CITATION REPORT List of articles citing

Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins

DOI: 10.1038/sj.onc.1203860 Oncogene, 2000, 19, 4930-5.

Source: https://exaly.com/paper-pdf/31434686/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
123	The Transporter Associated With Antigen Processing (TAP): Structural Integrity, Expression, Function, and Its Clinical Relevance. 2001 , 7, 149-158		51
122	Functional regulation of immunoproteasomes and transporter associated with antigen processing. 2001 , 24, 245-72		13
121	The role of the ubiquitin-proteasome pathway in MHC class I antigen processing: implications for vaccine design. 2001 , 1, 665-76		34
120	The human papillomavirus oncoprotein E7 attenuates NF-kappa B activation by targeting the Ikappa B kinase complex. 2002 , 277, 25576-82		95
119	Evasion of host immunity directed by papillomavirus-encoded proteins. 2002 , 88, 103-17		80
118	Down-regulation of MHC class I by bovine papillomavirus E5 oncoproteins. <i>Oncogene</i> , 2002 , 21, 248-59	9.2	90
117	The components of the proteasome system and their role in MHC class I antigen processing. 2003 , 148, 81-104		42
116	The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-gamma. 2003 , 310, 100-8		97
115	Papillomaviruses: a correlation between immune evasion and oncogenicity?. 2003, 11, 300-5		30
114	Downregulation of major histocompatibility complex class I in bovine papillomas. 2004 , 85, 2809-2814		32
113	Proteasome function in antigen presentation: immunoproteasome complexes, Peptide production, and interactions with viral proteins. 2004 , 5, 153-61		104
112	Transcriptional activation of gammaherpesviral oncogene promoters by the hepatitis B viral X protein (HBx). 2004 , 23, 141-8		3
111	Regulation of antigen processing and presentation molecules in West Nile virus-infected human skin fibroblasts. 2004 , 324, 286-96		23
110	The proteasome and MHC class I antigen processing. 2004 , 1695, 225-33		132
109	Virus subversion of protective immunity. 2004 , 4, 365-70		8
108	The ABCs of immunology: structure and function of TAP, the transporter associated with antigen processing. 2004 , 19, 216-24		122
107	E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. 2005 , 113, 276-83		148

106	Pleiotropic mechanisms of virus survival and persistence. 2005 , 100, S27-36	6
105	Receptor modulation in viral replication: HIV, HSV, HHV-8 and HPV: same goal, different techniques to interfere with MHC-I antigen presentation. <i>Current Topics in Microbiology and Immunology</i> , 2005 , 3.3 285, 199-217	18
104	HPV16E7 mediates HADC chromatin repression and downregulation of MHC class I genes in HPV16 tumorigenic cells through interaction with an MHC class I promoter. 2006 , 349, 1315-21	32
103	Adenovirus subversion of immune surveillance, apoptotic and growth regulatory pathways: a model for tumorigenesis. 2006 , 53, 145-69	4
102	Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation. 2006 , 118, 129-38	101
101	Mechanisms used by human papillomaviruses to escape the host immune response. 2007 , 7, 79-89	162
100	Induction of protective CTL immunity against peptide transporter TAP-deficient tumors through dendritic cell vaccination. 2007 , 67, 8450-5	26
99	Kaposi sarcoma herpesvirus-encoded vFLIP and vIRF1 regulate antigen presentation in lymphatic endothelial cells. 2007 , 109, 1550-8	47
98	Therapeutic dendritic cell vaccination with Ag coupled to cholera toxin in combination with intratumoural CpG injection leads to complete tumour eradication in mice bearing HPV 16 expressing tumours. 2007 , 25, 6037-46	20
97	Immune evasion by Kaposiß sarcoma-associated herpesvirus. 2007, 7, 391-401	114
97 96	Immune evasion by Kaposiß sarcoma-associated herpesvirus. 2007, 7, 391-401 Predisposition to HPV16/18-related cervical cancer because of proline homozygosity at codon 72 of p53 among Indian women is influenced by HLA-B*07 and homozygosity of HLA-DQB1*03. 2007, 70, 283-93	114
	Predisposition to HPV16/18-related cervical cancer because of proline homozygosity at codon 72 of	
96	Predisposition to HPV16/18-related cervical cancer because of proline homozygosity at codon 72 of p53 among Indian women is influenced by HLA-B*07 and homozygosity of HLA-DQB1*03. 2007 , 70, 283-93 High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and	20
96 95	Predisposition to HPV16/18-related cervical cancer because of proline homozygosity at codon 72 of p53 among Indian women is influenced by HLA-B*07 and homozygosity of HLA-DQB1*03. 2007 , 70, 283-93 High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells. <i>Oncogene</i> , 2008 , 27, 1794-9 The E6E7 oncoproteins of cutaneous human papillomavirus type 38 interfere with the interferon	20
96 95 94	Predisposition to HPV16/18-related cervical cancer because of proline homozygosity at codon 72 of p53 among Indian women is influenced by HLA-B*07 and homozygosity of HLA-DQB1*03. 2007, 70, 283-93 High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells. <i>Oncogene</i> , 2008, 27, 1794-9 The E6E7 oncoproteins of cutaneous human papillomavirus type 38 interfere with the interferon pathway. 2008, 377, 408-18	20 48 45
96 95 94 93	Predisposition to HPV16/18-related cervical cancer because of proline homozygosity at codon 72 of p53 among Indian women is influenced by HLA-B*07 and homozygosity of HLA-DQB1*03. 2007, 70, 283-93 High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells. Oncogene, 2008, 27, 1794-9 The E6E7 oncoproteins of cutaneous human papillomavirus type 38 interfere with the interferon pathway. 2008, 377, 408-18 Cellular and molecular biological aspects of cervical intraepithelial neoplasia. 2008, 271, 35-95 HLA-G polymorphisms in women with squamous intraepithelial lesions harboring human	20 48 45
9695949392	Predisposition to HPV16/18-related cervical cancer because of proline homozygosity at codon 72 of p53 among Indian women is influenced by HLA-B*07 and homozygosity of HLA-DQB1*03. 2007, 70, 283-93 High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells. Oncogene, 2008, 27, 1794-9 9-2 The E6E7 oncoproteins of cutaneous human papillomavirus type 38 interfere with the interferon pathway. 2008, 377, 408-18 Cellular and molecular biological aspects of cervical intraepithelial neoplasia. 2008, 271, 35-95 HLA-G polymorphisms in women with squamous intraepithelial lesions harboring human papillomavirus. 2009, 22, 1075-82 Repression of MHC class I transcription by HPV16E7 through interaction with a putative RXRbeta	20 48 45 14

