The mechanism of effect of growth hormone on preadip

Obesity Reviews 1, 73-86 DOI: 10.1046/j.1467-789x.2000.00015.x

Citation Report

#	Article	IF	CITATIONS
1	Signal transduction via the growth hormone receptor. Cellular Signalling, 2001, 13, 599-616.	3.6	219
2	Autocrine Human Growth Hormone (hGH) Regulation of Human Mammary Carcinoma Cell Gene Expression. Journal of Biological Chemistry, 2001, 276, 21464-21475.	3.4	56
3	Short-Term Treatment with Low Doses of Recombinant Human GH Stimulates Lipolysis in Visceral Obese Men. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3105-3109.	3.6	22
4	Neuroendocrinology of insulin resistance: metabolic and endocrine aspects of adiposity. European Journal of Pharmacology, 2003, 480, 31-42.	3.5	22
5	Adipogenesis: a cross-talk between cell proliferation and cell differentiation. Annals of Medicine, 2003, 35, 79-85.	3.8	121
6	Constitutively Active Signal Transducer and Activator of Transcription 5 Can Replace the Requirement for Growth Hormone in Adipogenesis of 3T3-F442A Preadipocytes. Molecular Endocrinology, 2003, 17, 2494-2508.	3.7	60
7	Adipogenesis: Usefulness of in vitro and in vivo experimental models1,2. Journal of Animal Science, 2004, 82, 905-915.	0.5	56
8	Physiological Adaptations to Milk Production that Affect the Fertility of High Yielding Dairy Cows. BSAP Occasional Publication, 2004, 29, 37-71.	0.0	14
9	Physiological Studies of Transgenic Mice Overexpressing Growth Hormone (GH) Secretagogue Receptor 1A in GH-Releasing Hormone Neurons. Endocrinology, 2004, 145, 1602-1611.	2.8	37
10	Adipose tissue energy metabolism: altered gene expression profile of mice subjected to longâ€ŧerm caloric restriction. FASEB Journal, 2004, 18, 1-26.	0.5	146
11	RhoA/ROCK Activation by Growth Hormone Abrogates p300/Histone Deacetylase 6 Repression of Stat5-mediated Transcription. Journal of Biological Chemistry, 2004, 279, 32737-32750.	3.4	29
12	Effect of a C/EBP gene replacement on mitochondrial biogenesis in fat cells. Genes and Development, 2004, 18, 1970-1975.	5.9	86
13	Regulation of development and metabolism of adipose tissue by growth hormone and the insulin-like growth factor system. Domestic Animal Endocrinology, 2004, 27, 241-255.	1.6	77
14	Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Hormone and IGF Research, 2004, 14, 309-318.	1.1	244
15	Chronic treatment with growth hormone stimulates adiponectin gene expression in 3T3-L1 adipocytes. FEBS Letters, 2004, 572, 129-134.	2.8	30
16	Growth Hormone During Development. Reviews in Endocrine and Metabolic Disorders, 2005, 6, 173-182.	5.7	10
17	Roles of the Lactogens and Somatogens in Perinatal and Postnatal Metabolism and Growth: Studies of a Novel Mouse Model Combining Lactogen Resistance and Growth Hormone Deficiency. Endocrinology, 2005, 146, 103-112.	2.8	54
18	The role of 'adipotropins' and the clinical importance of a potential hypothalamic–pituitary–adipose axis. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 374-383.	2.8	36

ITATION REDO

щ		15	CITATIONS
#	ARTICLE	IF	CITATIONS
19	Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opinion on Biological Therapy, 2006, 6, 567-578.	3.1	164
20	Characterization of Growth Hormone Receptor Messenger Ribonucleic Acid Variants in Human Adipocytes. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1901-1908.	3.6	24
21	Growth hormone stimulates adipogenesis of 3T3-L1 cells through activation of the Stat5A/5B-PPARÎ ³ pathway. Journal of Molecular Endocrinology, 2007, 38, 19-34.	2.5	84
22	Subcutaneous fat in normal and diseased states. Journal of the American Academy of Dermatology, 2007, 56, 472-492.	1.2	180
23	Evidence for distinct effects of GH and IGF-I in the metabolic syndrome. Diabetic Medicine, 2007, 24, 1012-1018.	2.3	23
24	Recombinant Human Growth Hormone. BioDrugs, 2008, 22, 101-112.	4.6	14
25	Lipodystrophy in Patients with Acromegaly Receiving Pegvisomant. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3515-3518.	3.6	65
26	Lower Visceral and Subcutaneous but Higher Intermuscular Adipose Tissue Depots in Patients with Growth Hormone and Insulin-Like Growth Factor I Excess Due to Acromegaly. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2334-2343.	3.6	99
27	Age-Related Changes in Body Composition of Bovine Growth Hormone Transgenic Mice. Endocrinology, 2009, 150, 1353-1360.	2.8	86
28	Structure and Activity of the Human Growth Hormone Receptor (hGHR) Gene V2 Promoter. Molecular Endocrinology, 2009, 23, 360-372.	3.7	3
29	Growth hormone regulates the balance between bone formation and bone marrow adiposity. Journal of Bone and Mineral Research, 2010, 25, 757-768.	2.8	107
30	The Insulin-like Growth Factor-1 Binding Protein Acid-labile Subunit Alters Mesenchymal Stromal Cell Fate. Journal of Biological Chemistry, 2010, 285, 4709-4714.	3.4	20
31	Breast Tissue Composition and Susceptibility to Breast Cancer. Journal of the National Cancer Institute, 2010, 102, 1224-1237.	6.3	378
32	A Novel Effect of Growth Hormone on Macrophage Modulates Macrophage-Dependent Adipocyte Differentiation. Endocrinology, 2010, 151, 2189-2199.	2.8	58
33	Adipose-Derived Stem Cells (ASCs) for Tissue Engineering. , 0, , .		7
34	The signal transducer and activator of transcription 5B gene polymorphism contributes to the cholesterol metabolism in Japanese children with growth hormone deficiency. Clinical Endocrinology, 2011, 74, 611-617.	2.4	10
35	Role of the Non-Canonical Notch Ligand Delta-Like Protein 1 in Hormone-Producing Cells of the Adult Male Mouse Pituitary. Journal of Neuroendocrinology, 2011, 23, 849-859.	2.6	26
36	Human growth hormone receptor (GHR) expression in obesity: II. Regulation of the human GHR gene by obesity-related factors. International Journal of Obesity, 2011, 35, 1520-1529.	3.4	19

