The evolution of mutation rates: separating causes from

BioEssays 22, 1057-1066 DOI: 10.1002/1521-1878(200012)22:12<1057::aid-bies3>3.0.co;2-w

Citation Report

#	Article	IF	CITATIONS
1	Limits to natural selection. BioEssays, 2000, 22, 1075-1084.	1.2	188
2	Ongoing Evolution of Strand Composition in Bacterial Genomes. Molecular Biology and Evolution, 2001, 18, 1789-1799.	3.5	62
3	Stress-induced evolution and the biosafety of genetically modified microorganisms released into the environment. Journal of Biosciences, 2001, 26, 667-683.	0.5	21
4	Evolution: Constantly avoiding mutation. Current Biology, 2001, 11, R929-R931.	1.8	5
5	Mutator dynamics in fluctuating environments. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 591-597.	1.2	71
6	Mutation–Selection Balance: Ancestry, Load, and Maximum Principle. Theoretical Population Biology, 2002, 62, 9-46.	0.5	111
7	16 The evolution of gene duplicates. Advances in Genetics, 2002, 46, 451-483.	0.8	131
8	Evolution of Drug Resistance inCandida Albicans. Annual Review of Microbiology, 2002, 56, 139-165.	2.9	134
9	A single mode of canalization. Trends in Ecology and Evolution, 2002, 17, 468-473.	4.2	211
10	Optimal Mutation Rates in Dynamic Environments. Bulletin of Mathematical Biology, 2002, 64, 1033-1043.	0.9	24
11	EVOLUTION OF MICROALGAE IN HIGHLY STRESSING ENVIRONMENTS: AN EXPERIMENTAL MODEL ANALYZING THE RAPID ADAPTATION OFDICTYOSPHAERIUM CHLORELLOIDES(CHLOROPHYCEAE) FROM SENSITIVITY TO RESISTANCE AGAINST 2,4,6-TRINITROTOLUENE BY RARE PRESELECTIVE MUTATIONS1. Journal of Phycology, 2002, 38, 1074-1081.	1.0	53
12	The importance of being erroneous. Nature, 2002, 420, 367-369.	13.7	70
13	Between genotype and phenotype: protein chaperones and evolvability. Nature Reviews Genetics, 2003, 4, 263-274.	7.7	276
14	The evolutionary genomics of pathogen recombination. Nature Reviews Genetics, 2003, 4, 50-60.	7.7	182
15	THE EVOLUTION OF THE EVOLVABILITY PROPERTIES OF THE YEAST PRION [PSI+]. Evolution; International Journal of Organic Evolution, 2003, 57, 1498-1512.	1.1	69
16	Mutation rate variation in the mammalian genome. Current Opinion in Genetics and Development, 2003, 13, 562-568.	1.5	135
17	Spontaneously Arising mutL Mutators in Evolving Escherichia coli Populations Are the Result of Changes in Repeat Length. Journal of Bacteriology, 2003, 185, 6076-6082.	1.0	40
18	THE EVOLUTION OF THE EVOLVABILITY PROPERTIES OF THE YEAST PRION [PSI+]. Evolution; International Journal of Organic Evolution, 2003, 57, 1498.	1.1	8

