Crosslinked polydimethylsiloxane exposed to oxygen preflectometry and other surface specific techniques

Polymer

41, 6851-6863

DOI: 10.1016/s0032-3861(00)00039-2

Citation Report

#	Article	IF	CITATIONS
1	Electrolytically generated oxygen microgradients for cell culture., 2004, 2004, 2683-6.		0
2	Hydrophobicity recovery of polydimethylsiloxane after repeated exposure to corona discharges. Influence of crosslink density., 0,,.		10
3	Chemical structure and morphology of thin, organo-silicon plasma-polymer films as a function of process parameters. Surface and Coatings Technology, 2001, 142-144, 1121-1128.	2,2	39
4	Characterisation of low molar mass siloxanes extracted from crosslinked polydimethylsiloxanes exposed to corona discharges. Polymer, 2001, 42, 8883-8889.	1.8	39
5	The effect of antioxidants on the surface oxidation and surface cracking of crosslinked polydimethylsiloxane. Polymer Degradation and Stability, 2001, 74, 49-57.	2.7	12
6	Hydrophobic recovery of polydimethylsiloxane after exposure to partial discharges as a function of crosslink density. Polymer, 2001, 42, 7349-7362.	1.8	127
7	Swedish research program on high performance outdoor electrical insulation. , 0, , .		1
8	Generation of Periodic Enzyme Patterns by Soft Lithography and Activity Imaging by Scanning Electrochemical Microscopy. Langmuir, 2002, 18, 9485-9493.	1.6	68
9	Comment: Effect of surface charge on hydrophobicity levels of insulating materials. IET Generation, Transmission and Distribution, 2002, 149, 300.	1.1	7
10	Surface Modification of Sylgard-184 Poly(dimethyl siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment. Journal of Colloid and Interface Science, 2002, 254, 306-315.	5.0	670
11	Immobilization of an oxalate-degrading enzyme on silicone elastomer. Journal of Biomedical Materials Research Part B, 2002, 63, 822-829.	3.0	39
12	Incubation and ablation behavior of poly(dimethylsiloxane) for 266 nm irradiation. Applied Surface Science, 2002, 197-198, 786-790.	3.1	42
13	Gas transport characteristics of plasma treated poly(dimethylsiloxane) and polyphosphazene membrane materials. Journal of Membrane Science, 2002, 205, 103-112.	4.1	58
14	The effect of stabilizer concentration on the air-plasma-induced surface oxidation of crosslinked polydimethylsiloxane. Polymer Degradation and Stability, 2002, 78, 17-25.	2.7	11
15	Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis, 2003, 24, 3607-3619.	1.3	506
16	Reinforcement of natural rubber latex film by ultrafine calcium carbonate. Journal of Applied Polymer Science, 2003, 87, 982-985.	1.3	81
17	Silicone elastomers for electronic applications. II. Effects of noncrosslinked materials. Journal of Applied Polymer Science, 2003, 90, 3780-3789.	1.3	6
18	Surface analysis of plasma-treated polydimethylsiloxane by x-ray photoelectron spectroscopy and surface voltage decay. Surface and Interface Analysis, 2003, 35, 445-449.	0.8	11

#	Article	IF	Citations
19	Electrowetting-Induced Droplet Movement in an Immiscible Medium. Langmuir, 2003, 19, 250-255.	1.6	79
20	Catalytic Microcontact Printing without Ink. Nano Letters, 2003, 3, 1449-1453.	4.5	50
21	Polymer Surface Modification Using Microwave-Oven-Generated Plasma. Langmuir, 2003, 19, 8117-8118.	1.6	117
22	Effect of a UV/Ozone Treatment on Siloxane-Containing Copolyimides:Â Surface Modification and Gas Transport Characteristics. Chemistry of Materials, 2003, 15, 2346-2353.	3.2	38
23	A microfabricated electrochemical oxygen generator for high-density cell culture arrays. Journal of Microelectromechanical Systems, 2003, 12, 590-599.	1.7	37
24	Assembly and Characterization of Protein Resistant Planar Bilayers in PDMS Microfluidic Devices. Materials Research Society Symposia Proceedings, 2003, 774, 721.	0.1	1
25	A Review of Microwave-Assist Polymer Chemistry (MAPC). Journal of Microwave Power and Electromagnetic Energy, 2003, 38, 49-74.	0.4	69
26	Estimation of surface degradation under immersion plasma by surface potential decay method., 0,,.		0
27	Electroless Nickel Deposition on Silicone-Rich Polyester Surfaces. Journal of the Electrochemical Society, 2004, 151, C685.	1.3	9
28	Endothelial cell alignment on cyclically-stretched silicone surfaces. Journal of Materials Science: Materials in Medicine, 2004, 15, 1159-1164.	1.7	102
29	UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sensors and Actuators B: Chemical, 2004, 97, 402-408.	4.0	258
30	Influence of interfaces on thin polymer film behaviour. Progress in Materials Science, 2004, 49, 713-786.	16.0	94
31	Development of a methodology for XPS curve-fitting of the Si 2p core level of siloxane materials. Surface and Interface Analysis, 2004, 36, 1427-1434.	0.8	127
32	A rapid microwave-assisted solvent extraction method for assessment of stabilizer concentration in crosslinked polydimethylsiloxane. Journal of Applied Polymer Science, 2004, 93, 2185-2192.	1.3	3
33	Elastomeric Molds with Tunable Microtopography. Advanced Materials, 2004, 16, 2201-2206.	11.1	26
34	Argon–oxygen plasma treatment of deposited organosilicon thin films. Thin Solid Films, 2004, 449, 40-51.	0.8	28
35	Effect of stabilizers on surface oxidation of silicone rubber by corona discharge. Polymer Degradation and Stability, 2004, 84, 469-474.	2.7	10
36	Pore-Bridging Poly(dimethylsiloxane) Membranes as Selective Interfaces for Vapor-Phase Chemical Sensing. Analytical Chemistry, 2004, 76, 4137-4142.	3.2	10

#	ARTICLE	IF	CITATIONS
37	Structural Characterization of Microcontact Printed Arrays of Hexa(ethylene glycol)-Terminated Alkanethiols on Gold. Langmuir, 2004, 20, 6206-6215.	1.6	24
38	Patterned Supported Lipid Bilayers and Monolayers on Poly(dimethylsiloxane). Langmuir, 2004, 20, 11092-11099.	1.6	87
39	Compatibility of Mammalian Cells on Surfaces of Poly(dimethylsiloxane). Langmuir, 2004, 20, 11684-11691.	1.6	323
40	Nanoscale Hydrophobic Recovery:Â A Chemical Force Microscopy Study of UV/Ozone-Treated Cross-Linked Poly(dimethylsiloxane). Langmuir, 2004, 20, 785-794.	1.6	272
41	Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm. Macromolecules, 2004, 37, 5936-5943.	2.2	140
42	Rapid formation of soft hydrophilic silicone elastomer surfaces. Polymer, 2005, 46, 9329-9341.	1.8	60
43	Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Applied Surface Science, 2005, 239, 410-423.	3.1	264
44	Multilayer poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separation. Electrophoresis, 2005, 26, 211-218.	1.3	124
45	Supramolecular Microcontact Printing and Dip-Pen Nanolithography on Molecular Printboards. Chemistry - A European Journal, 2005, 11, 3988-3996.	1.7	69
46	Tracking the hydrophobicity recovery of PDMS compounds using the adhesive force determined by AFM force distance measurements. Polymer, 2005, 46, 203-208.	1.8	51
47	Electrolytic patterning of dissolved oxygen microgradients during cell culture., 0,,.		1
48	Template-Induced Enhanced Ordering under Confinement. Langmuir, 2005, 21, 10316-10319.	1.6	29
49	Prussian blue/indium tin oxide composite disposable electrochemical sensors., 0,,.		0
50	Neutron Reflectometry and Spectroscopic Ellipsometry Studies of Cross-Linked Poly(dimethylsiloxane) after Irradiation at 172 nm. Langmuir, 2005, 21, 8940-8946.	1.6	18
51	Microscale Plasma-Initiated Patterning (νPIP). Langmuir, 2005, 21, 10509-10514.	1.6	50
52	Oxygen Plasma-Treatment Effects on Si Transfer. Langmuir, 2005, 21, 6366-6372.	1.6	54
53	Modern outdoor insulation - concerns and challenges. IEEE Electrical Insulation Magazine, 2005, 21, 5-11.	1.1	155
54	Chemically Patterned Flat Stamps for Microcontact Printing. Journal of the American Chemical Society, 2005, 127, 10344-10349.	6.6	48

