, 11, 13917-13923.	2.8	34
1208	Self-cleaning SERS membrane for reusable and ultrasensitive molecular detection via integrating graphitic†carbon-nitride nanosheets and Ag nanospheres into hierarchical graphene layers that covered with graphitic†carbon-nitride quantum-dots. Applied Surface Science, 2019, 489, 1010-1018.	3.1	14
1209	Enhanced Surface-Enhanced Raman Scattering (SERS) Sensitivity by the Self-Assembly of Silver Nanoparticles (Ag NPs) Laminated on Polydimethylsiloxane (PDMS). Analytical Letters, 2019, 52, 2868-2882.	1.0	12
1210	Optical Response Properties of Stable and Controllable Au Nanorod Monolayer Meta-Arrays. Journal of Physical Chemistry C, 2019, 123, 13892-13899.	1.5	4
1211	Ag Nanorods-Based Surface-Enhanced Raman Scattering: Synthesis, Quantitative Analysis Strategies, and Applications. Frontiers in Chemistry, 2019, 7, 376.	1.8	12
1212	Recent Advances in Molecular Spectroscopy of Electronic and Vibrational Transitions in Condensed Phase and Its Application to Chemistry. Bulletin of the Chemical Society of Japan, 2019, 92, 629-654.	2.0	28
1213	Surface-enhanced Raman scattering on nanodiamond-derived carbon onions. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2019, 2, 35-39.	1.7	3

#	Article	IF	CITATIONS
1214	Real-time Raman detection by the cavity mode enhanced Raman scattering. Nano Research, 2019, 12, 1643-1649.	5.8	21
1215	Molecular Sensing by SERS Using Entangled Nanofibers. , 2019, , 795-823.		0
1216	Rapid water/oil interfacial self-assembled Au monolayer nanofilm by simple vortex mixing for surface-enhanced Raman scattering. New Journal of Chemistry, 2019, 43, 7613-7619.	1.4	10
1217	Facile preparation of nanoporous Ag decorated with CeO2 nanoparticles for surface-enhanced Raman scattering. Journal of Materials Research, 2019, 34, 2003-2013.	1.2	4
1218	Fabrication Strategies of 3D Plasmonic Structures for SERS. Biochip Journal, 2019, 13, 30-42.	2.5	36
1219	<i>In situ</i> decoration of plasmonic silver nanoparticles on poly(vinylidene fluoride) membrane for versatile SERS detection. New Journal of Chemistry, 2019, 43, 6965-6972.	1.4	11
1220	Electroless Deposition of Pd Nanostructures for Multifunctional Applications as Surface-Enhanced Raman Scattering Substrates and Electrochemical Nonenzymatic Sensors. ACS Applied Nano Materials, 2019, 2, 2503-2514.	2.4	7
1221	Resonant, Plasmonic Raman Enhancement of $\hat{I}\pm$ -6T Molecules Encapsulated in Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 10578-10585.	1.5	6
1222	The generation of multiple electric and magnetic Fano resonances in the prefect ring-triple arcs ring nanostructure. Materials Research Express, 2019, 6, 075022.	0.8	1
1223	Gold nanostructures as cancer theranostic probe: promises and hurdles. Nanomedicine, 2019, 14, 766-796.	1.7	12
1225	Plasmon-Driven Reaction Mechanisms: Hot Electron Transfer versus Plasmon-Pumped Adsorbate Excitation. Journal of Physical Chemistry C, 2019, 123, 8469-8483.	1.5	39
1226	Surface Plasmon Coupling in Dimers of Gold Nanoparticles: Experiment and Theory for Ideal (Spherical) and Nonideal (Faceted) Building Blocks. ACS Photonics, 2019, 6, 642-648.	3.2	43
1227	Complexes Formed by Hydrophobic Interaction between Ag-Nanospheres and Adsorbents for the Detection of Methyl Salicylate VOC. Nanomaterials, 2019, 9, 1621.	1.9	7
1228	Greatly amplified spontaneous emission of colloidal quantum dots mediated by a dielectric-plasmonic hybrid nanoantenna. Nanophotonics, 2019, 8, 2313-2319.	2.9	25
1229	Boosting the analytical properties of gold nanostars by single particle confinement into yolk porous silica shells. Nanoscale, 2019, 11, 21872-21879.	2.8	10
1230	Towards rational design and optimization of near-field enhancement and spectral tunability of hybrid core-shell plasmonic nanoprobes. Scientific Reports, 2019, 9, 16071.	1.6	11
1231	Controlling the Morphologies of Silver Aggregates by Laser-Induced Synthesis for Optimal SERS Detection. Nanomaterials, 2019, 9, 1529.	1.9	2
1232	Gold Nanofilm-Coated Porous Silicon as Surface-Enhanced Raman Scattering Substrate. Applied Sciences (Switzerland), 2019, 9, 4806.	1.3	14