#	Article	IF	CITATIONS
19	Error and repair catastrophes: A two-dimensional phase diagram in the quasispecies model. Physical Review E, 2004, 69, 011902.	0.8	17
20	Mutators in Space: The Dynamics of High-Mutability Clones in a Two-Patch Model. Genetics, 2004, 167, 513-522.	1.2	8
21	The Population Genetic Theory of Hidden Variation and Genetic Robustness. Genetics, 2004, 168, 2271-2284.	1.2	227
22	Impact of mismatch repair deficiency on genomic stability in the maternal germline and during early embryonic development. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 556, 45-53.	0.4	10
23	Evidence for positive selection on Mycobacterium tuberculosis within patients. BMC Evolutionary Biology, 2004, 4, 31.	3.2	10
24	Problems of somatic mutation and cancer. BioEssays, 2004, 26, 291-299.	1.2	107
25	Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. BioEssays, 2004, 26, 348-362.	1.2	269
26	Transport of ionizing radiation in terrestrial-like exoplanet atmospheres. Icarus, 2004, 171, 229-253.	1.1	68
27	Male-Biased Mutation Rate and Divergence in Autosomal, Z-Linked and W-Linked Introns of Chicken and Turkey. Molecular Biology and Evolution, 2004, 21, 1538-1547.	3.5	157
28	Evolutionary significance of stress-induced mutagenesis in bacteria. Trends in Microbiology, 2004, 12, 264-270.	3.5	116
29	Resolving the evolutionary paradox of genetic instability: a cost-benefit analysis of DNA repair in changing environments. FEBS Letters, 2004, 563, 7-12.	1.3	27
30	Evolutionary dynamics and highly optimized tolerance. Journal of Theoretical Biology, 2005, 236, 438-447.	0.8	24
31	Population Dynamics Through the Lens of Extreme Environments. Reviews in Mineralogy and Geochemistry, 2005, 59, 259-277.	2.2	11
32	Adaptation of Spirogyra insignis (Chlorophyta) to an extreme natural environment (sulphureous) Tj ETQq1 1 0.78	34314 rgB ⁻	Г /Qverlock]
33	Linking mutation to adaptation: overcoming stress at the spa. New Phytologist, 2005, 166, 360-362.	3.5	24
34	The ecology of the genome — mobile DNA elements and their hosts. Nature Reviews Genetics, 2005, 6, 128-136.	7.7	185
35	Hypermutability Impedes Cooperation in Pathogenic Bacteria. Current Biology, 2005, 15, 1968-1971.	1.8	58
36	A highly unexpected strong correlation between fixation probability of nonsynonymous mutations and mutation rate. Trends in Genetics, 2005, 21, 381-385.	2.9	45

# 37	ARTICLE The evolutionary origin of genetic instability in cancer development. Seminars in Cancer Biology, 2005, 15, 51-60.	IF 4.3	CITATIONS 83
38	Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function. BMC Evolutionary Biology, 2005, 5, 16.	3.2	48
39	Role of Stress in Evolution. , 2005, , 277-302.		28
40	Mutation and Phenotypic Variation. , 2005, , 159-189.		2
41	Evolution of Genetic Potential. PLoS Computational Biology, 2005, 1, e32.	1.5	64
42	Evolutionary Capacitance May Be Favored by Natural Selection. Genetics, 2005, 170, 1359-1371.	1.2	60
43	Comparative evolutionary genetics of spontaneous mutations affecting fitness in rhabditid nematodes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5785-5790.	3.3	147
44	The Evolution of Plastic Recombination. Genetics, 2005, 171, 803-812.	1.2	63
45	Yeast prions [URE3] and [PSI+] are diseases. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10575-10580.	3.3	243
46	Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at "Evolution Canyons" I and II, Israel. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15924-15929.	3.3	104
47	The Opportunity for Canalization and the Evolution of Genetic Networks. American Naturalist, 2005, 165, 147-162.	1.0	104
48	Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 877-886.	1.2	353
49	Nucleotide excision repair in chromatin: The shape of things to come. DNA Repair, 2005, 4, 909-918.	1.3	21
50	Here a virus, there a virus, everywhere the same virus?. Trends in Microbiology, 2005, 13, 278-284.	3.5	687
51	On The Necessity to Study Natural Bacterial Populations-The Model of Bacillus Simplex From "Evolution Canyons" I and II, Israel. Israel Journal of Ecology and Evolution, 2006, 52, 527-542.	0.2	8
52	Has Simple Sequence Repeat Mutability Been Selected to Facilitate Evolution?. Israel Journal of Ecology and Evolution, 2006, 52, 331-342.	0.2	10
53	Hypermutable bacteria isolated from humans – a critical analysis. Microbiology (United Kingdom), 2006, 152, 2505-2514.	0.7	78
54	Bacterial Contingency Loci: The Role of Simple Sequence DNA Repeats in Bacterial Adaptation. Annual Review of Genetics, 2006, 40, 307-333.	3.2	374

