A COMPARISON OF DELTA CHANGE AND DOWNSCAL MOUNTAINOUS BASINS IN THE UNITED STATES1

Journal of the American Water Resources Association 36, 387-397 DOI: 10.1111/j.1752-1688.2000.tb04276.x

Citation Report

#	Article	IF	CITATIONS
1	Hydrological responses to dynamically and statistically downscaled climate model output. Geophysical Research Letters, 2000, 27, 1199-1202.	1.5	260
3	Time Structure of Observed, GCM-Simulated, Downscaled, and Stochastically Generated Daily Temperature Series. Journal of Climate, 2001, 14, 4047-4061.	1.2	46
4	Use of Regional Climate Model Output for Hydrologic Simulations. Journal of Hydrometeorology, 2002, 3, 571-590.	0.7	151
5	Potential climate change impacts on flood producing mechanisms in southern British Columbia, Canada using the CGCMA1 simulation results. Journal of Hydrology, 2002, 259, 163-188.	2.3	93
6	Climatic impacts on the runoff generation processes in British Columbia, Canada. Hydrology and Earth System Sciences, 2002, 6, 211-228.	1.9	29
7	Effects of transient climate change on basin hydrology. 2. Impacts on runoff variability in the Arno River, central Italy. Hydrological Processes, 2002, 16, 1177-1199.	1.1	29
8	A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modelling. Hydrological Processes, 2002, 16, 173-187.	1.1	132
9	sdsm — a decision support tool for the assessment of regional climate change impacts. Environmental Modelling and Software, 2002, 17, 145-157.	1.9	1,046
10	Title is missing!. Studia Geophysica Et Geodaetica, 2003, 47, 203-216.	0.3	10
11	Comparison of various precipitation downscaling methods for the simulation of streamflow in a rainshadow river basin. International Journal of Climatology, 2003, 23, 887-901.	1.5	125
12	Use of a priori parameter-estimation methods to constrain calibration of distributed-parameter models. Water Science and Application, 2003, , 255-266.	0.3	18
13	Climate Change Implications on Flood Response of a Mountainous Watershed. Water, Air and Soil Pollution, 2004, 4, 331-347.	0.8	13
14	Cycles, Feedbacks, and Main Issues. , 2005, , 1-73.		0
15	An Overview of Hydrology and Water Resources Studies on Climate Change: The California Experience. , 2005, , 1.		10
16	Downscaling simulations of future global climate with application to hydrologic modelling. International Journal of Climatology, 2005, 25, 419-436.	1.5	125
17	A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Climatic Change, 2005, 69, 245-268.	1.7	429
18	Flow regime alterations under changing climate in two river basins: implications for freshwater ecosystems. River Research and Applications, 2005, 21, 849-864.	0.7	121
19	POTENTIAL EFFECTS OF CLIMATE CHANGE ON RAINFALL EROSIVITY IN THE YELLOW RIVER BASIN OF CHINA. Transactions of the American Society of Agricultural Engineers, 2005, 48, 511-517.	0.9	65

#	Article	IF	CITATIONS
20	One-Way Coupling of an Atmospheric and a Hydrologic Model in Colorado. Journal of Hydrometeorology, 2006, 7, 569-589.	0.7	26
21	STEP WISE, MULTIPLE OBJECTIVE CALIBRATION OF A HYDROLOGIC MODEL FOR A SNOWMELT DOMINATED BASIN. Journal of the American Water Resources Association, 2006, 42, 877-890.	1.0	101
22	Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Climate Dynamics, 2006, 27, 39-68.	1.7	219
23	Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model. Hydrological Processes, 2006, 20, 673-688.	1.1	81
24	Upper versus lower Colorado River sub-basin streamflow: characteristics, runoff estimation and model simulation. Hydrological Processes, 2006, 20, 2187-2205.	1.1	17
25	The modular modelling system (MMS): a toolbox for water and environmental resources management. , 2007, , 87-98.		3
26	Regional Differences in Climate Change Impacts on Groundwater and Stream Discharge in Denmark. Vadose Zone Journal, 2007, 6, 554-571.	1.3	115
27	Impacts of climate change on the frequency and severity of floods in the Châteauguay River basin, Canada. Canadian Journal of Civil Engineering, 2007, 34, 1048-1060.	0.7	27
28	Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. Journal of Hydrology, 2007, 344, 171-184.	2.3	274
29	Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences, 2007, 11, 1145-1159.	1.9	496
30	The evolution of climate change impact studies on hydrology and water resources in California. Climatic Change, 2007, 82, 327-350.	1.7	129
31	On interpreting hydrological change from regional climate models. Climatic Change, 2007, 81, 97-122.	1.7	228
32	Effects of warmer world scenarios on hydrologic inputs to Lake MĤren, Sweden and implications for nutrient loads. Hydrobiologia, 2008, 599, 191-199.	1.0	35
33	Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites. Tellus, Series A: Dynamic Meteorology and Oceanography, 2008, 60, 439-450.	0.8	57
34	Uncertainty of the impact of climate change on the hydrology of a nordic watershed. Journal of Hydrology, 2008, 358, 70-83.	2.3	322
35	The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. Journal of Hydrology, 2008, 350, 100-113.	2.3	282
36	Projections of Future Anthropogenic Climate Change. , 2008, , 133-219.		8
37	Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 60, 439.	0.8	30

#	Article	IF	CITATIONS
38	Evaluating the Effects of Environmental Changes on the Gross Primary Production of Italian Forests. Remote Sensing, 2009, 1, 1108-1124.	1.8	10
39	Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology, 2009, 374, 16-29.	2.3	282
40	Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: future climate. Climatic Change, 2009, 93, 197-222.	1.7	228
41	Reducing Streamflow Forecast Uncertainty: Application and Qualitative Assessment of the Upper Klamath River Basin, Oregon ¹ . Journal of the American Water Resources Association, 2009, 45, 580-596.	1.0	17
42	An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environmental Modelling and Software, 2009, 24, 1209-1222.	1.9	218
43	Applying climate model precipitation scenarios for urban hydrological assessment: A case study in Kalmar City, Sweden. Atmospheric Research, 2009, 92, 364-375.	1.8	138
44	Impact of climate and land use change on the hydrology of a largeâ€scale agricultural catchment. Water Resources Research, 2009, 45, .	1.7	113
45	Quantifying the effects of future climate change on groundwater and stream discharge in Denmark. IOP Conference Series: Earth and Environmental Science, 2009, 6, 292007.	0.2	3
46	Hydrologic effects of climate change in the Yukon River Basin. Climatic Change, 2010, 100, 509-523.	1.7	38
47	An intercomparison of regional climate model data for hydrological impact studies in Denmark. Journal of Hydrology, 2010, 380, 406-419.	2.3	69
48	Impact of climate change on the hydrology of St. Lawrence tributaries. Journal of Hydrology, 2010, 384, 65-83.	2.3	144
49	Statistical downscaling of river flows. Journal of Hydrology, 2010, 385, 279-291.	2.3	109
50	Scenario-neutral approach to climate change impact studies: Application to flood risk. Journal of Hydrology, 2010, 390, 198-209.	2.3	349
51	Numerical modelling of climate change impacts on Saint‣awrence River tributaries. Earth Surface Processes and Landforms, 2010, 35, 1184-1198.	1.2	21
52	Use of stochastic weathergenerators for precipitation downscaling. Wiley Interdisciplinary Reviews: Climate Change, 2010, 1, 898-907.	3.6	114
53	Simulated lake phytoplankton composition shifts toward cyanobacteria dominance in a future warmer climate. Ecological Applications, 2010, 20, 752-767.	1.8	75
54	Projected climate conditions to 2100 for Regina, Saskatchewan. Canadian Journal of Civil Engineering, 2010, 37, 1247-1260.	0.7	5
55	Influence of climate model biases and dailyâ€scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States. Journal of Geophysical Research, 2010, 115, .	3.3	86

#	Article	IF	CITATIONS
56	Future hydrology and climate in the River Nile basin: a review. Hydrological Sciences Journal, 2011, 56, 199-211.	1.2	98
57	Examination of change factor methodologies for climate change impact assessment. Water Resources Research, 2011, 47, .	1.7	226
58	Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surfaceâ€subsurface interactions and comparison with a land surface model. Water Resources Research, 2011, 47, .	1.7	85
59	Using multiple climate projections for assessing hydrological response to climate change in the Thukela River Basin, South Africa. Physics and Chemistry of the Earth, 2011, 36, 727-735.	1.2	35
60	Spectral representation of the annual cycle in the climate change signal. Hydrology and Earth System Sciences, 2011, 15, 2777-2788.	1.9	92
62	Evaluation of two precipitation data sets for the Rhine River using streamflow simulations. Hydrology and Earth System Sciences, 2011, 15, 3355-3366.	1.9	25
63	Comparison of Hydrological Simulations of Climate Change Using Perturbation of Observations and Distributionâ€Based Scaling. Vadose Zone Journal, 2011, 10, 136-150.	1.3	42
64	Evidence and implications of recent and projected climate change in Alaska's forest ecosystems. Ecosphere, 2011, 2, art124.	1.0	87
65	Climate Change and Floodplain Delineation in Two Southern Quebec River Basins1. Journal of the American Water Resources Association, 2011, 47, 785-799.	1.0	11
66	Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. Journal of Hydrology, 2011, 399, 70-92.	2.3	92
67	Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. Journal of Hydrology, 2011, 401, 190-202.	2.3	546
68	Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. Journal of Hydrology, 2011, 409, 626-636.	2.3	177
69	Simulating the hydrological response to predicted climate change on a watershed in southern Alberta, Canada. Climatic Change, 2011, 105, 555-576.	1.7	49
70	Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landscape Ecology, 2011, 26, 487-500.	1.9	92
71	Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stochastic Environmental Research and Risk Assessment, 2011, 25, 781-792.	1.9	149
72	A comparison of techniques for downscaling extreme precipitation over the Northeastern United States. International Journal of Climatology, 2011, 31, 1975-1989.	1.5	93
73	Effects of changes in snow pattern and the timing of runoff on NYC water supply system. Hydrological Processes, 2011, 25, 3278-3288.	1.1	31
74	Watershed-Scale Response to Climate Change through the Twenty-First Century for Selected Basins across the United States. Earth Interactions, 2011, 15, 1-37.	0.7	75

