Redâ€shifts and red herrings in geographical ecology

Ecography 23, 101-113

DOI: 10.1111/j.1600-0587.2000.tb00265.x

Citation Report

#	Article	IF	CITATIONS
1	Ecological Biogeography of Southern Ocean Islands: The Importance of Considering Spatial Issues. American Naturalist, 2001, 158, 426-437.	1.0	78
2	Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 2001, 28, 453-470.	1.4	1,221
3	The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 2001, 70, 966-979.	1.3	510
4	Pink landscapes: 1/ f spectra of spatial environmental variability and bird community composition. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1791-1796.	1.2	35
5	Geographic Range Size and Determinants of Avian Species Richness. Science, 2002, 297, 1548-1551.	6.0	572
6	Richness and Composition of Oasis Bird Communities: Spatial Issues and Species–Area Relationships. Auk, 2002, 119, 533-539.	0.7	20
7	Evaluating resource selection functions. Ecological Modelling, 2002, 157, 281-300.	1.2	1,896
8	Integrating the statistical analysis of spatial data in ecology. Ecography, 2002, 25, 553-557.	2.1	125
9	Accounting for spatial pattern when modeling organism-environment interactions. Ecography, 2002, 25, 616-625.	2.1	293
10	Seabirds and marine oil incidents: is it possible to predict the spatial distribution of pelagic seabirds?. Journal of Applied Ecology, 2002, 39, 349-360.	1.9	19
11	Spatial Patterns in the Abundance of the Coastal Horned Lizard. Conservation Biology, 2002, 16, 205-215.	2.4	66
12	Are Alaskan trees found in locally more favourable sites in marginal areas?. Global Ecology and Biogeography, 2002, 11, 103-114.	2.7	44
13	Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 2002, 11, 291-301.	2.7	332
14	The relationships between local and regional species richness and spatial turnover. Global Ecology and Biogeography, 2002, 11, 363-375.	2.7	80
15	Patterns of vegetation along a spatiotemporal gradient on shoreline strands of a desert basin lake. Plant Ecology, 2002, 158, 21-39.	0.7	19
16	Plant distribution patterns in Germany– Will aliens match natives?. Feddes Repertorium, 2003, 114, 559-573.	0.2	66
17	Prediction of butterfly diversity hotspots in Belgium: a comparison of statistically focused and land use-focused models. Journal of Biogeography, 2003, 30, 1907-1920.	1.4	38
18	Mid-domain models of species richness gradients: assumptions, methods and evidence. Journal of Animal Ecology, 2003, 72, 677-690.	1.3	130

#	ARTICLE	IF	Citations
19	The role of climate in limiting European resident bird populations. Journal of Biogeography, 2003, 30, 55-70.	1.4	64
20	Distribution patterns in butterflies and birds of the Czech Republic: separating effects of habitat and geographical position. Journal of Biogeography, 2003, 30, 1195-1205.	1.4	79
21	Spatial patterns and infestation processes in the horse chestnut leafminer Cameraria ohridella: a tale of two cities. Entomologia Experimentalis Et Applicata, 2003, 107, 25-37.	0.7	46
22	Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography, 2003, 12, 327-340.	2.7	268
23	Are there latitudinal gradients in species turnover?. Global Ecology and Biogeography, 2003, 12, 483-498.	2.7	120
24	Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography, 2003, 12, 53-64.	2.7	874
25	Spatial pattern of invading Dendroctonus micans (Coleoptera: Scolytidae) populations in the United Kingdom. Canadian Journal of Forest Research, 2003, 33, 712-725.	0.8	27
26	Análise quantitativa da influência de um novo paradigma ecológico: autocorrelação espacial. Acta Scientiarum - Biological Sciences, 2003, 25, 137.	0.3	2
27	Birds and people in Europe. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1649-1655.	1.2	56
28	Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecology and Biogeography, 2004, 13, 315-320.	2.7	146
29	Rarity, commonness, and patterns of species richness: the mammals of Mexico. Global Ecology and Biogeography, 2004, 13, 535-542.	2.7	61
30	Method in macroecology. Basic and Applied Ecology, 2004, 5, 401-412.	1.2	36
31	Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography, 2004, 31, 389-400.	1.4	227
32	Spatial Synchrony in Population Dynamics. Annual Review of Ecology, Evolution, and Systematics, 2004, 35, 467-490.	3.8	749
33	Modelling the distribution of shorebirds in estuarine areas using generalised additive models. Journal of Sea Research, 2004, 52, 227-240.	0.6	34
34	Occurrence of <i>lps typographus</i> (Col., Scolytidae) along an urbanization gradient in Brussels, Belgium. Agricultural and Forest Entomology, 2005, 7, 161-167.	0.7	20
35	Local and global approaches to spatial data analysis in ecology. Global Ecology and Biogeography, 2005, 14, 97-98.	2.7	93
36	Does energy availability influence classical patterns of spatial variation in exotic species richness?. Global Ecology and Biogeography, 2005, 14, 57-65.	2.7	23

3

#	Article	IF	Citations
37	People, energy and avian species richness. Global Ecology and Biogeography, 2005, 14, 187-196.	2.7	68
38	Pteridophyte richness, climate and topography in the Iberian Peninsula: comparing spatial and nonspatial models of richness patterns. Global Ecology and Biogeography, 2005, 14, 155-165.	2.7	62
39	Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecology and Biogeography, 2005, 14, 177-185.	2.7	288
40	Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global Ecology and Biogeography, 2005, 14, 379-393.	2.7	171
41	Species turnover on elevational gradients in small rodents. Global Ecology and Biogeography, 2005, 14, 539-547.	2.7	61
42	The roles of extinction and colonization in generating species–energy relationships. Journal of Animal Ecology, 2005, 74, 498-507.	1.3	33
43	The inselberg flora of Atlantic Central Africa. I. Determinants of species assemblages. Journal of Biogeography, 2005, 32, 685-696.	1.4	51
44	Can models of presence-absence be used to scale abundance? Two case studies considering extremes in life history. Ecography, 2005, 28, 197-208.	2.1	176
45	Historical biogeography and the evolution of the latitudinal gradient of species richness in the Papionini (Primata: Cercopithecidae). Biological Journal of the Linnean Society, 2005, 85, 235-246.	0.7	25
46	Spatial patterns in pond invertebrate communities: separating environmental and distance effects. Aquatic Conservation: Marine and Freshwater Ecosystems, 2005, 15, 549-557.	0.9	70
47	Spatial structure of litter-dwelling ant distribution in a subtropical dry forest. Insectes Sociaux, 2005, 52, 366-377.	0.7	33
48	Post-storm surveys reveal large-scale spatial patterns and influences of site factors, forest structure and diversity in endemic bark-beetle populations. Landscape Ecology, 2005, 20, 35-49.	1.9	41
49	Predicting Distribution and Density of European Badger (Meles Meles) Setts in Denmark. Biodiversity and Conservation, 2005, 14, 3235-3253.	1.2	17
50	Dissecting the species–energy relationship. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2155-2163.	1.2	116
52	The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance. Quaternary Science Reviews, 2005, 24, 2173-2179.	1.4	226
53	Geostatistics, spatial rate of change analysis and boundary detection in plant ecology and biogeography. Progress in Physical Geography, 2006, 30, 201-231.	1.4	39
55	The significance of geographic range size for spatial diversity patterns in Neotropical palms. Ecography, 2006, 29, 21-30.	2.1	95
56	The role of spatial scale and area in determining richness-altitude gradients in Swedish lake phytoplankton communities. Oikos, 2006, 115, 433-442.	1.2	19