CITATION REPORT ARTICLE IF CITATIONS Origin of Mutations Under Selection: The Adaptive Mutation Controversy. Annual Review of 2.9 158 Microbiology, 2006, 60, 477-501. Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 2006, 6, 924-935. 12.8 1,470 Deuterium and its role in the machinery of evolution. Journal of Theoretical Biology, 2006, 238, 0.8 16 914-918. The interaction between mobile DNAs and their hosts in a fluctuating environment. Journal of 0.8 Theoretical Biology, 2006, 243, 13-23. Evolvability. Current Biology, 2006, 16, R831-R834. 1.8 95 Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics, 2006, 22, 253-259. 471 Comparative genetic mutation frequencies based on amino acid composition differences. Mutation 0.4 0 Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 600, 89-92. The ovotestis: an underdeveloped organ of evolution. BioEssays, 2006, 28, 642-650. 1.2 29 Why Are Phenotypic Mutation Rates Much Higher Than Genotypic Mutation Rates?. Genetics, 2006, 172, 1.2 47 197-206. Balancing Robustness and Evolvability. PLoS Biology, 2006, 4, e428. 2.6 171 A Test of the Master Gene Hypothesis for Interspersed Repetitive DNA Sequences. Molecular Biology 3.5 15 and Evolution, 2006, 23, 235-239. Antimutator Role of the DNA Glycosylase mutY Gene in Helicobacter pylori. Journal of Bacteriology, 2006, 188, 6224-6234. Cumulative Effects of Spontaneous Mutations for Fitness in Caenorhabditis: Role of Genotype, 1.2 49 Environment and Stress. Genetics, 2006, 174, 1387-1395. The Evolution of Mutation Rate in Finite Asexual Populations. Genetics, 2006, 172, 611-626. 1.2 Clonal Interference and the Periodic Selection of New Beneficial Mutations in Escherichia coli. 1.2 115 Genetics, 2006, 172, 2093-2100. The Influence of Hitchhiking and Deleterious Mutation Upon Asexual Mutation Rates. Genetics, 2006, 173, 461-472. Virus Evolution: Insights from an Experimental Approach. Annual Review of Ecology, Evolution, and 103 3.8 Systematics, 2007, 38, 27-52. Complete genetic linkage can subvert natural selection. Proceedings of the National Academy of 3.3

Sciences of the United States of America, 2007, 104, 6266-6271.

#

55

57

58

59

61

63

65

67

69

#	Article	IF	CITATIONS
73	Phenotypic Mutation Rates and the Abundance of Abnormal Proteins in Yeast. PLoS Computational Biology, 2007, 3, e203.	1.5	25
74	The rise and spread of a new pathogen: Seroresistant Moraxella catarrhalis. Genome Research, 2007, 17, 1647-1656.	2.4	73
75	High relatedness selects against hypermutability in bacterial metapopulations. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1341-1347.	1.2	19
76	The cost of replication fidelity in human immunodeficiency virus type 1. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 225-230.	1.2	38
77	Identifying Mutator Phenotypes among Fluoroquinolone-Resistant Strains of Streptococcus pneumoniae Using Fluctuation Analysis. Antimicrobial Agents and Chemotherapy, 2007, 51, 3225-3229.	1.4	29
78	Metabolic rate does not calibrate the molecular clock. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15388-15393.	3.3	98
79	Sperm competition can drive a male-biased mutation rate. Journal of Theoretical Biology, 2007, 249, 624-632.	0.8	23
80	Mutation rate variation in multicellular eukaryotes: causes and consequences. Nature Reviews Genetics, 2007, 8, 619-631.	7.7	389
81	Sexual selection and the evolution of evolvability. Heredity, 2007, 98, 198-205.	1.2	39
82	The emergence of antibiotic resistance by mutation. Clinical Microbiology and Infection, 2007, 13, 5-18.	2.8	290
83	SEX: DIFFERENCES IN MUTATION, RECOMBINATION, SELECTION, GENE FLOW, AND GENETIC DRIFT. Evolution; International Journal of Organic Evolution, 2007, 61, 2750-2771.	1.1	130
84	NATURAL TRANSFORMATION INCREASES THE RATE OF ADAPTATION IN THE HUMAN PATHOGEN HELICOBACTER PYLORI. Evolution; International Journal of Organic Evolution, 2007, 62, 071101082849001-???.	1.1	89
85	EVOLUTION OF EVOLVABILITY IN A DEVELOPMENTAL MODEL. Evolution; International Journal of Organic Evolution, 2008, 62, 301-315.	1.1	80
86	Is evolvability evolvable?. Nature Reviews Genetics, 2008, 9, 75-82.	7.7	461
87	Rates of evolutionary change in viruses: patterns and determinants. Nature Reviews Genetics, 2008, 9, 267-276.	7.7	1,239
88	Experimental evolution: experimental evolution and evolvability. Heredity, 2008, 100, 464-470.	1.2	60
89	Effects of the [PSI ⁺] prion on rates of adaptation in yeast. Journal of Evolutionary Biology, 2008, 21, 773-780.	0.8	22
90	Evolutionary origins of invasive populations. Evolutionary Applications, 2008, 1, 427-448.	1.5	198

