Effects of viscosity on cellular structure of foamed alum

Journal of Materials Science 35, 15-20 DOI: 10.1023/a:1004715926692

Citation Report

#	Article	IF	CITATIONS
1	Evolution of foamed aluminum structure in foaming process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 298, 137-143.	2.6	44
2	Physical modeling of bubble generation in foamed-aluminum. Journal of Materials Processing Technology, 2002, 130-131, 304-309.	3.1	11
3	Effects of viscosity control on microporosity in the fabrication process of aluminium foam material by a rheology forming process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004, 218, 1723-1734.	1.5	3
4	Metal foam stabilization by oxide network particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 396, 28-40.	2.6	115
5	Energy of Compressed Aluminum Foam. Advanced Engineering Materials, 2005, 7, 73-77.	1.6	10
6	Role of calcium in aluminium based alloys and composites. International Materials Reviews, 2005, 50, 216-238.	9.4	35
7	Metal Foams: Production and Stability. Advanced Engineering Materials, 2006, 8, 781-794.	1.6	247
8	Effect of decomposition properties of titanium hydride on the foaming process and pore structures of Al alloy melt foam. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 445-446, 415-426.	2.6	69
9	Rheology of foaming aluminum melts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 458, 108-115.	2.6	21
10	A novel approach to produce Al-alloy foams. Journal of Materials Science, 2007, 42, 7894-7898.	1.7	2
11	Manufacturing challenges in obtaining tailor-made closed-cell structures in metallic foams. International Journal of Advanced Manufacturing Technology, 2008, 38, 605-612.	1.5	13
12	Expansion Mechanisms in Foaming Aluminum Melts. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 2215-2227.	1.1	4
13	Prediction of compressive properties of closed-cell aluminum foam using artificial neural network. Computational Materials Science, 2008, 43, 767-773.	1.4	25
14	Structural Characterization of Aluminum Foams Obtained by Powder Metallurgy. Materials Research Society Symposia Proceedings, 2009, 1242, 1.	0.1	0
15	Influences of Titanium Hydride (TiH2) Content and Holding Temperature in Foamed Pure Aluminum. Materials and Manufacturing Processes, 2009, 24, 590-593.	2.7	20
16	Foaming behavior of Ti6Al4V particle-added aluminum powder compacts. Journal of Materials Science, 2009, 44, 1494-1505.	1.7	4
17	Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams. Journal of Synchrotron Radiation, 2009, 16, 432-434.	1.0	51
18	Kinetics of coalescence in liquid aluminium foams. Soft Matter, 2011, 7, 9216.	1.2	34

#	Article	IF	CITATIONS
19	Role of alkaline cations and water content on geomaterial foams: Monitoring during formation. Journal of Non-Crystalline Solids, 2011, 357, 1270-1278.	1.5	86
20	Customization of closed-cell aluminum foam properties using design of experiments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2067-2075.	2.6	23
21	Study on Foaming Behavior of Microcellular PP/Inorganic Powder Composites. Materials Science Forum, 2011, 686, 454-460.	0.3	1
22	Lightâ€Metal Foams—History of Innovation and Technological Challenges. Advanced Engineering Materials, 2013, 15, 82-111.	1.6	274
23	Investigating viscosity variations of molten aluminum by calcium addition and stirring. Materials Letters, 2013, 91, 376-378.	1.3	16
24	Comparison of Cell Wall Microstructure of Aluminum Foams Produced by Melt Foaming and Gas Injection Foaming Processes. Applied Mechanics and Materials, 0, 457-458, 540-543.	0.2	0
25	The mechanical and thermal characteristics of phenolic foams reinforced with carbon nanoparticles. Composites Science and Technology, 2014, 103, 85-93.	3.8	77
26	A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam. Industrial Crops and Products, 2015, 66, 16-26.	2.5	154
27	Alkali-activated concrete binders as inorganic thermal insulator materials. , 2015, , 687-728.		5
28	Influence of calcium addition and stirring on the cellular structure and foaming behavior of molten zinc. Applied Physics A: Materials Science and Processing, 2015, 119, 533-538.	1.1	5
29	Rigid polyurethane foams reinforced with industrial potato protein. Polymer Testing, 2018, 68, 135-145.	2.3	84
30	Linseed oil as a natural modifier of rigid polyurethane foams. Industrial Crops and Products, 2018, 115, 40-51.	2.5	60
31	Optimizing Calcium Addition for Fabricating Aluminum Foams with Different Pore Sizes. Materials Transactions, 2018, 59, 1367-1374.	0.4	7
32	Keratin feathers as a filler for rigid polyurethane foams on the basis of soybean oil polyol. Polymer Testing, 2018, 72, 32-45.	2.3	61
33	Rigid polyurethane foams reinforced with solid waste generated in leather industry. Polymer Testing, 2018, 69, 225-237.	2.3	65
34	A Study on Closed-Cell Aluminum Foam about Viscosity of Different Viscous Agents. Materials Science Forum, 2018, 921, 222-230.	0.3	3
35	Fabrication of aluminum foams by using CaCO3 foaming agent. Materials Research Express, 2018, 5, 096526.	0.8	6
36	Fabrication of localised aluminium foam by a novel polymeric blowing agent. Materials Characterization, 2018, 142, 340-351.	1.9	13