88	[CD4 and CD8 T lymphocytes and NK cells in the stroma of the uterine cervix of women infected with human papillomavirus]. 2010 , 43, 425-9	14
87	Up-regulate HLA class I expression following hepatitis B virus transfection in a hepatocellular carcinoma cell line BEL7405. 2010 , 39, 621-34	2
86	Low expression of human histocompatibility soluble leukocyte antigen-G (HLA-G5) in invasive cervical cancer with and without metastasis, associated with papilloma virus (HPV). 2010 , 58, 405-11	28
85	Association of polymorphism in FcGR3A gene and progression of low-grade precursor lesions of cervical carcinoma. 2010 , 71, 314-7	9
84	SA-4-1BBL as the immunomodulatory component of a HPV-16 E7 protein based vaccine shows robust therapeutic efficacy in a mouse cervical cancer model. 2010 , 28, 5794-802	25
83	A conserved E7-derived cytotoxic T lymphocyte epitope expressed on human papillomavirus 16-transformed HLA-A2+ epithelial cancers. 2010 , 285, 29608-22	57
82	Human papillomavirus 16 E7 protein inhibits interferon-Emediated enhancement of keratinocyte antigen processing and T-cell lysis. 2011 , 278, 955-63	18
81	Regulation of immune responses to HPV infection and during HPV-directed immunotherapy. 2011 , 239, 85-98	53
80	Adenovirus E1A interacts directly with, and regulates the level of expression of, the immunoproteasome component MECL1. 2011 , 421, 149-58	13
79	Genital human Papillomavirus infection in patients with autoimmune inflammatory diseases. 2011 , 78, 460-5	6
78	Camouflage and sabotage: tumor escape from the immune system. 2011 , 60, 1161-71	127
77	Infection gfiitale [papillomavirus humain au cours des maladies auto-inflammatoires et/ou auto-immunes. 2011 , 78, 313-318	1
76	Immunosuppressive tumor microenvironment in cervical cancer patients. 2011 , 4, 361-75	77
75	T cell recognition of HLA-A2 restricted tumor antigens is impaired by the oncogene HER2. 2011 , 128, 390-401	42
74	Strategies to counteract MHC-I defects in tumors. 2011 , 23, 293-8	68
73	Identification of key amino acid residues that determine the ability of high risk HPV16-E7 to dysregulate major histocompatibility complex class I expression. 2011 , 286, 10983-97	21
72	RNA interference of human papillomavirus type 16 E7 increases HLA class I antigen expression in HaCaT-E7 cells. 2011 , 21, 28-34	4
71	Upregulation of soluble and membrane-bound human leukocyte antigen G expression is primarily observed in the milder histopathological stages of chronic hepatitis C virus infection. 2012 , 73, 258-62	16