#	Article	IF	Citations
57	Factors determining the distribution of the spur-thighed tortoise Testudo graeca in south-east spain: a hierarchical approach. Ecography, 2006, 29, 339-346.	2.1	45
58	Importance of spatial autocorrelation in modeling bird distributions at a continental scale. Ecography, 2006, 29, 835-844.	2.1	45
59	Spatial Heterogeneity and Characteristic Scales of Species–Habitat Relationships. BioScience, 2006, 56, 533.	2.2	28
60	Spatial autocorrelation and pseudoreplication in fire ecology. Fire Ecology, 2006, 2, 107-118.	1.1	19
61	Quantifying uncertainty in the potential distribution of an invasive species: climate and the Argentine ant. Ecology Letters, 2006, 9, 1068-1079.	3.0	107
62	Butterfly extinctions in European states: do socioeconomic conditions matter more than physical geography?. Global Ecology and Biogeography, 2006, 15, 82-92.	2.7	59
63	Abundance, species richness and energy availability in the North American avifauna. Global Ecology and Biogeography, 2006, 15, 372-385.	2.7	109
64	People, species richness and human population growth. Global Ecology and Biogeography, 2006, 15, 625-636.	2.7	35
65	People and mammals in Mexico: conservation conflicts at a national scale. Biodiversity and Conservation, 2006, 15, 2397-2414.	1.2	38
66	Ecological Correlates to Lemur Community Structure in Southeast Madagascar. International Journal of Primatology, 2006, 27, 1023-1040.	0.9	10
67	Edge Effects on the Density of Cheirogaleus major. International Journal of Primatology, 2006, 27, 1569-1588.	0.9	48
68	Latitudinal gradients in abundance, and the causes of rarity in the tropics: a test using Australian honeyeaters (Aves: Meliphagidae). Oecologia, 2006, 149, 406-417.	0.9	12
69	Explicitly incorporating spatial dependence in predictive vegetation models in the form of explanatory variables: a Mojave Desert case study. Journal of Geographical Systems, 2006, 8, 411-435.	1.9	12
70	Oceanographic influences on seabirds and cetaceans of the eastern tropical Pacific: A review. Progress in Oceanography, 2006, 69, 360-390.	1.5	221
71	Species traits and the form of individual species–energy relationships. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1779-1787.	1.2	31
72	Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5925-5930.	3.3	1,080
73	Genetic Contributions to Long-Range Temporal Correlations in Ongoing Oscillations. Journal of Neuroscience, 2007, 27, 13882-13889.	1.7	119
74	Coexistence of two freshwater turtle species along a Mediterranean stream: The role of spatial and temporal heterogeneity. Acta Oecologica, 2007, 32, 134-144.	0.5	18

#	Article	IF	Citations
75	Common species determine richness patterns in biodiversity indicator taxa. Biological Conservation, 2007, 138, 109-119.	1.9	124
76	Can the cause of aggregation be inferred from species distributions?. Oikos, 2007, 116, 4-16.	1.2	25
77	Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 2007, 30, 609-628.	2.1	2,522
78	Red herrings remain in geographical ecology: a reply to Hawkins et al. (2007). Ecography, 2007, 30, 845-847.	2.1	53
79	Are spatial regression methods a panacea or a Pandora's box? A reply to Beale et al. (2007). Ecography, 2007, 30, 848-851.	2.1	27
80	Revealing the Emperor's new clothes: niche-based palaeoenvironmental reconstruction in the light of recent ecological theory. Holocene, 2007, 17, 683-688.	0.9	39
81	The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Transactions on Sensor Networks, 2007, 3, 3.	2.3	152
82	Slopes of Avian Species-Area Relationships, Human Population Density, and Environmental Factors. Avian Conservation and Ecology, 2007, 2, .	0.3	6
83	Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography, 2007, 30, 375-384.	2.1	186
84	Type and spatial structure of distribution data and the perceived determinants of geographical gradients in ecology: the species richness of African birds. Global Ecology and Biogeography, 2007, 16, 657-667.	2.7	52
85	Using potential distributions to explore determinants of Western Palaearctic migratory songbird species richness in sub-Saharan Africa. Journal of Biogeography, 2007, 34, 828-841.	1.4	46
86	Altitudinal patterns of seed plant richness in the Gaoligong Mountains, southâ€east Tibet, China. Diversity and Distributions, 2007, 13, 845-854.	1.9	101
87	Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 2007, 8, 387-397.	1.2	391
88	Incorporating spatial dependence in predictive vegetation models. Ecological Modelling, 2007, 202, 225-242.	1.2	212
89	Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecological Modelling, 2007, 207, 159-170.	1.2	97
90	Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models. Landscape Ecology, 2007, 22, 837-852.	1.9	95
91	Ecological and Phylogenetic Correlates to Body Size in the Indriidae. International Journal of Primatology, 2007, 28, 183-210.	0.9	16
92	Regression Techniques for Examining Land Use/Cover Change: A Case Study of a Mediterranean Landscape. Ecosystems, 2007, 10, 562-578.	1.6	117

