Hydration of high-volume fly ash cement pastes

Cement and Concrete Composites 22, 445-452

DOI: 10.1016/s0958-9465(00)00044-5

Citation Report

#	ARTICLE	IF	Citations
1	COMPARATIVE STUDY OF DIFFERENT FLY ASHES: CHARACTERISATION AND PERFORMANCES., 2002, , 33-46.		1
2	Effects of supplementary cementing materials on the properties of cement and concrete. Cement and Concrete Research, 2002, 32, 1551-1558.	4.6	67
3	Engineering geological properties of Miocene hard clays along the middle line of the North?South Diversion Water Project in China. Bulletin of Engineering Geology and the Environment, 2003, 62, 213-219.	1.6	12
4	Selective catalytic reduction of NO by ammonia with fly ash catalysta~†. Fuel, 2003, 82, 575-579.	3.4	53
5	Activation of fly ash cementitious systems in the presence of quicklime. Cement and Concrete Research, 2004, 34, 769-779.	4.6	95
6	Effect of fly ash on autogenous shrinkage. Cement and Concrete Research, 2005, 35, 473-482.	4.6	145
7	Influence of glass cullet in cement pastes. Particuology: Science and Technology of Particles, 2006, 4, 234-237.	0.4	5
8	Mechanical and durability characteristics of gypsum-free blended cements incorporating sulphate-rich reject fly ash. Cement and Concrete Composites, 2007, 29, 550-558.	4.6	4
9	Influence of quicklime addition on the mechanical properties and hydration degree of blended cements containing different fly ashes. Construction and Building Materials, 2008, 22, 1191-1200.	3.2	57
10	Study of the Effectiveness of Cement Kiln Dusts in Stabilizing Na-Montmorillonite Clay. Journal of Materials in Civil Engineering, 2008, 20, 137-146.	1.3	61
11	Pozzolanic reaction kinetics of coal ashes. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 488-493.	0.4	9
12	Stabilization of a chlorine-rich fly ash by colloidal silica solution. Journal of Hazardous Materials, 2009, 162, 819-822.	6.5	17
13	Co-disposal of Heavy Metals Containing Waste Water and Medical Waste Incinerator Fly Ash by Hydrothermal Process with Addition of Sodium Carbonate: A Case Study on Cu(II) Removal. Water, Air, and Soil Pollution, 2010, 209, 391-400.	1.1	7
14	Quantification of the degree of reaction of fly ash. Cement and Concrete Research, 2010, 40, 1620-1629.	4.6	216
15	An explanation for the negative effect of elevated temperature at early ages on the late-age strength of concrete. Journal of Materials Science, 2011, 46, 7279-7288.	1.7	33
16	Characterization of pozzolanic reaction and its effect on the C-S-H Gel in fly Ash-cement paste. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 319-324.	0.4	24
17	The Experimental Study of Preparation of Unburned Ceramsite and Its Reaction Mechanism., 2011,,.		1
18	Effect of Limestone Powder on Autogenous Shrinkage of Concrete. Applied Mechanics and Materials, 0, 88-89, 767-771.	0.2	1

