Fracture properties of concrete reinforced with steel \hat{e}

Cement and Concrete Composites 22, 343-351 DOI: 10.1016/s0958-9465(00)00033-0

Citation Report

#	Article	IF	CITATIONS
1	Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices. Materials and Structures/Materiaux Et Constructions, 2004, 37, 707-716.	1.3	210
2	Statistical analysis of impact strength and strength reliability of steel–polypropylene hybrid fiber-reinforced concrete. Construction and Building Materials, 2005, 19, 1-9.	3.2	120
3	MECHANICAL PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE. , 2006, , 207-214.		1
4	Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cement and Concrete Research, 2007, 37, 1366-1372.	4.6	360
5	Test analysis for FRC beams strengthened with externally bonded FRP sheets. Construction and Building Materials, 2008, 22, 315-323.	3.2	43
6	Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 494, 153-157.	2.6	359
7	Influence of fibrous additives on properties of aerated autoclaved concrete forming mixtures and strength characteristics of products. Construction and Building Materials, 2009, 23, 3034-3042.	3.2	30
8	Properties of concrete reinforced with different kinds of industrial waste fibre materials. Construction and Building Materials, 2009, 23, 3196-3205.	3.2	164
9	Experiment investigation for dynamic behavior of hybrid fiber effects on reactive powder concrete. , 2009, , .		0
10	Proportioning Design and Mechanical Properties Research of Polypropylene Fiber and Polymer Emulsion Reinforced Cement Mortar. Journal of Materials in Civil Engineering, 2010, 22, 223-226.	1.3	3
11	Strength properties of hybrid nylon-steel and polypropylene-steel fibre-reinforced high strength concrete at low volume fraction. International Journal of Physical Sciences, 2011, 6, .	0.1	3
12	Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Composite Structures, 2011, 93, 2368-2374.	3.1	218
13	Hybrid Reinforcement of Sisal and Polypropylene Fibers in Cement-Based Composites. Journal of Materials in Civil Engineering, 2011, 23, 177-187.	1.3	39
14	Size Effect of Waste Compact Disc Shred on Properties of Concrete. Advanced Materials Research, 2011, 346, 40-46.	0.3	5
15	Effects of fibres and rice husk ash on properties of heated HSC. Magazine of Concrete Research, 2012, 64, 457-470.	0.9	17
16	Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites. Cement and Concrete Composites, 2012, 34, 1114-1123.	4.6	61
17	Flexural behaviour of amorphous micro-steel fibre-reinforced cement composites. Composite Structures, 2012, 94, 1443-1449.	3.1	66
18	Effect of styrene–butadiene latex on the bond performance of macro synthetic fiber in micro jute/macro synthetic hybrid fiberâ€reinforced latexâ€modified cementâ€based composites. Journal of Applied Polymer Science, 2013, 127, 3522-3529.	1.3	5