#	Article	IF	CITATIONS
93	The comparative analysis of historical alien introductions. Biological Invasions, 2008, 10, 1119-1129.	1.2	62
94	Relating spatial scale to patterns of polychaete species diversity in coastal estuaries of the western United States. Landscape Ecology, 2008, 23, 107-121.	1.9	7
95	Influences of environmental variability on the population structure and distribution patterns of the short-fin squid Illex coindetii (Cephalopoda: Ommastrephidae) in the Eastern Ionian Sea. Hydrobiologia, 2008, 612, 71-90.	1.0	25
96	Analyzing spatial ecological data using linear regression and wavelet analysis. Stochastic Environmental Research and Risk Assessment, 2008, 22, 315-324.	1.9	38
97	Rangeâ€wide patterns of greater sageâ€grouse persistence. Diversity and Distributions, 2008, 14, 983-994.	1.9	129
98	Diversity and species composition of West African ungulate assemblages: effects of fire, climate and soil. Global Ecology and Biogeography, 2008, 17, 778-787.	2.7	28
99	Island biogeography of Caribbean coral reef fish. Global Ecology and Biogeography, 2008, 17, 770-777.	2.7	47
100	Patterns of woody plant species richness in the Iberian Peninsula: environmental range and spatial scale. Journal of Biogeography, 2008, 35, 1863-1878.	1.4	29
101	Three way k-fold cross-validation of resource selection functions. Ecological Modelling, 2008, 212, 244-255.	1.2	158
102	Species Richness and Evenness in Australian Birds. American Naturalist, 2008, 171, 480-490.	1.0	32
103	Spatiotemporal dynamics of forest net primary production in China over the past two decades. Global and Planetary Change, 2008, 61, 267-274.	1.6	27
104	Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences, 2009, 6, 2677-2708.	1.3	295
105	Homicide Patterns and Public Housing: The Case of Louisville, KY (1989-2007). Homicide Studies, 2009, 13, 411-433.	0.7	26
106	Stand-scale spatial patterns of soil microbial biomass in natural cold-temperate beech forests along an elevation gradient. Soil Biology and Biochemistry, 2009, 41, 1466-1474.	4.2	20
107	Economic prosperity, biodiversity conservation, and the environmental Kuznets curve. Ecological Economics, 2009, 68, 2087-2095.	2.9	188
108	Incorporating spatial autocorrelation into cellular automata model: An application to the dynamics of Chinese tamarisk (Tamarix chinensis Lour.). Ecological Modelling, 2009, 220, 3490-3498.	1.2	25
109	The effect of species response form on species distribution model prediction and inference. Ecological Modelling, 2009, 220, 2365-2379.	1.2	49
110	Seasonal changes in distribution of Hector's dolphin at Banks Peninsula, New Zealand: implications for protected area design. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, 106-116.	0.9	19

#	Article	IF	CITATIONS
111	Quantification of net primary production of Chinese forest ecosystems with spatial statistical approaches. Mitigation and Adaptation Strategies for Global Change, 2009, 14, 85-99.	1.0	11
112	Grids versus regional species lists: are broad-scale patterns of species richness robust to the violation of constant grain size?. Biodiversity and Conservation, 2009, 18, 3127-3137.	1.2	28
113	Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 2009, 93, 49-77.	1.7	529
114	The influence of human, livestock, and ecological features on the occurrence of genet (<i>Genetta) Tj ETQq1 1 (</i>	0.784314 0.7	rgBT/Overlo
115	What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology, 2009, 15, 613-630.	4.2	590
116	The spatial legacy of introduction: <i>Celastrus orbiculatus</i> in the southern Appalachians, USA. Journal of Applied Ecology, 2009, 46, 1229-1238.	1.9	17
117	Insights into succession processes using temporally repeated habitat models: results from a longâ€term study in a postâ€mining landscape. Journal of Vegetation Science, 2009, 20, 629-638.	1.1	27
118	Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography, 2009, 32, 133-142.	2.1	74
119	The impact of ecological differentiation and dispersal limitation on species turnover and phylogenetic structure of inselberg's plant communities. Ecography, 2009, 32, 613-622.	2.1	37
120	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	2.1	231
121	Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 2009, 32, 22-33.	2.1	150
122	Geometric constraint model selection – an example with New World birds and mammals. Ecography, 2009, 32, 1001-1010.	2.1	5
123	A comparison of simultaneous autoregressive and generalized least squares models for dealing with spatial autocorrelation. Global Ecology and Biogeography, 2009, 18, 273-279.	2.7	47
124	Combining spatial and phylogenetic eigenvector filtering in trait analysis. Global Ecology and Biogeography, 2009, 18, 745-758.	2.7	53
125	Exploring species attributes and site characteristics to assess plant invasions in Spain. Diversity and Distributions, 2009, 15, 50-58.	1.9	90
126	Relationship between distributions of threatened plants and protected areas in Britain. Biological Conservation, 2009, 142, 1515-1522.	1.9	30
127	Latitudinal and seasonal patterns in clutch size of some singleâ€brooded British birds. Bird Study, 2009, 56, 75-85.	0.4	15
128	Spatial Ecology of Ectomycorrhizas: Analytical Strategies. , 2009, , 155-165.		5

#	Article	IF	CITATIONS
129	Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 21-30.	1.2	181
130	Is spatial autocorrelation an intrinsic property of territory size?. Oecologia, 2010, 162, 609-615.	0.9	11
131	Assessing spatiotemporal predator–prey patterns in heterogeneous habitats. Basic and Applied Ecology, 2010, 11, 486-494.	1.2	30
132	Minimizing falseâ€negatives when predicting the potential distribution of an invasive species: a bioclimatic envelope for the redâ€eared slider at global and regional scales. Animal Conservation, 2010, 13, 5-15.	1.5	31
133	Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography, 2010, 33, 408-419.	2.1	134
134	Using generalized autoregressive error models to understand fire–vegetation–soil feedbacks in a mulga–spinifex landscape mosaic. Journal of Biogeography, 2010, 37, 2169-2182.	1.4	42
135	Regression analysis of spatial data. Ecology Letters, 2010, 13, 246-264.	3.0	455
136	Weak climatic associations among British plant distributions. Global Ecology and Biogeography, 2010, 19, 831-841.	2.7	59
137	Spatial regression techniques for interâ€population data: studying the relationships between morphological and environmental variation. Journal of Evolutionary Biology, 2010, 23, 237-248.	0.8	26
138	Spatial autocorrelation: an overlooked concept in behavioral ecology. Behavioral Ecology, 2010, 21, 902-905.	1.0	52
139	Inferring species interaction networks from species abundance data: A comparative evaluation of various statistical and machine learning methods. Ecological Informatics, 2010, 5, 451-464.	2.3	52
140	The Combined Influence of the Local Environment and Regional Enrichment on Bird Species Richness. American Naturalist, 2010, 175, E35-E43.	1.0	70
141	Spatial nonstationarity and the scale of species–environment relationships in the Mojave Desert, California, USA. International Journal of Geographical Information Science, 2011, 25, 423-438.	2.2	39
142	Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landscape and Urban Planning, 2011, 99, 166-177.	3.4	110
143	Modeling and Prediction of Tree Height–Diameter Relationships Using Spatial Autoregressive Models. Forest Science, 2011, 57, 252-264.	0.5	10
144	Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. Journal of Biogeography, 2011, 38, 1164-1176.	1.4	30
145	Are richness patterns of common and rare species equally well explained by environmental variables?. Ecography, 2011, 34, 529-539.	2.1	75
146	Climatic and non-climatic drivers of spatiotemporal maize-area dynamics across the northern limit for maize productionâ€"A case study from Denmark. Agriculture, Ecosystems and Environment, 2011, 142, 291-302.	2.5	39