#	Article	IF	Citations
55	PDMS-based microfluidics for proteomic analysis. Analyst, The, 2006, 131, 1122.	1.7	30
56	Microscale Features and Surface Chemical Functionality Patterned by Electron Beam Lithography:  A Novel Route to Poly(dimethylsiloxane) (PDMS) Stamp Fabrication. Langmuir, 2006, 22, 6712-6718.	1.6	25
57	Treatment of Metal Surface by Atmospheric Microwave Plasma Jet. IEEE Transactions on Plasma Science, 2006, 34, 1241-1246.	0.6	31
58	Properties of the surface-modified layer of plasma-oxidized poly(dimethylsiloxane). Materials Research Society Symposia Proceedings, 2006, 924, 1.	0.1	6
59	Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption. Lab on A Chip, 2006, 6, 942.	3.1	121
60	Stable Modification of PDMS Surface Properties by Plasma Polymerization:  Application to the Formation of Double Emulsions in Microfluidic Systems. Langmuir, 2006, 22, 5230-5232.	1.6	148
61	Ink Dependence of Poly(dimethylsiloxane) Contamination in Microcontact Printing. Langmuir, 2006, 22, 5945-5951.	1.6	33
62	Droplet Size Effects on Film Drainage between Droplet and Substrate. Langmuir, 2006, 22, 5308-5313.	1.6	24
63	X-Ray and Neutron Reflectometry Study of Glow-Discharge Plasma Polymer Films. Langmuir, 2006, 22, 453-458.	1.6	34
64	Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter, 2006, 2, 310.	1.2	773
65	Mechanisms Involved in the Conversion of ppHMDSO Films into SiO2-Like by Oxygen Plasma Treatment. Plasma Processes and Polymers, 2006, 3, 365-373.	1.6	20
66	Application of an enzyme chip to the microquantification of l-phenylalanine. Analytical Biochemistry, 2006, 359, 72-78.	1.1	31
67	Local chemical transformations in poly(dimethylsiloxane) by irradiation with 248 and 266nm. Applied Surface Science, 2006, 252, 4781-4785.	3.1	43
68	Factors affecting the adhesion of microwave plasma deposited siloxane films on polycarbonate. Thin Solid Films, 2006, 500, 34-40.	0.8	34
69	Transformation of Poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part I: Factors affecting modification. Journal of Materials Science, 2006, 41, 6362-6373.	1.7	36
70	Electrically actuated elastomers for electro–optical modulators. Applied Physics B: Lasers and Optics, 2006, 85, 7-10.	1.1	33
71	Effects on wettability by surfactant accumulation/depletion in bulk polydimethylsiloxane (PDMS). Sensors and Actuators B: Chemical, 2006, 119, 192-198.	4.0	90
72	PDMS-Modified Polyurethane Films with Low Water Contact Angle Hysteresis. Macromolecular Chemistry and Physics, 2006, 207, 2170-2179.	1.1	53

#	Article	IF	Citations
73	Simple structured polydimethylsiloxane microvalve actuated by external air pressure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220, 1283-1288.	1.1	14
74	Liquid crystal droplet production in a microfluidic device. Liquid Crystals, 2007, 34, 861-870.	0.9	56
75	Effect of oxidation on the wettability of poly(dimethylsiloxane) surfaces. Journal of Chemical Physics, 2007, 127, 114701.	1.2	29
76	Manipulating Siloxane Surfaces: Obtaining the Desired Surface Function via Engineering Design. ACS Symposium Series, 2007, , 222-255.	0.5	3
77	High Viscosity Sensing Using a Love Wave Acoustic Platform Combined with a PDMS Microfludic Chip. ECS Transactions, 2007, 4, 73-81.	0.3	9
78	Characterizing Polymer Brushes via Surface Wrinkling. Chemistry of Materials, 2007, 19, 6555-6560.	3.2	77
79	Self-assembled epoxy-modified polymer coating on a poly(dimethylsiloxane) microchip for EOF inhibition and biopolymers separation. Lab on A Chip, 2007, 7, 1490.	3.1	52
80	Metallization Process for Polydimethylsiloxane (PDMS) Rubber. Materials Research Society Symposia Proceedings, 2007, 1009, 1.	0.1	5
81	A novel metal-protected plasma treatment for the robust bonding of polydimethylsiloxane. Lab on A Chip, 2007, 7, 1813.	3.1	23
82	Changes in Silicon Elastomeric Surface Properties under Stretching Induced by Three Surface Treatments. Langmuir, 2007, 23, 13136-13145.	1.6	30
83	The fabrication of microfluidic structures by means of full-wafer adhesive bonding using a poly(dimethylsiloxane) catalyst. Journal of Micromechanics and Microengineering, 2007, 17, 1710-1714.	1.5	63
84	Spatially Controlled Cell Adhesion via Micropatterned Surface Modification of Poly(dimethylsiloxane). Langmuir, 2007, 23, 715-719.	1.6	79
85	Hierarchical Pore Structures Fabricated by Electron Irradiation of Silicone Grease and their Applications to Superhydrophobic and Superhydrophilic Films. Macromolecular Rapid Communications, 2007, 28, 246-251.	2.0	48
86	Surface characterization of plasma-treated and PEG-grafted PDMS for micro fluidic applications. Vacuum, 2007, 81, 1094-1100.	1.6	63
87	Effect of hydrophilicity on electrically driven flow in microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 311, 77-82.	2.3	2
88	Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation. Sensors and Actuators B: Chemical, 2007, 123, 368-373.	4.0	473
89	A Comparative X-Ray and Neutron Reflectometry Study of Plasma Polymer Films Containing Reactive Amines. Plasma Processes and Polymers, 2007, 4, 433-444.	1.6	17
90	Poly(dimethylsiloxane)-polyimide blends in the formation of thick polyimide films. Journal of Materials Science, 2007, 42, 239-251.	1.7	9

#	Article	IF	CITATIONS
91	Influence of different amount of Au on the wetting behavior of PDMS membrane. Biomedical Microdevices, 2008, 10, 65-72.	1.4	37
92	Isoelectric focusing in an ordered micropillar array. Electrophoresis, 2008, 29, 2945-2952.	1.3	23
93	Nonâ€Lithographic Wrinkle Nanochannels for Protein Preconcentration. Advanced Materials, 2008, 20, 3011-3016.	11.1	125
94	Fabrication of Elastomeric Wires by Selective Electroless Metallization of Poly(dimethylsiloxane). Advanced Materials, 2008, 20, 59-64.	11.1	33
95	Orientational Transition of Liquid Crystal Molecules by a Photoinduced Transformation Process into a Recoveryâ€free Silicon Oxide Layer. Advanced Materials, 2008, 20, 3073-3078.	11.1	45
96	A microfluidic surface acoustic wave sensor platform: Application to high viscosity measurements. Materials Science and Engineering C, 2008, 28, 759-764.	3.8	21
97	Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma. European Polymer Journal, 2008, 44, 2130-2139.	2.6	85
98	High-resolution soft lithography of thin film resists enabling nanoscopic pattern transfer. Soft Matter, 2008, 4, 168-176.	1.2	22
99	Surface Functionalization of Silicone Rubber for Permanent Adhesion Improvement. Langmuir, 2008, 24, 12603-12611.	1.6	122
100	Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites. Journal of Materials Chemistry, 2008, 18, 1751.	6.7	123
101	Surface Modification of Glycidyl-Containing Poly(methyl methacrylate) Microchips Using Surface-Initiated Atom-Transfer Radical Polymerization. Analytical Chemistry, 2008, 80, 856-863.	3.2	32
102	Stretchable Gold Tracks on Flat Polydimethylsiloxane (PDMS) Rubber Substrate. Journal of Adhesion, 2008, 84, 231-239.	1.8	14
103	Complex micropatterning of periodic structures on elastomeric surfaces. Soft Matter, 2008, 4, 2360.	1.2	115
104	Electrowetting-based valve for the control of the capillary flow. Journal of Applied Physics, 2008, 103, .	1.1	36
105	Direct Poly(dimethylsiloxane) Surface Functionalization with Vinyl Modified DNA. Chemistry of Materials, 2008, 20, 1251-1253.	3.2	21
106	Poly(dimethylsiloxane)-Coated Sensor Devices for the Formation of Supported Lipid Bilayers and the Subsequent Study of Membrane Interactions. Langmuir, 2008, 24, 11268-11275.	1.6	15
107	Evaluation of different PDMS interconnection solutions for silicon, Pyrex and COC microfluidic chips. Journal of Micromechanics and Microengineering, 2008, 18, 055012.	1.5	33
108	Surface Modification of Poly(dimethylsiloxane) with a Perfluorinated Alkoxysilane for Selectivity toward Fluorous Tagged Peptides. Langmuir, 2008, 24, 1080-1086.	1.6	34