#	Article	IF	CITATIONS
1233	Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor. Applied Materials Today, 2019, 14, 166-174.	2.3	69
1234	Highly Localized SERS Measurements Using Single Silicon Nanowires Decorated with DNA Origami-Based SERS Probe. Nano Letters, 2019, 19, 1061-1066.	4.5	34
1235	Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing. Materials, 2019, 12, 103.	1.3	28
1236	Goldâ€patterned microarray chips for ultrasensitive surfaceâ€enhanced Raman scattering detection of ultratrace samples. Journal of Raman Spectroscopy, 2019, 50, 26-33.	1.2	9
1237	Waveguide-coupled localized surface plasmon resonance for surface-enhanced Raman scattering: Antenna array as emitters. Sensors and Actuators B: Chemical, 2019, 280, 144-150.	4.0	15
1238	Surfaceâ€Enhanced Raman Scattering Enabled by Metalâ€Coated Dielectric Microspheres. Physica Status Solidi (B): Basic Research, 2019, 256, 1800379.	0.7	9
1239	Real-Time Monitoring of Ligand Exchange Kinetics on Gold Nanoparticle Surfaces Enabled by Hot Spot-Normalized Surface-Enhanced Raman Scattering. Environmental Science & Technology, 2019, 53, 575-585.	4.6	38
1240	Surface enhanced Raman scattering on molecule junction. Applied Materials Today, 2019, 14, 76-83.	2.3	10
1241	A Review of Chinese Raman Spectroscopy Research Over the Past Twenty Years. Applied Spectroscopy, 2020, 74, 130-159.	1.2	4
1242	Terahertz Biochemical Molecule‧pecific Sensors. Advanced Optical Materials, 2020, 8, 1900662.	3.6	95
1243	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
1244	Aggregation of Metal-Nanoparticle-Induced Fluorescence Enhancement and Its Application in Sensing. ACS Omega, 2020, 5, 41-48.	1.6	24
1245	Voltage-manipulating graphene-mediated surface-enhanced Raman scattering (G-SERS): principle and applications. Applied Spectroscopy Reviews, 2020, 55, 558-573.	3.4	9
1246	Light-Sheet Skew Ray-Enhanced Localized Surface Plasmon Resonance-Based Chemical Sensing. ACS Sensors, 2020, 5, 127-132.	4.0	3
1247	Cavity Plasmonics in Tunnel Junctions: Outcoupling and the Role of Surface Roughness. Physical Review Applied, 2020, 14, .	1.5	12
1248	Hierarchical Particle-In-Quasicavity Architecture for Ultratrace <i>In Situ</i> Raman Sensing and Its Application in Real-Time Monitoring of Toxic Pollutants. Analytical Chemistry, 2020, 92, 14754-14761.	3.2	118
1249	Optical nanoantenna for beamed and surfaceâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2020, 51, 2121-2145.	1.2	12
1250	Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Applied Physics Reviews, 2020, 7, _	5.5	82

#	Article	IF	CITATIONS
1251	Self-Assembly of Plasmonic Near-Perfect Absorbers of Light: The Effect of Particle Size. Journal of Physical Chemistry Letters, 2020, 11, 8378-8385.	2.1	15
1252	Experimental Evidence of a Twofold Electromagnetic Enhancement Mechanism of Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2020, 124, 21215-21222.	1.5	27
1253	Quantifying the enhancement mechanisms of surface-enhanced Raman scattering using a Raman bond model. Journal of Chemical Physics, 2020, 153, 224704.	1.2	11
1254	Electric-Field-Induced Effects on the Dipole Moment and Vibrational Modes of the Centrosymmetric Indigo Molecule. Journal of Physical Chemistry A, 2020, 124, 10856-10869.	1.1	18
1256	Buoyant particulate strategy for few-to-single particle-based plasmonic enhanced nanosensors. Nature Communications, 2020, 11, 2603.	5.8	36
1257	Merging individual metal nanostructures into a superstructure for plasmon mode hybridization and electric-field nanofocusing. Journal of Materials Chemistry C, 2020, 8, 9293-9302.	2.7	5
1258	Wrinkled 2H-phase MoS2 sheet decorated with graphene-microflowers for ultrasensitive molecular sensing by plasmon-free SERS enhancement. Sensors and Actuators B: Chemical, 2020, 320, 128445.	4.0	31
1259	Synthesis, self-assembly, sensing methods and mechanism of bio-source facilitated nanomaterials: A review with future outlook. Nano Structures Nano Objects, 2020, 23, 100498.	1.9	20
1260	Structure Analysis of Amyloid Aggregates at Lipid Bilayers by Supercritical Angle Raman Microscopy. Analytical Chemistry, 2020, 92, 4963-4970.	3.2	2
1261	Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes. Journal of Chemical Physics, 2020, 152, 104706.	1.2	21
1262	Deposition of Ag Films on Liquid Substrates via Thermal Evaporation for Surface-Enhanced Raman Scattering. ACS Omega, 2020, 5, 7440-7445.	1.6	11
1263	Strong plasmon–exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe ₂ . Nanoscale, 2020, 12, 9708-9716.	2.8	29
1264	Fabrication and SERS properties of complex and organized nanoparticle plasmonic clusters stable in solution. Nanoscale, 2020, 12, 14948-14956.	2.8	39
1265	Selectively Depopulating Valley-Polarized Excitons in Monolayer MoS ₂ by Local Chirality in Single Plasmonic Nanocavity. Nano Letters, 2020, 20, 4953-4959.	4.5	45
1266	Hybrid 3D SERS substrate for Raman spectroscopy. Chemical Physics Letters, 2020, 754, 137733.	1.2	2
1267	Anti-crossing property of strong coupling system of silver nanoparticle dimers coated with thin dye molecular films analyzed by electromagnetism. Journal of Chemical Physics, 2020, 152, 054710.	1.2	12
1268	Modified plasmonic response of dimer nanoantennas with nonlocal effects: From near-field enhancement to optical force. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245, 106878.	1.1	9
1269	Efficient Surface Plasmon Polariton Excitation and Control over Outcoupling Mechanisms in Metal–Insulator–Metal Tunneling Junctions. Advanced Science, 2020, 7, 1900291.	5.6	32