#	Article	IF	CITATIONS
75	Effects of Baseline Conditions on the Simulated Hydrologic Response to Projected Climate Change. Earth Interactions, 2011, 15, 1-23.	0.7	10
76	Evaluating Urban Storm-Water Infrastructure Design in Response to Projected Climate Change. Journal of Hydrologic Engineering - ASCE, 2011, 16, 865-873.	0.8	113
77	Assessing the Potential Impacts of Climate Change on Mountain Snowpack in the St. Mary River Watershed, Montana. Journal of Hydrometeorology, 2011, 12, 262-273.	0.7	25
78	Hydrologic Effects of Urbanization and Climate Change on the Flint River Basin, Georgia. Earth Interactions, 2011, 15, 1-25.	0.7	41
79	Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrological Sciences Journal, 2011, 56, 1265-1279.	1.2	24
80	Impact of a Statistical Bias Correction on the Projected Hydrological Changes Obtained from Three GCMs and Two Hydrology Models. Journal of Hydrometeorology, 2011, 12, 556-578.	0.7	334
81	Downscaling Ensemble Weather Predictions for Improved Week-2 Hydrologic Forecasting. Journal of Hydrometeorology, 2011, 12, 1564-1580.	0.7	14
82	Simulations of Historical and Future Trends in Snowfall and Groundwater Recharge for Basins Draining to Long Island Sound. Earth Interactions, 2011, 15, 1-35.	0.7	8
84	Water resources management under future development and climate change impacts in the Upper Srepok River Basin, Central Highlands of Vietnam. Water Policy, 2012, 14, 725-745.	0.7	7
85	Downscaling climate change scenarios for apple pest and disease modeling in Switzerland. Earth System Dynamics, 2012, 3, 33-47.	2.7	41
86	Understanding Precipitation Fidelity in Hydrological Modeling. Journal of Hydrologic Engineering - ASCE, 2012, 17, 1315-1324.	0.8	3
87	A methodology for statistically downscaling seasonal snow cover characteristics over the Northeastern United States. International Journal of Climatology, 2013, 33, 2728-2743.	1.5	4
88	Modeling the impacts of climate change on irrigated corn production in the Central Great Plains. Agricultural Water Management, 2012, 110, 94-108.	2.4	94
89	Historic and future extent of wildfires in the Southern Rockies Ecoregion, USA. Forest Ecology and Management, 2012, 269, 124-133.	1.4	49
90	A method for physically based model analysis of conjunctive use in response to potential climate changes. Water Resources Research, 2012, 48, .	1.7	78
91	Impacts of climate change on temperature and evaporation from a large reservoir in Australia. Journal of Hydrology, 2012, 475, 365-378.	2.3	91
92	Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nature Climate Change, 2012, 2, 433-436.	8.1	193
93	Quantifying uncertainty in catchment-scale runoff modeling under climate change (case of the) Tj ETQq1 1 0.78	4314.rgBT	/Qyerlock 10

#	Article	IF	CITATIONS
94	HESS Opinions "Should we apply bias correction to global and regional climate model data?". Hydrology and Earth System Sciences, 2012, 16, 3391-3404.	1.9	521
95	Downscaling of Short-Term Precipitation from Regional Climate Models for Sustainable Urban Planning. Sustainability, 2012, 4, 866-887.	1.6	17
96	Effects of climate model radiation, humidity and wind estimates on hydrological simulations. Hydrology and Earth System Sciences, 2012, 16, 305-318.	1.9	81
97	Methane emissions associated with the conversion of marshland to cropland and climate change on the Sanjiang Plain of northeast China from 1950 to 2100. Biogeosciences, 2012, 9, 5199-5215.	1.3	26
98	Modeling the Effect of Elevated CO2 and Climate Change on Reference Evapotranspiration in the Semi-Arid Central Great Plains. Transactions of the ASABE, 2012, 55, 2135-2146.	1.1	34
99	Simulating the effects of climate change on fire regimes in Arctic biomes: implications for caribou and moose habitat. Ecosphere, 2012, 3, 1-18.	1.0	46
100	Past and future changes of streamflow in Poyang Lake Basin, Southeastern China. Hydrology and Earth System Sciences, 2012, 16, 2005-2020.	1.9	19
101	Climate change effects on irrigation demands and minimum stream discharge: impact of bias-correction method. Hydrology and Earth System Sciences, 2012, 16, 4675-4691.	1.9	25
102	Stochastic weather generators for climateâ€change downscaling, part II: multivariable and spatially coherent multisite downscaling. Wiley Interdisciplinary Reviews: Climate Change, 2012, 3, 267-278.	3.6	50
103	Assessment of climate change impacts on the quantity and quality of a coastal catchment using a coupled groundwater–surface water model. Climatic Change, 2012, 113, 1025-1048.	1.7	14
104	A method for incorporating climate variability in climate change impact assessments: Sensitivity of river flows in the Eden catchment to precipitation scenarios. Climatic Change, 2012, 113, 803-823.	1.7	29
105	Scenario-based Impact Assessment of Land Use/Cover and Climate Changes on Water Resources and Demand: A Case Study in the Srepok River Basin, Vietnam—Cambodia. Water Resources Management, 2012, 26, 1387-1407.	1.9	63
106	Assessment of future olive crop yield by a comparative evaluation of drought indices: a case study in western Turkey. Theoretical and Applied Climatology, 2012, 108, 397-410.	1.3	20
107	Simulation of extreme precipitation indices in the Yangtze River basin by using statistical downscaling method (SDSM). Theoretical and Applied Climatology, 2012, 108, 325-343.	1.3	45
108	Simulating the hydrological impacts of climate change in the upper North Saskatchewan River basin, Alberta, Canada. Journal of Hydrology, 2012, 412-413, 76-89.	2.3	58
109	Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 2012, 424-425, 264-277.	2.3	779
110	Projection of glacier runoff in Yarkant River basin and Beida River basin, Western China. Hydrological Processes, 2012, 26, 2773-2781.	1.1	21
111	The drying up of Britain? A national estimate of changes in seasonal river flows from 11 Regional Climate Model simulations. Hydrological Processes, 2012, 26, 1115-1118.	1.1	68

#	Article	IF	CITATIONS
112	Development of a Demand Driven Hydro-climatic Model for Drought Planning. Water Resources Management, 2012, 26, 329-357.	1.9	21
113	Assessing the effect of climate natural variability in water resources evaluation impacted by climate change. Hydrological Processes, 2013, 27, 1061-1071.	1.1	10
114	Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods. International Journal of Climatology, 2013, 33, 1367-1381.	1.5	349
115	The Statistical DownScaling Model: insights from one decade of application. International Journal of Climatology, 2013, 33, 1707-1719.	1.5	246
116	Evaluation of climate change effects on future corn (<i>Zea mays</i> L.) yield in western Turkey. International Journal of Climatology, 2013, 33, 444-456.	1.5	9
117	Effect of Climate Change on Runoff Generation: Application to Rift Valley Lakes Basin of Ethiopia. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1048-1063.	0.8	23
118	Estimation of uncertainty sources in the projections of Lithuanian river runoff. Stochastic Environmental Research and Risk Assessment, 2013, 27, 769-784.	1.9	19
119	A comparison of downscaling techniques in the projection of local climate change and wheat yields. Climatic Change, 2013, 120, 249-261.	1.7	20
120	Climate change and river flooding: part 1 classifying the sensitivity of British catchments. Climatic Change, 2013, 119, 933-948.	1.7	56
121	The climate change impact on the water balance of the Curonian Lagoon. Water Resources, 2013, 40, 120-132.	0.3	30
122	Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System. Water Resources Management, 2013, 27, 2075-2087.	1.9	33
123	The UK Climate Change Risk Assessment 2012: Assessing the Impacts on Water Resources to Inform Policy Makers. Water Resources Management, 2013, 27, 1085-1109.	1.9	33
124	Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM. Theoretical and Applied Climatology, 2013, 114, 511-529.	1.3	106
125	Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theoretical and Applied Climatology, 2013, 113, 27-44.	1.3	167
126	Reconstruction of hydrometeorological time series and its uncertainties for the Kaidu River Basin using multiple data sources. Theoretical and Applied Climatology, 2013, 113, 45-62.	1.3	11
127	Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology, 2013, 112, 409-418.	1.3	129
128	A stochastic reconstruction framework for analysis of water resource system vulnerability to climateâ€induced changes in river flow regime. Water Resources Research, 2013, 49, 291-305.	1.7	74
129	Streamflow Responses to Climate Change: Analysis of Hydrologic Indicators in a New York City Water Supply Watershed. Journal of the American Water Resources Association, 2013, 49, 1308-1326.	1.0	35