#	Article	IF	Citations
109	Ageing of composite insulators. , 2008, , 421-447.		5
110	The mechanical properties of a surface-modified layer on polydimethylsiloxane. Journal of Materials Research, 2008, 23, 37-48.	1.2	103
111	Experimental observation of electrical instability of droplets on dielectric layer. Journal Physics D: Applied Physics, 2008, 41, 052004.	1.3	22
112	Optimal vein density in artificial and real leaves. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9140-9144.	3.3	158
113	A high-density PEG interfacial layer alters the response to an EGF tethered polydimethylsiloxane surface. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1411-1424.	1.9	13
115	Modeling and Preliminary Experiment for Rarefied Gas Flows in Constricted Microchannels. , 2008, , .		1
116	The analysis of surface treatment of PDMS on prostate cancer and smooth muscle cells. , 2008, , .		2
118	Mechanical Gradient Cues for Guided Cell Motility and Control of Cell Behavior on Uniform Substrates. Advanced Functional Materials, 2009, 19, 2961-2968.	7.8	55
119	Evaluation of microchip material and surface treatment options for IEF of allergenic milk proteins on microchips. Electrophoresis, 2009, 30, 4256-4263.	1.3	20
120	Plasma induced patterning of polydimethylsiloxane surfaces. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 156, 18-23.	1.7	14
121	Frontal analysis microchip capillary electrophoresis to study the binding of ligands to receptors derivatized on magnetic beads. Analytical and Bioanalytical Chemistry, 2009, 393, 615-621.	1.9	11
122	Simple poly(dimethylsiloxane) surface modification to control cell adhesion. Surface and Interface Analysis, 2009, 41, 11-16.	0.8	83
123	Remote Atmospheric Pressure DC Glow Discharge Treatment for Adhesion Improvement of PDMS. Plasma Processes and Polymers, 2009, 6, S406.	1.6	19
124	Behaviors of liver and kidney explants from chicken embryos inside plasma treated PDMS microchannels. Materials Science and Engineering C, 2009, 29, 861-868.	3.8	12
125	Surface properties of O2-plasma-treated thermoplastic fluoroelastomers under mechanical stretching. Polymer, 2009, 50, 3245-3249.	1.8	9
126	Patterning Lead Zirconate Titanate Nanostructures at Sub-200-nm Resolution by Soft Confocal Imprint Lithography and Nanotransfer Molding. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2250-2255.	4.0	25
127	Novel Poly(dimethylsiloxane) Bonding Strategy via Room Temperature "Chemical Gluing― Langmuir, 2009, 25, 3861-3866.	1.6	80
128	Transformations in Wrinkle Patterns: Cooperation between Nanoscale Cross-Linked Surface Layers and the Submicrometer Bulk in Wafer-Spun, Plasma-Treated Polydimethylsiloxane. Nano Letters, 2009, 9, 2884-2890.	4.5	32

#	Article	IF	Citations
129	Elastic Moduli of Organic Electronic Materials by the Buckling Method. Macromolecules, 2009, 42, 7079-7083.	2.2	222
130	Functionalization of Poly(dimethylsiloxane) Surfaces with Maleic Anhydride Copolymer Films. Langmuir, 2009, 25, 1509-1517.	1.6	23
131	Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma – physicochemical and antifouling properties. EXPRESS Polymer Letters, 2009, 3, 70-83.	1.1	53
132	A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices. Lab on A Chip, 2009, 9, 870.	3.1	33
133	Dry etching of polydimethylsiloxane using microwave plasma. Journal of Micromechanics and Microengineering, 2009, 19, 095010.	1.5	31
134	Topographies of plasma-hardened surfaces of poly(dimethylsiloxane). Journal of Applied Physics, 2010, 108, .	1.1	28
135	Delicate Modification of Poly(dimethylsiloxane) Ultrathin Film by Low-Energy Ion Beam Treatment for Durable Intermediate Liquid Crystal Pretilt Angles. Langmuir, 2010, 26, 5072-5076.	1.6	10
136	Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis, 2010, 31, 2-16.	1.3	692
137	Solventâ€Assisted Decal Transfer Lithography by Oxygenâ€Plasma Bonding and Anisotropic Swelling. Advanced Materials, 2010, 22, 2426-2429.	11.1	19
138	172nm pre-treatment for PDMS/PDMS replication. Microelectronic Engineering, 2010, 87, 1519-1521.	1.1	6
139	Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010, 5, 491-502.	5.5	1,904
140	Controlled Stepwise Growth of Siloxane Chains Using Bivalent Building Units With Different Functionalities. Materials Research Society Symposia Proceedings, 2010, 1272, 1.	0.1	0
141	UV-Defined Flat PDMS Stamps Suitable for Microcontact Printing. Langmuir, 2010, 26, 3739-3743.	1.6	23
142	Controlled wavelength reduction in surface wrinkling of poly(dimethylsiloxane). Soft Matter, 2010, 6, 677-684.	1.2	59
143	Microfluidic cell culture systems for drug research. Lab on A Chip, 2010, 10, 939.	3.1	364
144	Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms. Proceedings of SPIE, 2010, , .	0.8	0
145	Thickness and Elastic Modulus of Plasma Treated PDMS Silica-like Surface Layer. Langmuir, 2010, 26, 3372-3375.	1.6	143
146	Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics, 2010, 4, 32204.	1.2	337

#	Article	IF	Citations
147	Structured metal films on silicone elastomers. Journal of Materials Chemistry, 2010, 20, 8548.	6.7	10
148	The molecular surface conformation of surface-tethered polyelectrolytes on PDMS surfaces. Soft Matter, 2010, , .	1.2	8
149	Poly(acrylic acid)-grafted Poly(N-isopropyl acrylamide) Networks: Preparation, Characterization and Hydrogel Behavior. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2305-2324.	1.9	24
150	Determining Nanocapillary Geometry from Electrochemical Impedance Spectroscopy Using a Variable Topology Network Circuit Model. Analytical Chemistry, 2011, 83, 533-541.	3.2	25
151	The effects of shear stress on isolated receptor–ligand interactions of Staphylococcus epidermidis and human plasma fibrinogen using molecularly patterned microfluidics. Lab on A Chip, 2011, 11, 883.	3.1	22
152	Guided self-assembly of microgels: from particle arrays to anisotropic nanostructures. Soft Matter, 2011, 7, 8231.	1.2	36
153	Controlled mechanical fracture for fabricating microchannels with various size gradients. Lab on A Chip, 2011, 11, 717-722.	3.1	27
154	Molecular Motion of Amorphous Silicone Polymers. Journal of Physical Chemistry B, 2011, 115, 2831-2835.	1.2	8
155	Surface Dynamics of Amorphous Polymers Used for High-Voltage Insulators. Journal of Physical Chemistry B, 2011, 115, 13508-13512.	1.2	6
156	⁴ He ⁺ Ion Beam Irradiation Induced Modification of Poly(dimethylsiloxane). Characterization by Infrared Spectroscopy and Ion Beam Analytical Techniques. Langmuir, 2011, 27, 3842-3848.	1.6	32
158	Durable Hydrophilic Microchannels with Controlled Morphology by the Direct Molding Method. Analytical Chemistry, 2011, 83, 1901-1907.	3.2	2
159	Rapid prototyping of poly(dimethoxysiloxane) dot arrays by dip-pen nanolithography. Chemical Science, 2011, 2, 211-215.	3.7	31
160	Selective functionalisation of PDMS-based photonic lab on a chip for biosensing. Analyst, The, 2011, 136, 3496.	1.7	30
161	Surface and Bulk Modification of Synthetic Textiles to Improve Dyeability. , 0, , .		11
162	Design considerations for elastomeric normally closed microfluidic valves. Sensors and Actuators B: Chemical, 2011, 160, 1216-1223.	4.0	53
163	Stem cells in microfluidics. Biomicrofluidics, 2011, 5, 013401.	1.2	73
164	Dependence of the quality of adhesion between poly(dimethylsiloxane) and glass surfaces on the composition of the oxidizing plasma. Microfluidics and Nanofluidics, 2011, 10, 907-917.	1.0	43
165	Modeling of electrically actuated elastomer structures forÂelectro-optical modulation. Applied Physics A: Materials Science and Processing, 2011, 102, 407-413.	1.1	4