#	Article	IF	CITATIONS
91	An integrative view of dynamic genomic elements influencing human brain evolution and individual neurodevelopment. Medical Hypotheses, 2008, 71, 360-373.	0.8	8
92	Telomere instability and cancer. Biochimie, 2008, 90, 73-82.	1.3	83
93	Genomic Consequences of Outcrossing and Selfing in Plants. International Journal of Plant Sciences, 2008, 169, 105-118.	0.6	198
94	Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes. PLoS Computational Biology, 2008, 4, e1000187.	1.5	80
95	Spontaneous Mutational and Standing Genetic (Co)variation at Dinucleotide Microsatellites in Caenorhabditis briggsae and Caenorhabditis elegans. Molecular Biology and Evolution, 2008, 26, 659-669.	3.5	31
96	Increased Transmission of Mutations by Low-Condition Females: Evidence for Condition-Dependent DNA Repair. PLoS Biology, 2008, 6, e30.	2.6	66
97	The Cellular, Developmental and Population-Genetic Determinants of Mutation-Rate Evolution. Genetics, 2008, 180, 933-943.	1.2	102
98	Programmed Genetic Instability: A Tumor-Permissive Mechanism for Maintaining the Evolvability of Higher Species through Methylation-Dependent Mutation of DNA Repair Genes in the Male Germ Line. Molecular Biology and Evolution, 2008, 25, 1737-1749.	3.5	19
100	The Fitness Effects of Random Mutations in Single-Stranded DNA and RNA Bacteriophages. PLoS Genetics, 2009, 5, e1000742.	1.5	100
101	Extremely High Mutation Rate of a Hammerhead Viroid. Science, 2009, 323, 1308-1308.	6.0	215
102	Deletion Rate Evolution and Its Effect on Genome Size and Coding Density. Molecular Biology and Evolution, 2009, 26, 1421-1430.	3.5	10
103	Long-Term Effects of Inducible Mutagenic DNA Repair on Relative Fitness and Phenotypic Diversification in Pseudomonas cichorii 302959. Genetics, 2009, 181, 199-208.	1.2	11
104	<i>Helicobacter pylori</i> Genome Plasticity. Genome Dynamics, 2009, 6, 75-90.	2.4	18
105	Mutation Rates and Intrinsic Fidelity of Retroviral Reverse Transcriptases. Viruses, 2009, 1, 1137-1165.	1.5	102
106	The Fixation Probability of Rare Mutators in Finite Asexual Populations. Genetics, 2009, 181, 1595-1612.	1.2	37
107	Complex Adaptations Can Drive the Evolution of the Capacitor [PSI+], Even with Realistic Rates of Yeast Sex. PLoS Genetics, 2009, 5, e1000517.	1.5	49
108	Emergence of species in evolutionary "simulated annealing― Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1869-1874.	3.3	16
109	Mutating away from your enemies: The evolution of mutation rate in a host–parasite system. Theoretical Population Biology, 2009, 75, 301-311.	0.5	33

