Phosphatidylinositol 4,5-bisphosphate induces actin-bavesicles through WASP-Arp2/3

Current Biology 10, 311-320

DOI: 10.1016/s0960-9822(00)00384-5

Citation Report

#	Article	IF	CITATIONS
1	Dynamin and Cytoskeletal-Dependent Membrane Processes. , 0, , 189-201.		0
2	Actin Assembly at Membranes Controlled by ARF6. Traffic, 2000, 1, 896-907.	1.3	126
3	Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology, 2000, 1, 31-39.	16.1	5,519
4	Secrets of actin-based motility revealed by a bacterial pathogen. Nature Reviews Molecular Cell Biology, 2000, 1, 110-119.	16.1	162
5	IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature, 2000, 408, 732-735.	13.7	511
6	InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature, 2000, 408, 735-740.	13.7	99
7	Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Current Opinion in Neurobiology, 2000, 10, 312-320.	2.0	207
8	Actin cytoskeleton: Thinking globally, actin' locally. Current Biology, 2000, 10, R655-R657.	1.8	26
9	Mechanism of N-Wasp Activation by Cdc42 and Phosphatidylinositol 4,5-Bisphosphate. Journal of Cell Biology, 2000, 150, 1299-1310.	2.3	546
10	Overexpression of Frequenin, a Modulator of Phosphatidylinositol 4-Kinase, Inhibits Biosynthetic Delivery of an Apical Protein in Polarized Madin-Darby Canine Kidney Cells. Journal of Biological Chemistry, 2000, 275, 24341-24347.	1.6	69
11	Lipid Raft Association of Carboxypeptidase E Is Necessary for Its Function as a Regulated Secretory Pathway Sorting Receptor. Journal of Biological Chemistry, 2000, 275, 29887-29893.	1.6	109
12	Replenishment of LH stores of gonadotrophs in relation to gene expression, synthesis and secretion of LH after the preovulatory phase of the sheep oestrous cycle. Journal of Endocrinology, 2000, 167, 453-463.	1.2	21
13	Molecular Links between Endocytosis and the Actin Cytoskeleton. Journal of Cell Biology, 2000, 150, F111-F116.	2.3	378
14	Cholesterol and phospholipid metabolism in macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1529, 164-174.	1.2	121
15	Signaling Takes Shape in the Immune System. Cell, 2000, 103, 283-294.	13.5	217
16	Protein and Lipid Requirements for Endocytosis. Annual Review of Genetics, 2000, 34, 255-295.	3.2	116
17	Integration of Multiple Signals Through Cooperative Regulation of the N-WASP-Arp2/3 Complex. Science, 2000, 290, 801-806.	6.0	456
18	Molecular Aspects of the Cellular Activities of ADP-Ribosylation Factors. Science Signaling, 2000, 2000, re1-re1.	1.6	81

#	ARTICLE	IF	CITATIONS
19	Cloning of a Human Type II Phosphatidylinositol 4-Kinase Reveals a Novel Lipid Kinase Family. Journal of Biological Chemistry, 2001, 276, 16635-16640.	1.6	90
20	Regulation of Actin Filament Network Formation Through ARP2/3 Complex: Activation by a Diverse Array of Proteins. Annual Review of Biochemistry, 2001, 70, 649-676.	5.0	608
21	The Role of Cholesterol and Glycosylphosphatidylinositol-anchored Proteins of Erythrocyte Rafts in Regulating Raft Protein Content and Malarial Infection. Journal of Biological Chemistry, 2001, 276, 29319-29329.	1.6	165
22	Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Seminars in Immunology, 2001, 13, 89-97.	2.7	235
23	Co-stimulation and counter-stimulation: lipid raft clustering controls TCR signaling and functional outcomes. Seminars in Immunology, 2001, 13, 115-128.	2.7	95
24	Phagocytic signaling strategies: $Fc\hat{l}^3$ receptor-mediated phagocytosis as a model system. Seminars in Immunology, 2001, 13, 339-345.	2.7	88
25	Requirement of the Basic Region of N-WASP/WAVE2 for Actin-Based Motility. Biochemical and Biophysical Research Communications, 2001, 282, 739-744.	1.0	22
26	Synthesis and Function of 3-Phosphorylated Inositol Lipids. Annual Review of Biochemistry, 2001, 70, 535-602.	5.0	1,457
27	Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Progress in Neurobiology, 2001, 65, 309-338.	2.8	98
28	Fluorescent imaging in living systems. Current Opinion in Pharmacology, 2001, 1, 521-525.	1.7	49
29	The amplification of TCR signaling by dynamic membrane microdomains. Trends in Immunology, 2001, 22, 322-327.	2.9	96
30	Molecular requirements for the internalisation step of endocytosis: insights from yeast. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2001, 1535, 236-257.	1.8	119
31	Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1533, 190-206.	1.2	248
32	Interleukin 2 Receptors and Detergent-Resistant Membrane Domains Define a Clathrin-Independent Endocytic Pathway. Molecular Cell, 2001, 7, 661-671.	4.5	456
33	The role of ezrin in T-cell receptor-dependent signaling. Transplantation Proceedings, 2001, 33, 207-208.	0.3	4
34	Listeria Protein ActA Mimics WASP Family Proteins:Â It Activates Filament Barbed End Branching by Arp2/3 Complex. Biochemistry, 2001, 40, 11390-11404.	1.2	112
35	Cell Permeant Polyphosphoinositide-binding Peptides That Block Cell Motility and Actin Assembly. Journal of Biological Chemistry, 2001, 276, 43390-43399.	1.6	99
36	Linking cellular activation to cytoskeletal reorganization: Wiskott–Aldrich syndrome as a model. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 525-533.	1.1	6

#	Article	IF	Citations
37	The Arp2/3 complex: a central regulator of the actin cytoskeleton. Cellular and Molecular Life Sciences, 2001, 58, 1607-1626.	2.4	66
38	Inositol Lipids as Spatial Regulators of Membrane Traffic. Journal of Membrane Biology, 2001, 180, 187-194.	1.0	75
39	Rho Proteins: Linking Signaling with Membrane Trafficking. Traffic, 2001, 2, 303-310.	1.3	233
40	Mitochondrial Inheritance in Budding Yeast. Traffic, 2001, 2, 368-374.	1.3	66
41	NEW EMBO MEMBERS' REVIEW: Actin cytoskeleton regulation through modulation of PI(4,5)P2 rafts. EMBO Journal, 2001, 20, 4332-4336.	3.5	259
42	Antigen decoding by T lymphocytes: from synapses to fate determination. Nature Immunology, 2001, 2, 487-492.	7.0	233
43	Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe. Nature Cell Biology, 2001, 3, 235-244.	4.6	153
44	A novel pathway of cellular phosphatidylinositol(3,4,5)-trisphosphate synthesis is regulated by oxidative stress. Current Biology, 2001, 11, 386-395.	1.8	44
45	Motor domain-dependent localization of myo1b (myr-1). Current Biology, 2001, 11, 1131-1135.	1.8	110
46	Modular phosphoinositide-binding domains – their role in signalling and membrane trafficking. Current Biology, 2001, 11, R882-R893.	1.8	161
47	The Spir actin organizers are involved in vesicle transport processes. Current Biology, 2001, 11, 1963-1968.	1.8	77
48	Surfing pathogens and the lessons learned for actin polymerization. Trends in Cell Biology, 2001, 11, 30-38.	3.6	192
49	Phosphoinositides: key players in cell signalling, in time and space. Cellular Signalling, 2001, 13, 377-387.	1.7	204
50	Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Current Opinion in Cell Biology, 2001, 13, 85-91.	2.6	124
51	Roles of lipid rafts in membrane transport. Current Opinion in Cell Biology, 2001, 13, 470-477.	2.6	587
52	The role of phosphoinositides in membrane transport. Current Opinion in Cell Biology, 2001, 13, 485-492.	2.6	445
53	PI(4,5)P2 regulation of surface membrane traffic. Current Opinion in Cell Biology, 2001, 13, 493-499.	2.6	365
54	Agonist-dependent Traffic of Raft-associated Ras and Raf-1 Is Required for Activation of the Mitogen-activated Protein Kinase Cascade. Journal of Biological Chemistry, 2001, 276, 34928-34933.	1.6	67

