Aromatic Compounds with Planar Tricoordinate Phosp

Tetrahedron 56, 79-84 DOI: 10.1016/s0040-4020(99)00775-9

Citation Report

#	Article	IF	CITATIONS
1	Anellated Heterophospholes and Phospholides and Analogies with Related Non-Phosphorus Systems. Chemical Reviews, 2001, 101, 3549-3578.	23.0	111
2	Aromaticity of Phosphorus Heterocycles. Chemical Reviews, 2001, 101, 1229-1246.	23.0	368
3	Influence of building block aromaticity in the determination of electronic properties of five-membered heterocyclic oligomers. Physical Chemistry Chemical Physics, 2002, 4, 1522-1530.	1.3	68
4	Phosphorus stabilized carbenes: theoretical predictions. Journal of Organometallic Chemistry, 2002, 643-644, 278-284.	0.8	42
5	Structure–property relationships in phosphole oligomers: a theoretical insight. Journal of Organometallic Chemistry, 2002, 643-644, 194-201.	0.8	23
6	To What Extent Can Nine-Membered Monocycles Be Aromatic?. European Journal of Organic Chemistry, 2003, 2003, 1923-1930.	1.2	23
7	Oxidation inhibition effects of phosphorus and boron in different carbon fabrics. Carbon, 2003, 41, 1987-1997.	5.4	113
8	Facts and artifacts about aromatic stability estimation. Tetrahedron, 2003, 59, 1657-1665.	1.0	175
9	Structureâ^'Property Relationships in Phosphole-Containing Ï€-Conjugated Systems: A Quantum Chemical Study. Journal of Physical Chemistry A, 2003, 107, 838-846.	1.1	52
10	Aromaticity as a Cornerstone of Heterocyclic Chemistry. Chemical Reviews, 2004, 104, 2777-2812.	23.0	662
11	On the ligand properties of the P- versus the N-heterocyclic carbene for a Grubbs catalyst in olefin metathesis. Journal of Organometallic Chemistry, 2005, 690, 6079-6088.	0.8	19
12	A Stable P-Heterocyclic Carbene. Angewandte Chemie - International Edition, 2005, 44, 1700-1703.	7.2	152
14	Energetic Aspects of Cyclic Pi-Electron Delocalization:Â Evaluation of the Methods of Estimating Aromatic Stabilization Energies. Chemical Reviews, 2005, 105, 3773-3811.	23.0	559
15	Organophosphorus π-Conjugated Materials. Chemical Reviews, 2006, 106, 4681-4727.	23.0	965
16	An aromatic–antiaromatic switch in P-heteroles. A small change in delocalisation makes a big reactivity difference. Organic and Biomolecular Chemistry, 2006, 4, 996.	1.5	67
17	Synthesis and Molecular Structure of Tris[(trimethylsilyl)silyl](diisopropylamino)(diphenylphosphino)borane. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 2443-2446.	0.6	14
18	Phosphole, pyrrole, and their tetrahydro derivatives: A theoretical study of their properties. Structural Chemistry, 2006, 17, 13-17.	1.0	15
19	Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2006, 45, 1348-1352.	7.2	444

#	Article	IF	CITATIONS
20	CO Fixation to Stable Acyclic and Cyclic Alkyl Amino Carbenes: Stable Amino Ketenes with a Small HOMO–LUMO Gap. Angewandte Chemie - International Edition, 2006, 45, 3488-3491.	7.2	289
23	Aromatic 1 <i>H</i> -[1,2]Diphosphole with a Planar Tricoordinated Phosphorus, Plus η ² -Coordination Mode between Ruthenium(0) and a Phosphaalkene. Organometallics, 2007, 26, 5050-5058.	1.1	23
24	Electronic properties of tricoordinated phosphorus in hexagonal phosphininium compounds and molecular aromaticity. Journal of Computational Chemistry, 2007, 28, 1467-1475.	1.5	9
25	Does the Planar Aromatic Phosphorus Analogue of Pyridone Exist?. European Journal of Organic Chemistry, 2007, 2007, 1669-1677.	1.2	7
26	Why are Phosphole Oxides Unstable? The Phenomenon of Antiaromaticity as a Destabilizing Factor. European Journal of Organic Chemistry, 2007, 2007, 4765-4771.	1.2	23
27	Tri-coordinated nitrogen and phosphorus in planar eight π electron systems: Intriguing conformational differences. Computational and Theoretical Chemistry, 2007, 823, 1-5.	1.5	2
28	Stable P-Heterocyclic Carbenes: Scope and Limitations. Chemistry - an Asian Journal, 2007, 2, 178-187.	1.7	60
29	Magnetotropicity of phosphole and its arsenic analogue. Theoretical Chemistry Accounts, 2007, 118, 89-97.	0.5	16
30	Using three major criteria to evaluate aromaticity of five-member C-containing rings and their Si-, N-, and P-substituted aromatic heterocyclics. Structural Chemistry, 2007, 18, 25-31.	1.0	20
31	Dual Supermesityl Stabilization: A Roomâ€Temperatureâ€Stable 1,2,4â€Triphosphole Radical, Sigmatropic Hydrogen Rearrangements, and Tetraphospholide Anion. European Journal of Inorganic Chemistry, 2008, 2008, 2386-2390.	1.0	29
32	Heterocyclic Carbenes: Synthesis and Coordination Chemistry. Angewandte Chemie - International Edition, 2008, 47, 3122-3172.	7.2	2,604
34	A persistent P,N-heterocyclic carbene. Chemical Communications, 2008, , 4711.	2.2	22
35	Dual Supermesityl Stabilization: 1-Alkyl-1 <i>H</i> -[1,2,4]triphospholes, with Among the Most Planar and Least Sterically Hindered Ïf ³ ,λ ³ -Phosphorus Atoms, and Novel C ₂ P ₃ S ₄ Folded Heterocycles. Organometallics, 2008, 27, 5118-5121.	1.1	5
36	Highly Unsaturated Phosphorus Compounds: Generation and Reactions on Both Multiple Bonds of Vinyl Phosphaalkyne. Organometallics, 2009, 28, 2410-2416.	1.1	13
37	Aromatic Phosphorus Heterocycles. Topics in Heterocyclic Chemistry, 2009, , 27-81.	0.2	49
38	Stabilization of Square Planar Silicon: A New Building Block for Conjugated Si-Containing Systems. Journal of Physical Chemistry A, 2009, 113, 707-712.	1.1	14
40	Stable Cyclic Carbenes and Related Species beyond Diaminocarbenes. Angewandte Chemie - International Edition, 2010, 49, 8810-8849.	7.2	980
41	Electronic structure of two phosphorus compounds. Journal of Electron Spectroscopy and Related Phenomena, 2010, 182, 76-80.	0.8	0