#	ARTICLE	IF	CITATIONS
19	Study and Practice on the Performance of Soundproofing for Office Building Wall. Applied Mechanics and Materials, 2011, 147, 132-135.	0.2	0
20	Hydration Performance and Pore Structure of Fly Ash-Cement Pastes. Applied Mechanics and Materials, 0, 204-208, 3867-3871.	0.2	1
21	Effect of Fly Ash on Creep of High Performance Concrete Used in Bridge. Applied Mechanics and Materials, 0, 204-208, 2192-2195.	0.2	3
22	Influence of Fly Ash on Alkalinity of Pore Solution and Microstructure Characteristics of Hardened Cement Pastes. Applied Mechanics and Materials, 2012, 253-255, 322-325.	0.2	3
23	Co-Detoxification of Transformer Oil-Contained PCBs and Heavy Metals in Medical Waste Incinerator Fly Ash under Sub- and Supercritical Water. Environmental Science & Environmental Science, 2012, 46, 1003-1009.	4.6	28
24	Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics. Fuel, 2012, 102, 674-680.	3.4	64
25	Use of colloidal silica to obtain a new inert from municipal solid waste incinerator (MSWI) fly ash: first results about reuse. Clean Technologies and Environmental Policy, 2012, 14, 291-297.	2.1	44
26	The microstructure of 4-year-old hardened cement-fly ash paste. Construction and Building Materials, 2012, 29, 114-119.	3.2	44
27	Evolution of distribution and content of water in cement paste by low field nuclear magnetic resonance. Journal of Central South University, 2013, 20, 1109-1114.	1.2	41
28	Decalcification of cement mortars: Characterisation and modelling. Cement and Concrete Composites, 2013, 35, 136-150.	4.6	41
29	Alkali activation of blended cements containing oil shale ash. Construction and Building Materials, 2013, 40, 367-377.	3.2	22
30	Hydration of Cement Composites Containing Large Amount of Waste Materials. Procedia Engineering, 2013, 57, 53-62.	1.2	26
31	Low embodied energy cement containing untreated RHA: A strength development and durability study. Construction and Building Materials, 2013, 49, 455-463.	3.2	50
32	Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cement and Concrete Research, 2013, 52, 112-122.	4.6	243
33	Cementitious properties of super-fine steel slag. Powder Technology, 2013, 245, 35-39.	2.1	137
34	Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Composites Part B: Engineering, 2013, 45, 440-448.	5.9	363
35	Pore size distribution modification of OPC paste through inclusion of fly ash and sand. Magazine of Concrete Research, 2013, 65, 673-684.	0.9	12
36	High-Volume Fly Ash Concrete with and without Hydrated Lime: Chloride Diffusion Coefficient from Accelerated Test. Journal of Materials in Civil Engineering, 2013, 25, 411-418.	1.3	62

3

#	ARTICLE	IF	Citations
37	Assessment of Hydration Degree of Cement in the Fly Ash-Cement Pastes Based on the Calcium Hydroxide Content. Advanced Materials Research, 2014, 875-877, 177-182.	0.3	4
38	Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Materials & Design, 2014, 64, 535-541.	5.1	28
39	Properties of self-consolidating concrete containing high-volume supplementary cementitious materials and nano-limestone. Journal of Sustainable Cement-Based Materials, 2014, 3, 245-255.	1.7	11
40	Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness. Cement and Concrete Research, 2014, 61-62, 20-27.	4.6	160
41	Preparation of new cementitious system using fly ash and dehydrated autoclaved aerated concrete. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 726-732.	0.4	15
42	Calorimetric and thermal analysis studies on the influence of waste aluminosilicate catalyst on the hydration of fly ash–cement paste. Journal of Thermal Analysis and Calorimetry, 2014, 116, 689-697.	2.0	34
43	Phosphate-activated high-calcium fly ash acid-base cements. Cement and Concrete Composites, 2015, 63, 96-103.	4.6	38
44	Ultrafine grinding of fly ash with grinding aids: Impact on particle characteristics of ultrafine fly ash and properties of blended cement containing ultrafine fly ash. Construction and Building Materials, 2015, 78, 250-259.	3.2	87
45	Compressive strength of masonry grout containing high amounts of class F fly ash and ground granulated blast furnace slag. Construction and Building Materials, 2015, 94, 719-727.	3.2	20
46	The influence of sodium hydrogen carbonate on the hydration of cement. Construction and Building Materials, 2015, 94, 746-749.	3.2	33
47	Influence of Fly Ash on Microstructure of Complex Binder Pastes. Advanced Materials Research, 2015, 1088, 608-612.	0.3	2
48	A study on pozzolanic reaction of fly ash cement paste activated by an injection of alkali solution. Construction and Building Materials, 2015, 94, 28-34.	3.2	30
49	Utilization of lithium slag as an admixture in blended cements: Physico-mechanical and hydration characteristics. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 129-133.	0.4	50
50	A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer. International Journal of Sustainable Built Environment, 2015, 4, 278-306.	3.2	194
51	Analysis of compressive strength development of concrete containing high volume fly ash. Construction and Building Materials, 2015, 98, 810-819.	3.2	90
52	Evaluation of the effect of tricalcium aluminate content on the severity of sulfate attack in Portland cement and Portland limestone cement mortars. Cement and Concrete Composites, 2015, 56, 115-120.	4.6	20
53	Influence of Temperature and Added Lime on the Glassy Phase Dissolution in Low-calcium Fly ash Binary Blend. Journal of Advanced Concrete Technology, 2016, 14, 614-624.	0.8	2
54	Investigating the Role of Fly Ash and Silica Fume in the Cement Hydration Process. American Journal of Engineering and Applied Sciences, 2016, 9, 134-145.	0.3	7