#	ARTICLE	IF	CITATIONS
55	Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity. Journal of Cell Biology, 2001, 154, 355-368.	2.3	128
56	The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters. Science Signaling, 2001, 2001, re19-re19.	1.6	423
57	Phosphatidylinositol 4,5-Bisphosphate Induces Actin Stress-Fiber Formation and Inhibits Membrane Ruffling in Cv1 Cells. Journal of Cell Biology, 2001, 152, 867-876.	2.3	111
58	Pivotal role of VASP in Arp2/3 complex–mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility. Journal of Cell Biology, 2001, 155, 89-100.	2.3	126
59	Phosphatidylinositol-4-phosphate 5-Kinase- $1\hat{1}^2$ Is Essential for Epidermal Growth Factor Receptor-mediated Endocytosis. Journal of Biological Chemistry, 2001, 276, 47212-47216.	1.6	65
60	Regulation of Apoptosis by Phosphatidylinositol 4,5-Bisphosphate Inhibition of Caspases, and Caspase Inactivation of Phosphatidylinositol Phosphate 5-Kinases. Journal of Biological Chemistry, 2001, 276, 1865-1872.	1.6	75
61	Specific Ca2+Signaling Evoked by Cholecystokinin and Acetylcholine: The Roles of NAADP, cADPR, and IP3. Annual Review of Physiology, 2001, 63, 99-117.	5.6	100
62	Mammalian Abp1, a Signal-Responsive F-Actin–Binding Protein, Links the Actin Cytoskeleton to Endocytosis via the Gtpase Dynamin. Journal of Cell Biology, 2001, 153, 351-366.	2.3	210
63	The Cdc42p GTPase and Its Regulators Nrf1p and Scd1p Are Involved in Endocytic Trafficking in the Fission YeastSchizosaccharomyces pombe. Journal of Biological Chemistry, 2001, 276, 3004-3009.	1.6	39
64	Flotillin-1-enriched Lipid Raft Domains Accumulate on Maturing Phagosomes. Journal of Biological Chemistry, 2001, 276, 18507-18512.	1.6	275
65	Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. Journal of Cell Biology, 2001, 154, 1007-1018.	2.3	396
66	A Role for Wiskott-Aldrich Syndrome Protein in T-cell Receptor-mediated Transcriptional Activation Independent of Actin Polymerization. Journal of Biological Chemistry, 2001, 276, 21450-21457.	1.6	55
67	Membrane Raft Association of CD47 Is Necessary for Actin Polymerization and Protein Kinase C \hat{l}_s Translocation in Its Synergistic Activation of T Cells. Journal of Biological Chemistry, 2001, 276, 7672-7680.	1.6	45
68	Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9642-9647.	3.3	463
69	Rab27a Is Required for Regulated Secretion in Cytotoxic T Lymphocytes. Journal of Cell Biology, 2001, 152, 825-834.	2.3	372
70	Insulin Stimulates Actin Comet Tails on Intracellular GLUT4-containing Compartments in Differentiated 3T3L1 Adipocytes. Journal of Biological Chemistry, 2001, 276, 49331-49336.	1.6	69
71	Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. Journal of Cell Biology, 2001, 154, 785-798.	2.3	143
72	Mastoparan Alters Subcellular Distribution of Profilin and Remodels F-Actin Cytoskeleton in Cells of Maize Root Apices. Plant and Cell Physiology, 2001, 42, 912-922.	1.5	25

#	Article	IF	Citations
73	cAMP acts as a second messenger in pollen tube growth and reorientation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10481-10486.	3.3	228
74	Identification of Another Actin-related Protein (Arp) 2/3 Complex Binding Site in Neural Wiskott-Aldrich Syndrome Protein (N-WASP) That Complements Actin Polymerization Induced by the Arp2/3 Complex Activating (VCA) Domain of N-WASP. Journal of Biological Chemistry, 2001, 276, 33175-33180.	1.6	45
75	Nck and Phosphatidylinositol 4,5-Bisphosphate Synergistically Activate Actin Polymerization through the N-WASP-Arp2/3 Pathway. Journal of Biological Chemistry, 2001, 276, 26448-26452.	1.6	351
76	CELL BIOLOGY: CaveolaeNot Just Craters in the Cellular Landscape. Science, 2001, 293, 1447-1448.	6.0	71
77	Raft membrane domains and immunoreceptor functions. Advances in Immunology, 2001, 77, 45-92.	1.1	35
78	Curved tails in polymerization-based bacterial motility. Physical Review E, 2001, 64, 021904.	0.8	18
79	Regulation of the Pollen-Specific Actin-Depolymerizing Factor LlADF1. Plant Cell, 2002, 14, 2915-2927.	3.1	160
80	Regulation of Protein Transport from the Golgi Complex to the Endoplasmic Reticulum by CDC42 and N-WASP. Molecular Biology of the Cell, 2002, 13, 866-879.	0.9	144
81	Dynamin at actin tails. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 161-166.	3.3	229
82	Multiple Roles for Phosphatidylinositol 4-Kinase in Biosynthetic Transport in Polarized Madin-Darby Canine Kidney Cells. Journal of Biological Chemistry, 2002, 277, 2012-2018.	1.6	51
83	Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14476-14481.	3.3	207
84	Remodeling of organelle-bound actin is required for yeast vacuole fusion. Journal of Cell Biology, 2002, 158, 669-679.	2.3	152
85	WASp verprolin homology, cofilin homology, and acidic region domain-mediated actin polymerization is required for T cell development. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2240-2245.	3.3	36
86	The Yeast Synaptojanin-like Proteins Control the Cellular Distribution of Phosphatidylinositol (4,5)-Bisphosphate. Molecular Biology of the Cell, 2002, 13, 542-557.	0.9	222
87	Genomic Analysis of Homotypic Vacuole Fusion. Molecular Biology of the Cell, 2002, 13, 782-794.	0.9	157
88	Agonist-induced PIP2Hydrolysis Inhibits Cortical Actin Dynamics: Regulation at a Global but not at a Micrometer Scale. Molecular Biology of the Cell, 2002, 13, 3257-3267.	0.9	91
89	Phosphatidylinositol 4-Phosphate 5-Kinase Is Essential for ROCK-mediated Neurite Remodeling. Journal of Biological Chemistry, 2002, 277, 17226-17230.	1.6	67
90	Translocation of PKCθ in T cells is mediated by a nonconventional, PI3-K– and Vav-dependent pathway, but does not absolutely require phospholipase C. Journal of Cell Biology, 2002, 157, 253-263.	2.3	123

#	ARTICLE	IF	Citations
91	The large GTPase dynamin regulates actin comet formation and movement in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 167-172.	3.3	215
92	Regulation of Phospholipase D Activity by Actin. Journal of Biological Chemistry, 2002, 277, 50683-50692.	1.6	64
93	Type II Phosphatidylinositol 4-Kinase \hat{l}^2 Is a Cytosolic and Peripheral Membrane Protein That Is Recruited to the Plasma Membrane and Activated by Rac-GTP. Journal of Biological Chemistry, 2002, 277, 46586-46593.	1.6	117
94	Golgi Vesicle Proteins Are Linked to the Assembly of an Actin Complex Defined by mAbp1. Molecular Biology of the Cell, 2002, 13, 621-631.	0.9	107
95	Phosphoinositides Regulate Membrane-dependent Actin Assembly by Latex Bead Phagosomes. Molecular Biology of the Cell, 2002, 13, 1190-1202.	0.9	71
96	Rvs161p and Sphingolipids Are Required for Actin Repolarization following Salt Stress. Eukaryotic Cell, 2002, 1, 1021-1031.	3.4	49
97	Human Immunodeficiency Virus Type 1 Uses Lipid Raft-Colocalized CD4 and Chemokine Receptors for Productive Entry into CD4+ T Cells. Journal of Virology, 2002, 76, 4709-4722.	1.5	297
98	Molecular imaging of the cytoskeleton using GFP-actin fluorescence microscopy. Progress in Biotechnology, 2002, , 25-34.	0.2	0
99	Local Actin Polymerization and Dynamin Recruitment in SV40-Induced Internalization of Caveolae. Science, 2002, 296, 535-539.	6.0	648
100	Endocytosis and the cytoskeleton. International Review of Cytology, 2002, 220, 93-144.	6.2	155
101	Spermine increases phosphatidylinositol 4,5-bisphosphate content in permeabilized and nonpermeabilized HL60 cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1584, 20-30.	1.2	11
102	Essential Role of Type Iα Phosphatidylinositol 4-Phosphate 5-Kinase in Neurite Remodeling. Current Biology, 2002, 12, 241-245.	1.8	68
103	Coupling actin dynamics and membrane dynamics during endocytosis. Current Opinion in Cell Biology, 2002, 14, 76-81.	2.6	264
104	Regulation of Wiskott–Aldrich syndrome protein and related molecules. Current Opinion in Cell Biology, 2002, 14, 82-87.	2.6	72
105	Phosphoinositides and the golgi complex. Current Opinion in Cell Biology, 2002, 14, 434-447.	2.6	88
106	The modular logic of signaling proteins: building allosteric switches from simple binding domains. Current Opinion in Structural Biology, 2002, 12, 61-68.	2.6	135
107	Intracellular trafficking of human CXCR1 and CXCR2: regulation by receptor domains and actin-related kinases. European Journal of Immunology, 2002, 32, 3525-3535.	1.6	20
108	Expression of voltage-dependent potassium channels in the developing visual system of Xenopus laevis. Journal of Comparative Neurology, 2002, 452, 381-391.	0.9	24

#	Article	IF	Citations
109	Regulation of microtubule-organizing center orientation and actomyosin cytoskeleton rearrangement during immune interactions. Immunological Reviews, 2002, 189, 84-97.	2.8	64
110	The Salmonella pathogenicity island 1 secretion system directs cellular cholesterol redistribution during mammalian cell entry and intracellular trafficking. Cellular Microbiology, 2002, 4, 153-165.	1.1	85
111	Microbial entry through caveolae: variations on a theme. Cellular Microbiology, 2002, 4, 783-791.	1.1	143
112	Calcium and calciumâ€activated currents in vagotomized rat primary vagal afferent neurons. Journal of Physiology, 2002, 540, 543-556.	1.3	41
113	Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biology, 2002, 4, 691-698.	4.6	637
114	Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia, 2002, 45, 1475-1483.	2.9	349
115	Title is missing!. Neurophysiology, 2002, 34, 5-12.	0.2	8
116	Cellular Control of Actin Nucleation. Annual Review of Cell and Developmental Biology, 2002, 18, 247-288.	4.0	434
117	Specificity of Membrane Binding of the Neuronal Protein NAP-22. Journal of Membrane Biology, 2003, 193, 171-176.	1.0	10
118	Phosphatidylinositol Phosphate Kinases Put PI4,5P 2 in Its Place. Journal of Membrane Biology, 2003, 194, 77-89.	1.0	245
119	Dynamin at the actin–membrane interface. Current Opinion in Cell Biology, 2003, 15, 31-39.	2.6	212
120	A WASp Homolog Powers Actin Polymerization-Dependent Motility of Endosomes In Vivo. Current Biology, 2003, 13, 455-463.	1.8	53
121	Taking the A-train: actin-based force generators and organelle targeting. Trends in Cell Biology, 2003, 13, 472-477.	3.6	32
122	Four-dimensional imaging of cytoskeletal dynamics in Xenopus oocytes and eggs. Differentiation, 2003, 71, 518-527.	1.0	21
123	Raf kinases in lung tumor development. Advances in Enzyme Regulation, 2003, 43, 183-195.	2.9	18
124	Actin remodeling to facilitate membrane fusion. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 175-181.	1.9	204
125	Actin-based endosome and phagosome rocketing in macrophages: activation by the secretagogue antagonists lanthanum and zinc. Cytoskeleton, 2003, 54, 41-55.	4.4	37
126	The roles of membrane microdomains (rafts) in T cell activation. Immunological Reviews, 2003, 191, 148-164.	2.8	130