70 Removal of Oxidized Proteins. **2012**, 215-293

69	The invisible enemy - how human papillomaviruses avoid recognition and clearance by the host immune system. <i>The Open Virology Journal</i> , 2012 , 6, 249-56	1.9	60
68	Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization. 2012 , 425, 53-60		68
67	The papillomavirus E7 proteins. 2013 , 445, 138-68		226
66	Correlation of LMP10 expression and clinical outcome in Human Papillomavirus (HPV) positive and HPV-Negative tonsillar and base of tongue cancer. <i>PLoS ONE</i> , 2014 , 9, e95624	3.7	14
65	ERAP1 in the pathogenesis of ankylosing spondylitis. 2014 , 60, 257-69		23
64	Differential effect of bortezomib on HLA class I and class II antibody. 2014 , 98, 660-5		31
63	Viruses and human cancers: a long road of discovery of molecular paradigms. 2014 , 27, 463-81		114
62	Human Papillomavirus (HPV)-associated Oral Cancers and Treatment Strategies. 2014, 93, 29S-36S		45
61	Human papillomavirus molecular biology and disease association. 2015 , 25 Suppl 1, 2-23		418
60	Reduced Expression of the Antigen Processing Machinery Components TAP2, LMP2, and LMP7 in Tonsillar and Base of Tongue Cancer and Implications for Clinical Outcome. 2015 , 8, 10-7		10
59	HIV-1 Nef: a master manipulator of the membrane trafficking machinery mediating immune evasion. 2015 , 1850, 733-41		46
58	High-risk human papillomavirus targets crossroads in immune signaling. Viruses, 2015, 7, 2485-506	6.2	30
57	Targeting of HPV-16+ Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6. 2015 , 21, 4431-9		109
56	Human Papillomavirus Vaccine: State of the Art and Future Perspectives. 2015 , 101, 231-322		15
55	The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. 2016 , 144, 169-	238	18
54	Molecular Immunoevasion Strategies Targeting Antigen Processing and Presentation. 2016 , 279-296		
53	Suppression of the CD8 T cell response by human papillomavirus type 16 E7 occurs in Langerhans cell-depleted mice. 2016 , 6, 34789		6

52	Vaccines for established cancer: overcoming the challenges posed by immune evasion. 2016 , 16, 219-33	449
51	Blocking IL-10 signalling at the time of immunization renders the tumour more accessible to T cell infiltration in mice. 2016 , 300, 9-17	11
50	Impact of genetic variations and transcriptional alterations of HLA class I genes on cervical cancer pathogenesis. 2017 , 140, 2498-2508	11
49	Evasion of host immune defenses by human papillomavirus. 2017 , 231, 21-33	92
48	HPV-transgenic mouse models: Tools for studying the cancer-associated immune response. 2017 , 235, 49-57	10
47	ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism. 2017 , 6, e1336594	16
46	The role of Nuclear Factor-kappa B signaling in human cervical cancer. 2017 , 120, 141-150	127
45	The human papillomavirus E7 oncoprotein as a regulator of transcription. 2017 , 231, 56-75	45
44	Analysis of Class I Major Histocompatibility Complex Gene Transcription in Human Tumors Caused by Human Papillomavirus Infection. <i>Viruses</i> , 2017 , 9,	17
43	Immune evasion mechanisms of human papillomavirus: An update. 2018 , 142, 224-229	53
42	Isolation and Characterization of an HLA-DRB1*04-Restricted HPV16-E7 T Cell Receptor for Cancer Immunotherapy. 2018 , 29, 1202-1212	4
41	Oncoviruses. 2018 , 90-106	
40	Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System. 2019 , 9, 682	60
39	The Host-Microbe Interplay in Human Papillomavirus-Induced Carcinogenesis. 2019 , 7,	19
38	Protecting Tumors by Preventing Human Papilloma Virus Antigen Presentation: Insights from Emerging Bioinformatics Algorithms. <i>Cancers</i> , 2019 , 11,	2
37	The Double-Edged Sword-How Human Papillomaviruses Interact With Immunity in Head and Neck Cancer. <i>Frontiers in Immunology</i> , 2019 , 10, 653	25
36	The nephrotoxicity of new immunotherapies. 2019 , 12, 513-521	11
35	From HPV Infection to Lesion Progression: The Role of HLA Alleles and Host Immunity. 2019 , 63, 148-158	15