#	Article	IF	CITATIONS
1270	Accurately Predicting the Radiation Enhancement Factor in Plasmonic Optical Antenna Emitters. Journal of Physical Chemistry Letters, 2020, 11, 1947-1953.	2.1	4
1271	Key Role of Direct Adsorption on SERS Sensitivity: Synergistic Effect among Target, Aggregating Agent, and Surface with Au or Ag Colloid as Surface-Enhanced Raman Spectroscopy Substrate. Journal of Physical Chemistry Letters, 2020, 11, 1022-1029.	2.1	75
1272	Quantitative analysis of the defects in CVD grown graphene by plasmon-enhanced Raman scattering. Carbon, 2020, 161, 153-161.	5.4	16
1273	Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light: Science and Applications, 2020, 9, 14.	7.7	63
1274	Molecularly imprinted polymers-surface-enhanced Raman spectroscopy: State of the art and prospects. International Journal of Environmental Analytical Chemistry, 2020, , 1-31.	1.8	4
1275	Ag@BiOCl super-hydrophobic nanostructure for enhancing SERS detection sensitivity. RSC Advances, 2020, 10, 11865-11870.	1.7	11
1276	Large-scale two-dimensional titanium carbide MXene as SERS-active substrate for reliable and sensitive detection of organic pollutants. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118336.	2.0	42
1277	Optimized Au NRs for efficient SERS and SERRS performances with molecular and longitudinal surface plasmon resonance. Applied Surface Science, 2021, 537, 147615.	3.1	19
1278	Theoretical treatment of singleâ€molecule scanning Raman picoscopy in strongly inhomogeneous near fields. Journal of Raman Spectroscopy, 2021, 52, 296-309.	1.2	18
1279	Understanding the lineshape of surface-enhanced infrared absorption spectra. National Science Review, 2021, 8, nwaa240.	4.6	2
1280	Plasmon-enhanced photoresponse in Ag-WS2/Si heterojunction. Applied Surface Science, 2021, 538, 148121.	3.1	48
1281	Static and ultrafast optical response of two metal nanoparticles glued with a semiconductor quantum dot. Photonics and Nanostructures - Fundamentals and Applications, 2021, 43, 100869.	1.0	1
1282	DNA-assisted synthesis of Ortho-NanoDimer with sub-nanoscale controllable gap for SERS application. Biosensors and Bioelectronics, 2021, 172, 112769.	5.3	10
1283	Tuning plasmonic nanostructures in graphene-based nano-sandwiches using ultraviolet/ozone functionalization. Journal of Materials Science, 2021, 56, 1359-1372.	1.7	6
1284	Recent advances in surfaceâ€enhanced Raman scatteringâ€based sensors for the detection of inorganic ions: Sensing mechanism and beyond. Journal of Raman Spectroscopy, 2021, 52, 468-481.	1.2	22
1285	Intracellular optical probing with gold nanostars. Nanoscale, 2021, 13, 968-979.	2.8	20
1286	Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nature Materials, 2021, 20, 916-924.	13.3	195
1287	Radiative Decay Rate Enhancement and Quenching for Multiple Emitters near a Metal Nanoparticle Surface. Journal of Physical Chemistry C, 2021, 125, 2531-2536.	1.5	4