#	ARTICLE	IF	CITATIONS
166	Coreâ€shell structured ferriteâ€silsesquioxaneâ€epoxy nanocomposites: Composite homogeneity and mechanical and magnetic properties. Polymer Engineering and Science, 2011, 51, 862-874.	1.5	27
167	Modification of Polydimethylsiloxane Thin Films in H ₂ Radioâ€frequency Plasma Investigated by Infrared Reflection Absorption Spectroscopy. Plasma Processes and Polymers, 2011, 8, 1059-1067.	1.6	42
168	Effects of surface wettability, flow, and protein concentration on macrophage and astrocyte adhesion in an <i>in vitro</i> model of central nervous system catheter obstruction. Journal of Biomedical Materials Research - Part A, 2011, 97A, 433-440.	2.1	27
169	Hydrophilicity of Surfactant-Added Poly(dimethylsiloxane) and Its Applications. Japanese Journal of Applied Physics, 2011, 50, 06GL04.	0.8	10
170	Tailoring the Surface Properties of Silicone Elastomers to Improve Adhesion of Epoxy Topcoat. Journal of Adhesion Science and Technology, 2011, 25, 1-26.	1.4	12
171	Influence of accelerated aging on nanomechanical properties, creep behaviour and adhesive forces of PDMS. Plastics, Rubber and Composites, 2012, 41, 94-99.	0.9	18
172	Self-Assembly-Induced Formation of High-Density Silicon Oxide Memristor Nanostructures on Graphene and Metal Electrodes. Nano Letters, 2012, 12, 1235-1240.	4.5	89
173	Understanding the Self-Healing Hydrophobic Recovery of High-Voltage Insulators. Journal of Physical Chemistry B, 2012, 116, 7351-7356.	1.2	10
174	Predicting conditions for microscale surfactant mediated tipstreaming. Physics of Fluids, 2012, 24, .	1.6	28
175	Biomaterial surface modifications can dominate cell–substrate mechanics: the impact of PDMS plasma treatment on a quantitative assay of cell stiffness. Soft Matter, 2012, 8, 673-681.	1.2	59
176	A one-step screening process for optimal alignment of (soft) colloidal particles. Nanoscale, 2012, 4, 7338.	2.8	28
177	Reversibly Stretchable Transparent Conductive Coatings of Spray-Deposited Silver Nanowires. ACS Applied Materials & Deposited Silver Nanowires.	4.0	281
178	The influence of polydimethylsiloxane curing ratio on capillary pressure in microfluidic devices. Applied Surface Science, 2012, 258, 8032-8039.	3.1	11
179	Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces. Applied Surface Science, 2012, 258, 9864-9875.	3.1	124
180	Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Advanced Materials, 2012, 24, 5284-5318.	11,1	727
181	A new soft lithographic route for the facile fabrication of hydrophilic sandwich microchips. Electrophoresis, 2012, 33, 2591-2597.	1.3	7
182	Oxidative Surface Treatment of Silicone Rubber. Advances in Silicon Science, 2012, , 299-318.	0.6	6
183	Creating Functional Materials by Chemical and Physical Functionalization of Silicone Elastomer Networks. Advances in Silicon Science, 2012, , 59-94.	0.6	1

#	Article	IF	CITATIONS
184	Effects of Topographical and Mechanical Property Alterations Induced by Oxygen Plasma Modification on Stem Cell Behavior. ACS Nano, 2012, 6, 8591-8598.	7. 3	86
185	Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics, 2012, 6, 16501-1650110.	1.2	147
186	Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates. Chemistry of Materials, 2012, 24, 373-382.	3.2	503
187	Effect of Surface Plasma Treatments on the Adhesion of Mars JSC 1 Simulant Dust to RTV 655, RTV 615, and Sylgard 184. PLoS ONE, 2012, 7, e45719.	1.1	12
188	Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution. Surface and Interface Analysis, 2012, 44, 62-69.	0.8	108
189	Modification of Polydimethylsiloxane Coatings by H ₂ RF Plasma, Xe ₂ * Excimer VUV Radiation, and Lowâ€Energy Electron Beams. Macromolecular Materials and Engineering, 2012, 297, 1091-1101.	1.7	6
190	Surface Analysis of Silicones. Advances in Silicon Science, 2012, , 319-353.	0.6	5
191	Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces. Journal of Food Engineering, 2013, 119, 425-432.	2.7	69
192	Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1041-1056.	1.9	58
193	Vapour processed self-rolled poly(dimethylsiloxane) microcapillaries form microfluidic devices with engineered inner surface. Lab on A Chip, 2013, 13, 3827.	3.1	20
194	Clear castable polyurethane elastomer for fabrication of microfluidic devices. Lab on A Chip, 2013, 13, 3956.	3.1	101
195	Hydrophilization of silicone–urea copolymer surfaces by UV/ozone: Influence of PDMS molecular weight on surface oxidation and hydrophobic recovery. Polymer, 2013, 54, 6665-6675.	1.8	20
196	Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility. Materials Science and Engineering C, 2013, 33, 3865-3874.	3.8	46
197	PDMS bondingÂto a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels. Colloids and Surfaces B: Biointerfaces, 2013, 112, 134-138.	2.5	15
198	Long-Term Reduction in Poly(dimethylsiloxane) Surface Hydrophobicity via Cold-Plasma Treatments. Langmuir, 2013, 29, 12990-12996.	1.6	23
199	Surface wrinkling by chemical modification of poly(dimethylsiloxane)-based networks during sputtering. Soft Matter, 2013, 9, 7797.	1.2	32
200	Controlling thread formation during tipstreaming through an active feedback control loop. Lab on A Chip, 2013, 13, 4534.	3.1	22
201	A scalable fabrication of highly transparent and conductive thin films using fluorosurfactant-assisted single-walled carbon nanotube dispersions. Carbon, 2013, 52, 259-266.	5.4	23

#	Article	IF	CITATIONS
202	The surface structure of UV exposed poly-dimethylsiloxane (PDMS) insulator studied by slow positron beam. Applied Surface Science, 2013, 283, 327-331.	3.1	21
203	Microcontact printing of pigment/polymer composite microdots and electrodeposition of Ni walls to fabricate hard and glossy-colored films. Surface and Coatings Technology, 2013, 216, 115-120.	2.2	1
204	Well-defined orthogonal surface wrinkles directed by the wrinkled boundary. Soft Matter, 2013, 9, 3720.	1.2	55
205	Stretchingâ€Induced Growth of PEDOTâ€Rich Cores: A New Mechanism for Strainâ€Dependent Resistivity Change in PEDOT:PSS Films. Advanced Functional Materials, 2013, 23, 4020-4027.	7.8	54
206	Surface modification of poly(dimethylsiloxane) by atmospheric pressure high temperature plasma torch to prepare high-performance gas separation membranes. Journal of Membrane Science, 2013, 440, 1-8.	4.1	27
207	Conversion of Bilayers of PS- <i>b</i> -PDMS Block Copolymer into Closely Packed, Aligned Silica Nanopatterns. ACS Nano, 2013, 7, 5595-5606.	7.3	28
208	Controlled Free Edge Effects in Surface Wrinkling via Combination of External Straining and Selective O2 Plasma Exposure. Langmuir, 2013, 29, 7170-7177.	1.6	30
209	Microfluidic Cell Culture Platforms with Embedded Nanoscale Features. , 2013, , 3-26.		4
210	Ion-Energy Dependency in Proton Irradiation Induced Chemical Processes of Poly(dimethylsiloxane). Journal of Physical Chemistry C, 2013, 117, 25884-25889.	1.5	21
211	Bidirectional two colored light emission from stress-activated ZnS-microparticles-embedded polydimethylsiloxane elastomer films. Optical Materials Express, 2013, 3, 1600.	1.6	11
212	Independent Control of Amplitude and Periodicity in Buckling Structure for Light In- and Out-Coupling. Applied Physics Express, 2013, 6, 042001.	1.1	1
213	Microfluidic devices using thiol-ene polymers. , 2013, , .		1
214	Creating Adhesive and Soluble Gradients for Imaging Cell Migration with Fluorescence Microscopy. Journal of Visualized Experiments, 2013, , .	0.2	5
215	Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity. Journal of Applied Oral Science, 2013, 21, 63-67.	0.7	2
216	A Contact Angle Study of the Interaction between Embedded Amphiphilic Molecules and the PDMS Matrix in an Aqueous Environment. Micromachines, 2014, 5, 515-527.	1.4	7
218	Simple and Improved Approaches to Long-Lasting, Hydrophilic Silicones Derived from Commercially Available Precursors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22876-22883.	4.0	41
219	Stable and Homogenous Functionality on PDMS Surface and the Kinetic of Gold Nanoparticle Adsorption on Its Surface. Soft Materials, 2014, 12, 334-338.	0.8	2
220	Toward the Development of a Versatile Functionalized Silicone Coating. ACS Applied Materials & Interfaces, 2014, 6, 22544-22552.	4.0	16