#	Article	IF	CITATIONS
127	The Wiskott-Aldrich syndrome protein: forging the link between actin and cell activation. Immunological Reviews, 2003, 192, 98-112.	2.8	72
128	Antigenâ€Stimulated Trafficking from the Recycling Compartment to the Plasma Membrane in RBL Mast Cells. Traffic, 2003, 4, 190-200.	1.3	28
129	Cholesterol Loading Induces a Block in the Exit of VSVG from the TGN. Traffic, 2003, 4, 772-784.	1.3	38
130	Receptor tyrosine kinase and G-protein coupled receptor signaling and sorting within endosomes. Journal of Neurochemistry, 2003, 84, 905-918.	2.1	20
131	ATP-dependent vesiculation in red cell membranes from different hereditary stomatocytosis variants. British Journal of Haematology, 2003, 120, 894-902.	1.2	8
132	Microbial pathogenesis and cytoskeletal function. Nature, 2003, 422, 775-781.	13.7	293
133	Cdc42-dependent actin polymerization during compensatory endocytosis in Xenopus eggs. Nature Cell Biology, 2003, 5, 727-732.	4.6	134
134	Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nature Cell Biology, 2003, 5, 793-802.	4.6	245
135	Actin filament uncapping localizes to ruffling lamellae and rocketing vesicles. Nature Cell Biology, 2003, 5, 972-979.	4.6	55
136	Redox-dependent downregulation of Rho by Rac. Nature Cell Biology, 2003, 5, 236-241.	4.6	463
137	Retrograde regulation of synaptic vesicle endocytosis and recycling. Nature Neuroscience, 2003, 6, 925-932.	7.1	113
138	Temporal and spatial coordination of exocytosis and endocytosis. Nature Reviews Molecular Cell Biology, 2003, 4, 127-139.	16.1	230
139	Association of the calpain/calpastatin network with subcellular organelles. Biochemical and Biophysical Research Communications, 2003, 310, 1200-1212.	1.0	53
140	Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13964-13969.	3.3	435
141	Phosphoinositide Regulation of the Actin Cytoskeleton. Annual Review of Physiology, 2003, 65, 761-789.	5.6	608
142	Cellular Motility Driven by Assembly and Disassembly of Actin Filaments. Cell, 2003, 112, 453-465.	13.5	3,717
143	Phosphatidylinositol 4 Phosphate Regulates Targeting of Clathrin Adaptor AP-1 Complexes to the Golgi. Cell, 2003, 114, 299-310.	13.5	504
144	Lipid rafts are critical membrane domains in blood platelet activation processes. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1610, 247-257.	1.4	81

#	Article	IF	Citations
145	Imaging metabolism of phosphatidylinositol 4,5-bisphosphate in t-cell GM1-enriched domains containing Ras proteins☆⯆. Experimental Cell Research, 2003, 285, 27-38.	1.2	65
146	Structure of Sphingomyelin Bilayers: A Simulation Study. Biophysical Journal, 2003, 85, 3624-3635.	0.2	134
147	Presence and functional significance of presynaptic ryanodine receptors. Progress in Neurobiology, 2003, 69, 391-418.	2.8	140
148	cAMP and Ca2+ interplay: a matter of oscillation patterns. Trends in Neurosciences, 2003, 26, 53-55.	4.2	67
149	Actin Assembly and Endocytosis: From Yeast to Mammals. Annual Review of Cell and Developmental Biology, 2003, 19, 287-332.	4.0	531
150	Intracellular Recognition of Lipopolysaccharide by Toll-like Receptor 4 in Intestinal Epithelial Cells. Journal of Experimental Medicine, 2003, 198, 1225-1235.	4.2	301
151	Actin-rich Spherical Extrusion Induced in Okadaic Acid-treated K562 Cells by Crosslinking of Membrane Microdomains. Journal of Histochemistry and Cytochemistry, 2003, 51, 245-252.	1.3	8
152	Kinetic analysis of receptor-activated phosphoinositide turnover. Journal of Cell Biology, 2003, 161, 779-791.	2.3	189
153	Phosphatidylinositol phosphate 5-kinase \hat{l}^2 recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis. Journal of Cell Biology, 2003, 162, 693-701.	2.3	131
154	ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. Journal of Cell Biology, 2003, 162, 647-659.	2.3	213
155	The Putative Arabidopsis Arp2/3 Complex Controls Leaf Cell Morphogenesis. Plant Physiology, 2003, 132, 2034-2044.	2.3	183
156	Colocalization of synapsin and actin during synaptic vesicle recycling. Journal of Cell Biology, 2003, 161, 737-747.	2.3	193
157	Arf6 and Phosphoinositol-4-Phosphate-5-Kinase Activities Permit Bypass of the Rac1 Requirement for β1 Integrin–mediated Bacterial Uptake. Journal of Experimental Medicine, 2003, 198, 603-614.	4.2	79
158	Involvement of the Arp2/3 Complex and Scar2 in Golgi Polarity in Scratch Wound Models. Molecular Biology of the Cell, 2003, 14, 670-684.	0.9	53
159	Myosin Motors and Not Actin Comets Are Mediators of the Actin-based Golgi-to-Endoplasmic Reticulum Protein Transport. Molecular Biology of the Cell, 2003, 14, 445-459.	0.9	84
160	Diffusion of Asymmetric Swimmers. Physical Review Letters, 2003, 91, 080601.	2.9	1
161	Cytoskeleton Interactions Involved in the Assembly and Function of Glycoprotein-80 Adhesion Complexes in Dictyostelium. Journal of Biological Chemistry, 2003, 278, 2614-2623.	1.6	14
162	Biomolecular mimicry in the actin cytoskeleton: Mechanisms underlying the cytotoxicity of kabiramide C and related macrolides. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13851-13856.	3.3	89

#	Article	IF	CITATIONS
163	Neural Wiskott-Aldrich Syndrome Protein Is Recruited to Rafts and Associates with Endophilin A in Response to Epidermal Growth Factor. Journal of Biological Chemistry, 2003, 278, 6461-6469.	1.6	60
164	Membrane Ruffling Requires Coordination between Type Iα Phosphatidylinositol Phosphate Kinase and Rac Signaling. Journal of Biological Chemistry, 2003, 278, 23036-23045.	1.6	102
165	Phosphorylation of Fc \hat{l}^3 RIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts. Journal of Cell Science, 2003, 116, 537-550.	1.2	95
166	The C-terminal Domain of Rac1 Contains Two Motifs That Control Targeting and Signaling Specificity. Journal of Biological Chemistry, 2003, 278, 39166-39175.	1.6	98
167	Extracellular Matrix Proteins Modulate Endocytosis of the Insulin Receptor. Journal of Biological Chemistry, 2003, 278, 16397-16404.	1.6	16
168	WASP (Wiskott-Aldrich syndrome protein) gene mutations and phenotype. Current Opinion in Allergy and Clinical Immunology, 2003, 3, 427-436.	1.1	93
169	Multiple cytoplasmic signals direct the intracellular trafficking of chicken kidney AE1 anion exchangers in MDCK cells. Journal of Cell Science, 2003, 116, 655-663.	1.2	14
170	Surface Expression of the Netrin Receptor UNC5H1 Is Regulated through a Protein Kinase C-Interacting Protein/Protein Kinase-Dependent Mechanism. Journal of Neuroscience, 2003, 23, 11279-11288.	1.7	71
172	Epithelial sodium channel activity in detergent-resistant membrane microdomains. American Journal of Physiology - Renal Physiology, 2003, 284, F182-F188.	1.3	33
174	The Transport, Assembly, and Function of Myelin Lipids. , 2004, , 57-88.		11
175	Phosphoinositides and membrane traffic in health and disease. Topics in Current Genetics, 2004, , 171-192.	0.7	2
176	Association of Villin with Phosphatidylinositol 4,5-Bisphosphate Regulates the Actin Cytoskeleton. Journal of Biological Chemistry, 2004, 279, 3096-3110.	1.6	71
177	Combined Monte Carlo and molecular dynamics simulation of hydrated 18:0 sphingomyelin–cholesterol lipid bilayers. Journal of Chemical Physics, 2004, 120, 9841-9847.	1.2	73
178	Differential Effects of Actin Cytoskeleton Dynamics on Equine Infectious Anemia Virus Particle Production. Journal of Virology, 2004, 78, 882-891.	1.5	30
179	Activation of Type I Phosphatidylinositol 4-Phosphate 5-Kinase Isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42. Journal of Biological Chemistry, 2004, 279, 7840-7849.	1.6	153
180	Fusion between Phagosomes, Early and Late Endosomes: A Role for Actin in Fusion between Late, but Not Early Endocytic Organelles. Molecular Biology of the Cell, 2004, 15, 345-358.	0.9	103
181	RNAi-mediated Hip1R Silencing Results in Stable Association between the Endocytic Machinery and the Actin Assembly Machinery. Molecular Biology of the Cell, 2004, 15, 1666-1679.	0.9	148
182	Regulated Membrane Trafficking of the Insulin-Responsive Glucose Transporter 4 in Adipocytes. Endocrine Reviews, 2004, 25, 177-204.	8.9	390