#	Article	IF	Citations
55	Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model. Materials, 2016, 9, 605.	1.3	106
56	Hydration, Setting and Crack-Resistance Properties of Activated HVFACs at Early Stages. Applied Sciences (Switzerland), 2016, 6, 224.	1.3	1
57	Investigation of Poly(AM/AMPS/MA) on the Retarding Performance of Oil Well Cement. Applied Magnetic Resonance, 2016, 47, 987-1001.	0.6	17
58	Recycling combustion ash for sustainable cement production: A critical review with data-mining and time-series predictive models. Construction and Building Materials, 2016, 123, 673-689.	3.2	26
59	Geo-parametric study of dredged marine clay with solidification for potential reuse as good engineering soil. Environmental Earth Sciences, 2016, 75, 1.	1.3	18
60	Hydration of water- and alkali-activated white Portland cement pastes and blends with low-calcium pulverized fuel ash. Cement and Concrete Research, 2016, 83, 1-18.	4.6	52
61	Pozzolanic activity of volcanic rocks from Southern Jiangxi Province, China. Journal of Sustainable Cement-Based Materials, 2016, 5, 176-198.	1.7	9
62	Direct decomposition X-ray diffraction method for amorphous phase quantification and glassy phase determination in binary blends of siliceous fly ash and hydrated cement. Journal of Sustainable Cement-Based Materials, 2017, 6, 111-125.	1.7	14
63	Relation between humidity and chemically combined water under self-desiccation condition. Magazine of Concrete Research, 2017, 69, 641-648.	0.9	1
64	Pozzolanicity of fly ash modified by fluidized bed reactor–vapor deposition. Construction and Building Materials, 2017, 156, 719-727.	3.2	7
65	Assessment of Key Properties of Solidified Fly Ash with and without Sodium Sulfate., 2017,,.		1
66	Properties of Cement-Based Grouts with High Amounts of Ground Granulated Blast-Furnace Slag and Fly Ash. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	34
67	Self-healing ability of Engineered Cementitious Composites (ECC) under different exposure environments. Construction and Building Materials, 2017, 156, 142-151.	3.2	84
68	Mechanical properties and microstructure of blended cement containing modified quartz tailing. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1140-1146.	0.4	10
69	Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis. Cement and Concrete Composites, 2017, 83, 273-278.	4.6	149
71	Experimental Investigation and Quantitative Calculation of the Degree of Hydration and Products in Fly Ash-Cement Mixtures. Advances in Materials Science and Engineering, 2017, 2017, 1-12.	1.0	5
72	Influence of pozzolanic additives on hydration mechanisms of tricalcium silicate. Journal of the American Ceramic Society, 2018, 101, 3557-3574.	1.9	56
73	Experimental investigation of photocatalytic effects of concrete in air purification adopting entire concrete waste reuse model. Journal of Hazardous Materials, 2018, 353, 421-430.	6.5	27

#	ARTICLE	IF	Citations
74	Influence of activation of fly ash on the mechanical properties of concrete. Construction and Building Materials, 2018, 172, 728-734.	3.2	111
75	Experimental study on performance of cement-based grouts admixed with fly ash, bentonite, superplasticizer and water glass. Construction and Building Materials, 2018, 161, 282-291.	3.2	116
76	Use of recycled glass powder to improve the performance properties of high volume fly ash-engineered cementitious composites. Construction and Building Materials, 2018, 163, 53-62.	3.2	59
77	Effect of pore structures on gas permeability and chloride diffusivity of concrete. Construction and Building Materials, 2018, 163, 402-413.	3.2	127
78	Effect of curing temperature and fly ash content on the hydration and microstructure of fly ashâ€"cement pastes. Journal of Sustainable Cement-Based Materials, 2018, 7, 372-383.	1.7	10
79	Long-term pozzolanic reaction of fly ash in hardened cement-based paste internally activated by natural injection of saturated $Ca(OH)$ 2 solution. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	13
80	The relevance of ultrafine fly ash properties and mechanical properties in its fly ash-cement gelation blocks via static pressure forming. Construction and Building Materials, 2018, 186, 1064-1071.	3.2	38
81	Reuse of Stabilized Municipal Solid Waste Incinerator Fly Ash in Asphalt Mixtures. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	18
82	The Influence of Ground Fly Ash on Cement Hydration and Mechanical Property of Mortar. Advances in Civil Engineering, 2018, 2018, 1-7.	0.4	22
83	Microstructure of four-graded roller compacted concrete. Construction and Building Materials, 2018, 187, 25-37.	3.2	9
84	Effect of Fly Ash on Self-healing of Cracks in Concrete. , 2018, , .		4
85	Development of non-sintered zero-OPC binders using circulating fluidized bed combustion ash. Construction and Building Materials, 2018, 178, 562-573.	3.2	13
86	A comprehensive review on mechanical and durability properties of cement-based materials containing waste recycled glass. Journal of Cleaner Production, 2018, 198, 891-906.	4.6	109
87	Utilization of commercial sulfate to modify early performance of high volume fly ash based binder. Journal of Building Engineering, 2018, 19, 429-433.	1.6	13
88	Effects of Calcium Silicate Slag on Hydration of Cementitious Pastes. Materials, 2019, 12, 3094.	1.3	4
89	Activation of Portland cement blended with high volume of fly ash using Na2SO4. Cement and Concrete Composites, 2019, 104, 103417.	4.6	68
90	Research on hydration mechanism of ultrafine fly ash and cement composite. Construction and Building Materials, 2019, 227, 116697.	3.2	40
91	Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete. Waste Management, 2019, 94, 39-48.	3.7	83