#	Article	IF	CITATIONS
37	Curcumin as a natural compound in the synthesis of rigid polyurethane foams with enhanced mechanical, antibacterial and anti-ageing properties. Polymer Testing, 2019, 79, 106046.	2.3	38
38	Colored polyurethane foams with enhanced mechanical and thermal properties. Polymer Testing, 2019, 78, 105986.	2.3	29
39	POSS Compounds as Modifiers for Rigid Polyurethane Foams (Composites). Polymers, 2019, 11, 1092.	2.0	25
40	Composites of Rigid Polyurethane Foams Reinforced with POSS. Polymers, 2019, 11, 336.	2.0	36
41	Effects of Water on Pore Structure and Thermal Conductivity of Fly Ash-Based Foam Geopolymers. Advances in Materials Science and Engineering, 2019, 2019, 1-10.	1.0	16
42	Composites of rigid polyurethane foams and silica powder filler enhanced with ionic liquid. Polymer Testing, 2019, 75, 12-25.	2.3	45
43	Improved Stability of Aluminum Foam Through Heat Treatment of Foamable Precursor. Metals and Materials International, 2020, 26, 1596-1601.	1.8	6
44	Nutmeg filler as a natural compound for the production of polyurethane composite foams with antibacterial and anti-aging properties. Polymer Testing, 2020, 86, 106479.	2.3	52
45	Development of AlMg35-TiH2 composite foaming agent and fabrication of small pore size aluminium foams. Journal of Materials Processing Technology, 2020, 283, 116698.	3.1	22
46	Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams. Polymer Testing, 2020, 87, 106534.	2.3	79
47	Effects of Chemically Treated Eucalyptus Fibers on Mechanical, Thermal and Insulating Properties of Polyurethane Composite Foams. Materials, 2020, 13, 1781.	1.3	36
48	Study on Deformation of Closed-Cell Aluminum Foam in Different Solid–Liquid–Gas Coexisting State. Metals and Materials International, 2021, 27, 403-412.	1.8	4
49	Structural Changes and Their Implications in Foamed Flexible Polyurethane Composites Filled with Rapeseed Oil-Treated Ground Tire Rubber. Journal of Composites Science, 2021, 5, 90.	1.4	6
50	Effect of Zinc Content on the Mechanical Properties of Closed-Cell Aluminum Foams. International Journal of Metalcasting, 2022, 16, 713-722.	1.5	9
51	Polyurethane Composites Reinforced with Walnut Shell Filler Treated with Perlite, Montmorillonite and Halloysite. International Journal of Molecular Sciences, 2021, 22, 7304.	1.8	17
52	Ground Tire Rubber Filled Flexible Polyurethane Foam—Effect of Waste Rubber Treatment on Composite Performance. Materials, 2021, 14, 3807.	1.3	16
53	Effects of Particle Combinations With Different Wettability on Foam Structure and Stability. Frontiers in Materials, 2021, 8, .	1.2	2
54	Effect of Silicon Content on Mechanical Properties and Progressive Collapse Behavior of Closed-cell Aluminum Foams. Transactions of the Indian Institute of Metals, 2021, 74, 3145-3154.	0.7	3

CITATION REPORT

#	Article	IF	CITATIONS
55	Sustainable Production of Powder Metallurgy Aluminum Foams Sintered by Concentrated Solar Energy. Metals, 2021, 11, 1544.	1.0	5
56	Effect of the elastomer viscosity on the morphology and impact behavior of injection molded foams based on blends of polypropylene and polyolefin elastomers. Journal of Applied Polymer Science, 2021, 138, 50425.	1.3	8
57	Study on Deformation of Closed-Cell Aluminum Foam in Different Solid–Liquid–Gas Coexisting States. Minerals, Metals and Materials Series, 2020, , 69-82.	0.3	0
58	PREPARATION OF CASTOR-BASED POLYURETHANE COMPOSITES FILLED WITH WASTE CARBON TYRES (WCT) AS GROUTING MATERIAL. Jurnal Teknologi (Sciences and Engineering), 2020, 82, .	0.3	0
59	Study on the Mechanical Property of Highâ€Performance Silicon Carbide Fiber. Advanced Engineering Materials, 2022, 24, .	1.6	4
60	Natural Oil-Based Rigid Polyurethane Foam Thermal Insulation Applicable at Cryogenic Temperatures. Polymers, 2021, 13, 4276.	2.0	17
61	Foaming Behavior of AlSi8Mg4 Alloy in Closed Cavity. International Journal of Metalcasting, 0, , .	1.5	1
62	Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams' Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles. Materials, 2022, 15, 5728.	1.3	12
63	The Production Process of Foamed Geopolymers with the Use of Various Foaming Agents. Advanced Structured Materials, 2023, , 63-74.	0.3	1
64	Preliminary Investigation of Geopolymer Foams as Coating Materials. Applied Sciences (Switzerland), 2022, 12, 11205.	1.3	7
65	Synthesis of Lightweight Metallic Foam and Their Applications in Various Engineering Sectors. Materials Horizons, 2023, , 51-74.	0.3	1
66	Bio-Based Polyurethane Foams from Kraft Lignin with Improved Fire Resistance. Polymers, 2023, 15, 1074.	2.0	4

CITATION REPORT