#	Article	IF	CITATIONS
130	Investigation of impact of environmental changes on precipitation pattern of Pakistan. Environmental Monitoring and Assessment, 2013, 185, 4897-4905.	1.3	5
131	Temporal and spatial variability of groundwater recharge on Jeju Island, Korea. Journal of Hydrology, 2013, 501, 213-226.	2.3	35
132	Hydrological modelling of the IberÃ _i Wetlands in southeastern South America. Journal of Hydrology, 2013, 503, 47-54.	2.3	8
133	Investigating the impact of climate change on New York City's primary water supply. Climatic Change, 2013, 116, 437-456.	1.7	41
134	Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model. Climatic Change, 2013, 116, 631-663.	1.7	61
135	Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections. Journal of Hydrology, 2013, 486, 479-493.	2.3	52
136	Future Climate in the Tibetan Plateau from a Statistical Regional Climate Model. Journal of Climate, 2013, 26, 10125-10138.	1.2	49
137	A comparison of three multi-site statistical downscaling models for daily rainfall in the North China Plain. Theoretical and Applied Climatology, 2013, 111, 585-600.	1.3	48
138	Development and Application of the 2010 Chesapeake Bay Watershed Total Maximum Daily Load Model. Journal of the American Water Resources Association, 2013, 49, 1042-1056.	1.0	130
139	Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resources Research, 2013, 49, 6048-6066.	1.7	95
140	Changes in the timing of snowmelt and the seasonality of nutrient loading: can models simulate the impacts on freshwater trophic status?. Hydrological Processes, 2013, 27, 3083-3093.	1.1	15
141	An asynchronous regional regression model for statistical downscaling of daily climate variables. International Journal of Climatology, 2013, 33, 2473-2494.	1.5	152
142	Constrained dynamical downscaling for assessment of climate impacts. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2136-2148.	1.2	12
143	Multi-Objective Optimization Methods for Bias Correction of Statistically Downscaled Precipitation. , 2013, , .		2
144	Precipitation bias correction of very high resolution regional climate models. Hydrology and Earth System Sciences, 2013, 17, 4379-4388.	1.9	57
145	Simulating the Impact of Future Land Use and Climate Change on Soil Erosion and Deposition in the Mae Nam Nan Sub-Catchment, Thailand. Sustainability, 2013, 5, 3244-3274.	1.6	54
146	Impact of climate change on sediment yield in the Mekong River basin: a case study of the Nam Ou basin, Lao PDR. Hydrology and Earth System Sciences, 2013, 17, 1-20.	1.9	156
147	CLIMATE CHANGE IMPACT ASSESSMENT ON WATERSHED HYDROLOGY: A COMPARISON OF THREE APPROACHES. American Journal of Engineering and Applied Sciences, 2014, 7, 122-128.	0.3	7

		CITATION REPORT		
#	Article		IF	Citations
148	Sensitivity of lake ice regimes to climate change in the Nordic region. Cryosphere, 2014	4, 8, 1589-1605.	1.5	30
149	Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to clacross catchments with different geology and topography. Hydrology and Earth System 2014, 18, 5125-5148.	limate change n Sciences,	1.9	24
150	Modeling the Impacts of Future Climate Change on Irrigation over China: Sensitivity to Projections. Journal of Hydrometeorology, 2014, 15, 2085-2103.	Adjusted	0.7	28
151	Potential future climate effects on mountain hydrology, stream temperature, and nativ history. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 189-202.	e salmonid life	0.7	36
152	Assessing the future hydrological cycle in the Xinjiang Basin, China, using a multi-mode SWAT model. International Journal of Climatology, 2014, 34, 2972-2987.	l ensemble and	1.5	14
153	Uranium isotopes in soils as a proxy for past infiltration and precipitation across the we States. Numerische Mathematik, 2014, 314, 821-857.	estern United	0.7	30
154	The Effects of Changing Land Cover on Streamflow Simulation in Puerto Rico. Journal o American Water Resources Association, 2014, 50, 1575-1593.	f the	1.0	16
155	Uncertainty analysis of downscaling methods in assessing the influence of climate char hydrology. Stochastic Environmental Research and Risk Assessment, 2014, 28, 991-10	nge on 10.	1.9	23
156	The incorporation of extreme drought events improves models for beech persistence at distribution limit. Annals of Forest Science, 2014, 71, 201-210.	t its	0.8	30
157	Very high resolution bioclimatic zoning of Portuguese wine regions: present and future Regional Environmental Change, 2014, 14, 295-306.	scenarios.	1.4	75
158	Sensitivity to climate change of the thermal structure and ice cover regime of three hydreservoirs. Journal of Hydrology, 2014, 510, 208-227.	lropower	2.3	36
159	Evaluating CO2 and CH4 dynamics of Alaskan ecosystems during the Holocene Therma Quaternary Science Reviews, 2014, 86, 63-77.	il Maximum.	1.4	5
160	How Does the Choice of Distributed Meteorological Data Affect Hydrologic Model Calil Streamflow Simulations?. Journal of Hydrometeorology, 2014, 15, 1384-1403.	pration and	0.7	43
161	A <scp>CMIP5</scp> multimodel projection of future temperature, precipitation, and c drought in China. International Journal of Climatology, 2014, 34, 2059-2078.	limatological	1.5	341
162	Changes of glaciers in the Andes of Chile and priorities for future work. Science of the TEnvironment, 2014, 493, 1197-1210.	Fotal	3.9	94
163	Impact assessment of climate change, carbon dioxide fertilization and constant growin rice yields in China. Climatic Change, 2014, 124, 763-775.	g season on	1.7	20
164	Future climate change impacts on the ecohydrology of Guishui River Basin, China. Ecoh Hydrobiology, 2014, 14, 55-67.	iydrology and	1.0	16
165	Effects of climate change and wildfire on soil loss in the Southern Rockies Ecoregion. C 118, 206-219.	atena, 2014,	2.2	28

#	Article	IF	CITATIONS
166	High uncertainty in 21st century runoff projections from glacierized basins. Journal of Hydrology, 2014, 510, 35-48.	2.3	89
167	Forcing Hydrologic Models with GCM Output: Bias Correction vs. the "Delta Change" Method. , 2014, , .		5
168	Does bias correction increase reliability of flood projections under climate change? A case study of large rivers in Germany. International Journal of Climatology, 2014, 34, 3780-3800.	1.5	24
169	Numerical simulations of Gurenhekou glacier on the Tibetan Plateau. Journal of Glaciology, 2014, 60, 71-82.	1.1	27
170	Methane emissions from panâ€Arctic lakes during the 21st century: An analysis with processâ€based models of lake evolution and biogeochemistry. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2641-2653.	1.3	41
171	How Reliable Are Selected Methods Of Projections Of Future Thermal Conditions? A Case From Poland. Quaestiones Geographicae, 2015, 34, 151-160.	0.5	2
172	Climate change impacts on streamflow availability for the Athabasca Oil Sands. Climatic Change, 2015, 133, 651-663.	1.7	27
173	Climate Change Impacts and Uncertainties on Spring Flooding of Lake Champlain and the Richelieu River. Journal of the American Water Resources Association, 2015, 51, 776-793.	1.0	21
174	An appraisal of downscaling methods used in climate change research. Wiley Interdisciplinary Reviews: Climate Change, 2015, 6, 301-319.	3.6	115
175	Reliability of <scp>CMIP5 GCM</scp> simulations in reproducing atmospheric circulation over Europe and the North Atlantic: a statistical downscaling perspective. International Journal of Climatology, 2015, 35, 714-732.	1.5	22
176	Potential Effects of Forest Disturbances and Management on Water Resources in a Warmer Climate. Forest Science, 2015, 61, 895-903.	0.5	13
177	Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas. Hydrology and Earth System Sciences, 2015, 19, 4165-4181.	1.9	33
178	Climate Change Induced Precipitation Effects on Water Resources in the Peace Region of British Columbia, Canada. Climate, 2015, 3, 264-282.	1.2	7
179	Multi-variable bias correction: application of forest fire risk in present and future climate in Sweden. Natural Hazards and Earth System Sciences, 2015, 15, 2037-2057.	1.5	35
180	Impacts of climate change on temperature, precipitation and hydrology in Finland – studies using bias corrected Regional Climate Model data. Hydrology and Earth System Sciences, 2015, 19, 3217-3238.	1.9	66
181	Climate change influences on the annual onset of Lyme disease in the United States. Ticks and Tick-borne Diseases, 2015, 6, 615-622.	1.1	50
182	A climate generator for agricultural planning in southeastern South America. Agricultural and Forest Meteorology, 2015, 203, 217-228.	1.9	8
183	Glacier runoff and its impact in a highly glacierized catchment in the southeastern Tibetan Plateau: past and future trends. Journal of Glaciology, 2015, 61, 713-730.	1.1	47

