Reliability analysis for a circular consecutive-2-out-of-1 in repair

Reliability Engineering and System Safety 68, 113-120 DOI: 10.1016/s0951-8320(99)00076-9

Citation Report

#	Article	IF	CITATIONS
1	A method for evaluation of reliability indices for repairable circular consecutive-k-out-of-n:F systems. Reliability Engineering and System Safety, 2003, 79, 1-9.	5.1	60
2	Repairable Consecutive-k-Out-of-n: G Systems With <tex>\$r\$</tex> Repairmen. IEEE Transactions on Reliability, 2005, 54, 328-337.	3.5	23
3	Repairable consecutiveout-of-: system with fuzzy states. Fuzzy Sets and Systems, 2006, 157, 121-142.	1.6	24
4	An optimal replacement policy for a two-component series system assuming geometric process repair. Computers and Mathematics With Applications, 2007, 54, 192-202.	1.4	25
5	A methodology for analyzing the transient availability and survivability of a system with repairable components. Applied Mathematics and Computation, 2007, 184, 300-307.	1.4	21
6	Economic design of a circular consecutiveout-of-:F system with -step Markov dependence. Reliability Engineering and System Safety, 2007, 92, 464-478.	5.1	28
7	A geometric process repair model for a repairable cold standby system with priority in use and repair. Reliability Engineering and System Safety, 2009, 94, 1782-1787.	5.1	42
8	Fuzzy availability analysis of a repairable consecutive-2-out-of-3: F system. , 2009, , .		3
9	RESTART simulation of non-Markov consecutive-k-out-of-n: F repairable systems. Reliability Engineering and System Safety, 2010, 95, 247-254.	5.1	20
10	Reliability Calculation Model for Repairable Systems Considering Failure Correlation and Variable Hazard Rate. , 2010, , .		1
12	Reliability analysis of repairable consecutiveâ€kâ€outâ€ofâ€n: G systems with sensor and repairmen. International Journal of Quality and Reliability Management, 2011, 28, 894-908.	1.3	4
13	Analysis for a two-dissimilar-component cold standby repairable system with repair priority. Reliability Engineering and System Safety, 2011, 96, 1542-1551.	5.1	47
14	An optimal repair–replacement policy for a cold standby system with use priority. Applied Mathematical Modelling, 2011, 35, 1222-1230.	2.2	12
15	An optimal replacement policy for a repairable system based on its repairman having vacations. Reliability Engineering and System Safety, 2011, 96, 868-875.	5.1	39
16	Reliability analysis for the consecutive- k -out-of- n : F system with repairmen taking multiple vacations. Applied Mathematical Modelling, 2013, 37, 4685-4697.	2.2	23
17	Copula Reliability Calculation Model for <i>K</i> / <i>N</i> (F) Systems Considering Failure Correlation. Applied Mechanics and Materials, 2013, 446-447, 1045-1051.	0.2	1
18	On the profust reliabilities of consecutive <i>k</i> -out-of- <i>n</i> systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2014, 228, 62-71.	0.6	1
19	Reliability of Circular Systems With Markov Dependencies. IEEE Transactions on Reliability, 2014, 63, 346-356.	3.5	4

CITATION REPORT

#	Article	IF	CITATIONS
20	Computing reliability indices of repairable systems via signature. Journal of Computational and Applied Mathematics, 2014, 260, 229-235.	1.1	24
21	Signature Based Reliability Analysis of Repairable Weighted k-Out-of-n:G Systems. IEEE Transactions on Reliability, 2016, 65, 843-850.	3.5	21
22	Interval estimation for <i>k</i> -out-of- <i>n</i> load-sharing systems. IISE Transactions, 2017, 49, 344-353.	1.6	24
23	Profust reliability of linear and circular type <i>F</i> and <i>G</i> systems having two failure criteria under Markov dependency. Communications in Statistics Part B: Simulation and Computation, 2019, 48, 219-239.	0.6	1
24	Reliability evaluation of repairable weighted system using interval valued universal generating function. International Journal of Quality and Reliability Management, 2020, 37, 957-981.	1.3	2
25	Reliability analysis of circular multi-state sliding window system with sequential demands. Reliability Engineering and System Safety, 2020, 198, 106882.	5.1	10
26	Analysis of Linear Consecutive-2-out-of-n: F Repairable System with Different Failure Rate. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2021, 10, 91-99.	0.1	4
27	Reliability analysis and optimization of multi-state sliding window system with sequential demands and time constraints. Reliability Engineering and System Safety, 2021, 208, 107449.	5.1	8
28	Time-dependent reliability analysis for repairable consecutive-k-out-of-n:F system. Statistical Theory and Related Fields, 0, , 1-9.	0.2	3
29	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e2254" altimg="si244.svg"> <mml:mi>k</mml:mi> -out-of- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e2259" altimg="si245.svg"><mml:mi>n</mml:mi>: F systems with retrial feature. Reliability</mml:math 	5.1	16
30	Engineering and System Safety, 2021, 216, 107957 Computing reliability for closed-cycle cooling system in thermo-electric power plants by modelling to circular consecutive-2-out-of-n:F system. Thermal Science, 2018, 22, 177-184.	0.5	3
31	Analysis of Circular Consecutive-k-out-of-n:G Systems. Journal of Modern Mathematics and Statistics, 2010, 4, 137-142.	0.1	0
32	Reliability Modeling and Optimization of Circular Multi-State Sliding Time Window System with Sequential Demands. Reliability Engineering and System Safety, 2022, 225, 108616.	5.1	4
33	Stress-strength reliability of multi-component system using response surface approach. Communications in Statistics Part B: Simulation and Computation. 0. , 1-20.	0.6	0