CITATION REPORT

#	Article	IF	CITATIONS
37	Human growth hormone receptor (GHR) expression in obesity: I. GHR mRNA expression in omental and subcutaneous adipose tissues of obese women. International Journal of Obesity, 2011, 35, 1511-1519.	3.4	31
38	Nutritional and Hormonal Modulation of Adiponectin and its Receptors adipoR1 and adipoR2. Vitamins and Hormones, 2012, 90, 57-94.	1.7	18
39	Green Tea Polyphenols Reduce Body Weight in Rats by Modulating Obesity-Related Genes. PLoS ONE, 2012, 7, e38332.	2.5	89
40	Transcriptional analysis of abdominal fat in genetically fat and lean chickens reveals adipokines, lipogenic genes and a link between hemostasis and leanness. BMC Genomics, 2013, 14, 557.	2.8	70
41	The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nature Reviews Endocrinology, 2013, 9, 346-356.	9.6	183
42	Preweaning Growth Hormone Treatment Ameliorates Adipose Tissue Insulin Resistance and Inflammation in Adult Male Offspring Following Maternal Undernutrition. Endocrinology, 2013, 154, 2676-2686.	2.8	31
43	Pref-1, a Gatekeeper of Adipogenesis. Frontiers in Endocrinology, 2013, 4, 79.	3.5	127
44	Early-life growth hormone treatment to offspring of undernourished mothers alters metabolic parameters in primary adipocytes in adulthood. Growth Factors, 2014, 32, 34-40.	1.7	6
45	Liver-Specific GH Receptor Gene-Disrupted (LiGHRKO) Mice Have Decreased Endocrine IGF-I, Increased Local IGF-I, and Altered Body Size, Body Composition, and Adipokine Profiles. Endocrinology, 2014, 155, 1793-1805.	2.8	125
46	Giant Mice Reveal New Roles for GH in Regulating the Adipose Immune Microenvironment. Endocrinology, 2015, 156, 1613-1615.	2.8	1
47	Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World Journal of Diabetes, 2016, 7, 483.	3.5	108
48	Regulation of Growth Hormone by the Splanchnic Area. Progress in Molecular Biology and Translational Science, 2016, 138, 41-60.	1.7	1
49	Glucose and Fat Metabolism in Acromegaly: From Mice Models to Patient Care. Neuroendocrinology, 2016, 103, 96-105.	2.5	27
50	Developments in our understanding of the effects of growth hormone on white adipose tissue from mice: implications to the clinic. Expert Review of Endocrinology and Metabolism, 2016, 11, 197-207.	2.4	8
51	Impact of Growth Hormone on Regulation of Adipose Tissue. , 2017, 7, 819-840.		19
52	Effects of paternal obesity on growth and adiposity of male rat offspring. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E117-E125.	3.5	39
53	Growth Hormone's Effect on Adipose Tissue: Quality versus Quantity. International Journal of Molecular Sciences, 2017, 18, 1621.	4.1	52
54	The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Frontiers in Endocrinology, 2018, 9, 35.	3.5	188

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	GH Knockout Mice Have Increased Subcutaneous Adipose Tissue With Decreased Fibrosis and Enhanced Insulin Sensitivity. Endocrinology, 2019, 160, 1743-1756.	2.8	35
56	Obesity in theÂPathophysiology of Diabetes. , 2019, , 185-213.		0
57	Ginkgetin, a biflavone from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated PPARÎ ³ and C/EBPα regulation. Pharmacological Research, 2019, 139, 325-336.	7.1	30
58	Menopausal Transition, Body Mass Index, and Prevalence of Mammographic Dense Breasts in Middle-Aged Women. Journal of Clinical Medicine, 2020, 9, 2434.	2.4	2
59	Differential gene signature in adipose tissue depots of growth hormone transgenic mice. Journal of Neuroendocrinology, 2020, 32, e12893.	2.6	5
60	Body Composition Changes with Long-term Pegvisomant Therapy of Acromegaly. Journal of the Endocrine Society, 2021, 5, bvab004.	0.2	16
61	Effect of recombinant human growth hormone therapy on blood lipid and carotid intima-media thickness in children with growth hormone deficiency. Pediatric Research, 2018, 83, 954-960.	2.3	14
62	Adipogenesis: Usefulness of in vitro and in vivo experimental models1,2. Journal of Animal Science, 2004, 82, 905-915.	0.5	13
63	Growth Hormone as Modulator of Adipose Inflammation. Oxidative Stress and Disease, 2009, , 115-125.	0.3	0
65	Sexual Dimorphism in Adipose-Hypothalamic Crosstalk and the Contribution of Aryl Hydrocarbon Receptor to Regulate Energy Homeostasis. International Journal of Molecular Sciences, 2022, 23, 7679.	4.1	3

66 Obesity in the Pathophysiology of Diabetes. , 2023, , 217-245.

0