#	Article	IF	CITATIONS
19	Bond properties of structural polypropylene fiber in hybrid nonstructural polypropylene and structural polypropylene fiberâ€reinforced latexâ€modified cementâ€based composites. Journal of Applied Polymer Science, 2013, 127, 1221-1227.	1.3	10
20	Effects of fibre hybridization on multiple cracking potential of cement-based composites under flexural loading. Construction and Building Materials, 2013, 41, 15-20.	3.2	29
21	Influence of the properties of polypropylene fibres on the fracture behaviour of low-, normal- and high-strength FRC. Construction and Building Materials, 2013, 45, 130-137.	3.2	67
22	Bonding properties of amorphous micro-steel fibre-reinforced cementitious composites. Composite Structures, 2013, 102, 101-109.	3.1	42
23	Strength and fracture energy characteristics of self-consolidating concrete incorporating polyvinyl alcohol, steel and hybrid fibres. Construction and Building Materials, 2013, 45, 20-29.	3.2	80
24	Reinforcing Efficiency of Crimped Profile of Polypropylene Fibres on the Cementitious Matrix. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6, 2662-2667.	0.1	3
25	Bonding Characteristics of Macro Polypropylene (Pp) Fibre in Pva/Macro Pp Blended Fibre-Reinforced Styrene Butadiene Latex-Modified Cement-Based Composites. Progress in Rubber, Plastics and Recycling Technology, 2014, 30, 1-18.	0.8	3
26	A unified failure envelope for hybrid fibre reinforced concrete subjected to true triaxial compression. Composite Structures, 2014, 109, 31-40.	3.1	51
27	Repairing reinforced concrete slabs using composite layers. Materials & Design, 2014, 58, 136-144.	5.1	28
28	Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice. Construction and Building Materials, 2014, 51, 313-320.	3.2	147
29	Comparative experimental study of mechanical properties of concrete prepared by different fibres. IES Journal Part A: Civil and Structural Engineering, 2014, 7, 151-162.	0.4	0
30	Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions. Materials & Design, 2014, 60, 57-65.	5.1	76
31	Influence of matrix grade on the mechanical behaviour of fibre-reinforced concrete. Proceedings of Institution of Civil Engineers: Construction Materials, 2014, 167, 258-270.	0.7	2
32	Effect of hybrid fibres on the shear and durability behaviour of high performance concrete. International Journal of Structural Engineering, 2015, 6, 44.	0.3	1
33	Effects of Low Volume Fraction of Polyvinyl Alcohol Fibers on the Mechanical Properties of Oil Palm Shell Lightweight Concrete. Advances in Materials Science and Engineering, 2015, 2015, 1-11.	1.0	20
34	Experimental Investigation of the Fracture of Hybrid-Fiber-Reinforced Concrete. Mechanics of Composite Materials, 2015, 51, 25-32.	0.9	11
35	Using Calcium Carbonate Whisker in Hybrid Fiber-Reinforced Cementitious Composites. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	58
36	Flexural behaviour of amorphous metal-fibre-reinforced concrete. Proceedings of the Institution of Civil Engineers: Structures and Buildings. 2015. 168. 15-25.	0.4	16

#	Article	IF	Citations
37	Experimental investigation on the seismic performance of steel–polypropylene hybrid fiber reinforced concrete columns. Construction and Building Materials, 2015, 87, 16-27.	3.2	78
38	Effect of steel and synthetic fibers on shear strength of RC beams without shear stirrups. Construction and Building Materials, 2015, 83, 150-158.	3.2	50
39	A numerical approach for the design of multiscale fibre-reinforced cementitious composites. Philosophical Magazine, 2015, 95, 3305-3327.	0.7	12
40	Mode II Fracture Toughness of Hybrid FRCs. International Journal of Concrete Structures and Materials, 2015, 9, 475-486.	1.4	35
41	Influence of Steel and Polypropylene Fibers on Flexural Behavior of RC Beams. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	34
42	Influence of fibre distribution and orientation on the flexural behaviour of beams cast from flowable hybrid polymer–steel FRC. Construction and Building Materials, 2016, 109, 166-176.	3.2	20
43	High-performance fiber-reinforced concrete: a review. Journal of Materials Science, 2016, 51, 6517-6551.	1.7	372
44	Evaluation of the Mechanical Properties of Steel and Polypropylene Fibre-Reinforced Concrete Used in Beam Column Joints. , 2016, , .		0
45	Constitutive behaviour of confined hybrid fibre reinforced HPC under uniaxial compression. Magazine of Concrete Research, 2016, 68, 1-11.	0.9	31
46	Impact resilience of multiscale fibre reinforced composites. Magazine of Concrete Research, 2016, 68, 379-390.	0.9	4
47	Performance of multiscale, including nanoscale, fibres in concrete. Emerging Materials Research, 2017, 6, 198-209.	0.4	6
48	Failure of FRP-strengthened SFRC beams through an effective mechanism-based regularized XFEM framework. Composite Structures, 2017, 172, 345-358.	3.1	16
49	A bibliography on the analytical model of the mechanical behaviour in uniaxial tension of fibre concrete: Application to concrete reinforced with fibres and powders from recycling of thermoset composite materials. Construction and Building Materials, 2017, 131, 214-228.	3.2	3
50	Experimental investigation on mechanical properties of Hybrid Fibre Reinforced Concrete. Construction and Building Materials, 2017, 157, 930-942.	3.2	65
51	Synergy assessment of hybrid reinforcements in concrete. Composites Part B: Engineering, 2018, 147, 197-206.	5.9	28
52	The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete. Composites Part B: Engineering, 2018, 139, 84-96.	5.9	149
53	The mechanical and durability properties of concrete containing hybrid synthetic fibers. Construction and Building Materials, 2018, 178, 72-82.	3.2	48
54	Laboratory investigation on the buckling restrained braces with an optimal percentage of microstructure, polypropylene and hybrid fibers under cyclic loads. Composite Structures, 2018, 203, 585-598.	3.1	6