#	Article	IF	CITATIONS
147	Birds like it Corky: the influence of habitat features and management of †montados†in breeding bird communities. Agroforestry Systems, 2011, 82, 183-195.	0.9	37
148	The Potential Influence of Seasonal Climate Variables on the Net Primary Production of Forests in Eastern China. Environmental Management, 2011, 48, 1173-1181.	1.2	18
149	Biogeographical determinants of pteridophytes and spermatophytes on oceanic archipelagos. Systematics and Biodiversity, 2011, 9, 191-201.	0.5	15
150	The indication of Martian gully formation processes by slope–area analysis. Geological Society Special Publication, 2011, 356, 171-201.	0.8	35
151	Avian succession along ecological gradients: Insight from species-poor and species-rich communities of Sylvia warblers. Environmental Epigenetics, 2011, 57, 307-317.	0.9	3
152	Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 220-225.	3.3	128
153	A tutorial introduction to adaptive fractal analysis. Frontiers in Physiology, 2012, 3, 371.	1.3	81
154	Effects of geographical extent on the determinants of woody plant diversity. Ecography, 2012, 35, 1160-1167.	2.1	30
155	Hierarchical Bayesian models in ecology: Reconstructing species interaction networks from non-homogeneous species abundance data. Ecological Informatics, 2012, 11, 55-64.	2.3	33
156	Statistical models for spatially explicit biological data. Parasitology, 2012, 139, 1852-1869.	0.7	14
157	A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography, 2012, 35, 879-888.	2.1	218
158	Pseudo-absences, pseudo-models and pseudo-niches: pitfalls of model selection based on the area under the curve. International Journal of Geographical Information Science, 2012, 26, 2049-2063.	2.2	33
159	Spatial autocorrelation patterns of stream invertebrates: exogenous and endogenous factors. Journal of Biogeography, 2012, 39, 56-68.	1.4	42
160	Incorporating spectral data into logistic regression model to classify land cover: a case study in Mt. Qomolangma (Everest) National Nature Preserve. International Journal of Geographical Information Science, 2012, 26, 1845-1862.	2.2	1
161	Agricultural lands as ecological traps for grizzly bears. Animal Conservation, 2012, 15, 369-377.	1.5	116
162	Can we explain regional abundance and roadâ€kill patterns with variables derived from localâ€scale roadâ€kill models? Evaluating transferability with the European polecat. Diversity and Distributions, 2012, 18, 635-647.	1.9	18
163	Use of localized descriptive statistics for exploring the spatial pattern changes of bird species richness at multiple scales. Applied Geography, 2012, 32, 185-194.	1.7	20
164	Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9, 2203-2246.	1.3	487

#	ARTICLE	IF	Citations
165	Relative role of contemporary environment versus history in shaping diversity patterns of China's woody plants. Ecography, 2012, 35, 1124-1133.	2.1	47
166	Strengths and Weaknesses of Quantitative Climate Reconstructions based on Late-Quaternary Biological Proxies. Quaternary International, 2012, 279-280, 52.	0.7	2
167	Species distribution models. Progress in Physical Geography, 2012, 36, 681-692.	1.4	87
168	Urban Growth Prediction: A Review of Computational Models and Human Perceptions. Journal of Geographic Information System, 2012, 04, 555-587.	0.3	103
169	Testing Pairwise Association between Spatially Autocorrelated Variables: A New Approach Using Surrogate Lattice Data. PLoS ONE, 2012, 7, e48766.	1,1	23
170	Overlapping landscapes: A persistent, but misdirected concern when collecting and analyzing ecological data. Journal of Wildlife Management, 2012, 76, 1072-1080.	0.7	64
171	Biogeography of elytral ornaments in Palearctic genus Carabus: disentangling the effects of space, evolution and environment at a continental scale. Evolutionary Ecology, 2012, 26, 1025-1040.	0.5	6
172	<i>Phytophthora ramorum</i> in England and Wales: which environmental variables predict county disease incidence?. Forest Pathology, 2012, 42, 150-159.	0.5	17
173	Accounting for multiâ€scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). Journal of Biogeography, 2012, 39, 42-55.	1.4	88
174	Eight (and a half) deadly sins of spatial analysis. Journal of Biogeography, 2012, 39, 1-9.	1.4	122
175	Use of multiple habitat types with asymmetric dispersal affects patch occupancy of the damselfly Indolestes peregrinus in a fragmented landscape. Basic and Applied Ecology, 2012, 13, 178-187.	1.2	3
176	Accounting for spatial autocorrelation in null models of tree species association. Ecography, 2012, 35, 510-518.	2.1	24
177	Optimal design for detecting dependencies with an application in spatial ecology. Environmetrics, 2012, 23, 37-45.	0.6	3
178	Predicting <scp>E</scp> llenberg's soil moisture indicator value in the <scp>B</scp> avarian <scp>A</scp> lps using additive georegression. Applied Vegetation Science, 2013, 16, 110-121.	0.9	14
179	Locations of Motor Vehicle Theft and Recovery. American Journal of Criminal Justice, 2013, 38, 200-215.	1.3	10
180	The application of a general time series model to floodplain fisheries in the Amazon. Environmental Modelling and Software, 2013, 48, 202-212.	1.9	8
181	Spatial Distribution Patterns of the Antarctic Hair Grass <i>Deschampsia antarctica</i> in Relation to Environmental Variables on Barton Peninsula, King George Island. Arctic, Antarctic, and Alpine Research, 2013, 45, 563-574.	0.4	11
182	Assessing the effects of variables and background selection on the capture of the tick climate niche. International Journal of Health Geographics, 2013, 12, 43.	1.2	28