#	Article	IF	CITATIONS
184	Comparing statistical post-processing of regional and global climate scenarios for hydrological impacts assessment: A case study of two Canadian catchments. Journal of Hydrology, 2015, 520, 268-288.	2.3	29
185	Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stochastic Environmental Research and Risk Assessment, 2015, 29, 1781-1795.	1.9	89
186	Modeling denitrification in a changing climate. Sustainability of Water Quality and Ecology, 2015, 5, 64-76.	2.0	7
187	A Comparison of Two Approaches for Generating Spatial Models of Growing-Season Variables for Canada. Journal of Applied Meteorology and Climatology, 2015, 54, 506-518.	0.6	14
188	A framework for examining climate-driven changes to the seasonality and geographical range of coastal pathogens and harmful algae. Climate Risk Management, 2015, 8, 16-27.	1.6	22
189	Climate Change Impact Assessment on Green and Blue Water over Asian Monsoon Region. Water Resources Management, 2015, 29, 2407-2427.	1.9	32
190	Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts. Journal of Chinese Geography, 2015, 25, 643-668.	1.5	27
191	Glacial runoff likely reached peak in the mountainous areas of the Shiyang River Basin, China. Journal of Mountain Science, 2015, 12, 382-395.	0.8	15
192	Evaluating the effect of climate change on areal reduction factors using regional climate model projections. Journal of Hydrology, 2015, 528, 419-434.	2.3	18
193	Urban drainage system planning and design – challenges with climate change and urbanization: a review. Water Science and Technology, 2015, 72, 165-179.	1.2	101
194	Projecting future local precipitation and its extremes for sweden. Geografiska Annaler, Series A: Physical Geography, 2015, 97, 25-39.	0.6	14
195	The effects of climate change on historical and future extreme rainfall in Antalya, Turkey. Hydrological Sciences Journal, 2015, 60, 2148-2162.	1.2	47
196	Assessment of temporal and spatial changes of future climate in the Jhelum river basin, Pakistan and India. Weather and Climate Extremes, 2015, 10, 40-55.	1.6	43
197	Climate Change Impact Assessment on Water Resources and Susceptible Zones Identification in the Asian Monsoon Region. Water Resources Management, 2015, 29, 5377-5393.	1.9	21
198	Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environmental Research Letters, 2015, 10, 054016.	2.2	66
199	A global portrait of hydrological changes at the 2050 horizon for the province of Québec. Canadian Water Resources Journal, 2015, 40, 285-302.	0.5	28
200	Combined Impact of Inland and Coastal Floods: Mapping Knowledge Base for Development of Planning Strategies. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	33
201	Filling the gap between Earth observation and policy making in the Black Sea catchment with enviroGRIDS. Environmental Science and Policy, 2015, 46, 1-12.	2.4	20

#	Article	IF	CITATIONS
202	Climate and land-use change impacts on potential solar photovoltaic power generation in the Black Sea region. Environmental Science and Policy, 2015, 46, 70-81.	2.4	33
203	Adaptive Reservoir Operation Rules Under Climatic Change. Water Resources Management, 2015, 29, 1247-1266.	1.9	88
204	Modeling Potential Water Resource Impacts of Mediterranean Tourism in a Changing Climate. Environmental Modeling and Assessment, 2015, 20, 117-128.	1.2	13
205	Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrology and Earth System Sciences, 2016, 20, 1331-1353.	1.9	47
206	Potential Impacts of Climate Change on Water Resources in the Kunhar River Basin, Pakistan. Water (Switzerland), 2016, 8, 23.	1.2	63
207	A three-pillar approach to assessing climate impacts on low flows. Hydrology and Earth System Sciences, 2016, 20, 3967-3985.	1.9	20
208	Hydrological Climate Change Impact Assessment at Small and Large Scales: Key Messages from Recent Progress in Sweden. Climate, 2016, 4, 39.	1.2	46
209	Sensitivity of Very Small Glaciers in the Swiss Alps to Future Climate Change. Frontiers in Earth Science, 2016, 4, .	0.8	119
210	Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLoS ONE, 2016, 11, e0158346.	1.1	50
211	Farm Simulation Can Help Dairy Production Systems Adapt to Climate Change. Advances in Agricultural Systems Modeling, 0, , 91-124.	0.3	2
212	Influence of winter season climate variability on snow–precipitation ratio in the western United States. International Journal of Climatology, 2016, 36, 3175-3190.	1.5	62
213	Impact of statistical bias correction on the projected climate change signals of the regional climate model REMO over the Senegal River Basin. International Journal of Climatology, 2016, 36, 2035-2049.	1.5	23
214	Multi-GCM ensembles performance for climate projection on a GIS platform. Modeling Earth Systems and Environment, 2016, 2, 1.	1.9	25
215	Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada. Environmental Research Letters, 2016, 11, 105003.	2.2	47
216	Projection of future streamflow changes of the Pearl River basin in China using two delta-change methods. Hydrology Research, 2016, 47, 217-238.	1.1	13
217	The method of producing climate change datasets impacts the resulting policy guidance and chance of mal-adaptation. Climate Services, 2016, 4, 13-29.	1.0	21
218	Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1659-1675.	1.9	40
219	Correcting for systematic biases in GCM simulations in the frequency domain. Journal of Hydrology, 2016, 538, 117-126.	2.3	40

ARTICLE IF CITATIONS # Quantifying peat carbon accumulation in Alaska using a processâ€based biogeochemistry model. Journal 220 1.3 8 of Geophysical Research G: Biogeosciences, 2016, 121, 2172-2185. The effects of climate downscaling technique and observational data set on modeled ecological 221 1.8 39 responses. Ecological Applications, 2016, 26, 1321-1337. Effects of Urbanization and Climate Change on Peak Flows over the San Antonio River Basin, Texas. 222 0.7 45 Journal of Hydrometeorology, 2016, 17, 2371-2389. Modelling the future impacts of climate and land-use change on suspended sediment transport in the 103 River Thames (UK). Journal of Hydrology, 2016, 542, 357-372. Daily weather generator with drought properties by copulas and standardized precipitation indices. 224 1.3 12 Environmental Monitoring and Assessment, 2016, 188, 383. Climate change impacts on irrigated rice and wheat production in Gomti River basin of India: a case study. SpringerPlus, 2016, 5, 1250. 1.2 The effectiveness and resilience of phosphorus management practices in the Lake Simcoe watershed, 226 1.3 8 Ontario, Canada. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2390-2409. Testing the recent snow drought as an analog for climate warming sensitivity of Cascades 48 snowpacks. Environmental Research Letters, 2016, 11, 084009. Reconsidering the Quality and Utility of Downscaling. Journal of the Meteorological Society of Japan, 228 0.7 34 2016, 94A, 31-45. Bias correction of precipitation through Singularity Stochastic Removal: Because occurrences 229 1.2 matter. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5237-5258. Projection of climate extremes in the Zhujiang River basin using a regional climate model. 230 1.5 43 International Journal of Climatology, 2016, 36, 1184-1196. Projections of glacier change in the Altai Mountains under twenty-first century climate scenarios. Climate Dynamics, 2016, 47, 2935-2953. Sensitivity of streamflow and microbial water quality to future climate and land use change in the 232 1.4 12 West of Ireland. Regional Environmental Change, 2016, 16, 2111-2128. Changes in Spatiotemporal Precipitation Patterns in Changing Climate Conditions. Journal of Climate, 1.2 64 2016, 29, 8355-8376. A model-based assessment of adaptation options for Chianti wine production in Tuscany (Italy) under 234 1.4 24 climate change. Regional Environmental Change, 2016, 16, 85-96. Implications of projected climate change for groundwater recharge in the western United States. Journal of Hydrology, 2016, 534, 124-138. 299 Simulating future water temperatures in the North Santiam River, Oregon. Journal of Hydrology, 2016, 236 2.321 535, 318-330. Climate change impacts on groundwater hydrology – where are the main uncertainties and can they 1.2 be reduced?. Hydrological Sciences Journal, 2016, 61, 2312-2324.

ARTICLE IF CITATIONS Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River 238 3.9 76 Thames (UK). Science of the Total Environment, 2016, 572, 1507-1519. Hydrological response to future climate changes for the major upstream river basins in the Tibetan 1.6 188 Plateau. Global and Planetary Change, 2016, 136, 82-95. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic 240 1.2 43 Conditions. Environmental Management, 2016, 57, 412-431. Reconstructing meteorological time series to quantify the uncertainties of runoff simulation in the ungauged Qira River Basin using data from multiple stations. Theoretical and Applied Climatology, 1.3 2016, 126, 61-76. Economic analysis of adaptive strategies for flood risk management under climate change. Mitigation 242 1.0 21 and Adaptation Strategies for Global Change, 2017, 22, 267-285. Development of daily temperature scenarios and their impact on paddy crop evapotranspiration in Kangsabati command area. Theoretical and Applied Climatology, 2017, 128, 983-997. 1.3 Exploring snow model parameter sensitivity using Sobol' variance decomposition. Environmental 244 1.9 19 Modelling and Software, 2017, 89, 144-158. Dynamic response of land use and river nutrient concentration to long-term climatic changes. 245 3.9 40 Science of the Total Environment, 2017, 590-591, 818-831. Combined impacts of climate and socio-economic scenarios on irrigation water availability for a dry 246 3.9 46 Mediterranean reservoir. Science of the Total Environment, 2017, 584-585, 219-233. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Igaluit 247 Airport, Nunavut, Canada. Hydrogeology Journal, 2017, 25, 657-673. Inland waters and their role in the carbon cycle of Alaska. Ecological Applications, 2017, 27, 1403-1420. 248 78 1.8 Projective analysis of staple food crop productivity in adaptation to future climate change in China. 1.3 26 International Journal of Biometeorology, 2017, 61, 1445-1460. Assessing the Impact of Climate Change on the Waterlogging Risk in Coastal Cities: A Case Study of Guangzhou, South China. Journal of Hydrometeorology, 2017, 18, 1549-1562. 250 0.7 26 Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska. Ecological Applications, 2017, 27, 1383-1402. 1.8 Climate change and extreme wind effects on transmission towers. Proceedings of the Institution of 252 0.4 9 Civil Engineers: Structures and Buildings, 2017, 170, 81-97. Bias correction of global and regional simulated daily precipitation and surface mean temperature over Southeast Asia using quantile mapping method. Global and Planetary Change, 2017, 149, 79-90. Reducing current and future risks: Using climate change scenarios to test an agricultural 254 0.8 12 conservation framework. Journal of Great Lakes Research, 2017, 43, 59-68. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources. Environmental Science and Pollution Research, 2017, 24, 26545-26561.