#	Article	IF	CITATIONS
183	LIMK1 Regulates Golgi Dynamics, Traffic of Golgi-derived Vesicles, and Process Extension in Primary Cultured Neurons. Molecular Biology of the Cell, 2004, 15, 3433-3449.	0.9	125
184	Repeated Cycles of Rapid Actin Assembly and Disassembly on Epithelial Cell Phagosomes. Molecular Biology of the Cell, 2004, 15, 5647-5658.	0.9	48
185	Ceramidase Regulates Synaptic Vesicle Exocytosis and Trafficking. Journal of Neuroscience, 2004, 24, 7789-7803.	1.7	102
186	Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. Journal of Cell Biology, 2004, 167, 1087-1098.	2.3	204
187	Syk-mediated Tyrosine Phosphorylation Is Required for the Association of Hematopoietic Lineage Cell-specific Protein 1 with Lipid Rafts and B Cell Antigen Receptor Signalosome Complex. Journal of Biological Chemistry, 2004, 279, 33413-33420.	1.6	41
188	Rho and Rho-kinase Mediate Thrombin-induced Phosphatidylinositol 4-Phosphate 5-Kinase Trafficking in Platelets. Journal of Biological Chemistry, 2004, 279, 42331-42336.	1.6	65
189	ADP-ribosylation Factor 1-independent Protein Sorting and Export from the trans-Golgi Network. Journal of Biological Chemistry, 2004, 279, 52735-52743.	1.6	7
190	Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. Journal of Cell Biology, 2004, 165, 781-788.	2.3	114
191	Lipid Raft-Associated GTPase Signaling Controls Morphology and CD8+ T Cell Stimulatory Capacity of Human Dendritic Cells. Journal of Immunology, 2004, 173, 1628-1639.	0.4	37
192	Identification and Characterization of a Phosphoinositide Phosphate Kinase Homolog. Journal of Biological Chemistry, 2004, 279, 11672-11679.	1.6	22
193	Regulation of Axonal Extension and Growth Cone Motility by Calmodulin-Dependent Protein Kinase I. Journal of Neuroscience, 2004, 24, 3786-3794.	1.7	177
194	Phosphatidylinositol 4,5-Bisphosphate Regulates Adipocyte Actin Dynamics and GLUT4 Vesicle Recycling. Journal of Biological Chemistry, 2004, 279, 30622-30633.	1.6	50
195	Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. Journal of Cell Biology, 2004, 166, 697-708.	2.3	213
196	Inhibiting the Arp2/3 Complex Limits Infection of Both Intracellular Mature Vaccinia Virus and Primate Lentiviruses. Molecular Biology of the Cell, 2004, 15, 5197-5207.	0.9	99
197	Predicting Axonal Response to Molecular Gradients with a Computational Model of Filopodial Dynamics. Neural Computation, 2004, 16, 2221-2243.	1.3	44
198	Phosphoinositides in Constitutive Membrane Traffic. Physiological Reviews, 2004, 84, 699-730.	13.1	264
199	Trafficking of cholera toxin-ganglioside GM1complex into Golgi and induction of toxicity depend on actin cytoskeleton. American Journal of Physiology - Cell Physiology, 2004, 287, C1453-C1462.	2.1	43
200	Annexin 2 is a phosphatidylinositol (4,5)-bisphosphate binding protein recruited to actin assembly sites at cellular membranes. Journal of Cell Science, 2004, 117, 3473-3480.	1.2	153

#	Article	IF	Citations
201	Regulation of T-cell receptor signalling by membrane microdomains. Immunology, 2004, 113, 413-426.	2.0	89
202	Association of Cdc42/N-WASP/Arp2/3 Signaling Pathway with Golgi Membranes. Traffic, 2004, 5, 838-846.	1.3	79
203	PI-loting membrane traffic. Nature Cell Biology, 2004, 6, 487-492.	4.6	308
204	Rapid vesicular translocation and insertion of TRP channels. Nature Cell Biology, 2004, 6, 709-720.	4.6	497
205	Cytoskeletal regulation: rich in lipids. Nature Reviews Molecular Cell Biology, 2004, 5, 658-666.	16.1	204
206	Crystal Structure of Human Vinculin. Structure, 2004, 12, 1189-1197.	1.6	146
207	Anti-actin antibodies generated against profilin:actin distinguish between non-filamentous and filamentous actin, and label cultured cells in a dotted pattern. European Journal of Cell Biology, 2004, 83, 413-423.	1.6	18
208	Mood stabilizers and the cell biology of neuronal growth cones. Clinical Neuroscience Research, 2004, 4, 189-199.	0.8	4
209	Inducible Clustering of Membrane-Targeted SH3 Domains of the Adaptor Protein Nck Triggers Localized Actin Polymerization. Current Biology, 2004, 14, 11-22.	1.8	108
210	Regulation and cellular roles of phosphoinositide 5-kinases. European Journal of Pharmacology, 2004, 500, 87-99.	1.7	120
211	When does visual perceptual grouping affect multisensory integration?. Cognitive, Affective and Behavioral Neuroscience, 2004, 4, 218-229.	1.0	24
212	Polyphosphoinositides-dependent regulation of the osteoclast actin cytoskeleton and bone resorption. BMC Cell Biology, 2004, 5, 19.	3.0	29
213	Functional microtubules are required for antigen processing by macrophages and dendritic cells1The information contained herein reflects the views of the authors and authors and should not be construed to represent those of the Department of the Army or the Department of Defense.1. Immunology Letters, 2004, 95, 13-24.	1.1	25
214	Sphingomyelin-Cholesterol Domains in Phospholipid Membranes: Atomistic Simulation. Biophysical Journal, 2004, 87, 1092-1100.	0.2	161
215	Simulation of the Early Stages of Nano-Domain Formation in Mixed Bilayers of Sphingomyelin, Cholesterol, and Dioleylphosphatidylcholine. Biophysical Journal, 2004, 87, 3312-3322.	0.2	164
216	Membrane/Cytoskeleton Communication. Sub-Cellular Biochemistry, 2004, 37, 247-282.	1.0	23
217	Annexins – unique membrane binding proteins with diverse functions. Journal of Cell Science, 2004, 117, 2631-2639.	1.2	541
218	Toca-1 Mediates Cdc42-Dependent Actin Nucleation by Activating the N-WASP-WIP Complex. Cell, 2004, 118, 203-216.	13.5	394

#	Article	IF	CITATIONS
219	The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy. FEBS Letters, 2004, 565, 53-58.	1.3	75
220	Where sterols are required for endocytosis. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 51-61.	1.4	87
221	Do proteins facilitate the formation of cholesterol-rich domains?. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 227-238.	1.4	44
222	Lipid rafts–protein association and the regulation of protein activity. Archives of Biochemistry and Biophysics, 2004, 426, 208-224.	1.4	162
223	Domain Formation in Phosphatidylinositol Monophosphate/Phosphatidylcholine Mixed Vesicles. Biophysical Journal, 2004, 86, 2980-2992.	0.2	45
224	Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochemical Journal, 2004, 380, 1-17.	1.7	239
226	Chapter 4 Lipid Raft-Mediated Entry of Bacteria into Host Cells. Advances in Molecular and Cell Biology, 2005, 36, 79-88.	0.1	1
227	Voltage-gated potassium channels regulate the response of retinal growth cones to axon extension and guidance cues. European Journal of Neuroscience, 2005, 22, 569-578.	1.2	13
228	Synaptic vesicle pools. Nature Reviews Neuroscience, 2005, 6, 57-69.	4.9	742
229	Lipid regulation of the synaptic vesicle cycle. Nature Reviews Neuroscience, 2005, 6, 139-150.	4.9	149
230	Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nature Cell Biology, 2005, 7, 969-976.	4.6	201
231	Loading history determines the velocity of actin-network growth. Nature Cell Biology, 2005, 7, 1219-1223.	4.6	202
232	Cell entry machines: a common theme in nature?. Nature Reviews Microbiology, 2005, 3, 349-358.	13.6	30
233	Structure and Function of the Lowe Syndrome Protein OCRL1. Traffic, 2005, 6, 711-719.	1.3	147
234	Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cytoskeleton, 2005, 61, 112-127.	4.4	82
235	Assessing the effect of visual and tactile distractors on the perception of auditory apparent motion. Experimental Brain Research, 2005, 166, 548-558.	0.7	20
236	Phosphatidylinositol-4-phosphate 5-kinase γ is associated with cell–cell junction in A431 epithelial cells. Cell Biology International, 2005, 29, 514-520.	1.4	18
237	Regulation of Actin Ring Formation by Rho GTPases in Osteoclasts. Journal of Biological Chemistry, 2005, 280, 32930-32943.	1.6	78