34 Cancer Immunology. **2020**, 84-96.e5

33	Human Papillomavirus Infection in Head and Neck Squamous Cell Carcinomas: Transcriptional Triggers and Changed Disease Patterns. 2020 , 10, 537650		10
32	Immunology of HPV-mediated cervical cancer: current understanding. 2021 , 40, 359-378		7
31	CDH1 and SNAI1 are regulated by E7 from human papillomavirus types 16 and 18. 2020 , 57, 301-313		1
30	How Enhancing Immunity to Low-Risk HPV Could Cure Recurrent Respiratory Papillomatosis. 2021 , 131, 2041-2047		1
29	Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. <i>Frontiers in Immunology</i> , 2021 , 12, 636568	8.4	78
28	Altered Immunohistochemical Expression Patterns of HLA Class I during the Clinical Course of Cervical Intraepithelial Neoplasia. 2021 , 54, 57-64		
27	Cervicovaginal Microbiome Factors in Clearance of Human Papillomavirus Infection. 2021 , 11, 722639		1
26	Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. 2021 , 12, 59-83		О
25	A review on the advances and challenges of immunotherapy for head and neck cancer. 2021 , 21, 406		10
24	A novel lineage-tracing mouse model for MmuPV1 infection enables in vivo studies in the absence of cytopathic effects.		
23	Inside the pocket: Critical elements of HLA-mediated susceptibility to cervical precancerous lesions. <i>Hla</i> , 2021 , 98, 448-458	1.9	О
22	Biological Pathways of HPV-Induced Carcinogenesis. 2020 , 347-362		1
21	Evasion of the immune system by adenoviruses. <i>Current Topics in Microbiology and Immunology</i> , 2004 , 273, 3-28	3.3	12
20	Trypanosoma cruzi infection down-modulates the immunoproteasome biosynthesis and the MHC class I cell surface expression in HeLa cells. <i>PLoS ONE</i> , 2014 , 9, e95977	3.7	12
19	Downregulation of TAP1 and TAP2 in early stage breast cancer. <i>PLoS ONE</i> , 2017 , 12, e0187323	3.7	17
18	Human papillomavirus type 16 E6 and NFX1-123 mislocalize immune signaling proteins and downregulate immune gene expression in keratinocytes. <i>PLoS ONE</i> , 2017 , 12, e0187514	3.7	4
17	The immune response to papillomavirus during infection persistence and regression. <i>The Open Virology Journal</i> , 2012 , 6, 241-8	1.9	56

16	Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses, 2021, 13,	6.2	2
15	High-Risk Human Papillomavirus and Epstein-Barr Virus Coinfection: A Potential Role in Head and Neck Carcinogenesis <i>Biology</i> , 2021 , 10,	4.9	2
14	An Update on Human Papilloma Virus Vaccines: History, Types, Protection, and Efficacy <i>Frontiers in Immunology</i> , 2021 , 12, 805695	8.4	6
13	HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management Nature Reviews Clinical Oncology, 2022,	19.4	22
12	HPV-mediated Cervical Cancer: A Systematic review on Immunological Basis, Molecular Biology and Immune evasion mechanisms <i>Current Drug Targets</i> , 2021 ,	3	1
11	Coronavirus Porcine Deltacoronavirus Upregulates MHC Class I Expression through RIG-I/IRF1-Mediated NLRC5 Induction <i>Journal of Virology</i> , 2022 , e0015822	6.6	O
10	Human Papillomavirus 16 E6 Suppresses Transporter Associated with Antigen-Processing Complex in Human Tongue Keratinocyte Cells by Activating Lymphotoxin Pathway <i>Cancers</i> , 2022 , 14,	6.6	
9	A novel lineage-tracing mouse model for studying early MmuPV1 infections <i>ELife</i> , 2022 , 11,	8.9	O
8	Nanotechnology and Immunomodulators in Cancer. 2022 , 125-186		О
7	Pathogenesis and immune response against HPV infection. 2022 , 21-42		O
6	Human Virome in Cervix Controlled by the Domination of Human Papillomavirus. 2022, 14, 2066		0
5	The association of cervicovaginal Langerhans cells with clearance of human papillomavirus. 13,		1
4	The antigen processing-associated transporter gene polymorphism: Role on gene and protein expression in HPV-infected pre-cancerous cervical lesion. 12,		О
3	Human Papillomavirus Cervical Infection: Many Ways to a Single Destination. 2023 , 11, 22		O
2	Reduced MHC Class I and II Expression in HPVNegative vs. HPVPositive Cervical Cancers. 2022 , 11, 3911		1
1	Human papillomavirus and Epstein-Barr virus co-infection in oral and oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis.		O