ARTICLE IF CITATIONS # Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae. 110 3.2 114 BMC Evolutionary Biology, 2009, 9, 260. Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells?. 3.3 144 Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1795, 92-103. 112 Ageing as a price of cooperation and complexity. BioEssays, 2009, 31, 651-664. 1.2 28 Mutators and hypermutability in bacteria: the Escherichia coli paradigm. Journal of Genetics, 2009, 88, 379-391. Genetics and the understanding of selection. Nature Reviews Genetics, 2009, 10, 83-93. 114 7.7 107 Fundamental taboos of biology. Biochemistry (Moscow), 2009, 74, 939-944. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiology Reviews, 2009, 33, 116 3.9 137 539-571. EVOLUTIONARY FEEDBACKS BETWEEN REPRODUCTIVE MODE AND MUTATION RATE EXACERBATE THE 1.1 PARADOX OF SEX. Evolution; International Journal of Organic Evolution, 2010, 64, 1129-1135. The evolutionary dynamics of evolvability in a gene network model. Journal of Evolutionary Biology, 118 0.8 71 2009, 22, 599-611. Conditionâ€dependent mutation rates and sexual selection. Journal of Evolutionary Biology, 2009, 22, 0.8 899-906. Mutability as an altruistic trait in finite asexual populations. Journal of Theoretical Biology, 2009, 261, 120 0.8 3 414-422. Stochasticity in evolution. Trends in Ecology and Evolution, 2009, 24, 157-165. 4.2 147 Evolutionary Rates in Veronica L. (Plantaginaceae): Disentangling the Influence of Life History and 122 0.8 29 Breeding System. Journal of Molecular Evolution, 2010, 70, 44-56. Unstable DNA Repair Genes Shaped by Their Own Sequence Modifying Phenotypes. Journal of Molecular 0.8 Evolution, 2010, 70, 266-274. Adaptive force produced by stress-induced regulation of random variation intensity. Biological 124 0.6 1 Cybernetics, 2010, 103, 135-150. Rapid increase in viability due to new beneficial mutations in Drosophila melanogaster. Genetica, 2010, 13'8, 251-263. 126 Evolution of the mutation rate. Trends in Genetics, 2010, 26, 345-352. 885 2.9 Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm 3.2 lineages. BMC Evolutionary Biology, 2010, 10, 162.

#	Article	IF	CITATIONS
128	Scaling laws in bacterial genomes: A side-effect of selection of mutational robustness?. BioSystems, 2010, 102, 32-40.	0.9	18
129	Biological species is the only possible form of existence for higher organisms: the evolutionary meaning of sexual reproduction. Biology Direct, 2010, 5, 14.	1.9	15
130	Male Mutation Bias and Possible Longâ€Term Effects of Human Activities. Conservation Biology, 2010, 24, 1190-1197.	2.4	8
131	RAPID DECLINE IN FITNESS OF MUTATION ACCUMULATION LINES OF GONOCHORISTIC (OUTCROSSING) CAENORHABDITIS NEMATODES. Evolution; International Journal of Organic Evolution, 2010, 64, 3242-3253.	1.1	15
132	Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity, 2010, 105, 113-121.	1.2	101
133	Variable Mutation Rates as an Adaptive Strategy in Replicator Populations. PLoS ONE, 2010, 5, e11186.	1.1	18
134	Pathways to extinction: beyond the error threshold. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1943-1952.	1.8	57
135	The Spontaneous Appearance Rate of the Yeast Prion [<i>PSI</i> +] and Its Implications for the Evolution of the Evolvability Properties of the [<i>PSI</i> +] System. Genetics, 2010, 184, 393-400.	1.2	98
136	Interplay between Pleiotropy and Secondary Selection Determines Rise and Fall of Mutators in Stress Response. PLoS Computational Biology, 2010, 6, e1000710.	1.5	15
137	Impacts of mutation effects and population size on mutation rate in asexual populations: a simulation study. BMC Evolutionary Biology, 2010, 10, 298.	3.2	17
138	A Generation Time Effect on the Rate of Molecular Evolution in Invertebrates. Molecular Biology and Evolution, 2010, 27, 1173-1180.	3.5	206
139	Polyploidy, Aneuploidy and the Evolution of Cancer. Advances in Experimental Medicine and Biology, 2010, 676, 1-13.	0.8	22
141	What Does Virus Evolution Tell Us about Virus Origins?. Journal of Virology, 2011, 85, 5247-5251.	1.5	119
142	Advances in Plant Virus Evolution: Translating Evolutionary Insights into Better Disease Management. Phytopathology, 2011, 101, 1136-1148.	1.1	83
143	Quantifying the energetic contributions of desolvation and π-electron density during translesion DNA synthesis. Nucleic Acids Research, 2011, 39, 1623-1637.	6.5	20
144	Wider Access to Genotypic Space Facilitates Loss of Cooperation in a Bacterial Mutator. PLoS ONE, 2011, 6, e17254.	1.1	7
145	Fitness-dependent mutation rates in finite populations. Journal of Evolutionary Biology, 2011, 24, 1677-1684.	0.8	28
146	LOCAL ADAPTATION IN A CHANGING WORLD: THE ROLES OF GENE-FLOW, MUTATION, AND SEXUAL REPRODUCTION. Evolution; International Journal of Organic Evolution, 2011, 65, 79-89.	1.1	58