#	Article	IF	Citations
221	Pyrogallol 2â€Aminoethane: A Plant Flavonoidâ€Inspired Molecule for Materialâ€Independent Surface Chemistry. Advanced Materials Interfaces, 2014, 1, 1400113.	1.9	104
222	Filefishâ€Inspired Surface Design for Anisotropic Underwater Oleophobicity. Advanced Functional Materials, 2014, 24, 809-816.	7.8	220
223	Aligned cellulose nanocrystals and directed nanoscale deposition of colloidal spheres. Cellulose, 2014, 21, 1591-1599.	2.4	17
224	Wellâ€Ordered and High Density Coordinationâ€Type Bonding to Strengthen Contact of Silver Nanowires on Highly Stretchable Polydimethylsiloxane. Advanced Functional Materials, 2014, 24, 3276-3283.	7.8	64
225	Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions. Biomedical Microdevices, 2014, 16, 91-96.	1.4	98
226	Plasma treatment of PDMS for applications of in vitro motility assays. Colloids and Surfaces B: Biointerfaces, 2014, 116, 687-694.	2.5	14
227	Fabrication of PDMS micro through-holes using micromolding in open capillaries. RSC Advances, 2014, 4, 31988-31993.	1.7	11
228	Hierarchical structure formation and pattern replication by capillary force lithography. RSC Advances, 2014, 4, 39684.	1.7	2
229	Wavefront kinetics of plasma oxidation of polydimethylsiloxane: limits for sub-νm wrinkling. Soft Matter, 2014, 10, 1155.	1.2	74
230	Repetitive Cleavage of Elastomeric Membrane via Controlled Interfacial Fracture. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11734-11740.	4.0	3
231	Effect of ultraviolet/ozone treatment on the surface and bulk properties of poly(dimethyl siloxane) and poly(vinylmethyl siloxane) networks. Polymer, 2014, 55, 3107-3119.	1.8	59
233	Wettability: Plasma Treatment Effects. , 0, , 7666-7683.		0
234	Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces. Scientific Reports, 2015, 5, 14787.	1.6	75
235	Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication. Review of Scientific Instruments, 2015, 86, 066106.	0.6	1
236	Substrate wettability requirement for the direct transfer of graphene. Applied Physics Letters, 2015, 107, .	1.5	10
237	A Surface Tailoring Method of Ultrathin Polymer Gate Dielectrics for Organic Transistors: Improved Device Performance and the Thermal Stability Thereof. Advanced Functional Materials, 2015, 25, 4462-4469.	7.8	56
238	Ultravioletâ€ray treatment of polysulfone membranes on the O ₂ /N ₂ and CO ₂ /CH ₄ separation performance. Journal of Applied Polymer Science, 2015, 132, .	1.3	15
239	Image Analysis Determination of the Influence of Surface Structure of Silicone Rubbers on Biofouling. International Journal of Polymer Science, 2015, 2015, 1-8.	1.2	3

#	Article	IF	CITATIONS
240	Ordered arrays of pumpkin-shaped Janus particles with tailored surface morphologies via microcontact hot embossing. Colloid and Polymer Science, 2015, 293, 2181-2189.	1.0	2
241	Enhancement of the gas barrier property of polypropylene by introducing plasma-treated silane coating with SiOx-modified top-surface. Surface and Coatings Technology, 2015, 284, 377-383.	2.2	11
242	Soft lithography processing of fresnel lens for on-chip applications. , 2015, , .		0
243	Characterization of Piezoelectric PDMS-Nanoparticle Composites. Journal of Physics: Conference Series, 2015, 660, 012078.	0.3	1
244	Material Characterization and Transfer of Large-Area Ultra-Thin Polydimethylsiloxane Membranes. Journal of Microelectromechanical Systems, 2015, 24, 2170-2177.	1.7	10
245	Frontal vitrification of PDMS using air plasma and consequences for surface wrinkling. Soft Matter, 2015, 11, 3067-3075.	1.2	46
246	Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication. Chinese Chemical Letters, 2015, 26, 15-20.	4.8	10
247	Chemical modification of PDMS surface without impacting the viscoelasticity: Model systems for a better understanding of elastomer/elastomer adhesion and friction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 174-183.	2.3	33
248	High-throughput microfluidics to control and measure signaling dynamics in single yeast cells. Nature Protocols, 2015, 10, 1181-1197.	5.5	84
249	Rapid prototyping of microfluidic devices with integrated wrinkled gold micro-/nano textured electrodes for electrochemical analysis. Analyst, The, 2015, 140, 5781-5788.	1.7	13
250	Relaxations of light scattering in mixture of PEG-PDMS-PEG triblock polymer with water in oil nano-droplets. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 118, 809-812.	0.2	3
251	Capacitance Variation Induced by Microfluidic Two-Phase Flow across Insulated Interdigital Electrodes in Lab-On-Chip Devices. Sensors, 2015, 15, 2694-2708.	2.1	25
252	Cross-Linking the Surface of Cured Polydimethylsiloxane via Hyperthemal Hydrogen Projectile Bombardment. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8515-8524.	4.0	16
253	Response of Plasma-Polymerized Hexamethyldisiloxane Films to Aqueous Environments. Langmuir, 2015, 31, 12944-12953.	1.6	37
255	XPS and $\hat{1}$ 4-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS). Nuclear Instruments & Methods in Physics Research B, 2015, 360, 30-35.	0.6	51
256	Flexible epoxyâ€silicone rubber laminates for high voltage insulations with enhanced delamination resistance. Polymer Composites, 2015, 36, 2238-2247.	2.3	5
257	Surface Treatment of Polydimethylsiloxane (PDMS) with Atmospheric Pressure Rotating Plasma Jet. Modeling and Optimization of the Surface Treatment Conditions. Plasma Processes and Polymers, 2016, 13, 459-469.	1.6	30
258	Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1448-1456.	1.6	34

#	Article	IF	CITATIONS
259	Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates. Langmuir, 2016, 32, 3191-3198.	1.6	12
260	Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface. Journal of Polymer Research, 2016, 23, 1.	1.2	11
261	Caulking polydimethylsiloxane molecular networks by thermal chemical vapor deposition of Parylene-C. Lab on A Chip, 2016, 16, 4220-4229.	3.1	11
262	Patterned Microstructure Fabrication: Polyelectrolyte Complexes vs Polyelectrolyte Multilayers. Scientific Reports, 2016, 6, 37000.	1.6	43
263	Removal of Aluminum on Glass Substrate by Atmospheric-Pressure Plasma Jet Irradiation. E-Journal of Surface Science and Nanotechnology, 2016, 14, 231-236.	0.1	3
264	Assessment of plasma torches as innovative tool for cleaning of historical stone materials. Journal of Cultural Heritage, 2016, 22, 940-950.	1.5	15
265	Modification of poly(dimethylsiloxane) as a basis for surface wrinkle formation: Chemical and mechanical characterization. Polymer, 2016, 98, 327-335.	1.8	20
266	Stick–Slip Friction of PDMS Surfaces for Bioinspired Adhesives. Langmuir, 2016, 32, 2428-2435.	1.6	49
267	Surface treatment-assisted switchable transfer printing on polydimethylsiloxane films. Journal of Materials Chemistry C, 2016, 4, 3467-3476.	2.7	8
269	Investigation of PDMS based bi-layer elasticity via interpretation of apparent Young's modulus. Soft Matter, 2016, 12, 2200-2207.	1.2	18
270	Polymeric-Based In Vitro Diagnostic Devices. , 2016, , 15-58.		1
271	In-Vitro Diagnostic Devices. , 2016, , .		3
272	Characterization and failure mode analyses of air plasma oxidized PDMS–PDMS bonding by peel testing. RSC Advances, 2017, 7, 1286-1289.	1.7	22
273	Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation. Nanoscale, 2017, 9, 2030-2037.	2.8	25
274	Yeasts identification in microfluidic devices using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). Biomedical Microdevices, 2017, 19, 11.	1.4	11
275	Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsystems and Nanoengineering, 2017, 3, 16091.	3.4	269
276	Separation of polystyrene nanoparticles in polydimethylsiloxane microfluidic devices with a combined titania and sodium dodecyl sulfate inner coating. Mikrochimica Acta, 2017, 184, 2227-2239.	2.5	3
277	Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating. Biointerphases, 2017, 12, 02C412.	0.6	22