	CHATON RE	PORT	
#	Article	IF	CITATIONS
256	Bottom Water Acidification and Warming on the Western Eurasian Arctic Shelves: Dynamical Downscaling Projections. Journal of Geophysical Research: Oceans, 2017, 122, 8126-8144.	1.0	12
257	Multivariate Downscaling Approach Preserving Cross Correlations across Climate Variables for Projecting Hydrologic Fluxes. Journal of Hydrometeorology, 2017, 18, 2187-2205.	0.7	13
258	Impact of climate change on water resources of upper Kharun catchment in Chhattisgarh, India. Journal of Hydrology: Regional Studies, 2017, 13, 189-207.	1.0	39
259	Climate Change Impact on Future Rainfall and Temperature in Semi-arid Areas (Essaouira Basin,) Tj ETQq1 1 0.784	1314 rgBT 1.7	Qyerlock
260	Planning for Winter Road Maintenance in the Context of Climate Change. Weather, Climate, and Society, 2017, 9, 521-532.	0.5	11
261	Temporal dynamics of groundwater-surface water interaction under the effects of climate change: A case study in the Kiskatinaw River Watershed, Canada. Journal of Hydrology, 2017, 551, 440-452.	2.3	34
262	Evaluating four downscaling methods for assessment of climate change impact on ecological indicators. Environmental Modelling and Software, 2017, 96, 68-82.	1.9	25
263	Climate change effects and extreme rainfall non-stationarity. Water Management, 2017, 170, 57-65.	0.4	10
264	Remote Sensing of 2000–2016 Alpine Spring Snowline Elevation in Dall Sheep Mountain Ranges of Alaska and Western Canada. Remote Sensing, 2017, 9, 1157.	1.8	19
265	Multi–Model Ensemble Approaches to Assessment of Effects of Local Climate Change on Water Resources of the Hotan River Basin in Xinjiang, China. Water (Switzerland), 2017, 9, 584.	1.2	25
266	Application of Hydrological Model PRMS to Simulate Daily Rainfall Runoff in Zamask-Yingluoxia Subbasin of the Heihe River Basin. Water (Switzerland), 2017, 9, 769.	1.2	11
267	Effects of the Lake Sobradinho Reservoir (Northeastern Brazil) on the Regional Climate. Climate, 2017, 5, 50.	1.2	12
268	Optimal Hydropower Production for Xinâ \in Manjiang Hydropower Station Using Future Scenarios. , 2017, , .		0
269	Local Climate Change and the Impacts on Hydrological Processes in an Arid Alpine Catchment in Karakoram. Water (Switzerland), 2017, 9, 344.	1.2	16
270	Understanding the Effects of Parameter Uncertainty on Temporal Dynamics of Groundwater-Surface Water Interaction. Hydrology, 2017, 4, 28.	1.3	6
271	Burden of climate change on malaria mortality. International Journal of Hygiene and Environmental Health, 2018, 221, 782-791.	2.1	23
272	Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection. Global Change Biology, 2018, 24, 2735-2748.	4.2	7
273	Potential impact of climate change on peanut yield in Senegal, West Africa. Field Crops Research, 2018, 219, 148-159.	2.3	34

#	Article	IF	CITATIONS
274	Bias correcting instantaneous peak flows generated using a continuous, semiâ€distributed hydrologic model. Journal of Flood Risk Management, 2018, 11, .	1.6	9
275	Estimating the impact of climate change on residential water use using panel data analysis: a case study of Lilongwe, Malawi. Journal of Water Sanitation and Hygiene for Development, 2018, 8, 217-226.	0.7	3
276	Collaborative Planning in Adaptive Flood Risk Management under Climate Change. Water Resources Management, 2018, 32, 1383-1397.	1.9	18
277	Downscaling Techniques in Climate Modeling. Springer Climate, 2018, , 77-105.	0.3	1
278	Signature of present and projected climate change at an urban scale: The case of Addis Ababa. Physics and Chemistry of the Earth, 2018, 105, 104-114.	1.2	12
279	Future Projection of Precipitation and Temperature Extremes Using Change Factor Method over a River Basin: Case Study. Journal of Hazardous, Toxic, and Radioactive Waste, 2018, 22, .	1.2	12
280	Combined impacts of future land-use and climate stressors on water resources and quality in groundwater and surface waterbodies of the upper Thames river basin, UK. Science of the Total Environment, 2018, 631-632, 962-986.	3.9	57
281	Customized framework of the WRF model for regional climate simulation over the Eastern NILE basin. Theoretical and Applied Climatology, 2018, 134, 1135-1151.	1.3	8
282	Impacts of climate change on the water quality of the Elbe Estuary (Germany). Journal of Applied Water Engineering and Research, 2018, 6, 28-39.	1.0	4
283	Update to the Global Climate Data package: analysis of empirical bias correction methods in the context of producing very high resolution climate projections. International Journal of Climatology, 2018, 38, 825-840.	1.5	10
284	Bivariate analysis of floods in climate impact assessments. Science of the Total Environment, 2018, 616-617, 1392-1403.	3.9	24
285	Multiâ€model comparison highlights consistency in predicted effect of warming on a semiâ€arid shrub. Global Change Biology, 2018, 24, 424-438.	4.2	47
286	Hydrological modeling of storm runoff and snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models. Natural Hazards, 2018, 91, 179-199.	1.6	22
287	Analyzing long-term spatial variability of blue and green water footprints in a semi-arid mountainous basin with MIROC-ESM model (case study: Kashafrood River Basin, Iran). Theoretical and Applied Climatology, 2018, 134, 885-899.	1.3	10
288	Evaluation of global climate model on performances of precipitation simulation and prediction in the Huaihe River basin. Theoretical and Applied Climatology, 2018, 133, 191-204.	1.3	16
289	Effect of Land Use and Land Cover Change in Context of Growth Enhancements in the United States Since 1700: Net Source or Sink?. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3439-3457.	1.3	8
290	Assessing sugarcane expansion to ethanol production under climate change scenarios in ParanaÃba river basin – Brazil. Biomass and Bioenergy, 2018, 119, 436-445.	2.9	7
291	Precipitation Extended Linear Scaling Method for Correcting GCM Precipitation and Its Evaluation and Index and Implication in the Transboundary Jhelum River Basin. Atmosphere, 2018, 9, 160.	1.0	18

ARTICLE IF CITATIONS # Modelling blue and green water availability under climate change in the Beninese Basin of the Niger 292 1.1 26 River Basin, West Africa. Hydrological Processes, 2018, 32, 2526-2542. Model-specification uncertainty in future area burned by wildfires in Canada. International Journal of 1.0 39 Wildland Fire, 2018, 27, 164. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid 294 3.9 27 India. Science of the Total Environment, 2018, 635, 725-740. Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 2018, 564, 266-282. From ENSEMBLES to CORDEX: Evolving climate change projections for Upper Danube River flow. 296 2.3 12 Journal of Hydrology, 2018, 563, 987-999. Using a Statistical Preanalysis Approach as an Ensemble Technique for the Unbiased Mapping of GCM Changes to Local Stations. Journal of Hydrometeorology, 2018, 19, 1447-1465. Climate change impacts on water demand and availability using CMIP5 models in the Jaguaribe basin, 298 1.3 26 semi-arid Brazil. Environmental Earth Sciences, 2018, 77, 1. Future extreme precipitation intensities based on a historic event. Hydrology and Earth System Sciences, 2018, 22, 3777-3788. 200 1.9 29 300 Riverine Water Quality Response to Precipitation and Its Change. Environments - MDPI, 2018, 5, 8. 1.5 34 Inter-Comparison of Gauge-Corrected Global Satellite Rainfall Estimates and Their Applicability for Effective Water Resource Management in a Transboundary River Basin: The Case of the Meghna River 1.8 Basin. Remote Sensing, 2018, 10, 828. Hydrologic Regime Changes in a High-Latitude Glacierized Watershed under Future Climate 302 1.2 13 Conditions. Water (Switzerland), 2018, 10, 128. Climate Change and the Neglected Tropical Diseases. Advances in Parasitology, 2018, 100, 39-126. 1.4 Projected changes of temperature extremes over nine major basins in China based on the CMIP5 304 1.9 24 multimodel ensembles. Stochastic Environmental Research and Risk Assessment, 2019, 33, 321-339. Improving operational flood forecasting in monsoon climates with bias-corrected quantitative 1.5 forecasting of precipitation. International Journal of River Basin Management, 2019, 17, 411-421. Joint Modeling of Precipitation and Temperature Using Copula Theory for Current and Future 306 Prediction under Climate Change Scenarios in Arid Lands (Case Study, Kerman Province, Iran). 0.6 13 Advances in Meteorology, 2019, 2019, 1-15. Estimating the response of hydrological regimes to future projections of precipitation and 1.8 28 temperature over the upper Yangtze River. Atmospheric Research, 2019, 230, 104627. Effects of Climate Change on Burn Probability of Forests in Daxing'anling. Forests, 2019, 10, 611. 308 0.9 5 Estimating irrigation demand with geospatial and in-situ data: Application to the high plains aquifer, 309 2.4 Kansas, USA. Agricultural Water Management, 2019, 223, 105675.