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
42	Phosphinidene generation from phosphorus heterocycles and cages – A theoretical study. Comptes Rendus Chimie, 2010, 13, 1048-1053.	0.2	5
43	Introduction to N-Heterocyclic Carbenes: Synthesis and Stereoelectronic Parameters. RSC Catalysis Series, 2010, , 1-41.	0.1	4
44	Analogy between sulfuryl and phosphino groups: the aromaticity of thiophene-oxide. Structural Chemistry, 2011, 22, 1385-1392.	1.0	12
45	Design of Carbene-Based Organocatalysts for Nitrogen Fixation: Theoretical Study. Journal of Chemical Theory and Computation, 2012, 8, 1983-1988.	2.3	20
47	Phospholes – Development and Recent Advances. Mendeleev Communications, 2013, 23, 117-130.	0.6	65
48	Oxazol-2-ylidenes. A new class of stable carbenes?. RSC Advances, 2013, 3, 7970.	1.7	32
49	Pyridylâ€Functionalised 3 <i>H</i> â€1,2,3,4â€Triazaphospholes: Synthesis, Coordination Chemistry and Photophysical Properties of Lowâ€Coordinate Phosphorus Compounds. Chemistry - A European Journal, 2015, 21, 11096-11109.	1.7	48
50	Influence of Pâ€Bonded Bulky Substituents on Electronic Interactions in Ferrocenylâ€&ubstituted Phospholes. Chemistry - A European Journal, 2015, 21, 11545-11559.	1.7	39
51	Recent Developments in the Chemistry of 3 <i>H</i> â€1,2,3,4â€TriazaphosÂphole Derivatives. European Journal of Inorganic Chemistry, 2016, 2016, 595-606.	1.0	26
52	A computational study of azaphospholes: anions and neutral tautomers. Structural Chemistry, 2016, 27, 1531-1542.	1.0	9
53	Aromaticity and conformational flexibility of five-membered monoheterocycles: pyrrole-like and thiophene-like structures. Structural Chemistry, 2016, 27, 101-109.	1.0	6
54	[3]Ferrocenophanes with the bisphosphanotetryl bridge: inorganic rings on the way to tetrylenes. Dalton Transactions, 2016, 45, 2180-2189.	1.6	25
55	Aromaticity of 1,4-dehydrotropylium ion and its mono- and poly-phospha analogues. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 674-682.	0.8	3
56	Phosphorusâ€Containing Polycyclic Aromatic Hydrocarbons. ChemPhysChem, 2017, 18, 2618-2630.	1.0	66
57	Overcrowded aminophospanitrenes: a case study. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 865-871.	0.3	2
58	PBP bridged [3]ferrocenophane: a bisphosphanylborane with a redox trigger. Chemical Communications, 2018, 54, 2471-2474.	2.2	20
59	Application of the Extended HOMED (Harmonic Oscillator Model of Aromaticity) Index to Simple and Tautomeric Five-Membered Heteroaromatic Cycles with C, N, O, P, and S Atoms. Symmetry, 2019, 11, 146.	1.1	24
60	On the formation of phosphorous polycyclic aromatics hydrocarbons (PAPHs) in astrophysical environments. Physical Chemistry Chemical Physics, 2019, 21, 8015-8021.	1.3	8

#	Article	IF	CITATIONS
62	Theoretical Investigation of Main-Group Element Hydride Insertion into Phosphorus-Heterocyclic Carbenes (PHCs). Australian Journal of Chemistry, 2020, 73, 787.	0.5	2
63	Gas-phase spectroscopic characterization of neutral and ionic polycyclic aromatic phosphorus heterocycles (PAPHs). Monthly Notices of the Royal Astronomical Society, 2020, 500, 2564-2576.	1.6	7
64	Toward N,P-Doped π-Extended PAHs: A One-Pot Synthesis to Diannulated 1,4,2-Diazaphospholium Triflate Salts. Journal of Organic Chemistry, 2020, 85, 14420-14434.	1.7	3
65	Aromatic Phosphorus Heterocycles. Topics in Heterocyclic Chemistry, 2008, , 27.	0.2	1
66	Bending Ferrocenes with Low Coordinated Bridging Units: The Investigation of Carbenes and Their Analogues with a Ferrocenophane Backbone. Organometallics, 2022, 41, 2551-2561.	1.1	2
67	Phosphole aromaticity enhancement by electron pumping through Schleyer hyperconjugative aromaticity: A comprehensive DFT study. Chemical Physics Letters, 2023, 821, 140472.	1.2	3
68	Gradual Donor Stabilization of a Transient Ferrocene Bridged Bisphosphanyl Phosphenium Cation. Inorganic Chemistry, 2023, 62, 4341-4350.	1.9	1