#	Article	IF	CITATIONS
278	Biomimetic nanostructures for the silicone-biosystem interface: tuning oxygen-plasma treatments of polydimethylsiloxane. European Journal of Nanomedicine, 2017, 9, .	0.6	4
279	Oxygen plasma treatments of polydimethylsiloxane surfaces: effect of the atomic oxygen on capillary flow in the microchannels. Micro and Nano Letters, 2017, 12, 754-757.	0.6	41
280	Graphene as Barrier to Prevent Volume Increment of Air Bubbles over Silicone Polymer in Aqueous Environment. Langmuir, 2017, 33, 12865-12872.	1.6	2
281	Self-Healing Superhydrophobic Materials Showing Quick Damage Recovery and Long-Term Durability. Langmuir, 2017, 33, 9972-9978.	1.6	53
282	Observation of chemically protected polydimethylsiloxane: towards crack-free PDMS. Soft Matter, 2017, 13, 6297-6303.	1.2	25
283	Suppression Effect and Mechanism of Amine-Containing MQ Silicone Resin on the Tracking and Erosion Resistance of Silicone Rubber. ACS Omega, 2017, 2, 5111-5121.	1.6	18
284	Gold Layers on Elastomers near the Critical Stress Regime. Advanced Materials Technologies, 2017, 2, 1700105.	3.0	16
285	Flow-Induced Transport of Tumor Cells in a Microfluidic Capillary Network: Role of Friction and Repeated Deformation. Cellular and Molecular Bioengineering, 2017, 10, 563-576.	1.0	9
286	Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. Journal of Materials Chemistry A, 2017, 5, 25249-25257.	5.2	147
287	Effects of AC and DC corona on the surface properties of silicone rubber: Characterization by contact angle measurements and XPS high resolution scan. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 2911-2919.	1.8	26
288	Application of polydopamine in biomedical microfluidic devices. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	18
289	Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas. Nanoscale, 2018, 10, 3688-3696.	2.8	87
290	An oxygen plasma treated poly(dimethylsiloxane) bioscaffold coated with polydopamine for stem cell therapy. Journal of Materials Science: Materials in Medicine, 2018, 29, 54.	1.7	19
291	Strategies to hydrophilize silicones via spontaneous adsorption of poly(vinyl alcohol) from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 186-193.	2.3	7
292	Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 862-869.	1.7	4
293	A Review of Femtosecondâ€Laserâ€Induced Underwater Superoleophobic Surfaces. Advanced Materials Interfaces, 2018, 5, 1701370.	1.9	95
294	Atomic force microscopy and nanoindentation investigation of polydimethylsiloxane elastomeric substrate compliancy for various sputtered thin film morphologies. Journal of Biomedical Materials Research - Part A, 2018, 106, 725-737.	2.1	9
295	Self-selective fine metal line coating using surface energy differences. Microelectronic Engineering, 2018, 187-188, 33-38.	1.1	1

#	ARTICLE	IF	Citations
296	Effect of titanium dioxide on the UV ageing behavior of silicone rubber. Journal of Applied Polymer Science, 2018, 135, 46099.	1.3	15
297	Characterization of fracture energy and toughness of air plasma PDMS–PDMS bonding by T-peel testing. Journal of Adhesion Science and Technology, 2018, 32, 1239-1252.	1.4	10
298	Soft thermal nanoimprint lithography using a nanocomposite mold. Nano Research, 2018, 11, 2705-2714.	5.8	28
299	A simple technique of constructing nano-roughened polydimethylsiloxane surface to enhance mesenchymal stem cell adhesion and proliferation. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	27
300	Size effects in plasma-enhanced nano-transfer adhesion. Soft Matter, 2018, 14, 9220-9226.	1.2	1
301	Reconfigurable and Permanent Wetting Patterns on Polymer Surfaces Obtained Using Plasma Oxidation and Laser Ablation. Optical Data Processing and Storage, 2018, 4, 22-29.	3.3	3
302	Uncured PDMS inhibits myosin in vitro motility in a microfluidic flow cell. Analytical Biochemistry, 2018, 563, 56-60.	1.1	3
303	Synthesis and structures of zwitterionic polymers to induce electrostatic interaction with PDMS surface treated by air-plasma. Arkivoc, 2018, 2018, 330-343.	0.3	0
304	Structural evolution of a Ni/NiOx based supercapacitor in cyclic charging-discharging: A polarized neutron and X-ray reflectometry study. Electrochimica Acta, 2018, 290, 118-127.	2.6	2
305	Influence of Contamination on the Hydrophobic Properties of APPJ-treated Silicone Rubber*., 2018,,.		0
306	Modification of Poly(dimethylsiloxane) by Mesostructured Siliceous Films for Constructing Protein-Interactive Surfaces. E-Journal of Surface Science and Nanotechnology, 2018, 16, 41-48.	0.1	5
307	Superhydrophilization of Surface of Aluminum Thin Film by Atmospheric-Pressure Plasma Jet Irradiation. E-Journal of Surface Science and Nanotechnology, 2018, 16, 27-35.	0.1	3
308	Biomimetic antifouling PDMS surface developed via well-defined polymer brushes for cardiovascular applications. European Polymer Journal, 2018, 106, 305-317.	2.6	26
309	Wide range control in the elastic properties of PDMS polymer by ion beam (H +) irradiation. Polymer Degradation and Stability, 2018, 152, 253-258.	2.7	12
310	Silane coatings of metallic biomaterials for biomedical implants: A preliminary review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2901-2918.	1.6	19
311	Patterning Hydrophobic Surfaces by Negative Microcontact Printing and Its Applications. Small, 2018, 14, e1802128.	5 . 2	35
312	Single-step fabrication of polydimethylsiloxane microwell arrays with long-lasting hydrophilic inner surfaces. Applied Physics Letters, 2018, 112, .	1.5	14
313	Nanosilica modified by polydimethylsiloxane depolymerized and chemically bound to nanoparticles or physically bound to unmodified or modified surfaces: Structure and interfacial phenomena. Journal of Colloid and Interface Science, 2018, 529, 273-282.	5.0	18

#	Article	IF	Citations
314	Nanostructured Amorphous Silicas Hydrophobized by Various Pathways. ACS Omega, 2019, 4, 13863-13871.	1.6	5
315	Patterned, Flexible, and Stretchable Silver Nanowire/Polymer Composite Films as Transparent Conductive Electrodes. ACS Applied Materials & Electrodes. ACS Applied Materials & Electrodes. ACS Applied Materials & Electrodes. 2019, 11, 31210-31219.	4.0	98
316	Polydimethylsiloxane materials with supraphysiological elasticity enable differentiation of myogenic cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 2619-2628.	2.1	4
317	Multidimensional durability of superhydrophobic self-cleaning surface derived from rice-husk ash. Progress in Organic Coatings, 2019, 136, 105221.	1.9	12
318	Nano-textured polyimide cantilever for enhancing the contractile behavior of cardiomyocytes and its application to cardiac toxicity screening. Sensors and Actuators B: Chemical, 2019, 301, 126995.	4.0	12
319	Double replication for characterizing cracks in surface-hardened polydimethylsiloxane. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 061805.	0.6	1
320	Investigation of Surface Degradation of Aged High Temperature Vulcanized (HTV) Silicone Rubber Insulators. Energies, 2019, 12, 3769.	1.6	15
321	Microfluidic Systems for Droplet Generation in Aqueous Continuous Phases: A Focus Review. Langmuir, 2019, 35, 12597-12612.	1.6	57
322	Mechanically tunable opacity effect in transparent bilayer film: Accurate interpretation and rational applications. Applied Materials Today, 2019, 16, 474-481.	2.3	15
323	Highly Uniform Activation of Carbon Fiber Reinforced Thermoplastics by Low-Temperature Plasma. ACS Applied Polymer Materials, 2019, 1, 2638-2648.	2.0	11
324	The influence of plasma treatment on the elasticity of the <i>in situ</i> oxidized gradient layer in PDMS: towards crack-free wrinkling. Soft Matter, 2019, 15, 65-72.	1.2	37
325	Polymethylsiloxane alone and in composition with nanosilica under various conditions. Journal of Colloid and Interface Science, 2019, 541, 213-225.	5.0	23
326	A skin-over-liquid platform with compliant microbumps actuated by pyro-EHD pressure. NPG Asia Materials, 2019, 11, .	3.8	132
327	One-step wettability patterning of PDMS microchannels for generation of monodisperse alginate microbeads by in Situ external gelation in double emulsion microdroplets. Sensors and Actuators B: Chemical, 2019, 291, 418-425.	4.0	48
328	Laser processing of biopolymers for development of medical and high-tech devices., 2019,, 487-526.		1
329	Colloidal Microfluidics. Frontiers of Nanoscience, 2019, , 125-166.	0.3	1
330	Plasma treatment to improve the hydrophobicity of contaminated silicone rubber â€" the role of LMW siloxanes. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 416-422.	1.8	22
331	Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces. ACS Nano, 2019, 13, 4160-4173.	7.3	190