#	Article	IF	CITATIONS
310	Complete spatial model calibration. Annals of Applied Statistics, 2019, 13, .	0.5	1
311	Hydrological Responses of Headwater Basins to Monthly Perturbed Climate in the North American Cordillera. Journal of Hydrometeorology, 2019, 20, 863-882.	0.7	21
312	Evaluating the Risk-Based Performance of Bioinfiltration Facilities under Climate Change Scenarios. Water (Switzerland), 2019, 11, 1765.	1.2	4
313	Glacier Surface Mass Balance in the Suntar-Khayata Mountains, Northeastern Siberia. Water (Switzerland), 2019, 11, 1949.	1.2	2
314	Projecting Wet Season Rainfall Extremes Using Regional Climate Models Ensemble and the Advanced Delta Change Model: Impact on the Streamflow Peaks in Mkurumudzi Catchment, Kenya. Hydrology, 2019, 6, 76.	1.3	4
315	Assessing flood risk in Baiyangdian Lake area in a changing climate using an integrated hydrological-hydrodynamic modelling. Hydrological Sciences Journal, 2019, 64, 2006-2014.	1.2	14
317	Projected Effects of Climate Change on Future Hydrological Regimes in the Upper Yangtze River Basin, China. Advances in Meteorology, 2019, 2019, 1-14.	0.6	18
318	Development and evaluation of a hydrologic data-assimilation scheme for short-range flow and inflow forecasts in a data-sparse high-latitude region using a distributed model and ensemble Kalman filtering. Advances in Water Resources, 2019, 130, 198-220.	1.7	11
319	Development of Climate Data Bias Corrector (CDBC) Tool and Its Application over the Agro-Ecological Zones of India. Water (Switzerland), 2019, 11, 1102.	1.2	18
320	Comparing the Performance of Dynamical and Statistical Downscaling on Historical Run Precipitation Data over a Semi-Arid Region. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 737-749.	1.3	16
321	Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China. Atmospheric Research, 2019, 226, 122-137.	1.8	73
322	A MCDM-based framework for selection of general circulation models and projection of spatio-temporal rainfall changes: A case study of Nigeria. Atmospheric Research, 2019, 225, 1-16.	1.8	73
323	Time Scale Decomposition of Climate and Correction of Variability Using Synthetic Samples of Stable Distributions. Water Resources Research, 2019, 55, 3632-3658.	1.7	4
324	Assessment of present and future climate change over Kashmir Himalayas, India. Theoretical and Applied Climatology, 2019, 137, 3183-3195.	1.3	34
325	Assessing responses of hydrological processes to climate change over the southeastern Tibetan Plateau based on resampling of future climate scenarios. Science of the Total Environment, 2019, 664, 737-752.	3.9	34
326	Copula Bias Correction for Extreme Precipitation in Reanalysis Data over a Greek Catchment. Proceedings (mdpi), 2018, 7, .	0.2	0
327	Future Changes in Rice Bioclimatic Growing Conditions in Portugal. Agronomy, 2019, 9, 674.	1.3	7
329	Are the effects of vegetation and soil changes as important as climate change impacts on hydrological processes?. Hydrology and Earth System Sciences, 2019, 23, 4933-4954.	1.9	33

ARTICLE IF CITATIONS Future Changes in Precipitation and Drought Characteristics over Bangladesh Under CMIP5 330 1.2 39 Climatological Projections. Water (Switzerland), 2019, 11, 2219. Integrated Hydrological Modeling of Climate Change Impacts in a Snowâ€Influenced Catchment. Ground Water, 2019, 57, 3-20. What Matters Most: Are Future Stream Temperatures More Sensitive to Changing Air Temperatures, 332 Discharge, or Riparian Vegetation?. Journal of the American Water Resources Association, 2019, 55, 1.0 59 116-132. Efficient treatment of climate data uncertainty in ensemble Kalman filter (EnKF) based on an existing historical climate ensemble dataset. Journal of Hydrology, 2019, 568, 985-996. On the use of observations in assessment of multi-model climate ensemble. Stochastic Environmental 334 1.9 14 Research and Risk Assessment, 2019, 33, 1923-1937. Mapping ecoregions under climate change: a case study from the biological †crossroads' of three continents, Turkey. Landscape Ecology, 2019, 34, 35-50. Projected glacier meltwater and river runâ€off changes in the <scp>U</scp>pper <scp>R</scp>each of 336 the <scp>S</scp>hule <scp>R</scp>iver <scp>B</scp>asin, northâ€eastern edge of the 1.1 21 <scp>T</scp>ibetan <scp>P</scp>lateau. Hydrological Processes, 2019, 33, 1059-1074. Assessment of rainfall bias correction techniques for improved hydrological simulation. 1.5 International Journal of Climatology, 2019, 39, 2386-2399. Assessment of potential impact of climate change on streamflow: a case study of the Brahmani River 338 1.2 19 basin, India. Journal of Water and Climate Change, 2019, 10, 624-641. Impact of climate change and anthropogenic pressure on the groundwater resources in arid 1.0 environment. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 73-92. Hydrologic responses to climate change using downscaled GCM data on a watershed scale. Journal of 340 1.2 34 Water and Climate Change, 2019, 10, 63-77. Adaptation to local climate in multi-trait space: evidence from silver fir (Abies alba Mill.) populations 1.2 28 across a heterogeneous environment. Heredity, 2020, 124, 77-92. Investigating the effects of climate change on stream flows of Urmia Lake basin in Iran. Modeling 342 1.9 19 Earth Systems and Environment, 2020, 6, 329-339. Long-term sustainability of large water resource systems under climate change: A cascade modeling approach. Journal of Hydrology, 2020, 582, 124546. 343 2.3 Meteorological drought analysis using copula theory and drought indicators under climate change 344 0.9 46 scenarios (RCP). Meteorological Applications, 2020, 27, e1856. On the need of bias correction methods for wave climate projections. Global and Planetary Change, 345 39 2020, 186, 103109. Assessment of soil erosion risk and its response to climate change in the mid-Yarlung Tsangpo River 346 2.7 33 region. Environmental Science and Pollution Research, 2020, 27, 607-621. Impact of climate change on hydrology components using CORDEX South Asia climate model in 347 1.3 Wunna, Bharathpuzha, and Mahanadi, India. Environmental Monitoring and Assessment, 2020, 192, 678.

#	Article	IF	CITATIONS
348	Hazards of extreme events in China under different global warming targets. Big Earth Data, 2020, 4, 153-174.	2.0	12
349	Comparison of Ensembles Projections of Rainfall from Four Bias Correction Methods over Nigeria. Water (Switzerland), 2020, 12, 3044.	1.2	18
350	Study on the impact of climate change on evapotranspiration in west of Iran. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	8
351	Simulation of the Potential Impacts of Projected Climate Change on Streamflow in the Vakhsh River Basin in Central Asia under CMIP5 RCP Scenarios. Water (Switzerland), 2020, 12, 1426.	1.2	21
352	Anthropogenic warming forces extreme annual glacier mass loss. Nature Climate Change, 2020, 10, 856-861.	8.1	41
353	Future changes in land and atmospheric variables: An analysis of their couplings in the Iberian Peninsula. Science of the Total Environment, 2020, 722, 137902.	3.9	10
354	Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States. Water Resources Management, 2020, 34, 4113-4131.	1.9	80
355	Highâ€resolution gridded climate data for Europe based on biasâ€corrected EUROâ€CORDEX: The ECLIPS dataset. Geoscience Data Journal, 2021, 8, 121-131.	1.8	13
356	Predicted climate change will increase the truffle cultivation potential in central Europe. Scientific Reports, 2020, 10, 21281.	1.6	20
357	Assessment of the Impact of Climate Change on Snow Distribution and River Flows in a Snow-Dominated Mountainous Watershed in the Western Hindukush–Himalaya, Afghanistan. Hydrology, 2020, 7, 74.	1.3	10
358	Adaptation to drought is coupled with slow growth, but independent from phenology in marginal silver fir (<i>Abies alba</i> Mill.) populations. Evolutionary Applications, 2020, 13, 2357-2376.	1.5	26
359	Optimization and Variants of Quantile-Based Methods for Bias Corrections of Statistically Downscaled Precipitation Data. Journal of Hydrologic Engineering - ASCE, 2020, 25, 04020027.	0.8	3
360	Changes in Climatology, Snow Cover, and Ground Temperatures at High Alpine Locations. Frontiers in Earth Science, 2020, 8, .	0.8	18
361	GCM selection and temperature projection of Nigeria under different RCPs of the CMIP5 GCMS. Theoretical and Applied Climatology, 2020, 141, 1611-1627.	1.3	41
362	Daily gridded temperature and precipitation datasets over the Black Sea catchment: 1961–1990 and climate change scenarios for 2071–2100. Theoretical and Applied Climatology, 2020, 142, 805-830.	1.3	0
363	Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China. Journal of Arid Land, 2020, 12, 374-396.	0.9	4
364	The Optimal Multimodel Ensemble of Bias-Corrected CMIP5 Climate Models over China. Journal of Hydrometeorology, 2020, 21, 845-863.	0.7	19
365	Impacts of projected climate change on runoff in upper reach of Heihe River basin using climate elasticity method and GCMs. Science of the Total Environment, 2020, 716, 137072.	3.9	53