#	Article	IF	Citations
93	Damage mechanisms of ultra-high-performance concrete under freeze–thaw cycling in salt solution considering the effect of rehydration. Construction and Building Materials, 2019, 198, 546-552.	3.2	51
94	High temperature resistance of boron active belite cement mortars containing fly ash. Journal of Cleaner Production, 2019, 211, 992-1000.	4.6	30
95	Chloride binding of cement pastes with fly ash exposed to CaCl2 solutions at 5 and 23†°C. Cement and Concrete Composites, 2019, 97, 43-53.	4.6	106
96	Size fractionation of brown fly ash: utilisation of grey fraction as a pozzolanic material in blended cement. European Journal of Environmental and Civil Engineering, 2020, 24, 833-848.	1.0	8
97	Development of ecological strain-hardening cementitious composites incorporating high-volume ground-glass pozzolans. Construction and Building Materials, 2020, 238, 117740.	3.2	17
98	A literature review on properties and applications of grouts for shield tunnel. Construction and Building Materials, 2020, 239, 117782.	3.2	63
99	Development of effective microfine cement-based grouts (EMCG) for porous and fissured strata. Construction and Building Materials, 2020, 262, 120775.	3.2	11
100	Influence of Hydrated Lime on the Chloride-Induced Reinforcement Corrosion in Eco-Efficient Concretes Made with High-Volume Fly Ash. Materials, 2020, 13, 5135.	1.3	6
101	Evolution of mechanical properties and permeability of concrete during steam curing process. Journal of Building Engineering, 2020, 32, 101796.	1.6	18
102	Evaluation of Fresh Properties and Rheology of Mortar Using Carbon-Free Fly Ash and Normal Fly Ash. Materials Science Forum, 0, 1005, 76-81.	0.3	1
103	Efficiency of Portland-pozzolana cements: Water demand, chemical reactivity and environmental impact. Construction and Building Materials, 2020, 247, 118546.	3.2	34
104	Acidification at rebar-concrete interface induced by accelerated corrosion test in aggressive chloride environment. Cement and Concrete Composites, 2020, 110, 103573.	4.6	20
105	Effect of the Sodium Silicate Modulus and Slag Content on Fresh and Hardened Properties of Alkali-Activated Fly Ash/Slag. Minerals (Basel, Switzerland), 2020, 10, 15.	0.8	45
106	The cementitious composites using calcium silicate slag as partial cement. Journal of Cleaner Production, 2020, 256, 120514.	4.6	11
107	Development of steel slag composite grouts for underground engineering. Journal of Materials Research and Technology, 2020, 9, 2793-2809.	2.6	13
108	Estimating reaction kinetics of cementitious pastes containing fly ash. Cement and Concrete Composites, 2020, 112, 103655.	4.6	37
109	Comparison between the effects of phosphorous slag and fly ash on the C-S-H structure, long-term hydration heat and volume deformation of cement-based materials. Construction and Building Materials, 2020, 250, 118807.	3.2	147
110	Study on hydration characteristics of circulating fluidized bed combustion fly ash (CFBCA). Construction and Building Materials, 2020, 251, 118993.	3.2	30