#	Article	IF	CITATIONS
1288	Application of SERS quantitative analysis method in food safety detection. Reviews in Analytical Chemistry, 2021, 40, 173-186.	1.5	43
1289	Curvature-Dependent Cavity-Nanoparticle Scaffold-Based Clusters with LSPR Enhancement as SERS Substrates. Plasmonics, 2021, 16, 1231-1239.	1.8	6
1290	Interband, Surface Plasmon and Fano Resonances in Titanium Carbide (MXene) Nanoparticles in the Visible to Infrared Range. Photonics, 2021, 8, 36.	0.9	4
1291	MOCVD growth of gallium and indium microparticles for SERS applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 8958-8964.	1.1	2
1292	Probing the Intracellular Bio-Nano Interface in Different Cell Lines with Gold Nanostars. Nanomaterials, 2021, 11, 1183.	1.9	6
1293	Effective SERS materials by loading Ag nanoparticles into poly(acrylic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf	50 542 Td 1.8	(acid-stat-a
1294	Imaging and SERS Study of the Au Nanoparticles Interaction with HPV and Carcinogenic Cervical Tissues. Molecules, 2021, 26, 3758.	1.7	5
1295	Plasmonic dye-sensitized solar cells through collapsible gold nanofingers. Nanotechnology, 2021, 32, 355301.	1.3	3
1296	Plasmonic photothermal film for defogging and anti-icing/deicing on PTFE. Journal of Alloys and Compounds, 2021, 866, 158827.	2.8	25
1297	Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications. Nanomaterials, 2021, 11, 1895.	1.9	5
1298	Determining the Molecular Orientation on the Metal Nanoparticle Surface through Surface-Enhanced Raman Spectroscopy and Density Functional Theory Simulations. Journal of Physical Chemistry C, 2021, 125, 16289-16295.	1.5	8
1299	Surface-Enhanced Raman Spectroscopy for Molecule Characterization: HIM Investigation into Sources of SERS Activity of Silver-Coated Butterfly Scales. Nanomaterials, 2021, 11, 1741.	1.9	5
1300	Continuous in situ portable SERS analysis of pollutants in water and air by a highly sensitive gold nanoparticle-decorated PVDF substrate. Analytical and Bioanalytical Chemistry, 2021, 413, 5469-5482.	1.9	17
1301	Fabrication of plasmonic cotton gauze-Ag composite as versatile SERS substrate for detection of pesticides residue. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 257, 119766.	2.0	15
1302	High performance SERS platforms via parametric optimization of the laser-assisted photodeposition of silver and gold nanoparticles. Optical Materials Express, 2021, 11, 3079.	1.6	2
1303	Detection of Offâ€Resonance Singleâ€Walled Carbon Nanotubes by Enormous Surfaceâ€Enhanced Raman Scattering. Advanced Optical Materials, 0, , 2100559.	3.6	2
1304	A Comprehensive Review on Raman Spectroscopy Applications. Chemosensors, 2021, 9, 262.	1.8	96
1305	Improved Sensitivity of Surface-Enhanced Raman Scattering with Gold Nanoparticles-Insulator-Metal Sandwich Layers on Flat Sapphire Substrate. Nanomaterials, 2021, 11, 2416.	1.9	1
#	Article	IF	Citations
------	--	-----	-----------
1306	Plasmon–Exciton Interactions: Spontaneous Emission and Strong Coupling. Advanced Functional Materials, 2021, 31, 2100889.	7.8	44
1307	An overview of surface-enhanced Raman scattering substrates by pulsed laser deposition technique: fundamentals and applications. Advanced Composites and Hybrid Materials, 2021, 4, 885-905.	9.9	20
1308	Simultaneously preconcentration of malachite green and construction of SERS substrate in water based on cloud point extraction. Microchemical Journal, 2021, 169, 106572.	2.3	5
1309	Development of SERS platform based on ZnO multipods decorated with Ag nanospheres for detection of 4-nitrophenol and rhodamine 6G in real samples. Microchemical Journal, 2021, 170, 106660.	2.3	25
1310	Surface-enhanced Raman scattering of flexible cotton fiber-Ag for rapid adsorption and detection of malachite green in fish. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 263, 120174.	2.0	11
1311	SERS for sensing and imaging in live cells. , 2022, , 303-325.		1
1312	Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale, 2021, 13, 11593-11634.	2.8	99
1314	Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory. , 2006, , 87-103.		21
1315	Nonlinear Raman Probe of Single Molecules Attached to Colloidal Silver and Gold Clusters. , 2002, , 227-249.		28
1316	Electromagnetic Nanowire Resonances for Field-Enhanced Spectroscopy. , 2008, , 175-215.		10
1317	Background-Free Apertureless Near-Field Optical Imaging. , 2008, , 1-29.		3
1318	Fundamentals of Infrared and Raman Spectroscopy, SERS, and Theoretical Simulations. , 2008, , 9-35.		4
1319	Near-Field Optical Imaging of Wavefunctions and Optical Fields in Plasmonic Nanostructures. , 2011, , 127-160.		2
1320	Nanoplasmonics: From Present into Future. Challenges and Advances in Computational Chemistry and Physics, 2013, , 1-101.	0.6	2
1321	SERS Biosensing and Bioimaging: Design and Applications in Cancer Diagnostics. , 2017, , 345-364.		1
1322	The inorganic chemistry of surface enhanced Raman scattering (SERS). Spectroscopic Properties of Inorganic and Organometallic Compounds, 0, , 1-21.	0.4	10
1323	Strong Photon–Molecule Coupling Fields for Chemical Reactions. , 2011, , 228-255.		2
1324	Surfaceâ€enhanced Raman spectroscopy for tellurium detection by AgNPsâ€loaded 3D porous graphene hydrogel. Micro and Nano Letters, 2017, 12, 991-996.	0.6	1