#	Article	IF	CITATIONS
238	pH-dependent domain formation in phosphatidylinositol polyphosphate/phosphatidylcholine mixed vesicles. Journal of Lipid Research, 2005, 46, 504-515.	2.0	45
239	A Role for Jsn1p in Recruiting the Arp2/3 Complex to Mitochondria in Budding Yeast. Molecular Biology of the Cell, 2005, 16, 5094-5102.	0.9	50
240	PI(4,5)P2-dependent microdomain assemblies capture microtubules to promote and control leading edge motility. Journal of Cell Biology, 2005, 169, 151-165.	2.3	146
241	RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dia1. Journal of Cell Science, 2005, 118, 2661-2670.	1.2	136
242	Lipid rafts and regulation of the cytoskeleton during T cell activation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1663-1672.	1.8	34
243	Integrin-dependent interaction of lipid rafts with the actin cytoskeleton in activated human platelets. Journal of Cell Science, 2005, 118, 759-769.	1.2	70
244	Abl Kinases Regulate Actin Comet Tail Elongation via an N-WASP-Dependent Pathway. Molecular and Cellular Biology, 2005, 25, 8834-8843.	1.1	63
245	Interaction of SPIN90 with Dynamin I and Its Participation in Synaptic Vesicle Endocytosis. Journal of Neuroscience, 2005, 25, 9515-9523.	1.7	25
246	N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. Journal of Cell Science, 2005, 118, 3103-3115.	1.2	155
247	Vinculin acts as a sensor in lipid regulation of adhesion-site turnover. Journal of Cell Science, 2005, 118, 1461-1472.	1.2	108
248	Fluorescent Kabiramides:  New Probes to Quantify Actin in Vitro and in Vivo. Bioconjugate Chemistry, 2005, 16, 1382-1389.	1.8	26
249	Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development (Cambridge), 2005, 132, 1487-1497.	1.2	241
250	The leading edge is a lipid diffusion barrier. Journal of Cell Science, 2005, 118, 4375-4380.	1.2	40
251	A Dynamic Actin Cytoskeleton Functions at Multiple Stages of Clathrin-mediated Endocytosis. Molecular Biology of the Cell, 2005, 16, 964-975.	0.9	387
252	A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17981-17986.	3.3	127
253	RAC1 Inhibition Targets Amyloid Precursor Protein Processing by \hat{I}^3 -Secretase and Decreases A \hat{I}^2 Production in Vitro and in Vivo. Journal of Biological Chemistry, 2005, 280, 37516-37525.	1.6	120
254	A Polybasic Motif Allows N-WASP to Act as a Sensor of PIP2 Density. Molecular Cell, 2005, 17, 181-191.	4.5	177
255	Merging complexes: properties of membrane raft assembly during lymphocyte signaling. Trends in Immunology, 2005, 26, 97-103.	2.9	56

#	Article	IF	CITATIONS
256	An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends in Pharmacological Sciences, 2005, 26, 654-660.	4.0	86
257	A WASp-binding type II phosphatidylinositol 4-kinase required for actin polymerization-driven endosome motility. Journal of Cell Biology, 2005, 171, 133-142.	2.3	38
258	The Platelet: Form and Function. Seminars in Hematology, 2006, 43, S94-S100.	1.8	71
259	Transbilayer Effects of Raft-Like Lipid Domains in Asymmetric Planar Bilayers Measured by Single Molecule Tracking. Biophysical Journal, 2006, 91, 3313-3326.	0.2	211
260	Protein kinase Cα can undergo membrane localization via an alternative phosphatidylinositol 4,5-bisphosphate-dependent pathway. Archives of Biochemistry and Biophysics, 2006, 454, 1-6.	1.4	4
261	Insulin Receptor Signals Regulating GLUT4 Translocation and Actin Dynamics. Endocrine Journal, 2006, 53, 267-293.	0.7	126
262	Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood, 2006, 107, 3868-3875.	0.6	182
263	Regulation of the Actin Cytoskeleton by Phospholipids. Advances in Molecular and Cell Biology, 2006, 37, 201-219.	0.1	0
264	Roles of the Actin Cytoskeleton and Myosins in the Endomembrane System. Advances in Molecular and Cell Biology, 2006, , 119-134.	0.1	1
265	Phospholipid signalling: mediators in need of interdisciplinary techniques. Signal Transduction, 2006, 6, 77-79.	0.7	5
266	Cooperation of Phosphoinositides and BAR Domain Proteins in Endosomal Tubulation. Traffic, 2006, 7, 1539-1550.	1.3	41
267	Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 2006, 7, 404-414.	16.1	636
268	The ARP2/3 complex: an actin nucleator comes of age. Nature Reviews Molecular Cell Biology, 2006, 7, 713-726.	16.1	879
269	Actin dynamics at the Golgi complex in mammalian cells. Current Opinion in Cell Biology, 2006, 18, 168-178.	2.6	158
270	Invadopodia: A guided tour. European Journal of Cell Biology, 2006, 85, 159-164.	1.6	80
271	Actin dynamics at sites of extracellular matrix degradation. European Journal of Cell Biology, 2006, 85, 1217-1231.	1.6	80
272	Cellular functions of the Spir actin-nucleation factors. Trends in Cell Biology, 2006, 16, 477-483.	3.6	42
273	Polyamines, PI(4,5)P2, and actin polymerization. Journal of Cellular Physiology, 2006, 209, 405-412.	2.0	9

#	Article	IF	CITATIONS
274	Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons. Hippocampus, 2006, 16, 20-34.	0.9	78
275	Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin. American Journal of Physiology - Cell Physiology, 2006, 291, C757-C771.	2.1	71
276	Polarized biosynthetic traffic in renal epithelial cells: sorting, sorting, everywhere. American Journal of Physiology - Renal Physiology, 2006, 291, F707-F713.	1.3	40
277	Regulation of transferrin recycling kinetics by PtdIns[4,5]P 2 availability. FASEB Journal, 2006, 20, 2399-2401.	0.2	40
278	Mechanically Induced Actin-mediated Rocketing of Phagosomes. Molecular Biology of the Cell, 2006, 17, 4866-4875.	0.9	32
279	Phosphatidylinositol 5-Kinase Stimulates Apical Biosynthetic Delivery via an Arp2/3-dependent Mechanism*. Journal of Biological Chemistry, 2006, 281, 15376-15384.	1.6	50
280	Absence of clustering of phosphatidylinositol-(4,5)-bisphosphate in fluid phosphatidylcholine. Journal of Lipid Research, 2006, 47, 1521-1525.	2.0	37
281	Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes. Journal of Lipid Research, 2006, 47, 2121-2133.	2.0	49
282	Tuba stimulates intracellular N-WASP-dependent actin assembly. Journal of Cell Science, 2006, 119, 2715-2726.	1.2	72
283	Interaction of SPIN90 with the Arp2/3 Complex Mediates Lamellipodia and Actin Comet Tail Formation. Journal of Biological Chemistry, 2006, 281, 617-625.	1.6	40
284	Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovascular Research, 2006, 69, 798-807.	1.8	181
285	Hypertonic Stress Increases Phosphatidylinositol 4,5-Bisphosphate Levels by Activating PIP5KIβ. Journal of Biological Chemistry, 2006, 281, 32630-32638.	1.6	47
286	Dual Regulation of Rho and Rac by p120 Catenin Controls Adipocyte Plasma Membrane Trafficking. Journal of Biological Chemistry, 2006, 281, 23307-23312.	1.6	19
287	Hyaluronan-CD44 Interaction with Neural Wiskott-Aldrich Syndrome Protein (N-WASP) Promotes Actin Polymerization and ErbB2 Activation Leading to β-Catenin Nuclear Translocation, Transcriptional Up-regulation, and Cell Migration in Ovarian Tumor Cells. Journal of Biological Chemistry, 2007, 282, 1265-1280.	1.6	81
288	The Localization and Activity of Sphingosine Kinase 1 Are Coordinately Regulated with Actin Cytoskeletal Dynamics in Macrophages*. Journal of Biological Chemistry, 2007, 282, 23147-23162.	1.6	32
289	Structure/Function Analysis of the Interaction of Phosphatidylinositol 4,5-Bisphosphate with Actin-capping Protein. Journal of Biological Chemistry, 2007, 282, 5871-5879.	1.6	73
290	Clustering of Membrane Raft Proteins by the Actin Cytoskeleton. Journal of Biological Chemistry, 2007, 282, 36682-36691.	1.6	115
291	Activation of p61Hck Triggers WASp- and Arp2/3-dependent Actin-comet Tail Biogenesis and Accelerates Lysosomes. Journal of Biological Chemistry, 2007, 282, 19565-19574.	1.6	18