#	Article	IF	Citations
111	PORE STRUCTURAL AND FRACTAL ANALYSIS OF THE INFLUENCE OF FLY ASH AND SILICA FUME ON THE MECHANICAL PROPERTY AND ABRASION RESISTANCE OF CONCRETE. Fractals, 2021, 29, 2140003.	1.8	104
112	Evaluation of the cementing efficiency factor of low-calcium fly ash for the chloride-penetration resistance of concretes: A simple approach. Construction and Building Materials, 2021, 270, 121858.	3.2	9
113	Effectiveness of fresh cement kiln dust as a soil stabilizer and stabilization mechanism of high swelling clays. Environmental Earth Sciences, 2021, 80, 1.	1.3	19
114	Effects of activator dosage and silica fume on the properties of Na2SO4-activated high-volume fly ash. Construction and Building Materials, 2021, 278, 122346.	3.2	13
115	Development of a sustainable concrete incorporated with effective microorganism and fly Ash: Characteristics and modeling studies. Construction and Building Materials, 2021, 285, 122899.	3.2	28
116	Influence of hydrated lime on mechanical and shrinkage properties of alkali-activated slag cement. Construction and Building Materials, 2021, 289, 123201.	3.2	24
117	Investigation on the Role of Steel Slag Powder in Blended Cement Based on Quartz Powder as Reference. Advances in Civil Engineering, 2021, 2021, 1-15.	0.4	2
118	Influence of fly ash or slag on nucleation and growth of early hydration of cement. Thermochimica Acta, 2021, 701, 178964.	1.2	18
119	Long-Term Influence of Nanosilica on the Microstructures, Strength, and Durability of High-Volume Fly Ash Mortar. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	9
120	Mechanical Properties and Durability of Sustainable Concrete Containing Various Industrial Solid Wastes. Transportation Research Record, 2021, 2675, 797-810.	1.0	8
121	Physico-mechanical and microstructure properties of cemented coal Gangue-Fly ash backfill: Effects of curing temperature. Construction and Building Materials, 2021, 299, 124011.	3.2	65
122	Development of High-Performance Microfine Cementitious Grout with High Amount of Fly Ash, Silica Fume, and Slag. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	6
123	Hydration and microstructure of calcined hydrotalcite activated high-volume fly ash cementitious composite. Cement and Concrete Composites, 2021, 123, 104213.	4.6	20
124	Strength activity index and bulk resistivity index modifications that differentiate inert and reactive materials. Cement and Concrete Composites, 2021, 124, 104240.	4.6	26
125	Lechugilla natural fiber as internal curing agent in self compacting concrete (SCC): Mechanical properties, shrinkage and durability. Cement and Concrete Composites, 2020, 112, 103686.	4.6	30
126	Properties and pozzolanic reaction degree of tuff in cement-based composite. Advances in Concrete Construction, 2015, 3, 71-90.	0.4	8
127	Compressive and Time-Dependent Strength of Concrete Masonry Constructed with Type M Mortar and Grouts Containing High Volume of Fly Ash and Slag. ACI Materials Journal, 2016, 113, .	0.3	2
128	Physical and Chemical Actions of Nano-Mineral Additives on Properties of High-Volume Fly Ash Engineered Cementitious Composites. ACI Materials Journal, 2016, 113, .	0.3	14