#	Article	IF	CITATIONS
55	The Mechanical Properties and Chloride Resistance of Concrete Reinforced with Hybrid Polypropylene and Basalt Fibres. Materials, 2019, 12, 2371.	1.3	24
56	Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Construction and Building Materials, 2019, 229, 117068.	3.2	72
57	Flexural performance of hybrid polypropylene–polyolefin FRC composites. Asian Journal of Civil Engineering, 2019, 20, 515-526.	0.8	8
58	A review on concrete fracture energy and effective parameters. Cement and Concrete Research, 2019, 120, 294-321.	4.6	127
59	Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre. Construction and Building Materials, 2020, 233, 117194.	3.2	57
60	Effect of untreated coal waste as fine and coarse aggregates replacement on the properties of steel and polypropylene fibres reinforced concrete. Mechanics of Materials, 2020, 150, 103592.	1.7	37
61	Use of oil palm shell as an aggregate in cement concrete: A review. Construction and Building Materials, 2020, 265, 120357.	3.2	81
62	Experimental evaluation on fiber distribution characteristics and mechanical properties of calcium carbonate whisker modified hybrid fibers reinforced cementitious composites. Construction and Building Materials, 2020, 265, 120292.	3.2	42
63	Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber. Materials Today Communications, 2020, 25, 101640.	0.9	15
64	Assessment of synergetic effect on microscopic and mechanical properties of steelâ€polypropylene hybrid fiber reinforced concrete. Structural Concrete, 2021, 22, 516-534.	1.5	13
65	Durability performance of hybrid reinforced concretes (steel fiberÂ+Âpolyolefin fiber) in a harsh marine tidal zone of Persian Gulf. Construction and Building Materials, 2021, 266, 121176.	3.2	19
66	Review on different testing methods and factors affecting fracture properties of fiber reinforced cementitious composites. Construction and Building Materials, 2021, 273, 121766.	3.2	65
67	Polimer lifler ve beton özelliklerine etkileri. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, C	^{),} ö.o	1
68	Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach. Materials, 2021, 14, 1745.	1.3	57
69	Effects of Fiber Combination on the Fracture Resistance of Hybrid Reinforced Concrete. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2022, 46, 2161-2172.	1.0	1
70	Engineering Properties of Hybrid Fibre Reinforced Ternary Blend Geopolymer Concrete. Journal of Composites Science, 2021, 5, 203.	1.4	15
71	Novel Hybrid Fiber Factor for Hybrid Fiber-Reinforced Concrete. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	12
72	Statistical and experimental study to evaluate the variability and reliability of impact strength of steel-polypropylene hybrid fiber reinforced concrete. Journal of Building Engineering, 2021, 44, 102937.	1.6	18