#	Article	IF	CITATIONS
1325	Surface-enhanced Raman scattering properties of Ag nanostructures fabricated by galvanic reaction using nanostructured Al thin films. Molecular Crystals and Liquid Crystals, 2017, 654, 146-150.	0.4	1
1326	Nonlocal effect on the refractive index sensing and optical force in plasmonic dimer antennas. , 2018, , .		1
1327	Surface-Enhanced Raman Scattering–Based Biosensors. Series in Sensors, 2013, , 97-122.	0.0	1
1328	Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics, 2018, 10, 703.	12.1	105
1329	Broad range electric field enhancement of a plasmonic nanosphere heterodimer. Optical Materials Express, 2020, 10, 1704.	1.6	17
1330	Highly reproducible and stable surface-enhanced Raman scattering substrates of graphene-Ag nanohole arrays fabricated by sub-diffraction plasmonic lithography. OSA Continuum, 2019, 2, 582.	1.8	13
1332	2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics, 2020, 9, 1877-1900.	2.9	36
1333	Temperature-dependent dark-field scattering of single plasmonic nanocavity. Nanophotonics, 2020, 9, 3347-3356.	2.9	13
1334	Fabrication of Gold Nanoparticles Assembled Nanovalley for Surface Enhanced Raman Scattering. IEEJ Transactions on Electronics, Information and Systems, 2010, 130, 1806-1810.	0.1	3
1336	Enhanced light emission in nanostructures. Lithuanian Journal of Physics, 2011, 51, 292-302.	0.1	4
1337	Advances in surface-enhanced optical forces and optical manipulations. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 144101.	0.2	4
1338	Modulation of propagating surface plasmons. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 147302.	0.2	7
1339	Optical Field and Chemical Environment Near the Surface Modified Gold Nanoparticle Assembly Revealed by Two-Photon Induced Photoluminescence and Surface Enhanced Raman Scattering. Bulletin of the Chemical Society of Japan, 2021, 94, 2272-2278.	2.0	7
1340	STM-Induced Light Emission: Excitation and Time-Resolved Spectroscopy. , 2003, , 93-102.		0
1341	Metal-Dielectric Nanocomposites Produced by Pulsed Laser Deposition. , 2006, , 37-74.		0
1342	Chapter 2 Towards single molecule sensitivity in surface-enhanced Raman scattering. Advances in Nano-optics and Nano-photonics, 2006, , 41-86.	0.0	0
1343	Combining Micron-Size Glass Spheres with Silver Nanoparticles to Produce Extraordinary Field Enhancements for Surface-Enhanced Raman Scattering Applications. Israel Journal of Chemistry, 2006, 46, 293-297.	1.0	2
1344	Surface-Enhanced Vibrational Spectroscopy: SERS and SEIRA. Israel Journal of Chemistry, 2006, 46, 265-281.	1.0	2

CITATION R	REPORT	
	IF	CITATIONS

1345	Electromagnetic Contribution to Surface Enhanced Raman Scattering of Rhodamine 6G Molecules on Rice-shaped Au Nanocrystals. , 2007, , .		0
1346	Towards single molecule sensitivity in surface-enhanced Raman scattering. , 2007, , 41-86.		0
1347	Effects of Ag Particles' Shape in Ag-SiO ₂ Composite Films on Surface Resonance Absorption Properties. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2008, 23, 351-356.	0.6	0
1348	Nanosensors: Controlling Transduction Mechanisms at the Nanoscale Using Metal Oxides and Semiconductors. , 2009, , 1-51.		1
1349	Can Optical Nanoantenna Links Compete with Plasmonic Waveguide Connections?. , 2009, , .		1
1350	ナノ粒åã, '用ã,ãŸè¡¨é¢å¢—å¼∙ラマンã«ã, ˆã,‹è¶…é«~感尦å^†åå^†æž: Journal of Japan Institute of Elec	ctro nios P ao	ckaging, 201
1352	Optimal SERS Nanostructures. , 2011, , 67-81.		0
1353	Effect of surface plasmon polariton of Ag nanoparticles on the photoluminescence property of up-conversion materials. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 047801.	0.2	4
1354	Plasmon-assisted nanolithography exposed by femtosecond laser beam through gold nanostructured photomasks. , 2012, , .		0
1355	Immunoassays and Imaging Based on Surface-Enhanced Raman Spectroscopy. , 2012, , 261-289.		0
1356	Metal Nanostructures and Active Materials. Springer Proceedings in Physics, 2013, , 171-202.	0.1	0
1357	Electrodynamic Theory of Three-Dimensional Metamaterials of Hierarchically Organized Nanoparticles. Nano-optics and Nanophotonics, 2013, , 119-141.	0.2	0
1359	Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 107801.	0.2	5
1360	Multifunctional Theranostic Nanoplatform: Plasmonic-Active Gold Nanostars. , 2014, , 295-314.		0
1361	Fabrication of shape-controlled Au nanoparticle arrays for SERS substrates. Advances in Materials Research (South Korea), 2014, 3, 139-149.	0.6	0
1362	Surface-Enhanced Raman Spectroscopy Analysis Device with Gold Nanoparticle Arranged Nanochannel. IEEJ Transactions on Sensors and Micromachines, 2015, 135, 214-220.	0.0	0
1363	Plasmonic propagation and spectral splitting in nanostructured metal wires. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 097803.	0.2	1
1364	Reprezentacja zagadnień elektromagnetyzmu i bezpieczeństwa pracy w przestrzeni sieciowej. Przeglad Elektrotechniczny, 2016, 1, 122-125.	0.1	0