#	Article	IF	CITATIONS
183	Patterns of species diversity and phylogenetic structure of vascular plants on the <scp>Q</scp> inghaiâ€ <scp>T</scp> ibetan <scp>P</scp> lateau. Ecology and Evolution, 2013, 3, 4584-4595.	0.8	70
184	Small-area analysis of social inequalities in residential exposure to road traffic noise in Marseilles, France. European Journal of Public Health, 2013, 23, 540-546.	0.1	42
185	Temporal variability of ecological niches: a study on intertidal macrobenthic fauna. Oikos, 2013, 122, 754-760.	1.2	12
186	Comparing regional and supra-regional transfer functions for palaeohydrological reconstruction from Holocene peatlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369, 395-408.	1.0	36
187	Accounting for spatial autocorrelation from model selection to statistical inference: Application to a national survey of a diurnal raptor. Ecological Informatics, 2013, 14, 17-24.	2.3	21
188	Fine-scale spatial structure of the exploited infaunal bivalve Cerastoderma edule on the French Atlantic coast. Journal of Sea Research, 2013, 76, 193-200.	0.6	16
189	Testing the predictive performance of distribution models. Oikos, 2013, 122, 321-331.	1.2	174
190	Spatial regression methods capture prediction uncertainty in species distribution model projections through time. Global Ecology and Biogeography, 2013, 22, 242-251.	2.7	29
191	The global fire-productivity relationship. Global Ecology and Biogeography, 2013, 22, 728-736.	2.7	265
192	Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods in Ecology and Evolution, 2013, 4, 167-174.	2.2	97
193	Hello World: Introducing Spatial Data. , 2013, , 1-16.		14
194	Radial growth response of Pinus densiflora and Quercus spp. to topographic and climatic factors in South Korea. Journal of Plant Ecology, 2013, 6, 380-392.	1.2	40
195	Incorporation of multi-scale spatial autocorrelation in soil moisture–landscape modeling. Physical Geography, 2013, 34, 441-455.	0.6	17
196	Does sample rate introduce an artifact in spectral analysis of continuous processes?. Frontiers in Physiology, 2012, 3, 495.	1.3	13
197	Exploring Non-Linear Relationships between Landscape and Aquatic Ecological Condition in Southern Wisconsin. International Journal of Applied Geospatial Research, 2014, 5, 1-20.	0.2	25
198	Examining patterns of sustainability across Europe: a multivariate and spatial assessment of 25 composite indices. International Journal of Sustainable Development and World Ecology, 2014, , 1-13.	3.2	12
199	Assessing complexity of heart rate variability in people with spinal cord injury using local scale exponents., 2014, 2014, 6381-4.		1
200	Noise coloration filter design by pole-zero placement. , 2014, , .		0

#	Article	IF	CITATIONS
201	Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability. BMC Ecology, 2014, 14, 26.	3.0	24
202	Extinction, Extirpation, and Exotics: Effects on the Correlation between Traits and Environment at the Continental Level. Annales Zoologici Fennici, 2014, 51, 209-226.	0.2	32
203	Spatial leaveâ€oneâ€out crossâ€validation for variable selection in the presence of spatial autocorrelation. Global Ecology and Biogeography, 2014, 23, 811-820.	2.7	80
204	Comparison of native and exotic distribution and richness models across scales reveals essential conservation lessons. Ecography, 2014, 37, 120-129.	2.1	14
205	Regionalizing Indicator Values for Soil Reaction in the Bavarian Alps – from Averages to Multivariate Spectra. Folia Geobotanica, 2014, 49, 385-405.	0.4	8
206	A new statistical framework for the quantification of covariate associations with species distributions. Methods in Ecology and Evolution, 2014, 5, 421-432.	2.2	32
207	Modeling the Effect of Temperature and Precipitation on Crop Residue Potential for the North Central Region of the United States. Agricultural Research, 2014, 3, 148.	0.9	4
208	Comparison of regression methods for spatiallyâ€autocorrelated count data on regularly―and irregularlyâ€spaced locations. Ecography, 2014, 37, 476-489.	2.1	9
209	Incorporating spatial autocorrelation into species distribution models alters forecasts of climateâ€mediated range shifts. Global Change Biology, 2014, 20, 2566-2579.	4.2	47
210	Extent and distribution of aseismic slip on the IsmetpaÅŸa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochemistry, Geophysics, Geosystems, 2014, 15, 2883-2894.	1.0	67
211	Measuring nanoparticle size using phase-stepping interferometry: quantifying measurement sensitivity to surface roughness. Applied Optics, 2014, 53, 4548.	0.9	1
212	Changes in community structure and species–landform relationship after repeated fire disturbance in an oakâ€dominated temperate forest. Ecological Research, 2014, 29, 661-671.	0.7	6
213	Translating nutritional ecology from the laboratory to the field: milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos, 2014, 123, 298-308.	1.2	51
214	Predictive modeling of marine benthic macrofauna and its use to inform spatial monitoring design. , 2014, 24, 862-876.		12
215	Spatial and temporal patterns of Landsat-based detection of tree mortality caused by a mountain pine beetle outbreak in Colorado, USA. Forest Ecology and Management, 2014, 322, 78-88.	1.4	95
216	Fine-scale spatial distribution of the temperate infaunal bivalve Tapes (=Ruditapes) philippinarum (Adams and Reeve) on fished and unfished intertidal mudflats. Journal of Experimental Marine Biology and Ecology, 2014, 457, 128-134.	0.7	13
217	Predicting the distribution of vulnerable marine ecosystems in the deep sea using presence-background models. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 6-18.	0.6	86
218	Assessing Land Degradation and Desertification Using Vegetation Index Data: Current Frameworks and Future Directions. Remote Sensing, 2014, 6, 9552-9575.	1.8	220