#	Article	IF	CITATIONS
292	Increasing Plasma Membrane Phosphatidylinositol(4,5)Bisphosphate Biosynthesis Increases Phosphoinositide Metabolism in Nicotiana tabacum. Plant Cell, 2007, 19, 1603-1616.	3.1	67
293	Sterol-Rich Plasma Membrane Domains in Fungi. Eukaryotic Cell, 2007, 6, 755-763.	3.4	139
294	Unexpected Basis for Impaired Glc3Man9GlcNAc2-P-P-Dolichol Biosynthesis by Elevated Expression of GlcNAc-1-P Transferase. Glycobiology, 2007, 18, 125-134.	1.3	4
295	Role of the Golgi Apparatus During Axon Formation. , 2007, , 136-154.		1
296	Vascular signaling through cholesterol-rich domains: implications in hypertension. Current Opinion in Nephrology and Hypertension, 2007, 16, 90-104.	1.0	40
297	Lipid requirements for endocytosis in yeast. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 442-454.	1.2	24
298	Mechanism of Actin Network Attachment to Moving Membranes: Barbed End Capture by N-WASP WH2 Domains. Cell, 2007, 128, 901-913.	13.5	167
299	The Release of Vaccinia Virus from Infected Cells Requires RhoA-mDia Modulation of Cortical Actin. Cell Host and Microbe, 2007, 1, 227-240.	5.1	81
300	Molecular and Structural Basis for Redox Regulation of \hat{l}^2 -Actin. Journal of Molecular Biology, 2007, 370, 331-348.	2.0	139
301	Gelsolin overexpression alters actin dynamics and tyrosine phosphorylation of lipid raft-associated proteins in Jurkat T cells. Molecular Immunology, 2007, 44, 2469-2480.	1.0	21
302	Lipid rafts and membrane traffic. FEBS Letters, 2007, 581, 2098-2104.	1.3	271
303	Mechanism of Depolymerization and Severing of Actin Filaments and Its Significance in Cytoskeletal Dynamics. International Review of Cytology, 2007, 258, 1-82.	6.2	232
304	Acid-Induced Equilibrium Folding Intermediate of Human Platelet Profilinâ€. Biochemistry, 2007, 46, 6931-6943.	1.2	25
305	Active Arf6 Recruits ARNO/Cytohesin GEFs to the PM by Binding Their PH Domains. Molecular Biology of the Cell, 2007, 18, 2244-2253.	0.9	190
306	Phosphatidic acid regulates the affinity of the murine phosphatidylinositol 4-phosphate 5-kinase-l \hat{l}^2 for phosphatidylinositol-4-phosphate. Journal of Cellular Biochemistry, 2007, 100, 112-128.	1.2	37
307	Target-specific PIP2signalling: how might it work?. Journal of Physiology, 2007, 582, 967-975.	1.3	104
308	The WASP–WAVE protein network: connecting the membrane to the cytoskeleton. Nature Reviews Molecular Cell Biology, 2007, 8, 37-48.	16.1	869
309	Critical role for lipid raft-associated Src kinases in activation of PI3K-Akt signalling. Cellular Signalling, 2007, 19, 1081-1092.	1.7	124

#	Article	IF	CITATIONS
310	Unrestricted Diffusion of Exogenous and Endogenous PIP2 in Baby Hamster Kidney and Chinese Hamster Ovary Cell Plasmalemma. Journal of Membrane Biology, 2007, 220, 53-67.	1.0	20
311	Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Archiv European Journal of Physiology, 2007, 455, 5-18.	1.3	69
312	The role of actin remodeling in the trafficking of intracellular vesicles, transporters, and channels: focusing on aquaporin-2. Pflugers Archiv European Journal of Physiology, 2008, 456, 737-745.	1.3	30
313	Liquid chromatography electrospray ionization and matrix-assisted laser desorption ionization tandem mass spectrometry for the analysis of lipid raft proteome of monocytes. Analytica Chimica Acta, 2008, 627, 82-90.	2.6	13
314	Exiting the Golgi complex. Nature Reviews Molecular Cell Biology, 2008, 9, 273-284.	16.1	425
315	Role of lipid rafts in agrin-elicited acetylcholine receptor clustering. Chemico-Biological Interactions, 2008, 175, 64-67.	1.7	31
316	Overexpression of PPK-1, the Caenorhabditis elegans Type I PIP kinase, inhibits growth cone collapse in the developing nervous system and causes axonal degeneration in adults. Developmental Biology, 2008, 313, 384-397.	0.9	34
317	Membrane raft actin deficiency and altered Ca2+-induced vesiculation in stomatin-deficient overhydrated hereditary stomatocytosis. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 125-132.	1.4	25
318	Proteins and cholesterol-rich domains. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1576-1582.	1.4	148
319	Phosphoinositides Suppress Î ³ -Secretase in Both the Detergent-soluble and -insoluble States*. Journal of Biological Chemistry, 2008, 283, 19283-19292.	1.6	40
320	Moving the green. Plant Signaling and Behavior, 2008, 3, 488-489.	1.2	7
321	The Golgi Apparatus. , 2008, , .		16
322	Compartmentalization of Phosphatidylinositol 4,5-Bisphosphate Signaling Evidenced Using Targeted Phosphatases. Journal of Biological Chemistry, 2008, 283, 29920-29928.	1.6	69
323	Deciphering Interplay between Salmonella Invasion Effectors. PLoS Pathogens, 2008, 4, e1000037.	2.1	61
324	Distinct phospho-forms of cortactin differentially regulate actin polymerization and focal adhesions. American Journal of Physiology - Cell Physiology, 2008, 295, C1113-C1122.	2.1	50
325	Intermolecular interaction of phosphatidylinositol with the lipid raft molecules sphingomyelin and cholesterol. Biophysics (Nagoya-shi, Japan), 2008, 4, 1-9.	0.4	6
326	Membrane Domains as Signaling Centers in Macrophages and T-Cells: From Concepts to Experiments. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2008, 8, 336-348.	0.5	1
327	Spatial Segregation of Phosphatidylinositol 4,5-Bisphosphate (PIP2) Signaling in Immune Cell Functions. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2008, 8, 349-357.	0.5	13

#	Article	IF	CITATIONS
328	Chapter 10 Atomistic and Mean Field Simulations of Lateral Organization in Membranes. Current Topics in Membranes, 2008, , 281-312.	0.5	2
329	Nap1-mediated actin remodeling is essential for mammalian myoblast fusion. Journal of Cell Science, 2009, 122, 3282-3293.	1.2	94
330	Cutting Edge: Phosphatidylinositol 4,5-Bisphosphate Concentration at the APC Side of the Immunological Synapse Is Required for Effector T Cell Function. Journal of Immunology, 2009, 182, 5179-5182.	0.4	18
331	Oxidative Stress Decreases Phosphatidylinositol 4,5-Bisphosphate Levels by Deactivating Phosphatidylinositol- 4-phosphate 5-Kinase \hat{l}^2 in a Syk-dependent Manner. Journal of Biological Chemistry, 2009, 284, 23743-23753.	1.6	21
332	Role of Type \hat{l}_{\pm} Phosphatidylinositol-4-Phosphate 5-Kinase in Insulin Secretion, Glucose Metabolism, and Membrane Potential in INS-1 \hat{l}^2 -Cells. Endocrinology, 2009, 150, 2127-2135.	1.4	6
333	Venous and Arterial Identity: A Role for Caveolae?. Vascular, 2009, 17, 10-14.	0.4	6
334	Enteropathogenic <i>Escherichia coli</i> Subverts Phosphatidylinositol 4,5-Bisphosphate and Phosphatidylinositol 3,4,5-Trisphosphate upon Epithelial Cell Infection. Molecular Biology of the Cell, 2009, 20, 544-555.	0.9	67
335	PIP5K-driven PtdIns(4,5) <i>P</i> 2 synthesis: regulation and cellular functions. Journal of Cell Science, 2009, 122, 3837-3850.	1.2	265
336	Essential and unique roles of PIP5K- \hat{l}^3 and $-\hat{l}_\pm$ in Fc \hat{l}^3 receptor-mediated phagocytosis. Journal of Cell Biology, 2009, 184, 281-296.	2.3	81
337	LIM Kinase 1 and Cofilin Regulate Actin Filament Population Required for Dynamin-dependent Apical Carrier Fission from the <i>Trans </i> Value of the Cell of the Ce	0.9	89
338	WAFL, a new protein involved in regulation of early endocytic transport at the intersection of actin and microtubule dynamics. Experimental Cell Research, 2009, 315, 1040-1052.	1.2	32
339	Annexin A2 at the interface between F-actin and membranes enriched in phosphatidylinositol 4,5,-bisphosphate. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1086-1095.	1.9	48
340	Regulation of the formation and trafficking of vesicles from Golgi by PCH family proteins during chemotaxis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1199-1209.	1.9	6
341	The direction of actin polymerization for vesicle fission suggested from membranes tubulated by the EFC/Fâ€BAR domain protein FBP17. FEBS Letters, 2009, 583, 3401-3404.	1.3	22
342	Actin and endocytosis: mechanisms and phylogeny. Current Opinion in Cell Biology, 2009, 21, 20-27.	2.6	135
343	MARCKS regulates lamellipodia formation induced by IGFâ€l via association with PIP ₂ and βâ€actin at membrane microdomains. Journal of Cellular Physiology, 2009, 220, 748-755.	2.0	48
344	Spatial and temporal regulation of glycosylation during Drosophila eye development. Cell and Tissue Research, 2009, 336, 137-147.	1.5	8
345	Involvement of lipid rafts and cellular actin in AcMNPV GP64 distribution and virus budding. Virologica Sinica, 2009, 24, 333-349.	1.2	4