ARTICLE

#

#	Article	IF	Citations
1365	Plasmonic nanotweezers composed by a gold dimer for ultra-effective nanoparticles trapping. , 2016, , .		1
1366	Preparation of surface enhanced Raman substrate and its characterization. , 2017, , .		Ο
1367	Localized Surface Plasmon Resonance Spectroscopy with Applications to Chemistry. , 2018, , 179-214.		0
1368	Quantitative analysis of ceftazidime using SERS based on silver nanoparticles substrate. , 2018, , .		1
1369	Plasmon-assisted controllable excitation of single quantum dots on a metal nanowire. , 2018, , .		0
1370	Interactions between photons and excitons in micro-nano photonic structures. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 144201.	0.2	1
1371	Characterization of Molecular Behaviors on Phospholipid Membrane Surface based on Membrane Surface-Enhanced Raman Spectroscopy Method. Vacuum and Surface Science, 2019, 62, 194-197.	0.0	0
1373	Surface Enhanced Raman Scattering of Silver Nanoparticles with Slot Waveguide. , 2020, , .		Ο
1374	Radiative heat transfer in nanophotonics: From thermal radiation enhancement theory to radiative cooling applications. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 036501.	0.2	5
1375	Scalable Nanofabrication of Plasmonic Nanostructures for Trace-Amount Molecular Sensing Based on Surface-Enhanced Raman Spectroscopy (SERS). , 2020, , 71-92.		0
1376	Modulating the plasmon-mediated silver oxidation using thiophenol molecules as monitored by <i>in situ</i> SERS spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 26385-26391.	1.3	5
1377	Construction of Optimal SERS Hotspots Based on Capturing the Spike Receptor-Binding Domain (RBD) of SARS-CoV-2 for Highly Sensitive and Specific Detection by a Fish Model. Analytical Chemistry, 2021, 93, 16086-16095.	3.2	22
1378	Theory of Metal-Fluorophore Interactions. , 2006, , 71-106.		1
1379	Vibrational Excitations at Surfaces. , 0, , 309-377.		Ο
1380	Broad range electric field enhancement of a plasmonic nanosphere heterodimer. Optical Materials Express, 2020, 10, 1704.	1.6	1
1383	Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Analytica Chimica Acta, 2022, 1209, 339250.	2.6	41
1384	Ultra-rapid and highly efficient enrichment of organic pollutants via magnetic mesoporous nanosponge for ultrasensitive nanosensors. Nature Communications, 2021, 12, 6849.	5.8	34
1385	Electrical Conductivity Enhancement and Electronic Applications of 2D Ti ₃ C ₂ T _x MXene Materials. Advanced Materials Interfaces, 2021, 8, 2100903.	1.9	26

#	Article	IF	CITATIONS
1386	Influence of bulky substituents on single-molecule SERS sensitivity. Journal of Chemical Physics, 2022, 156, 014201.	1.2	4
1387	Au Nanoparticle/Graphene Oxide Composites Deposited on Au Nanorod Arrays as Substrates for Surface-Enhanced Raman Scattering Sensing. ACS Applied Nano Materials, 2022, 5, 1086-1094.	2.4	7
1388	Impurity Controlled near Infrared Surface Plasmonic in AlN. Nanomaterials, 2022, 12, 459.	1.9	1
1389	Simulation of Surface Enhanced Raman Scattering From Nanoparticles With Wideband Nested Equivalence Source Approximation. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2022, 7, 1-8.	1.4	3
1390	Advances and applications of nanophotonic biosensors. Nature Nanotechnology, 2022, 17, 5-16.	15.6	308
1391	Shell thickness-dependent Au@Ag nanorods aggregates for rapid detection of thiram. Journal of Food Measurement and Characterization, 2022, 16, 1448-1458.	1.6	10
1392	Microfluidics and surface-enhanced Raman spectroscopy, a win–win combination?. Lab on A Chip, 2022, 22, 665-682.	3.1	42
1393	Strong Coupling of Single Plasmonic Nanoparticles and Nanogaps with Quantum Emitters. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	1
1394	Fast synthesis of gold nanostar SERS substrates based on ion-track etched membrane by one-step redox reaction. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 272, 120955.	2.0	9
1395	Nanoscale-Femtosecond Imaging of Evanescent Surface Plasmons on Silver Film by Photon-Induced Near-Field Electron Microscopy. Nano Letters, 2022, 22, 2009-2015.	4.5	4
1396	Revealing the Photothermal Behavior of Plasmonic Gap Modes: Toward Thermostable Nanocavities. Laser and Photonics Reviews, 0, , 2100564.	4.4	2
1397	Plasmonic Photoluminescence of Cu Nanoparticle Realized by Molecular Optical Antenna Designed on Nanosheets. Chemistry Letters, 2022, 51, 500-503.	0.7	1
1398	Development of spray-drying-based surface-enhanced Raman spectroscopy. Scientific Reports, 2022, 12, 4511.	1.6	4
1399	Finding a Sensitive Surface-Enhanced Raman Spectroscopic Thermometer at the Nanoscale by Examining the Functional Groups. Analytical Chemistry, 2022, 94, 6011-6016.	3.2	6
1400	Finite-size and quantum effects in plasmonics: manifestations and theoretical modelling [Invited]. Optical Materials Express, 2022, 12, 1869.	1.6	19
1401	Tribo-electrophoresis preconcentration enhanced ultra-sensitive SERS detection. Nano Energy, 2022, 98, 107239.	8.2	16
1402	Tunable nanopillar array on a quartz-fiber tip for surface enhanced Raman scattering (SERS) detection. TM Technisches Messen, 2022, 89, 70-81.	0.3	1
1403	Highly Ordered Polymer Nanostructures via Solvent On-Film Annealing for Surface-Enhanced Raman Scattering. Langmuir, 2022, 38, 801-809.	1.6	4