#	Article	IF	CITATIONS
219	Extinction in Eden: identifying the role of climate change in the decline of the koala in south-eastern NSW. Wildlife Research, 2014, 41, 22.	0.7	44
220	Generating spatially constrained null models for irregularly spaced data using <scp>M</scp> oran spectral randomization methods. Methods in Ecology and Evolution, 2015, 6, 1169-1178.	2.2	83
221	Adiabatic many-body state preparation and information transfer in quantum dot arrays. Physical Review B, 2015, 91, .	1.1	43
223	Spatial autocorrelation in fitness affects the estimation of natural selection in the wild. Methods in Ecology and Evolution, 2015, 6, 1474-1483.	2.2	30
224	Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review. AIMS Public Health, 2015, 2, 358-401.	1.1	15
225	The Optimisation of Bayesian Classifier in Predictive Spatial Modelling for Secondary Mineral Deposits. Procedia Computer Science, 2015, 61, 478-485.	1.2	4
226	Comparison of Statistical Methods for Assessing Spatial Correlations Between Maps of Different Arterial Properties. Journal of Biomechanical Engineering, 2015, 137, 101003.	0.6	18
227	The spatial distribution of development in Europe and its underlying sustainability correlations. Applied Geography, 2015, 63, 304-314.	1.7	111
228	Simulating urban land use change by incorporating an autologistic regression model into a CLUE-S model. Journal of Chinese Geography, 2015, 25, 836-850.	1.5	72
229	Seeing the forest beyond the trees. Global Ecology and Biogeography, 2015, 24, 606-610.	2.7	56
230	The well-being of nations: an empirical assessment of sustainable urbanization for Europe. International Journal of Sustainable Development and World Ecology, 0, , 1-13.	3.2	35
231	Mixed severity fire effects within the Rim fire: Relative importance of local climate, fire weather, topography, and forest structure. Forest Ecology and Management, 2015, 358, 62-79.	1.4	125
232	Illegal drug cultivation in Mexico: an examination of the environmental and human factors. Cartography and Geographic Information Science, 2015, 42, 190-204.	1.4	6
233	Predicting the Influence of Multi-Scale Spatial Autocorrelation on Soil-Landform Modeling. Soil Science Society of America Journal, 2016, 80, 409-419.	1.2	13
234	Spatial Autoregressive Models for Stand Top and Stand Mean Height Relationship in Mixed Quercus mongolica Broadleaved Natural Stands of Northeast China. Forests, 2016, 7, 43.	0.9	8
235	Multispecies Fisheries in the Lower Amazon River and Its Relationship with the Regional and Global Climate Variability. PLoS ONE, 2016, 11, e0157050.	1.1	28
236	Modelling the influence of biotic factors on species distribution patterns. Ecological Modelling, 2016, 337, 96-106.	1.2	60
237	Microhabitat selection in the common lizard: implications of biotic interactions, age, sex, local processes, and model transferability among populations. Ecology and Evolution, 2016, 6, 3594-3607.	0.8	15

#	ARTICLE	IF	CITATIONS
239	Community ecological modelling as an alternative to physiographic classifications for marine conservation planning. Biodiversity and Conservation, 2016, 25, 1899-1920.	1.2	12
240	Assessing environmental inequalities in the city of Santiago (Chile) with a hierarchical multiscale approach. Applied Geography, 2016, 74, 160-169.	1.7	37
241	Probing beyond the laser coherence time in optical clock comparisons. Physical Review A, 2016, 93, .	1.0	29
242	A network approach for inferring species associations from coâ€occurrence data. Ecography, 2016, 39, 1139-1150.	2.1	96
243	Discerning patterns of diversity from biogeographical distributions: testing models of metacommunity dynamics using non-marine ostracodes from San Salvador Island, Bahamas. Hydrobiologia, 2016, 766, 305-319.	1.0	8
244	Spatial autocorrelation potentially indicates the degree of changes in the predictive power of environmental factors for plant diversity. Ecological Indicators, 2016, 60, 1130-1141.	2.6	17
245	Seasonal variations in red pine (Pinus resinosa) and jack pine (Pinus banksiana) foliar physio-chemistry and their potential influence on stand-scale wildland fire behavior. Forest Ecology and Management, 2016, 373, 167-178.	1.4	23
246	Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa. South African Journal of Botany, 2016, 102, 33-38.	1.2	32
247	Using geographically weighted regression to explore the spatially heterogeneous spread of bovine tuberculosis in England and Wales. Stochastic Environmental Research and Risk Assessment, 2017, 31, 339-352.	1.9	14
248	Structural bias in aggregated speciesâ€level variables driven by repeated species coâ€occurrences: a pervasive problem in community and assemblage data. Journal of Biogeography, 2017, 44, 1199-1211.	1.4	45
249	Fire and plant diversity at the global scale. Global Ecology and Biogeography, 2017, 26, 889-897.	2.7	95
250	Contrasting patterns of fine-scale herb layer species composition in temperate forests. Acta Oecologica, 2017, 80, 24-31.	0.5	12
251	Choose your neighborhood wisely: implications of subsampling and autocorrelation structure in simultaneous autoregression models for landscape ecology. Landscape Ecology, 2017, 32, 945-952.	1.9	7
252	Papua New Guinea terrestrialâ€vertebrate richness: elevation matters most for all except reptiles. Journal of Biogeography, 2017, 44, 1734-1744.	1.4	23
253	Multi-year MODIS active fire type classification over the Brazilian Tropical Moist Forest Biome. International Journal of Digital Earth, 2017, 10, 54-84.	1.6	30
254	The contribution of species–genetic diversity correlations to the understanding of community assembly rules. Oikos, 2017, 126, 759-771.	1.2	42
255	A Bayesian method for assessing multi-scale species-habitat relationships. Landscape Ecology, 2017, 32, 2365-2381.	1.9	35
256	Urbanization impacts on the trophic guild composition of bird communities. Journal of Natural History, 2017, 51, 2385-2404.	0.2	18