ARTICLE IF CITATIONS # EXPERIMENTAL EVOLUTION OF RNA VERSUS DNA VIRUSES. Evolution; International Journal of Organic 147 1.1 18 Evolution, 2011, 65, 2987-2994. 148 Analysis of codon usage and nucleotide composition bias in polioviruses. Virology Journal, 2011, 8, 146. 1.4 149 Evolutionary Genetics: Evolution with Foresight. Current Biology, 2011, 21, R398-R400. 0 1.8 Drugâ€resistant malaria: Molecular mechanisms and implications for public health. FEBS Letters, 2011, 585, 1551-1562. Antimutator variants of DNA polymerases. Critical Reviews in Biochemistry and Molecular Biology, 151 2.3 24 2011, 46, 548-570. Molecular biology and riddle of cancer: the †Tom & Jerry' show. Oncology Reviews, 2011, 5, 215-222. 0.8 Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. Journal of 153 1.2 38 Plant Research, 2011, 124, 561-576. Hypermutation and stress adaptation in bacteria. Journal of Genetics, 2011, 90, 383-391. 0.4 154 Mutator dynamics in sexual and asexual experimental populations of yeast. BMC Evolutionary Biology, 155 3.2 31 2011, 11, 158. Effect of robustness on selection of a mutation-rate regulating gene. Physical Review E, 2011, 84, 0.8 031925. Competition between high- and higher-mutating strains of <i>Escherichia coli </i>. Biology Letters, 157 1.0 48 2011, 7, 422-424. Kick-Starting the Ratchet: The Fate of Mutators in an Asexual Population. Genetics, 2011, 187, 1129-1137. 1.2 DNA Repair Pathway Choice Is Influenced by the Health of Drosophila melanogaster. Genetics, 2012, 192, 159 1.2 16 361-370. The role of robustness in phenotypic adaptation and innovation. Proceedings of the Royal Society B: 1.2 119 Biological Sciences, 2012, 279, 1249-1258. How closely does genetic diversity in finite populations conform to predictions of neutral theory? 161 1.2 77 Large deficits in regions of low recombination. Heredity, 2012, 108, 167-178. Variation in Base-Substitution Mutation in Experimental and Natural Lineages of Caenorhabditis 114 Nematodes. Genome Biology and Evolution, 2012, 4, 513-522. General and inducible hypermutation facilitate parallel adaptation in <i>Pseudomonas aeruginosa</i> 163 despite divergent mutation spectra. Proceedings of the National Academy of Sciences of the United 3.3 33 States of America, 2012, 109, 13680-13685. 164 Cancer in Light of Experimental Evolution. Current Biology, 2012, 22, R762-R771. 1.8