#	Article	IF	CITATIONS
366	High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Scientific Data, 2020, 7, 7.	2.4	240
367	Assessment of Climate Change Impacts on Reservoir Storage Reliability, Resilience, and Vulnerability Using a Multivariate Frequency Bias Correction Approach. Water Resources Research, 2020, 56, e2019WR026022.	1.7	38
368	A scalable flood-resilience-index for measuring climate change adaptation: Munich city. Water Research, 2020, 173, 115502.	5.3	52
369	Climatological Drought Forecasting Using Bias Corrected CMIP6 Climate Data: A Case Study for India. Forecasting, 2020, 2, 59-84.	1.6	32
370	Analysis of CMIP 5 simulations of key climate indices associated with the South America monsoon system. International Journal of Climatology, 2021, 41, 404-422.	1.5	8
371	Projected changes in the Iberian Peninsula drought characteristics. Science of the Total Environment, 2021, 757, 143702.	3.9	26
372	Identifying future climate change and drought detection using CanESM2 in the upper Siem Reap River, Cambodia. Dynamics of Atmospheres and Oceans, 2021, 94, 101182.	0.7	8
373	Water allocation under climate change. Elementa, 2021, 9, .	1.1	7
374	Assessment of Climate Change Impacts on Precipitation and Temperature in the Ghataprabha Sub-basin Using CMIP5 Models. Mapan - Journal of Metrology Society of India, 0, , 1.	1.0	3
376	Future drought in <scp>CMIP6</scp> projections and the socioeconomic impacts in China. International Journal of Climatology, 2021, 41, 4151-4170.	1.5	29
377	Spatioâ€ŧemporal characteristics of meteorological drought under changing climate in semiâ€arid region of northern Ethiopia. Environmental Systems Research, 2021, 10, .	1.5	11
378	Impact of Automated Statistical Downscaling and Delta Downscaling methods on projecting future climate change in the northeast Tibetan Plateau. Climate Research, 2021, 83, 91-110.	0.4	3
379	Constructing High-Resolution, Bias-Corrected Climate Products: A Comparison of Methods. Journal of Applied Meteorology and Climatology, 2021, 60, 455-475.	0.6	8
380	Future Runoff Variation and Flood Disaster Prediction of the Yellow River Basin Based on CA-Markov and SWAT. Land, 2021, 10, 421.	1.2	32
381	Forecast and uncertainty analysis of extreme precipitation in China from ensemble of multiple climate models. Theoretical and Applied Climatology, 2021, 145, 787-805.	1.3	4
382	A robust alternative for correcting systematic biases in multi-variable climate model simulations. Environmental Modelling and Software, 2021, 139, 105019.	1.9	9
383	Projection of Water Availability and Sustainability in Nigeria Due to Climate Change. Sustainability, 2021, 13, 6284.	1.6	12
384	Assessment of the Climatic Variability of the Kunhar River Basin, Pakistan. Water (Switzerland), 2021, 13, 1740.	1.2	4

#	Article	IF	CITATIONS
385	Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data. International Journal of Environmental Research and Public Health, 2021, 18, 6029.	1.2	11
386	Evapotranspiration and water availability response to climate change in the Middle East and North Africa. Climatic Change, 2021, 166, 1.	1.7	34
387	Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. Catena, 2021, 201, 105199.	2.2	59
388	Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. Global Change Biology, 2021, 27, 4307-4321.	4.2	39
389	Visualising the Uncertainty Cascade in Multi-Ensemble Probabilistic Coastal Erosion Projections. Frontiers in Marine Science, 2021, 8, .	1.2	14
390	Integrated Hydrology and Operations Modeling to Evaluate Climate Change Impacts in an Agricultural Valley Irrigated With Snowmelt Runoff. Water Resources Research, 2021, 57, e2020WR027924.	1.7	10
391	A comparison of frameworks for separating the impacts of human activities and climate change on river flow in existing records and different <scp>nearâ€future</scp> scenarios. Hydrological Processes, 2021, 35, e14301.	1.1	8
392	To bias correct or not to bias correct? An agricultural impact modelers' perspective on regional climate model data. Agricultural and Forest Meteorology, 2021, 304-305, 108406.	1.9	31
393	Climate change projection using statistical downscaling model over Chittagong Division, Bangladesh. Meteorology and Atmospheric Physics, 2021, 133, 1409-1427.	0.9	11
394	Projected hydrologic changes over the north of the Iberian Peninsula using a Euro-CORDEX multi-model ensemble. Science of the Total Environment, 2021, 777, 146126.	3.9	7
395	Uncertainty assessment of water resources and long-term hydropower generation using a large ensemble of future climate projections for the Nam Ngum River in the Mekong Basin. Journal of Hydrology: Regional Studies, 2021, 36, 100856.	1.0	2
396	Assessing the skills of inter-sectoral impact model intercomparison project climate models for precipitation simulation in the Gongola Basin of Nigeria. Scientific African, 2021, 13, e00921.	0.7	1
397	Uncertainty assessment of drought characteristics projections in humid subtropical basins in China based on multiple CMIP5 models and different index definitions. Journal of Hydrology, 2021, 600, 126502.	2.3	17
398	Global Hotspots for Future Absolute Temperature Extremes From CMIP6 Models. Earth and Space Science, 2021, 8, e2021EA001817.	1.1	34
399	Coupled regional Earth system modeling in the Baltic Sea region. Earth System Dynamics, 2021, 12, 939-973.	2.7	13
400	lsotopic content in high mountain karst aquifers as a proxy for climate change impact in Mediterranean zones: The Port del Comte karst aquifer (SE Pyrenees, Catalonia, Spain). Science of the Total Environment, 2021, 790, 148036.	3.9	6
401	Regional Assessment of Impacts of Climate Change: A Statistical Downscaling Approach. Springer Climate, 2021, , 17-38.	0.3	0
402	Forecasting community reassembly using climateâ€linked spatioâ€temporal ecosystem models. Ecography, 2021, 44, 612-625.	2.1	14

#	Article	IF	CITATIONS
403	Assessing the Vulnerability of a Deltaic Environment due to Climate Change Impact on Surface and Coastal Waters: The Case of Nestos River (Greece). Environmental Modeling and Assessment, 2021, 26, 459-486.	1.2	18
406	Projected Change—Models and Methodology. Regional Climate Studies, 2015, , 189-215.	1.2	5
407	Downscaling of Short-Term Precipitation Time Series for Climate Change Impact Assessment. IFIP Advances in Information and Communication Technology, 2011, , 625-630.	0.5	2
409	Modelling the Impacts of Climate Change on Dissolved Organic Carbon. , 2010, , 221-252.		11
410	Modeling the Effects of Climate Change on Catchment Hydrology with the GWLF Model. , 2010, , 33-50.		4
411	Assessing Future Water Availability Under a Changing Climate in Kabul Basin. Springer Water, 2020, , 647-657.	0.2	3
412	An imbalancing act: the delayed dynamic response of the Kaskawulsh Glacier to sustained mass loss. Journal of Glaciology, 2021, 67, 313-330.	1.1	5
414	High-Resolution Statistical Downscaling in Southwestern British Columbia. Journal of Applied Meteorology and Climatology, 2017, 56, 1625-1641.	0.6	12
415	Bias-Corrected CMIP5-Derived Single-Forcing Future Wind-Wave Climate Projections toward the End of the Twenty-First Century. Journal of Applied Meteorology and Climatology, 2020, 59, 1393-1414.	0.6	15
416	USGS Modular Modeling System (MMS) – Precipitation-Runoff Modeling System (PRMS). , 2005, , 159-177.		13
417	Climate Change Impacts on Streamflow and Subbasin-Scale Hydrology in the Upper Colorado River Basin. PLoS ONE, 2013, 8, e71297.	1.1	108
422	Effect of scenario assumptions on climate change risk estimates in a water resource system. Climate Research, 2014, 59, 149-160.	0.4	5
423	A hybrid approach to incorporating climate change and variability into climate scenario for impact assessments. Working Paper Series, 2014, , .	0.7	1
424	Construction of Basin Scale Climate Change Scenarios by the Transfer Function and Stochastic Weather Generation Models. Journal of Korea Water Resources Association, 2003, 36, 345-363.	0.3	3
425	Possible Impacts of Climate Change on Daily Streamflow and Extremes at Local Scale in Ontario, Canada. Part II: Future Projection. Atmospheric and Climate Sciences, 2012, 02, 427-440.	0.1	4
428	A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1). Geoscientific Model Development, 2020, 13, 5007-5027.	1.3	25
429	Climate model uncertainty versus conceptual geological uncertainty in hydrological modeling. Hydrology and Earth System Sciences, 2015, 19, 3891-3901.	1.9	12
442	Watershed Modeling of Surface Water-Groundwater Interaction under Projected Climate Change and Water Management in the Haihe River Basin, China. British Journal of Environment and Climate Change, 2013, 3, 421-443.	0.3	6