#	Article	IF	Citations
257	Negative spatial and coexistence patterns and species associations are uncommon for carrion beetles (Coleoptera: Silphidae) at a small scale. European Journal of Soil Biology, 2017, 83, 52-57.	1.4	3
258	Community functional trait composition at the continental scale: the effects of nonâ€ecological processes. Ecography, 2017, 40, 651-663.	2.1	25
259	Morphological variation in the specialist Dupont's Lark Chersophilus duponti: geographical clines vs. local ecological determinants. Journal of Ornithology, 2017, 158, 25-38.	0.5	4
260	Numerical Investigation of Aggregated Fuel Spatial Pattern Impacts on Fire Behavior. Land, 2017, 6, 43.	1.2	49
261	Characterization and simulation of noise in PET images reconstructed with OSEM: Development of a method for the generation of synthetic images. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2018, 37, 229-236.	0.1	1
262	Opportunistically collected data reveal habitat selection by migrating Whooping Cranes in the U.S. Northern Plains. Condor, 2018, 120, 343-356.	0.7	7
263	Examining sustainable landscape function across the Republic of Moldova. Habitat International, 2018, 72, 77-91.	2.3	25
264	The pioneer evidence of contagious corruption. Quality and Quantity, 2018, 52, 945-968.	2.0	10
265	Spatial autoregressive models for statistical inference from ecological data. Ecological Monographs, 2018, 88, 36-59.	2.4	128
266	Spatial and temporal distribution, environmental drivers and community structure of mosquitoes in the Kaipara Harbour, New Zealand. Bulletin of Entomological Research, 2018, 108, 305-313.	0.5	1
267	Effects of intrinsic sources of spatial autocorrelation on spatial regression modelling. Methods in Ecology and Evolution, 2018, 9, 363-372.	2.2	11
268	spind: an R Package to Account for Spatial Autocorrelation in the Analysis of Lattice Data. Biodiversity Data Journal, 2018, 6, e20760.	0.4	7
269	Caracterización y simulación de ruido en las imágenes de PET reconstruidas con OSEM: desarrollo de un método para la generación de imágenes sintéticas. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2018, 37, 229-236.	0.0	4
270	Demonstration of Percent Tree Cover Mapping Using Landsat Analysis Ready Data (ARD) and Sensitivity with Respect to Landsat ARD Processing Level. Remote Sensing, 2018, 10, 209.	1.8	34
271	AirSim-W., 2018,,.		38
272	Which results of the standard test for communityâ€weighted mean approach are too optimistic?. Journal of Vegetation Science, 2018, 29, 953-966.	1.1	69
273	Spatial autocorrelation inflates niche breadth–range size relationships. Global Ecology and Biogeography, 2018, 27, 1426-1436.	2.7	36
274	Ecological neighborhoods as a framework for umbrella species selection. Biological Conservation, 2018, 223, 112-119.	1.9	14

#	Article	IF	CITATIONS
275	Modeling spatial and temporal dynamics of plant species richness across tidal creeks in a temperate salt marsh. Ecological Indicators, 2018, 93, 188-195.	2.6	13
276	Adaptive landscape genetics and malaria across divergent island bird populations. Ecology and Evolution, 2019, 9, 12482-12502.	0.8	3
277	Investigating urban heat island through spatial analysis of New York City streetscapes. Journal of Cleaner Production, 2019, 233, 972-992.	4.6	57
278	Snow to Precipitation Ratio Controls Catchment Storage and Summer Flows in Boreal Headwater Catchments. Water Resources Research, 2019, 55, 4096-4109.	1.7	30
279	Residual spatial autocorrelation in macroecological and biogeographical modeling: a review. Journal of Ecology and Environment, 2019, 43, .	1.6	31
280	Determinants of spatial patterns of plant diversity depend on the biogeographical affinities of the taxa â° a case study in Northwest Yunnan, Southwest China. Acta Oecologica, 2019, 97, 57-64.	0.5	1
281	Spatial Autocorrelation Analysis of Multi-Scale Damaged Vegetation in the Wenchuan Earthquake-Affected Area, Southwest China. Forests, 2019, 10, 195.	0.9	8
282	More than climate? Predictors of tree canopy height vary with scale in complex terrain, Sierra Nevada, CA (USA). Forest Ecology and Management, 2019, 434, 142-153.	1.4	32
283	Ensemble habitat suitability modeling of vulnerable marine ecosystem indicator taxa to inform deep-sea fisheries management in the South Pacific Ocean. Fisheries Research, 2019, 211, 256-274.	0.9	67
284	Conditionally autoregressive models improve occupancy analyses of autocorrelated data: An example with environmental DNA. Molecular Ecology Resources, 2019, 19, 163-175.	2.2	21
285	57â€1: Spatiotemporal Noise Targets Inspired by Natural Imagery Statistics. Digest of Technical Papers SID International Symposium, 2020, 51, 842-845.	0.1	2
286	Challenges in Estimating Tropical Forest Canopy Height from Planet Dove Imagery. Remote Sensing, 2020, 12, 1160.	1.8	21
287	High correlation of species diversity patterns between specialist herbivorous insects and their specific hosts. Journal of Biogeography, 2020, 47, 1232-1245.	1.4	17
288	Showcasing Relationships between Neighborhood Design and Wellbeing Toronto Indicators. Sustainability, 2020, 12, 997.	1.6	4
289	Geographical Detection of Traffic Accidents Spatial Stratified Heterogeneity and Influence Factors. International Journal of Environmental Research and Public Health, 2020, 17, 572.	1.2	35
290	Geographic patterns of insect diversity across China's nature reserves: The roles of niche conservatism and range overlapping. Ecology and Evolution, 2020, 10, 3305-3317.	0.8	9
291	Dynamic upscaling of decomposition kinetics for carbon cycling models. Geoscientific Model Development, 2020, 13, 1399-1429.	1.3	30
292	When is variable importance estimation in species distribution modelling affected by spatial correlation?. Ecography, 2021, 44, 778.	2.1	19