		ITATION REPOR	Т	
#	Article	IF	(Citations
1404	<i>In silico</i> design of graphene plasmonic hot-spots. Nanoscale Advances, 2022, 4, 2294-2302.	2.2	! (6
1405	New Insights of Charge Transfer at Metal/Semiconductor Interfaces for Hot-Electron Generation Studied by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 3571-3578.	2.1	4	4
1407	Coupled Plasmonic Plasmon/Photonic Resonance Effects inÂSERS. , 2006, , 67-86.		(0
1408	Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory. , 2006, , 87-104.			0
1409	Studying SERS from Metal Nanoparticlesand Nanoparticles Aggregateswith Continuum Models. , 20 , 105-124.	06,	(0
1410	SERS From Transition Metals and Excitedby Ultraviolet Light. , 2006, , 125-146.			0
1411	Electronic Mechanisms of SERS. , 2006, , 147-182.		(0
1417	Controlled synthesis of gold nanorod dimers with end-to-end configurations. RSC Advances, 2022, 1 13464-13471.	.2, 1.7		6
1418	Engineering Plasmonic Environments for 2D Materials and 2D-Based Photodetectors. Molecules, 202 27, 2807.	22, 1.7	2	4
1419	Exploiting plasmonic enhancement with lightâ€emitting diode excitation in surfaceâ€enhanced Ram scattering. Journal of Raman Spectroscopy, 0, , .	ian 1.2		0
1420	Dimensional Design for Surface-Enhanced Raman Spectroscopy. ACS Materials Au, 2022, 2, 552-575	5. 2.6) -	16
1421	Template-Induced Growth of Sputter-Deposited Gold Nanoparticles on Ordered Porous TiO ₂ Thin Films for Surface-Enhanced Raman Scattering Sensors. ACS Applied Nano Materials, 2022, 5, 7492-7501.	2.4		11
1422	Cold nanoparticles decorated 2D-WSe2 as a SERS substrate. Spectrochimica Acta - Part A: Molecula and Biomolecular Spectroscopy, 2022, 278, 121349.	r 2.0) :	3
1423	Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review. Beilstein Journal of Nanotechnology, 0, 13, 472-490.	1.5		12
1424	Shape-sensitive inelastic scattering from metallic nanoparticles. Advances in Quantum Chemistry, 2022, , .	0.4	1 :	1
1425	Spin-Coated Ag NPs SERS Substrate: Role of Electromagnetic and Chemical Enhancement in Trace Detection of Methylene Blue and Congo Red. Plasmonics, 2022, 17, 1889-1900.	1.8		8
1426	Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering. Accounts of Chemical Research, 2022, 55, 1889-1899.	7.6	,	17
1427	Quantum Mechanical Effects in High-Resolution Tip-Enhanced Raman Imaging. Journal of Physical Chemistry C, 2022, 126, 11690-11700.	1.5		2