		CITATION R	EPORT	
#	Article		IF	CITATIONS
165	Evolutionary Rate Variation in Organelle Genomes: The Role of Mutational Processes. ,	2012, , 123-146.		19
166	Extraordinary genome stability in the ciliate <i>Paramecium tetraurelia</i> . Proceeding National Academy of Sciences of the United States of America, 2012, 109, 19339-193	s of the 44.	3.3	115
167	Sex, prions, and plasmids in yeast. Proceedings of the National Academy of Sciences of States of America, 2012, 109, E2683-90.	[:] the United	3.3	63
168	Evidence for elevated mutation rates in low-quality genotypes. Proceedings of the Nati of Sciences of the United States of America, 2012, 109, 6142-6146.	onal Academy	3.3	85
169	The Evolution of Low Mutation Rates in Experimental Mutator Populations of Saccharo cerevisiae. Current Biology, 2012, 22, 1235-1240.	imyces	1.8	49
170	Mutation Rate Evolution in Replicator Dynamics. Bulletin of Mathematical Biology, 201	2, 74, 2650-75.	0.9	13
171	Stressâ€induced mutation via DNA breaks in <i>Escherichia coli</i> : A molecular mech implications for evolution and medicine. BioEssays, 2012, 34, 885-892.	anism with	1.2	110
172	Evolution of Simple Sequence Repeats as Mutable Sites. Advances in Experimental Med Biology, 2012, 769, 10-25.	dicine and	0.8	34
173	Evidence of non-random mutation rates suggests an evolutionary risk management str 2012, 485, 95-98.	ategy. Nature,	13.7	183
174	Stasis is an Inevitable Consequence of Every Successful Evolution. Biosemiotics, 2012,	5, 227-245.	0.8	7
175	CONTRASTING DYNAMICS OF A MUTATOR ALLELE IN ASEXUAL POPULATIONS OF DIFF International Journal of Organic Evolution, 2012, 66, 2329-2334.	ERING SIZE. Evolution;	1.1	21
176	THE EVOLUTION OF STRESS-INDUCED HYPERMUTATION IN ASEXUAL POPULATIONS. International Journal of Organic Evolution, 2012, 66, 2315-2328.	Evolution;	1.1	86
177	Mutation-selection balance and mixed mating with asexual reproduction. Journal of The Biology, 2012, 308, 25-35.	eoretical	0.8	14
178	Mechanisms and selection of evolvability: experimental evidence. FEMS Microbiology R 572-582.	leviews, 2013, 37,	3.9	19
179	Interrelationship between HIV-1 Fitness and Mutation Rate. Journal of Molecular Biolog 41-53.	y, 2013, 425,	2.0	35
180	Characterization of the defects in the ATP lid of E. coli MutL that cause transient hyper DNA Repair, 2013, 12, 864-869.	mutability.	1.3	5
181	Genome dynamics during experimental evolution. Nature Reviews Genetics, 2013, 14,	827-839.	7.7	544
182	Large-scale detection of in vivo transcription errors. Proceedings of the National Acade Sciences of the United States of America, 2013, 110, 18584-18589.	my of	3.3	94