#	ARTICLE	IF	CITATIONS
129	Correlation between Compressive Strengths and Water Absorption of Fly Ash Cement Mortar Immersed in Water. Archives of Civil Engineering, 2019, 65, 141-152.	0.7	6
130	OIL SHALE ASH BASED STONE FORMATION – HYDRATION, HARDENING DYNAMICS AND PHASE TRANSFORMATIONS. Oil Shale, 2014, 31, 91.	0.5	19
131	A review of sample preparation and its influence on pH determination in concrete samples. Materiales De Construccion, 2017, 67, 108.	0.2	16
132	Effect of Curing Temperature on Pozzolanic Reaction of Fly Ash in Blended Cement Paste. International Journal of Chemical Engineering and Applications (IJCEA), 2014, 5, 31-35.	0.3	29
133	The Relationship of Compressive Strength and Chemically Bound Water Content of High-Volume Fly Ash-Cement Mortar. Materials, 2021, 14, 6273.	1.3	10
134	Experimental Research to Improve the Soundness of Cementitious Material Blended with Cycled Fluidized Bed Ash., 0,, 229-238.		0
135	Effect of Fine Particle Cement and Recycled Aggregates as Alkali Activator on the Engineering Properties and Micro-Structure of High Volume Blast Furnace Slag Concrete. Journal of the Korea Institute of Building Construction, 2013, 13, 602-608.	0.1	1
136	Durability of Alkali-Activated Blast Furnace Slag Concrete: Chloride Ions Diffusion. Journal of the Korean Society of Safety, 2015, 30, 120-127.	0.0	4
139	Optimising High Lime Fly Ash Content By Means of Silica Fume İncorporation To Control Alkali-Silica Reaction And Drying Shrinkage of Mortars. Journal of Polytechnic, 0, , .	0.4	1
140	Engineering Properties of Cement Paste with Fly Ash Substitution and Addition of Alkaline Activator. Lecture Notes in Civil Engineering, 2021, , 1935-1941.	0.3	0
141	Effect of Water-to-Binder Ratio on Cementing Efficiency Factor of Fly Ash Regarding Compressive Strength of Concrete. Lecture Notes in Civil Engineering, 2020, , 467-476.	0.3	1
142	Aggressive Environment Performance of Low Energy Cements Containing Fly Ash. Gazi University Journal of Science, 2021, 34, 19-29.	0.6	1
143	Monitoring the pozzolanic effect of fly ash in blended OPC mortars by electrical impedance spectroscopy. Construction and Building Materials, 2022, 314, 125632.	3. 2	12
144	Influence of off-spec fly ash and surfactant-coated nano-iron-oxide on the fresh and hardened properties of cement pastes: An exploratory study. Journal of Building Engineering, 2022, 48, 103976.	1.6	2
145	Colemanite filler from wastes in recycled concrete. , 2022, , 79-103.		3
146	Effect of Rehydration on the Performance of Mechanically Loaded UHPC. Frontiers in Materials, 2022, 9, .	1.2	1
147	Hybrid Cements with ZnO Additions: Hydration, Compressive Strength and Microstructure. Molecules, 2022, 27, 1278.	1.7	1
148	Solidification of heavy metals in lead smelting slag and development of cementitious materials. Journal of Cleaner Production, 2022, 359, 132134.	4.6	61

#	ARTICLE	IF	CITATIONS
149	Strategy for preventing explosive spalling and enhancing material efficiency of lightweight ultra high-performance concrete. Cement and Concrete Research, 2022, 158, 106842.	4.6	22
150	Effects of Fly Ash Dosage on Shrinkage, Crack Resistance and Fractal Characteristics of Face Slab Concrete. Fractal and Fractional, 2022, 6, 335.	1.6	51
151	Synergistic effect of red mud and fly ash on passivation and corrosion resistance of 304 stainless steel in alkaline concrete pore solutions. Cement and Concrete Composites, 2022, 132, 104637.	4.6	15
152	Hydration and Microstructure of High-Volume Ground Granulated Blast Furnace Slag Concrete Incorporating Metakaolin. Science of Advanced Materials, 2022, 14, 528-534.	0.1	0
153	Impact of polyvinyl alcohol fiber on the full life-cycle shrinkage of cementitious composite. Journal of Building Engineering, 2023, 63, 105463.	1.6	4
154	Effects of PVA fibers on microstructures and hydration products of cementitious composites with and without fly ash. Construction and Building Materials, 2022, 360, 129533.	3.2	8
155	Controlled low strength materials (CLSM) activated with alkaline solution: Flowability, setting time and microstructural characteristics. Case Studies in Construction Materials, 2023, 18, e01892.	0.8	0
156	Quantification of the reaction degree of fly ash in blended cement systems. Cement and Concrete Research, 2023, 167, 107121.	4.6	5
157	Foamed concrete utilizing excavated soil and fly ash for urban underground space backfilling: Physical properties, mechanical properties, and microstructure. Tunnelling and Underground Space Technology, 2023, 134, 104995.	3.0	11
158	Hydration characteristics, hydration products and microstructure of reactive powder concrete. Journal of Building Engineering, 2023, 69, 106306.	1.6	6
159	Investigating the Impact of Fly Ash on the Strength and Micro-Structure of Concrete during Steam Curing and Subsequent Stages. Materials, 2023, 16, 1326.	1.3	5
160	Leaching behavior of arsenic and selenium in coal fly ash by aging treatment and cement mixing. Journal of Nuclear Science and Technology, 0 , 1 -13.	0.7	0
161	Enhancement of early-age properties of high-volume fly ash–cement paste with hydrated lime powder. Materials Today: Proceedings, 2023, , .	0.9	0
162	The Effects of Curing Temperature on CH-Based Fly Ash Composites. Materials, 2023, 16, 2645.	1.3	1