#	Article	IF	Citations
1428	Phononic Cavity Optomechanics of Atomically Thin Crystal in Plasmonic Nanocavity. ACS Nano, 2022, 16, 12711-12719.	7.3	10
1429	Multiplexed surface-enhanced Raman scattering detection of melamine and dicyandiamide in dairy food enabled by three-dimensional polystyrene@silver@graphene oxide hybrid substrate. Applied Surface Science, 2022, 603, 154419.	3.1	10
1430	Hydrothermal and photoreduction synthesis of nanostructured α-Fe2O3/Ag urchins for sensitive SERS detection of environmental samples. Applied Surface Science, 2022, 604, 154448.	3.1	8
1431	Au ETHH@ZIF-8 based "three-in-one―multifunctional substrate with analyte enrichment, filtration and enhanced SERS performance. Applied Surface Science, 2022, 606, 154914.	3.1	1
1432	SERS paper sensor based on three-dimensional ZnO@Ag nanoflowers assembling on polyester fiber membrane for rapid detection of florfenicol residues in chicken. Journal of Food Composition and Analysis, 2023, 115, 104911.	1.9	11
1433	SERS probes and tags for biomedical applications. , 2022, , 89-114.		0
1434	Facile fabrication of Ag@C@C8 nanoparticles as a SERS substrate and their environmental applications. Analyst, The, 2022, 147, 4026-4039.	1.7	6
1435	Single-Molecule Detection-Enabled Plasmonic Ag Nanogap for Unmasking Vibrational Properties in 0D SnO ₂ . ACS Applied Nano Materials, 2022, 5, 12413-12422.	2.4	6
1436	<scp><i>In Situ</i></scp> Raman Monitoring of Trace Antibiotics in Different Harsh Water Environments. Energy and Environmental Materials, 2024, 7, .	7.3	2
1437	Applications of surfaceâ€enhanced Raman spectroscopy based on portable Raman spectrometers: A review of recent developments. Luminescence, 2022, 37, 1822-1835.	1.5	15
1438	Correlation coefficient-directed label-free characterization of native proteins by surface-enhanced Raman spectroscopy. Chemical Science, 2022, 13, 13829-13835.	3.7	3
1439	Highly Sensitive, Robust, and Recyclable TiO2/AgNP Substrate for SERS Detection. Molecules, 2022, 27, 6755.	1.7	9
1440	Anapole Manipulation in Tailored Si Nanocubes for Near-Field Enhancement and High <i>Q</i> -Factor Resonance. ACS Applied Nano Materials, 2022, 5, 14833-14840.	2.4	4
1441	Sculptured thin films: Overcoming the limitations of surface-enhanced Raman scattering substrates. Applied Surface Science Advances, 2022, 12, 100322.	2.9	9
1442	Silver nanoparticles modified by β-cyclodextrin and γ-alumina as substrate for quantitative SERS detection of netilmicin. Talanta, 2023, 253, 124054.	2.9	4
1443	Surface-enhanced Raman spectroscopy for food quality and safety monitoring. , 2023, , 31-54.		0
1444	A general approach to hybrid platform of Au nanoparticles on monolayer semiconductor for ultrasensitive Raman enhancement of 2D materials and molecule detection. Journal of Alloys and Compounds, 2023, 938, 168468.	2.8	3
1445	Electrochemical and Photoelectrochemical Water Splitting: Operando Raman and Fourier Transform Infrared Spectroscopy as Useful Probing Techniques. Energy Technology, 2023, 11, .	1.8	10

	CITATION	Report	
#	Article	IF	CITATIONS
1446	Microfluidic SERS devices: brightening the future of bioanalysis. Discover Materials, 2022, 2, .	1.0	7
1447	A DFT Investigation on Different Graphene Based Substrates on SERS: A Case Study of TiO ₂ Adsorbed Gold/Graphene. , 0, , .		0
1448	Probing the interactions of guanine on silver nanoparticles by surface-enhanced Raman spectroscopy on an electrochemical system. Spectroscopy Letters, 2023, 56, 42-50.	0.5	0
1449	Nanoparticle-based surface enhanced Raman spectroscopic imaging of biological arrays. Dalton Transactions, 2023, 52, 1657-1670.	1.6	2
1450	Graphene-Au nanosphere composite arrays and their enhanced SERS performance. Optical Materials, 2023, 136, 113384.	1.7	2
1451	Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy. Environmental Science & amp; Technology, 2023, 57, 25-43.	4.6	35
1452	Conductivity support of AZO in enhancements of SERS Ag/AZO substrate to detect ketoprofen. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
1453	Multi-wavelength lock-in spectroscopy for extracting perturbed spectral responses: molecular signatures in nanocavities. Optics Express, 2023, 31, 5069.	1.7	0
1454	Additional Important Considerations in Surface-Enhanced Raman Scattering Enhancement Factor Measurements. Journal of Physical Chemistry C, 2023, 127, 2728-2734.	1.5	13
1455	Flexible plasmonic nanocavities: a universal platform for the identification of molecular orientations. Nanoscale, 2023, 15, 6588-6595.	2.8	2
1456	Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chemical Reviews, 2023, 123, 1552-1634.	23.0	82
1457	Optomechanical effects in nanocavity-enhanced resonant Raman scattering of a single molecule. Physical Review B, 2023, 107, .	1.1	2
1458	Plasmonic Sensors: A New Frontier in Nanotechnology. Biosensors, 2023, 13, 385.	2.3	2
1459	Fabrication of nanostructured electrodes for electrochemical surface-enhanced Raman spectroscopy (E-SERS): A review. Materials Science and Technology, 2023, 39, 2287-2301.	0.8	0
1460	Recent Progress in the Application of Metal Organic Frameworks in Surface-Enhanced Raman Scattering Detection. Biosensors, 2023, 13, 479.	2.3	2
1463	Operando Electrochemical Raman Spectroscopy. Springer Handbooks, 2023, , 189-211.	0.3	1