#	Article	IF	CITATIONS
332	Corona Treatment for Nanotransfer Molding Adhesion. ACS Applied Polymer Materials, 2019, 1, 997-1005.	2.0	4
333	Polydopamine and collagen coated micro-grated polydimethylsiloxane for human mesenchymal stem cell culture. Bioactive Materials, 2019, 4, 142-150.	8.6	53
334	Interfacial bonding enhancement of the RTV recoating with sandwiched contaminant by plasma jet. High Voltage, 2019, 4, 345-348.	2.7	12
335	Micro ion beam used to optimize the quality of microstructures based on polydimethylsiloxane. Nuclear Instruments & Methods in Physics Research B, 2019, 459, 137-142.	0.6	13
336	Multiple replication of hierarchical structures from polymer masters with anisotropy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 061601.	0.6	1
337	Microfluidic platforms with nanoscale features. , 2019, , 65-90.		3
338	A Nondestructive Surface Zwitterionization of Polydimethylsiloxane for the Improved Human Blood-inert Properties. ACS Applied Bio Materials, 2019, 2, 39-48.	2.3	12
339	Silver thin films generated by Pulsed Laser Deposition on plasma-treated surface of silicones to get dielectric elastomer transducers. Surface and Coatings Technology, 2019, 358, 282-292.	2.2	6
340	Mechanically Tunable Bilayer Composite Grating for Unique Light Manipulation and Information Storage. Advanced Optical Materials, 2019, 7, 1801017.	3.6	12
341	Effect of surface modification of titanium dioxide on the UV aging behavior of silicone rubber. Journal of Applied Polymer Science, 2019, 136, 47170.	1.3	13
342	Liquidâ€Like SiO ₂ â€ <i>g</i> å€PDMS Coatings on Wood Surfaces with Underwater Durability, Antifouling, Antismudge, and Selfâ€Healing Properties. Advanced Sustainable Systems, 2019, 3, 1800070.	2.7	37
343	Hydrophilic PDMS with a sandwich-like structure and no loss of mechanical properties and optical transparency. Applied Surface Science, 2020, 503, 144126.	3.1	14
344	A nanolayer coating on polydimethylsiloxane surfaces enables a mechanistic study of bacterial adhesion influenced by material surface physicochemistry. Materials Horizons, 2020, 7, 93-103.	6.4	31
345	Low-molecular weight polydimethylsiloxane, a versatile performance enhancer for the solution processed indium tin oxide transparent electrode. Applied Surface Science, 2020, 503, 144308.	3.1	5
346	Patterned Surface Energy in Elastomeric Molds as a Generalized Approach to Polymer Particle Fabrication. ACS Applied Polymer Materials, 2020, 2, 846-852.	2.0	8
347	Advanced functional surfaces through controlled damage and instabilities. Materials Horizons, 2020, 7, 366-396.	6.4	20
348	Reversible surface modification of polydimethylsiloxane film for stretchable display. Journal of the Society for Information Display, 2020, 28, 184-193.	0.8	3
349	Orthogonal wave superposition of wrinkled, plasma-oxidised, polydimethylsiloxane surfaces. Soft Matter, 2020, 16, 595-603.	1.2	12

#	Article	IF	CITATIONS
350	Long-term hydrophilization of polydimethylsiloxane (PDMS) for capillary filling microfluidic chips. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	16
351	Fabrication of a 3D microfluidic cell culture device for bone marrow-on-a-chip. Micro and Nano Engineering, 2020, 9, 100075.	1.4	17
352	Immobilization of Phosphatidylinositides Revealed by Bilayer Leaflet Decoupling. Journal of the American Chemical Society, 2020, 142, 13003-13010.	6.6	5
353	Janus Evaporators with Self-Recovering Hydrophobicity for Salt-Rejecting Interfacial Solar Desalination. ACS Nano, 2020, 14, 17419-17427.	7. 3	150
354	Adhesive Properties of Silicone-Coated Release Liner Paper Enhanced by Atmospheric Pressure Plasma Pre- and Post-Treatment. Coatings, 2020, 10, 1102.	1.2	6
355	Hydrophobic recovery of cross-linked polydimethylsiloxane films and its consequence in soft nano patterning. Bulletin of Materials Science, 2020, 43, 1.	0.8	11
356	Tunable infrared transmission for energy-efficient pneumatic building façades. Energy and Buildings, 2020, 226, 110377.	3.1	13
357	Plasma-induced Interfacial Crosslinking of Liquid Polydimethylsiloxane Films and Their Organic Solvent Permeation Performance. Chemistry Letters, 2020, 49, 1286-1290.	0.7	3
358	A Different Silica Surface: Radical Oxidation of Poly(methylsilsesquioxane) Thin Films and Particles (Tospearl). Langmuir, 2020, 36, 10110-10119.	1.6	4
359	Graphene oxide/reduced graphene oxide films as protective barriers on lead against differential aeration corrosion induced by water drops. Nanoscale Advances, 2020, 2, 5412-5420.	2.2	5
360	Surface Chemical Functionalization of Wrinkled Thiol–Ene Elastomers for Promoting Cellular Alignment. ACS Applied Bio Materials, 2020, 3, 3731-3740.	2.3	5
361	Omnidirectional Stretchable Inorganicâ€Materialâ€Based Electronics with Enhanced Performance. Advanced Electronic Materials, 2020, 6, 2000058.	2.6	34
362	Soft lithographic fabrication of free-standing ceramic microcomponents using poly(<i>N</i> -isopropylacrylamide) brushes grafted poly(dimethylsiloxane) micromolds. Journal of Micromechanics and Microengineering, 2020, 30, 085009.	1.5	0
363	Surface and mechanical analysis of metallized poly(dimethylsiloxane) gel for varifocal micromirrors. Surface and Interface Analysis, 2020, 52, 1163-1170.	0.8	2
364	Ultrasensitive Strain Gauges Enabled by Grapheneâ€Stabilized Silicone Emulsions. Advanced Functional Materials, 2020, 30, 2002433.	7.8	15
365	Development of Advanced Biodevices Using Quantum Beam Microfabrication Technology. Quantum Beam Science, 2020, 4, 14.	0.6	7
366	Flexible Functional Surface for Efficient Water Collection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12256-12263.	4.0	30
367	Thickness estimation of the silica-like thin layers via swelling-driven wrinkling instability. Thin Solid Films, 2020, 697, 137812.	0.8	1