#	Article	IF	Citations
346	Cytoskeleton–membrane interactions in membrane raft structure. Cellular and Molecular Life Sciences, 2009, 66, 2319-2328.	2.4	213
347	Lipid Rafts and Caveolin-1 Are Required for Invadopodia Formation and Extracellular Matrix Degradation by Human Breast Cancer Cells. Cancer Research, 2009, 69, 8594-8602.	0.4	170
348	Autonomous turning of cerebellar granule cells in vitro by intrinsic programs. Developmental Biology, 2009, 326, 237-249.	0.9	17
349	A Reciprocal Interdependence between Nck and PI(4,5)P2 Promotes Localized N-WASp-Mediated Actin Polymerization in Living Cells. Molecular Cell, 2009, 36, 525-535.	4.5	38
350	Wiskott-Aldrich syndrome protein is an effector of Kit signaling. Blood, 2009, 114, 2900-2908.	0.6	25
351	One lipid, multiple functions: how various pools of PI(4,5)P2 are created in the plasma membrane. Cellular and Molecular Life Sciences, 2010, 67, 3927-3946.	2.4	97
352	At the poles across kingdoms: phosphoinositides and polar tip growth. Protoplasma, 2010, 240, 13-31.	1.0	102
353	Neuronal Calcium Sensor-1 Regulation of Calcium Channels, Secretion, and Neuronal Outgrowth. Cellular and Molecular Neurobiology, 2010, 30, 1283-1292.	1.7	67
354	Aiming for invadopodia: organizing polarized delivery at sites of invasion. Trends in Cell Biology, 2010, 20, 64-70.	3.6	41
355	Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends in Cell Biology, 2010, 20, 618-626.	3.6	72
356	WASH and the Arp2/3 complex regulate endosome shape and trafficking. Cytoskeleton, 2010, 67, 193-206.	1.0	144
357	The platelet glycoprotein Ibâ€IXâ€V complex anchors lipid rafts to the membrane skeleton: implications for activationâ€dependent cytoskeletal translocation of signaling molecules. Journal of Thrombosis and Haemostasis, 2010, 8, 163-172.	1.9	29
358	Cdc42 Interaction with N-WASP and Toca-1 Regulates Membrane Tubulation, Vesicle Formation and Vesicle Motility: Implications for Endocytosis. PLoS ONE, 2010, 5, e12153.	1.1	52
359	Dissecting BAR Domain Function in the Yeast Amphiphysins Rvs161 and Rvs167 during Endocytosis. Molecular Biology of the Cell, 2010, 21, 3054-3069.	0.9	73
360	Regulation of the Actin Cytoskeleton-Plasma Membrane Interplay by Phosphoinositides. Physiological Reviews, 2010, 90, 259-289.	13.1	424
361	ADF/Cofilin Binds Phosphoinositides in a Multivalent Manner to Act as a PIP2-Density Sensor. Biophysical Journal, 2010, 98, 2327-2336.	0.2	73
362	Enhanced phosphatidylinositol 4-phosphate 5-kinase \hat{l}_{\pm} expression and PI(4,5)P2 production in LPS-stimulated microglia. Neurochemistry International, 2010, 57, 600-607.	1.9	14
363	Inhibition of cerebellar granule cell turning by alcohol. Neuroscience, 2010, 170, 1328-1344.	1.1	22

#	Article	IF	CITATIONS
364	Myoblast fusion: When it takes more to make one. Developmental Biology, 2010, 341, 66-83.	0.9	217
365	Phosphoinositides and Actin Cytoskeletal Rearrangement. , 2010, , 1141-1150.		1
366	Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization. Biology of the Cell, 2011, 103, 287-301.	0.7	26
367	The non-redundant role of N-WASP in podosome-mediated matrix degradation in macrophages. European Journal of Cell Biology, 2011, 90, 205-212.	1.6	28
368	Triggering Actin Comets Versus Membrane Ruffles: Distinctive Effects of Phosphoinositides on Actin Reorganization. Science Signaling, 2011, 4, ra87.	1.6	49
369	Phosphatidylinositol-4-phosphate 5-Kinase and GEP100/Brag2 Protein Mediate Antiangiogenic Signaling by Semaphorin 3E-Plexin-D1 through Arf6 Protein. Journal of Biological Chemistry, 2011, 286, 34335-34345.	1.6	48
370	Expression of PTRF in PC-3 Cells Modulates Cholesterol Dynamics and the Actin Cytoskeleton Impacting Secretion Pathways. Molecular and Cellular Proteomics, 2012, 11, M111.012245.	2.5	59
371	How cholesterol regulates endothelial biomechanics. Frontiers in Physiology, 2012, 3, 426.	1.3	22
372	Actin on trafficking. Cell Adhesion and Migration, 2012, 6, 476-481.	1.1	13
373	Capping Protein Modulates the Dynamic Behavior of Actin Filaments in Response to Phosphatidic Acid in <i>Arabidopsis</i> Â Â. Plant Cell, 2012, 24, 3742-3754.	3.1	96
374	PIP2 signaling, an integrator of cell polarity and vesicle trafficking in directionally migrating cells. Cell Adhesion and Migration, 2012, 6, 409-412.	1.1	43
375	The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture, 2012, 2, 75-87.	1.5	220
376	SNAREs, HOPS, and regulatory lipids control the dynamics of vacuolar actin during homotypic fusion. Journal of Cell Science, 2012, 125, 1683-92.	1.2	18
377	Phosphatidic acid regulation of PIPKI is critical for actin cytoskeletal reorganization. Journal of Lipid Research, 2012, 53, 2598-2609.	2.0	43
378	Phosphoinositides., 2012,, 63-84.		0
379	Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nature Cell Biology, 2012, 14, 11-19.	4.6	208
380	Inositol polyphosphate 5â€phosphatases; new players in the regulation of cilia and ciliopathies. FEBS Letters, 2012, 586, 2846-2857.	1.3	61
381	PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity. Journal of Cell Biology, 2012, 199, 1003-1016.	2.3	246

#	Article	IF	CITATIONS
382	Phosphatidylinositol 4, 5 Bisphosphate and the Actin Cytoskeleton. Sub-Cellular Biochemistry, 2012, 59, 177-215.	1.0	57
383	Expression of budding yeast IPT1 produces mannosyldiinositol phosphorylceramide in fission yeast and inhibits cell growth. Microbiology (United Kingdom), 2012, 158, 1219-1228.	0.7	6
384	RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Advanced Drug Delivery Reviews, 2012, 64, 1341-1357.	6.6	39
385	Myo1c regulates lipid raft recycling to control cell spreading, migration and <i>Salmonella</i> invasion. Journal of Cell Science, 2012, 125, 1991-2003.	1.2	77
386	CAVEOLIN-1: Role in Cell Signaling. Advances in Experimental Medicine and Biology, 2012, 729, 29-50.	0.8	157
387	Insights into Stem Cell Factor chemotactic guidance of neural crest cells revealed by a real-time directionality-based assay. European Journal of Cell Biology, 2012, 91, 375-390.	1.6	17
388	Neuronal specific βPixâ€b stimulates actinâ€dependent processes via the interaction between its PRD and WH1 domain of Nâ€WASP. Journal of Cellular Physiology, 2012, 227, 1476-1484.	2.0	3
389	Polymeric nanoparticles of different sizes overcome the cell membrane barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 265-274.	2.0	59
390	Differential sensitivity to detergents of actin cytoskeleton from nerve endings. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2385-2393.	1.4	5
391	Neurotrophic factor NT-3 displays a non-canonical cell guidance signaling function for cephalic neural crest cells. European Journal of Cell Biology, 2013, 92, 264-279.	1.6	11
392	Cyclical Action of the WASH Complex: FAM21 and Capping Protein Drive WASH Recycling, Not Initial Recruitment. Developmental Cell, 2013, 24, 169-181.	3.1	52
393	Actin acting at the Golgi. Histochemistry and Cell Biology, 2013, 140, 347-360.	0.8	57
394	Rac1 and Cholesterol Metabolism in Macrophage. Journal of Cardiovascular Pharmacology, 2013, 62, 418-424.	0.8	9
395	Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation. Physiological Reviews, 2013, 93, 1019-1137.	13.1	1,281
396	Phosphatidylinositol Phosphate 5-Kinase l \hat{I}^3 i2 in Association with Src Controls Anchorage-independent Growth of Tumor Cells. Journal of Biological Chemistry, 2013, 288, 34707-34718.	1.6	13
397	PIP5Kl \hat{I}^2 Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells. PLoS ONE, 2013, 8, e53790.	1.1	13
398	Suppression of Chemotaxis by SSeCKS via Scaffolding of Phosphoinositol Phosphates and the Recruitment of the Cdc42 GEF, Frabin, to the Leading Edge. PLoS ONE, 2014, 9, e111534.	1.1	10
399	Pharmacological and Genetic Targeting of the PI4KA Enzyme Reveals Its Important Role in Maintaining Plasma Membrane Phosphatidylinositol 4-Phosphate and Phosphatidylinositol 4,5-Bisphosphate Levels. Journal of Biological Chemistry, 2014, 289, 6120-6132.	1.6	134

#	Article	IF	CITATIONS
400	Arf1 and Arf6 promote ventral actin structures formed by acute activation of protein kinase C and <scp>S</scp> rc. Cytoskeleton, 2014, 71, 380-394.	1.0	13
401	PI3 kinase enzymology on fluid lipid bilayers. Analyst, The, 2014, 139, 5127-5133.	1.7	5
402	Cargo Sorting in the Endocytic Pathway: A Key Regulator of Cell Polarity and Tissue Dynamics. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016899-a016899.	2.3	60
403	Intracellular transport based on actin polymerization. Biochemistry (Moscow), 2014, 79, 917-927.	0.7	27
404	Cholesterol and Fâ€actin are required for clustering of recycling synaptic vesicle proteins in the presynaptic plasma membrane. Journal of Physiology, 2014, 592, 621-633.	1.3	40
405	Cytoskeleton and Golgi-apparatus interactions: a two-way road of function and structure. Cell Health and Cytoskeleton, 0, , 37.	0.7	21
406	Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment. European Journal of Cell Biology, 2015, 94, 323-331.	1.6	47
407	Live cell imaging of membrane / cytoskeleton interactions and membrane topology. Scientific Reports, 2014, 4, 6056.	1.6	37
408	PIP kinases define PI4,5P2 signaling specificity by association with effectors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 711-723.	1.2	62
409	The MSL complex: juggling RNA–protein interactions for dosage compensation and beyond. Current Opinion in Genetics and Development, 2015, 31, 1-11.	1.5	55
410	An Optogenetic Method to Modulate Cell Contractility during Tissue Morphogenesis. Developmental Cell, 2015, 35, 646-660.	3.1	167
411	Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Molecular Biology of the Cell, 2016, 27, 2090-2106.	0.9	98
412	Statistics of actin-propelled trajectories in noisy environments. Physical Review E, 2016, 93, 062405.	0.8	2
413	Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P. Cell, 2016, 166, 408-423.	13.5	315
414	Signalling Pathways Controlling Cellular Actin Organization. Handbook of Experimental Pharmacology, 2016, 235, 153-178.	0.9	17
415	Type III Secreted Virulence Factors Manipulating Signaling to Actin Dynamics. Current Topics in Microbiology and Immunology, 2016, 399, 175-199.	0.7	11
416	Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P 2. Virology, 2016, 496, 116-126.	1.1	18
417	Low-Dose Paclitaxel Reduces S100A4 Nuclear Import to Inhibit Invasion and Hematogenous Metastasis of Cholangiocarcinoma. Cancer Research, 2016, 76, 4775-4784.	0.4	44