#	Article	IF	CITATIONS
443	Investigation of Groundwater Contribution to Stream Flow under Climate and Land Use Changes: A Case Study in British Columbia, Canada. British Journal of Environment and Climate Change, 2015, 5, 1-22.	0.3	1
444	Effect of RCM Temporal Resolution on Estimating Future IDF Curves. Korean Society of Hazard Mitigation, 2018, 18, 341-352.	0.1	3
445	Impacts of climate change on water resources in the major countries along the Belt and Road. PeerJ, 2021, 9, e12201.	0.9	16
448	Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites. Tellus, Series A: Dynamic Meteorology and Oceanography, 2008, , .	0.8	1
457	Correction of Mean and Extreme Temperature Simulation over South Korea Using a Trend-preserving Bias Correction Method. Atmosphere, 2015, 25, 205-219.	0.3	1
458	Basis for the Decision Tree Framework. , 2015, , 7-23.		Ο
459	Assessment of Climate Change Impact on Watershed Hydrology. , 2016, , 3-11.		1
462	Analysis of water balance components of a river sub-basin under future climate scenarios. Sustainable Water Resources Management, 2021, 7, 1.	1.0	1
464	Rainfall Runoff and Flood Simulations for Hurricane Impacts on Woonasquatucket River, USA. International Journal of Structural and Civil Engineering Research, 2020, , 239-244.	0.1	0
465	Optimization of Bias Correction Methods for RCM Precipitation Data and Their Effects on Extremes. Advances in Intelligent Systems and Computing, 2020, , 83-91.	0.5	0
466	A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables. Earth System Science Data, 2021, 13, 5087-5114.	3.7	18
467	Combined Impacts of Climate and Land Use Changes on Long-Term Streamflow in the Upper Halda Basin, Bangladesh. Sustainability, 2021, 13, 12067.	1.6	12
468	Effects of warmer world scenarios on hydrologic inputs to Lake M¤ren, Sweden and implications for nutrient loads. , 2007, , 191-199.		0
469	Bias Correction for Climate Model Output (1) Method Characteristics and Classification. Suimon Mizu Shigen Gakkaishi, 2020, 33, 243-262.	0.1	2
470	Considering uncertainties expands the lower tail of maize yield projections. PLoS ONE, 2021, 16, e0259180.	1.1	1
471	Comparison of different quantile delta mapping schemes in frequency analysis of precipitation extremes over mainland Southeast Asia under climate change. Journal of Hydrology, 2022, 606, 127421.	2.3	9
472	Impacts of future climate on the hydrology of a transboundary river basin in northeastern North America. Journal of Hydrology, 2022, 605, 127317.	2.3	7
473	Performance of bias corrected monthly CMIP6 climate projections with different reference period data in Turkey. Acta Geophysica, 2022, 70, 777-789.	1.0	6

#	Article	IF	CITATIONS
474	The sensitivity of snow hydrology to changes in air temperature and precipitation in three North American headwater basins. Journal of Hydrology, 2022, 606, 127460.	2.3	16
475	Uncertainties in the Projected Patterns of Wave-Driven Longshore Sediment Transport Along a Non-straight Coastline. Frontiers in Marine Science, 2022, 9, .	1.2	1
476	Downscaling of Future Precipitation in China's Beijing-Tianjin-Hebei Region Using a Weather Generator. Atmosphere, 2022, 13, 22.	1.0	4
477	Performance evaluations of CMIP6 and CMIP5 models for precipitation simulation over the Hanjiang River Basin, China. Journal of Water and Climate Change, 2022, 13, 2089-2106.	1.2	7
478	Demonstrating the bias-correction impact on regional climate model (RegCM) over the Democratic People's Republic of Korea: Implication for temperature and precipitation. Journal of Earth System Science, 2022, 131, .	0.6	0
481	Impact of Climate Change on Precipitation Over India Using CMIP-6 Climate Models. Lecture Notes in Civil Engineering, 2022, , 155-164.	0.3	3
482	Monitoring and projection of climate change impact on 24-h probable maximum precipitation in the Southeast of Caspian Sea. Natural Hazards, 2022, 114, 77-99.	1.6	2
483	Understanding climate change impacts on biome and plant distributions in the Andes: Challenges and opportunities. Journal of Biogeography, 2022, 49, 1420-1442.	1.4	27
484	Evaluation and selection of CMIP6 climate models in Upper Awash Basin (UBA), Ethiopia. Theoretical and Applied Climatology, 2022, 149, 1521-1547.	1.3	17
486	Optimal Implementation of Climate Change Adaptation Measures to Ensure Long-term Sustainability on Large Irrigation Systems. Water Resources Management, 2023, 37, 2909-2924.	1.9	6
487	En-GARD: A Statistical Downscaling Framework to Produce and Test Large Ensembles of Climate Projections. Journal of Hydrometeorology, 2022, 23, 1545-1561.	0.7	2
489	Spatiotemporal bias adjustment of IMERG satellite precipitation data across Canada. Advances in Water Resources, 2022, 168, 104300.	1.7	7
490	Impacts of Climate Change on Water Availability for the Vésubie Catchment, France. Springer Water, 2022, , 1165-1172.	0.2	0
491	Improving Snowâ€Process Modeling by Evaluating Reanalysis Vertical Temperature Profiles Using a Distributed Hydrological Model. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
492	Future changes and seasonal variability of the directional wave spectra in the Mediterranean Sea for the 21st century. Environmental Research Letters, 2022, 17, 104015.	2.2	4
493	High Resolution Future Projections of Drought Characteristics in Greece Based on SPI and SPEI Indices. Atmosphere, 2022, 13, 1468.	1.0	9
494	Implications of climate change and drought on water requirements in a semi-mountainous region of the Vietnamese Mekong Delta. Environmental Monitoring and Assessment, 2022, 194, .	1.3	4
495	Doğu Karadeniz Havzası Lokal Meteorolojik Değişkenleri İçin Bir Ölçek İndirgeme Uygulaması ve S Esaslı Öngörüler. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2022, 33, 12877-12911.	Senaryo 0.5	1

	Сітатіо	n Report	
#	Article	IF	Citations
496	Climate variability impacts on runoff projection under quantile mapping bias correction in the support CMIP6: An investigation in Lushi basin of China. Journal of Hydrology, 2022, 614, 128550.	2.3	6
497	Normalized difference vegetation index prediction based on the delta downscaling method and back-propagation artificial neural network under climate change in the Sanjiangyuan region, China. Ecological Informatics, 2022, 72, 101883.	2.3	8
498	Prediction of Future Spatial and Temporal Evolution Trends of Reference Evapotranspiration in the Yellow River Basin, China. Remote Sensing, 2022, 14, 5674.	1.8	5
499	The cold regions hydrological modelling platform for hydrological diagnosis and prediction based on process understanding. Journal of Hydrology, 2022, 615, 128711.	2.3	13
500	Improvement of the SWAT Model for Snowmelt Runoff Simulation in Seasonal Snowmelt Area Using Remote Sensing Data. Remote Sensing, 2022, 14, 5823.	1.8	8
501	Response of runoff processes to temperature rise in basins with different glacier ratios in the monsoon-influenced southern Tibetan Plateau. Journal of Hydrology: Regional Studies, 2023, 45, 101299.	1.0	3
502	High resolution projections for extreme temperatures and precipitation over Greece. Climate Dynamics, 0, , .	1.7	6
503	Assessment of Relationship between Climate Change, Drought, and Land Use and Land Cover Changes in a Semi-Mountainous Area of the Vietnamese Mekong Delta. Land, 2022, 11, 2175.	1.2	8
504	Spatiotemporal variation of drought in Iraq for shared socioeconomic pathways. Stochastic Environmental Research and Risk Assessment, 2023, 37, 1321-1331.	1.9	5
505	Global climate-related predictors at kilometer resolution for the past and future. Earth System Science Data, 2022, 14, 5573-5603.	3.7	36
506	The effects of climate change and phenological variation on agricultural production and its risk pattern in the black soil area of northeast China. Journal of Chinese Geography, 2023, 33, 37-58.	1.5	7
507	The impact of climate change on river alternate bars. Geophysical Research Letters, 0, , .	1.5	0
508	Increasing landslide activity in the Taxkorgan River Basin (eastern Pamirs Plateau, China) driven by climate change. Catena, 2023, 223, 106911.	2.2	32
509	Alâ€based runoff simulation based on remote sensing observations: A case study of two river basins in the United States and Canada. Journal of the American Water Resources Association, 2023, 59, 299-316.	1.0	1
510	Compound and successive events of extreme precipitation and extreme runoff under heatwaves based on CMIP6 models. Science of the Total Environment, 2023, 878, 162980.	3.9	6
511	Assessment of the Potential Hydrological Impacts of Climate Change in Quebec—Canada, a Refined Neutral Approach. Water (Switzerland), 2023, 15, 584.	1.2	0
512	Impact of Climate Change on the Hydrological Regimes of the Midstream Section of the Yarlung Tsangpo River Basin Based on SWAT Model. Water (Switzerland), 2023, 15, 685.	1.2	3
513	Elevation dependence of landslide activity induced by climate change in the eastern Pamirs. Landslides, 2023, 20, 1115-1133.	2.7	30

#	Article	IF	CITATIONS
514	Matching Degree between Agricultural Water and Land Resources in the Xijiang River Basin under Changing Environment. Water (Switzerland), 2023, 15, 827.	1.2	0
515	Joint Modelling of Drought Severity and Duration using Copula Theory: A Case Study of Ghana. KSCE Journal of Civil Engineering, 2023, 27, 1850-1865.	0.9	1
516	Long-term forecast of flow dynamics of Chirchik basin. E3S Web of Conferences, 2023, 371, 01037.	0.2	0
517	Performance of Frequency-Corrected Precipitation in Ungauged High Mountain Hydrological Simulation. Water (Switzerland), 2023, 15, 1461.	1.2	2
518	chelsaâ€emip6 1.0: a python package to create high resolution bioclimatic variables based on CHELSA ver. 2.1 and CMIP6 data. Ecography, 2023, 2023, .	2.1	5
519	Rising temperatures over the Greater Mekong Subregion in CMIP6: Present-day biases and constraint future projections. Atmospheric Research, 2023, 289, 106757.	1.8	3
534	Revisiting the bias correction of climate models for impact studies. Climatic Change, 2023, 176, .	1.7	0
543	Future climate scenario impacts on peatland and constructed wetland water quality under water level management. , 2024, , 431-452.		0
544	Statistical Downscaling of Global Climate Models for Temperature Trend Analysis in Calgary. , 0, , .		0