#	Article	IF	CITATIONS
368	Designing "Supermetalphobic―Surfaces that Greatly Repel Liquid Metal by Femtosecond Laser Processing: Does the Surface Chemistry or Microstructure Play a Crucial Role?. Advanced Materials Interfaces, 2020, 7, 1901931.	1.9	48
369	How the dynamics of subsurface hydration regulates protein-surface interactions. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110908.	2.5	9
370	Surface modifications to polydimethylsiloxane substrate for stabilizing prolonged bone marrow stromal cell culture. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110995.	2.5	13
371	Exploring Circulating Tumor Cells in Cholangiocarcinoma Using a Novel Glycosaminoglycan Probe on a Microfluidic Platform. Advanced Healthcare Materials, 2020, 9, e1901875.	3.9	13
372	Silicone-based bioscaffolds for cellular therapies. Materials Science and Engineering C, 2021, 119, 111615.	3.8	23
373	Integration of FISH and Microfluidics. Methods in Molecular Biology, 2021, 2246, 249-261.	0.4	0
374	Surface Biochemical Modification of Poly(dimethylsiloxane) for Specific Immune Cytokine Response. ACS Applied Bio Materials, 2021, 4, 1307-1318.	2.3	0
375	Materials and methods for microfabrication of microfluidic devices. , 2021, , 1-78.		7
376	A heat-melt adhesive-assisted transferable electrode films. Scientific Reports, 2021, 11, 36.	1.6	0
377	Potential applications of sustainable chemistry in processing of manmade and protein fibers. , 2021, , 337-352.		0
378	Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds. PLoS ONE, 2021, 16, e0245206.	1.1	20
379	A miniaturized, DNA-FET biosensor-based microfluidic system for quantification of two breast cancer biomarkers. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	23
380	Bar-coating programmable mechanochromic bilayer PDMS film with angle-dependent and angle-independent structural colors. Dyes and Pigments, 2021, 189, 109264.	2.0	15
381	Interaction between plasma jet and silicone rubber covered by porous inorganic contaminants: Surface hydrophobicity or hydrophilicity?. High Voltage, 0, , .	2.7	7
382	Scalable Polymeric Few-Nanometer Organosilica Membranes with Hydrothermal Stability for Selective Hydrogen Separation. ACS Nano, 2021, 15, 12119-12128.	7.3	28
383	Inorganic/Organic Micro-Double-Network Ion Gel-Based Composite Membrane with Enhanced Mechanical Strength and CO ₂ Permeance. Industrial & Engineering Chemistry Research, 2021, 60, 12698-12708.	1.8	7
384	Long-lasting hydrophilic surface generated on poly(dimethyl siloxane) with photoreactive zwitterionic polymers. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111900.	2.5	15
385	Tunable Phase Gratings by Wrinkling of Plasma-Oxidized PDMS: Gradient Skins and Multiaxial Patterns. ACS Applied Polymer Materials, 2021, 3, 5162-5170.	2.0	9

#	Article	IF	Citations
386	Bead-free digital immunoassays on polydopamine patterned perfluorinated surfaces. Sensors and Actuators B: Chemical, 2021, 345, 130341.	4.0	5
387	Insights from evaluation of surface cracks in surface-hardened polydimethylsiloxane by means of video analysis. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 013001.	0.6	0
388	Using PDMS as a thermocurable resist for a mold assisted imprint process. Nanostructure Science and Technology, 2003, , 139-165.	0.1	2
389	Application of Microfluidics to Study Stem Cell Dynamics. , 2013, , 435-470.		3
391	Hydrophobicity changes in silicone rubbers. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6, 703-717.	1.8	108
392	Lipid Bilayers Are Long-Lived on Solvent Cleaned Plasma-Oxidized poly(dimethyl)siloxane (ox-PDMS). PLoS ONE, 2017, 12, e0169487.	1.1	11
393	Biochips: non-conventional strategies for biosensing elements immobilization. Frontiers in Bioscience - Landmark, 2008, 13, 382.	3.0	13
394	Time Dependent Lyotropic Chromonic Textures in Microfluidic Confinements. Crystals, 2021, 11, 35.	1.0	10
395	Hydrophilicity of Surfactant-Added Poly(dimethylsiloxane) and Its Applications. Japanese Journal of Applied Physics, 2011, 50, 06GL04.	0.8	8
396	High Dynamic Range Smart Window Display by Surface Hydrophilization and Inkjet Printing. Advanced Materials Technologies, 2022, 7, 2101026.	3.0	3
397	Surface Chemistry of Nanohybrids with Fumed Silica Functionalized by Polydimethylsiloxane/Dimethyl Carbonate Studied Using 1H, 13C, and 29Si Solid-State NMR Spectroscopy. Molecules, 2021, 26, 5974.	1.7	1
399	Spectroscopy and Scattering of Radiation by Polymers. , 2021, , 105-169.		0
400	Semitransparent Perovskite Solar Cells with Enhanced Light Utilization Efficiencies by Transferable Ag Nanogrid Electrodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58475-58485.	4.0	9
401	Development of polydimethylsiloxane composite membrane for organic solvent separation. Separation and Purification Technology, 2022, 285, 120369.	3.9	16
402	Aging Mechanism of Silicone Rubber Under Thermal–Tensile Coupling Effect. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29, 185-192.	1.8	5
403	Modification and activation of the surface of medical-grade PDMS after irradiation by ultrashort laser pulses. Journal of Physics: Conference Series, 2022, 2240, 012051.	0.3	0
404	Hydrophobic Recovery of PDMS Surfaces in Contact with Hydrophilic Entities: Relevance to Biomedical Devices. Materials, 2022, 15, 2313.	1.3	12
405	Crosslinking inert liquidlike polydimethylsiloxane brushes using bis-diazirine chemical insertion for enhanced mechanical durability. Chemical Engineering Journal, 2022, 442, 136017.	6.6	16

#	Article	IF	CITATIONS
406	Materials and Microfabrication Processes for Microfluidic Devices., 2008,, 35-92.		0
407	Microfabrication of polymers for bioMEMS. , 0, , 1-45.		0
409	Effects of Corona Treatment on Cellular Attachment and Morphology on Polydimethylsiloxane Micropillar Substrates. Jom, 2022, 74, 3408-3418.	0.9	6
410	Studying the influence of plasma treatment on the cracks formation of PDMS wrinkling through orthogonal experiment. MRS Communications, 2022, 12, 603-608.	0.8	1
411	A one-step, tunable method of selective reactive sputter deposition as a wrinkling approach for silver/polydimethylsiloxane for electrically conductive pliable surfaces. Microsystems and Nanoengineering, 2022, 8, .	3.4	3
412	Changes of cross-linked network and DC electrical properties of nanocomposite silicone rubber under thermal aging. Energy Reports, 2022, 8, 541-548.	2.5	1
413	Acoustic Tweezer-Modulated Biomimetic Patterned Particle-Polymer Composite for Water Vapor Harvesting. ACS Applied Materials & Samp; Interfaces, 2022, 14, 44782-44791.	4.0	6
414	Fundamental investigation on the development of composite membrane with a thin ion gel layer for CO2 separation. Journal of Membrane Science, 2022, 663, 121032.	4.1	9
415	Introducing amphipathic copolymer into intermediate layer to fabricate ultra-thin Pebax composite membrane for efficient CO2 capture. Journal of Membrane Science, 2023, 667, 121183.	4.1	13
416	Visualization of Flowâ€induced Strain Using Structural Color in Channelâ€Free Polydimethylsiloxane Devices. Advanced Science, 2023, 10, .	5.6	3
417	Bucklingâ€Patternâ€Based Characterization of Stiff Membrane on Soft Film. Advanced Engineering Materials, 2023, 25, .	1.6	0
418	Electron Irradiation Frozen Effect in Stiff/Soft Bilayer Films. Advanced Materials Interfaces, 2023, 10, .	1.9	1
419	Plasma Activation and its Nanoconfinement Effects Boost Surface Antiâ€Biofouling Performance. Advanced Materials Interfaces, 2023, 10, .	1.9	1
420	Less Is More: Oligomer Extraction and Hydrothermal Annealing Increase PDMS Adhesion Forces for Materials Studies and for Biology-Focused Microfluidic Applications. Micromachines, 2023, 14, 214.	1.4	0
421	Hydrophilic Modification Strategies to Enhance the Surface Biocompatibility of Poly(dimethylsiloxane)â€Based Biomaterials for Medical Applications. Advanced Materials Interfaces, 2023, 10, .	1.9	10
422	Low energy irradiation induced effects on the surface characteristics of polydimethylsiloxane polymeric films. Macromolecular Research, 2023, 31, 53-63.	1.0	7
423	The universal scaling law for wrinkle evolution in stiff membranes on soft films. Matter, 2023, 6, 1964-1974.	5.0	3
424	Surface-modified polydimethylsiloxane with soft-plasma as dielectric layer for flexible artificial synaptic transistors. Applied Surface Science, 2023, 627, 157325.	3.1	2

Article IF Citations