#	Article	IF	CITATIONS
418	Phosphatidylinositol 4-Phosphate 5-Kinase \hat{l}^2 Controls Recruitment of Lipid Rafts into the Immunological Synapse. Journal of Immunology, 2016, 196, 1955-1963.	0.4	29
419	Analysis of Phosphatidic Acid Binding and Regulation of PIPKI In Vitro and in Intact Cells. Methods in Enzymology, 2017, 583, 359-374.	0.4	4
420	Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. American Journal of Physiology - Cell Physiology, 2017, 312, C459-C477.	2.1	88
421	The Actin Cytoskeleton. Handbook of Experimental Pharmacology, 2017, , .	0.9	2
422	Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8977-E8986.	3.3	106
423	The Sharpin interactome reveals a role for Sharpin in lamellipodium formation via the Arp2/3 complex. Journal of Cell Science, 2017, 130, 3094-3107.	1.2	15
424	Analysis of Semaphorin-Induced Growth Cone Collapse and Axon Growth Inhibition. Methods in Molecular Biology, 2017, 1493, 171-183.	0.4	2
425	PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER–PM contact sites. Journal of Cell Biology, 2018, 217, 1797-1813.	2.3	153
426	Molecular mechanism for inhibition of twinfilin by phosphoinositides. Journal of Biological Chemistry, 2018, 293, 4818-4829.	1.6	15
427	The Many Roles of Type II Phosphatidylinositol 4â€Kinases in Membrane Trafficking: New Tricks for Old Dogs. BioEssays, 2018, 40, 1700145.	1.2	24
428	Effect of Cell Sex on Uptake of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS Nano, 2018, 12, 2253-2266.	7.3	87
429	Depletion of Cholesterol Reduces ENaC Activity by Decreasing Phosphatidylinositol-4,5-Bisphosphate in Microvilli. Cellular Physiology and Biochemistry, 2018, 47, 1051-1059.	1.1	7
431	Actin Assemblies in the Axon Shaft – some Open Questions. Current Opinion in Neurobiology, 2018, 51, 163-167.	2.0	13
432	PI(4,5)P2 forms dynamic cortical structures and directs actin distribution as well as polarity in <i>C. elegans</i> embryos. Development (Cambridge), 2018, 145, .	1.2	13
433	Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: An update on possible mechanisms. Biochemical and Biophysical Research Communications, 2018, 506, 307-314.	1.0	82
434	Reorganization of Ternary Lipid Mixtures of Nonphosphorylated Phosphatidylinositol Interacting with Angiomotin. Journal of Physical Chemistry B, 2018, 122, 8404-8415.	1.2	4
435	Role of MCC/Eisosome in Fungal Lipid Homeostasis. Biomolecules, 2019, 9, 305.	1.8	36
436	A Ciliary View of the Immunological Synapse. Cells, 2019, 8, 789.	1.8	42

#	Article	IF	CITATIONS
437	Plasmacytoid Dendritic Cells and Infected Cells Form an Interferogenic Synapse Required for Antiviral Responses. Cell Host and Microbe, 2019, 25, 730-745.e6.	5.1	53
438	Intracellular cholesterol stimulates ENaC by interacting with phosphatidylinositol‑4,5‑bisphosphate and mediates cyclosporine A-induced hypertension. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1915-1924.	1.8	15
439	$PIP5k1\hat{1}^2$ controls bone homeostasis through modulating both osteoclast and osteoblast differentiation. Journal of Molecular Cell Biology, 2020, 12, 55-70.	1.5	7
440	Mechanisms behind the polarized distribution of lipids in epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183145.	1.4	22
441	Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates. Developmental Cell, 2020, 55, 30-44.	3.1	176
442	Focusing on cellular biomarkers: The endo-lysosomal pathway in Down syndrome. Progress in Brain Research, 2020, 251, 209-243.	0.9	16
443	Computer simulations of protein–membrane systems. Progress in Molecular Biology and Translational Science, 2020, 170, 273-403.	0.9	31
444	Using Phosphatidylinositol Phosphorylation as Markers for Hyperglycemic Related Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 2320.	1.8	4
445	Phosphoinositides signaling modulates microglial actin remodeling and phagocytosis in Alzheimer's disease. Cell Communication and Signaling, 2021, 19, 28.	2.7	20
446	Better Together: Current Insights Into Phagosome-Lysosome Fusion. Frontiers in Immunology, 2021, 12, 636078.	2.2	54
447	Photodynamic sensitizers modulate cytoskeleton structural dynamics in neuronal cells. Cytoskeleton, 2021, 78, 232-248.	1.0	10
448	Cyclodextrins in the antiviral therapy. Journal of Drug Delivery Science and Technology, 2021, 64, 102589.	1.4	26
449	RhoA- and Actin-Dependent Functions of Macrophages from the Rodent Cardiac Transplantation Model Perspective -Timing Is the Essence. Biology, 2021, 10, 70.	1.3	7
450	The Role of Proteins in the Formation of Domains in Membranes. , 2006, , 111-126.		2
451	Lipid Raft Proteins and Their Identification in T Lymphocytes. Sub-Cellular Biochemistry, 2004, 37, 121-152.	1.0	19
452	Atomistic and Coarse-Grained Computer Simulations of Raft-Like Lipid Mixtures. Methods in Molecular Biology, 2007, 398, 283-302.	0.4	4
453	The role of the cytoskeleton in the structure and function of the Golgi apparatus., 2008,, 270-300.		4
454	Regulation of the Actin Cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3. Current Topics in Microbiology and Immunology, 2004, 282, 117-163.	0.7	96

#	Article	IF	CITATIONS
455	PIP Kinases from the Cell Membrane to the Nucleus. Sub-Cellular Biochemistry, 2012, 58, 25-59.	1.0	22
456	Phosphatidylinositol 4,5-Biphosphate (PIP2)-induced Vesicle Movement Depends on N-WASP and Involves Nck, WIP, and Grb2. Journal of Biological Chemistry, 2002, 277, 37771-37776.	1.6	133
457	Wasp, the Drosophila Wiskott-Aldrich Syndrome Gene Homologue, Is Required for Cell Fate Decisions Mediated by Notch Signaling. Journal of Cell Biology, 2001, 152, 1-14.	2.3	68
459	The actin cytoskeleton and plasma membrane connection: Ptdlns(4,5) <i>P</i> 2 influences cytoskeletal protein activity at the plasma membrane. Journal of Cell Science, 2000, 113, 3679-3680.	1.2	246
460	Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles. Journal of Cell Science, 2000, 113, 4421-4426.	1.2	149
461	WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell mov. Journal of Cell Science, 2001, 114, 1801-1809.	1.2	528
462	Phagocytosis and the actin cytoskeleton. Journal of Cell Science, 2001, 114, 1061-1077.	1.2	584
463	N-WASP, WAVE and Mena play different roles in the organization of actin cytoskeleton in lamellipodia. Journal of Cell Science, 2001, 114, 1555-1565.	1.2	97
464	Twinfilin, a molecular mailman for actin monomers. Journal of Cell Science, 2002, 115, 881-886.	1.2	73
465	The Non-Catalytic Carboxyl-Terminal Domain of ARFGAP1 Regulates Actin Cytoskeleton Reorganization by Antagonizing the Activation of Rac1. PLoS ONE, 2011, 6, e18458.	1.1	8
466	The potent effect of mycolactone on lipid membranes. PLoS Pathogens, 2018, 14, e1006814.	2.1	36
467	Membrane lipids in invadopodia and podosomes: key structures for cancer invasion and metastasis. Oncotarget, 2010, 1, 320-8.	0.8	40
468	Membrane lipids in invadopodia and podosomes: Key structures for cancer invasion and metastasis. Oncotarget, 2010, 1, 320-328.	0.8	63
470	Regulation of Actin Cytoskeleton by Phosphoinositides Membrane, 2002, 27, 74-82.	0.0	0
471	Phosphoinositides and Actin Cytoskeletal Rearrangement. , 2003, , 209-215.		0
473	The Phosphoinositides. , 2009, , 269-288.		O
474	Coupling Membrane Dynamics to Actin Polymerization. , 2010, , 35-57.		0
478	Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Genes, 2022, 13, 219.	1.0	7

#	ARTICLE	IF	CITATIONS
483	Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation. Nature Communications, 2022, 13 , .	5.8	22
484	Dynamics of Actin Cytoskeleton and Their Signaling Pathways during Cellular Wound Repair. Cells, 2022, 11, 3166.	1.8	4
486	Cholesterol and PIP2 Modulation of BKCa Channels. Advances in Experimental Medicine and Biology, 2023, , 217-243.	0.8	1