#	ARTICLE	IF	CITATIONS
293	Effects of Climate, Plant Height, and Evolutionary Age on Geographical Patterns of Fruit Type. Frontiers in Plant Science, 2021, 12, 604272.	1.7	4
294	Mouse Lemurs in an Assemblage of Cheirogaleid Primates in Menabe Central, Western Madagascar – Three Reasons to Coexist. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
295	Predicting the magnitude of residual spatial autocorrelation in geographical ecology. Ecography, 2021, 44, 1121-1130.	2.1	9
296	Effect of data spatial scale on the performance of fish habitat models. Fish and Fisheries, 2021, 22, 955-973.	2.7	5
297	Modelling the spatial distribution of Sardina pilchardus and Engraulis encrasicolus spawning habitat in the NW Mediterranean Sea. Marine Environmental Research, 2021, 169, 105381.	1.1	9
298	Variation Patterns of Functional Trait Moments Along Geographical Gradients and Their Environmental Determinants in the Subtropical Evergreen Broadleaved Forests. Frontiers in Plant Science, 2021, 12, 686965.	1.7	11
299	Geostatistical significance of differences for spatial subsurface phenomenon. Journal of Petroleum Science and Engineering, 2021, 203, 108694.	2.1	4
301	Hidden patterns of sustainable development in Asia with underlying global change correlations. Ecological Indicators, 2021, 131, 108227.	2.6	4
302	Spatial autocorrelation reduces model precision and predictive power in deforestation analyses. Ecosphere, 2017, 8, e01824.	1.0	21
303	Testing for Network and Spatial Autocorrelation. Springer Proceedings in Complexity, 2020, , 91-104.	0.2	2
304	Multi-scale habitat selection and impacts of climate change on the distribution of four sympatric meso-carnivores using random forest algorithm. Ecological Processes, 2020, 9, .	1.6	15
305	Global Gradients in Vertebrate Diversity Predicted by Historical Area-Productivity Dynamics and Contemporary Environment. PLoS Biology, 2012, 10, e1001292.	2.6	233
306	Spatial Analysis of Anthropogenic Landscape Disturbance and Buruli Ulcer Disease in Benin. PLoS Neglected Tropical Diseases, 2015, 9, e0004123.	1.3	10
307	Species Richness and Range Size of the Terrestrial Mammals of the World: Biological Signal within Mathematical Constraints. PLoS ONE, 2011, 6, e19359.	1.1	26
308	Species Richness Patterns and Water-Energy Dynamics in the Drylands of Northwest China. PLoS ONE, 2013, 8, e66450.	1.1	51
309	Can Static Habitat Protection Encompass Critical Areas for Highly Mobile Marine Top Predators? Insights from Coastal East Africa. PLoS ONE, 2015, 10, e0133265.	1.1	30
310	Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak. PLoS ONE, 2017, 12, e0181778.	1.1	28
311	The effect of technological oil spill in soil within electrical generation substations, analysed by ecological regime in the context of relief properties. Biosystems Diversity, 2019, 27, 43-50.	0.2	2

#	Article	IF	CITATIONS
312	Padrões de autocorrelação espacial de Ãndices de vegetação MODIS no bioma cerrado. Revista Arvore, 2008, 32, 279-290.	0.5	9
314	Developing spatial models to guide conservation of grassland birds in the U.S. Northern Great Plains. Condor, 2017, 119, 506-525.	0.7	20
315	Predictores ambientales de la riqueza de especies de plantas del bosque húmedo de montaña de México. Botanical Sciences, 2014, 90, 27.	0.3	12
316	Spatial autocorrelation analysis in plant population: An overview. Journal of Applied and Natural Science, 2015, 7, 501-513.	0.2	43
317	Post-settlement predation by sea stars and crabs on the sea scallop in the Mid-Atlantic Bight. Marine Ecology - Progress Series, 2012, 468, 161-177.	0.9	16
318	Spatial scale and geographic context in benthic habitat mapping: review and future directions. Marine Ecology - Progress Series, 2015, 535, 259-284.	0.9	127
319	Predicting distribution and relative abundance of mid-trophic level organisms using oceanographic parameters and acoustic backscatter. Marine Ecology - Progress Series, 2018, 592, 37-56.	0.9	17
320	Techniques for cetacean–habitat modeling. Marine Ecology - Progress Series, 2006, 310, 271-295.	0.9	345
321	The Geometry of Spatial Analyses: Implications for Conservation Biologists. Natureza A Conservacao, 2011, 9, 7-20.	2.5	23
323	General models of the spatial distribution of porpoises require representative data and parsimony: Comment on Skov & amp; amp; amp; amp; amp; amp; amp; amp;	0.9	1
324	Object Localization and Spatial AnalysisUsing Computer Vision. International Journal of Machine Learning and Computing, 2011, , 120-124.	0.8	5
325	Object Localization Based Segmentation and Spatial Analysis Using Computer Vision. International Journal of Computer Theory and Engineering, 2013, , 488-493.	3.2	1
326	Assessment of reliability of linear relationship between spatially distributed autocorrelated variables. Visnyk of the Lviv University Series Geography, 2018, , 201-209.	0.1	0
327	Exploring Non-Linear Relationships Between Landscape and Aquatic Ecological Condition in Southern Wisconsin., 2019,, 1242-1263.		0
328	Using singleâ€plantâ€omics in the field to link maize genes to functions and phenotypes. Molecular Systems Biology, 2020, 16, e9667.	3.2	22
329	Fair train-test split in machine learning: Mitigating spatial autocorrelation for improved prediction accuracy. Journal of Petroleum Science and Engineering, 2022, 209, 109885.	2.1	20
330	Processing Visual Ambiguity in Fractal Patterns: Pareidolia as a Sign of Creativity. SSRN Electronic Journal, 0, , .	0.4	1
331	Spatial Regression Models for Field Trials: A Comparative Study and New Ideas. Frontiers in Plant Science, 2022, 13, 858711.	1.7	5

#	Article	IF	Citations
332	Utilizing advanced spatioâ€temporal backgrounds with dynamic test signals for high dynamic range display metrology. Journal of the Society for Information Display, 2022, 30, 423-432.	0.8	0
333	Scientometric Analysis for Spatial Autocorrelation-Related Research from 1991 to 2021. ISPRS International Journal of Geo-Information, 2022, 11, 309.	1.4	4
334	Effects of advance and retreat of agricultural landscapes on Rana japonica and R. ornativentris. Landscape and Ecological Engineering, 2022, 18, 493-503.	0.7	1
335	23â€3: <i>Distinguished Paper:</i> Utilizing Advanced Spatioâ€√emporal Backgrounds with Dynamic Test Signals for HDR Display Metrology. Digest of Technical Papers SID International Symposium, 2022, 53, 263-266.	0.1	1
336	Processing visual ambiguity in fractal patterns: Pareidolia as a sign of creativity. IScience, 2022, 25, 105103.	1.9	3
337	Temporal mismatch in space use by a sagebrush obligate species after largeâ€scale wildfire. Ecosphere, 2022, 13, .	1.0	4
338	The spatial modification effect of predictors on household level food insecurity in Ethiopia. Scientific Reports, 2022, 12, .	1.6	3
339	The spectral color of natural and anthropogenic time series and its impact on the statistical significance of cross correlation. Science of the Total Environment, 2023, 860, 160219.	3.9	1
340	Association Between Topsoil Lead Concentrations and the Risk of Violent Crime. Environmental Justice, $0, , .$	0.8	0
341	Machine learning applied for Antarctic soil mapping: Spatial prediction of soil texture for Maritime Antarctica and Northern Antarctic Peninsula. Geoderma, 2023, 432, 116405.	2.3	9
347	Basic Introduction to Species Distribution Modelling. , 2023, , 21-40.		1
348	Species Richness Gradients. , 2023, , 203-249.		0
349	Macroecological Data. , 2023, , 79-123.		0