#	Article	IF	CITATIONS
73	Development of hybrid steel-basalt fiber reinforced concrete – in aspects of flexure, fracture and microstructure. , 2021, 20, 62-90.		6
74	Ductility Enhancement in Beam-Column Connections Using Hybrid Fiber-Reinforced Concrete. ACI Structural Journal, 2015, 112, .	0.3	19
75	Size Effects in Flexural Toughness of Fiber Reinforced Concrete. Journal of Testing and Evaluation, 2010, 38, 332-338.	0.4	3
76	PERFORMANCE EVALUATION OF HYBRID FIBRE REINFORCED CONCRETE SUBJECTED TO FREEZING AND THAWING EFFECT. International Journal of Research in Engineering and Technology, 2014, 03, 344-347.	0.1	2
77	Review on Hybrid Fiber Reinforced High Performance High Volume Flyash Concrete. International Journal of Structural and Civil Engineering Research, 2016, , .	0.1	3
78	Using Calcium Carbonate Whisker in Engineered Cementitious Composites. , 0, , .		2
79	A Review of Fiber Synergy in Hybrid Fiber Reinforced Concrete. Journal of Applied Engineering Sciences, 2018, 8, 41-50.	0.2	12
80	The Effect of Steel and Polypropylene Fibers on the Properties of Horizontally Formed Concrete. Materials, 2020, 13, 5827.	1.3	15
81	Slump and Mechanical Properties of Hybrid Steel-PVA Fiber Reinforced Concrete. Journal of the Korea Concrete Institute, 2010, 22, 651-658.	0.1	18
82	Flexural Performance Characteristics of Amorphous Steel Fiber-Reinforced Concrete. Journal of the Korea Concrete Institute, 2014, 26, 483-489.	0.1	16
83	Flexural and Workable Properties of High Performance Hybrid Fiber Reinforced Concrete. Journal of the Korea Concrete Institute, 2005, 17, 543-550.	0.1	2
84	Effect of Fiber Volume Fraction on Bond Properties of Structural Synthetic Fiber in Polypropylene Fiber Reinforced Cement Composites. Journal of the Korea Institute for Structural Maintenance Inspection, 2011, 15, 125-135.	0.1	1
85	Effect of Polyvinyl Alcohol Fiber Volume Fraction on Pullout Behavior of Structural Synthetic Fiber in Hybrid Fiber Reinforced Cement Composites. Journal of the Korea Concrete Institute, 2011, 23, 461-469.	0.1	4
86	An Experimental Study of Shear Capacity for One-way Concrete Slabs Reinforced with Amorphous Micro Steel Fibers. Journal of the Korean Recycled Construction Resources Institute, 2013, 1, 128-135.	0.1	0
87	Chloride Penetration Resistance and Flexural Behavior of Hybrid Organic Fibers Reinforced Concrete. Journal of the Korean Geosynthetic Society, 2015, 14, 105-115.	0.0	0
88	Nutritional Evaluation of Insect's Pupae-Larvae and its Utilization in Poultry Compound Feed. Open Civil Engineering Journal, 2020, 14, 1-8.	0.4	6
89	A Study on the Flexural Strength Properties of Composite Concrete with the Morphological Properties of Super Fiber. Journal of the Korean Society for Advanced Composite Structures, 2020, 11, 8-16.	0.0	3
90	Shear Strength of Hybrid Fibre-Reinforced Ternary Blend Geopolymer Concrete Beams under Flexure. Materials, 2021, 14, 6634.	1.3	12

#	Article	IF	CITATIONS
91	Assessment of fiber factor for the fracture toughness of polyethylene fiber reinforced geopolymer. Construction and Building Materials, 2022, 319, 126130.	3.2	57
93	Mechanical Properties Evaluation of Functionally Layered Cement Composites. Open Civil Engineering Journal, 2020, 14, 1-9.	0.4	1
94	Study on Frost Resistance of the Carbon-Fiber-Reinforced Concrete. Applied Sciences (Switzerland), 2022, 12, 3823.	1.3	4
96	Durability of hybrid fiber reinforced concrete at various environmental media. Scientific Review Engineering and Environmental Sciences, 0, , 1-13.	0.2	0
97	Digital imaging monitoring of fracture processes in hybrid steel fiber reinforced concrete. Composite Structures, 2022, 298, 116005.	3.1	12
98	Effect of fiber hybridization on mechanical properties of concrete. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	11
99	Influence of Hybrid Basalt Fibres' Length on Fresh and Mechanical Properties of Self-Compacted Ambient-Cured Geopolymer Concrete. Journal of Composites Science, 2022, 6, 292.	1.4	7
100	Fiber-reinforced concrete (FRC) for civil engineering applications. , 2023, , 541-568.		1
101	Micromechanics-based model of single crack propagation in Engineered cementitious composites (ECC). Construction and Building Materials, 2023, 369, 130519.	3.2	8
104	A Review of Shear Strength of Hybrid Fiber Reinforced Geopolymer Concrete under Ambient Condition. , 0, , .		0