		CITATION R	REPORT	
#	Article		IF	Citations
183	Evolution of eye development in the darkness of caves: adaptation, drift, or both?. EvoDevo	, 2013, 4, 26.	1.3	103
184	Correlation Between Mutation Rate and Genome Size in Riboviruses: Mutation Rate of Bact $Q^{\hat{l}2}$. Genetics, 2013, 195, 243-251.	eriophage	1.2	55
185	Evaluating evolutionary models of stress-induced mutagenesis in bacteria. Nature Reviews 0 2013, 14, 221-227.	Senetics,	7.7	115
186	Mutation Rates: How Low Can You Go?. Current Biology, 2013, 23, R147-R149.		1.8	15
187	Nonâ€random mutation: The evolution of targeted hypermutation and hypomutation. BioEs 123-130.	ssays, 2013, 35,	1.2	70
188	Effect of long-term laboratory propagation on Chlamydia trachomatis genome dynamics. In Genetics and Evolution, 2013, 17, 23-32.	fection,	1.0	29
189	Molecular evolution and diversity of dimeric alpha-amylase inhibitor gene in Kengyilia specie (Triticeae: Poaceae). Gene, 2013, 529, 262-268.	S	1.0	2
190	Evolution and Diversification. , 2013, , 215-244.			30
191	Why coelacanths are not â€~living fossils'. BioEssays, 2013, 35, 332-338.		1.2	67
192	Stress-induced hypermutation as a physical property of life, a force of natural selection and in four thought experiments. Physical Biology, 2013, 10, 026001.	its role	0.8	0
193	Ernst Mach and George Sarton's Successors: The Implicit Role Model of Teaching Scienc Elsewhere, Part II. Science and Education, 2013, 22, 951-1000.	e in USA and	1.7	3
194	Hypermutable Staphylococcus aureus strains present at high frequency in subclinical boving isolates are associated with the development of antibiotic resistance. Veterinary Microbiolo 165, 410-415.	mastitis gy, 2013,	0.8	19
195	Functional heterogeneity and heritability in CHO cell populations. Biotechnology and Bioen 2013, 110, 260-274.	gineering,	1.7	88
196	Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitnes landscapes. , 2013, , .	S		21
197	Using evolutionary algorithms in finding of optimized nucleotide substitution matrices. , 20	13,,.		8
198	The Footprint of Genome Architecture in the Largest Genome Expansion in RNA Viruses. PLo Pathogens, 2013, 9, e1003500.	oS	2.1	114
199	Natural Selection Promotes Antigenic Evolvability. PLoS Pathogens, 2013, 9, e1003766.		2.1	40
200	The evolution of mutation rate in an antagonistic coevolutionary model with maternal trans of parasites. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130647.	mission	1.2	8

# 201	ARTICLE Viral mutation rates: modelling the roles of within-host viral dynamics and the trade-off between replication fidelity and speed. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122047	IF 1.2	CITATIONS
202	The evolution of bacterial mutation rates under simultaneous selection by interspecific and social parasitism. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131913.	1.2	18
203	A trade-off between oxidative stress resistance and DNA repair plays a role in the evolution of elevated mutation rates in bacteria. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130007.	1.2	40
204	Evolutionary Invasion and Escape in the Presence of Deleterious Mutations. PLoS ONE, 2013, 8, e68179.	1.1	11
205	The Advantage of Arriving First: Characteristic Times in Finite Size Populations of Error-Prone Replicators. PLoS ONE, 2013, 8, e83142.	1.1	1
206	The Interaction between Selection, Demography and Selfing and How It Affects Population Viability. PLoS ONE, 2014, 9, e86125.	1.1	8
207	Evolution of Antibiotic Resistance by Hypermutation. , 2014, , 319-331.		2
208	Convergence of Nanotechnology and Biotechnology. , 2014, , 1-20.		Ο
209	Stress-induced mutagenesis and complex adaptation. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141025.	1.2	64
210	Estimation of the Spontaneous Mutation Rate per Nucleotide Site in a <i>Drosophila melanogaster</i> Full-Sib Family. Genetics, 2014, 196, 313-320.	1.2	248
211	The Human Mutation Rate Is Increasing, Even As It Slows. Molecular Biology and Evolution, 2014, 31, 253-257.	3.5	31
212	A model for the generation and transmission of variations in evolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1940-9.	3.3	80
213	<i>Escherichia coli</i> adaptation to the gut environment: a constant fight for survival. Future Microbiology, 2014, 9, 1235-1238.	1.0	3
214	A genetic programming approach based on Lévy flight applied to nonlinear identification of a poppet valve. Applied Mathematical Modelling, 2014, 38, 1729-1736.	2.2	15
215	The evolution of genomic imprinting: costs, benefits and longâ€ŧerm consequences. Biological Reviews, 2014, 89, 568-587.	4.7	24
216	Engineering reduced evolutionary potential for synthetic biology. Molecular BioSystems, 2014, 10, 1668-1678.	2.9	83
217	Experimental evolution and the dynamics of genomic mutation rate modifiers. Heredity, 2014, 113, 375-380.	1.2	57
218	Hypermutation in Burkholderia cepacia complex is mediated by DNA mismatch repair inactivation and is highly prevalent in cystic fibrosis chronic respiratory infection. International Journal of Medical	1.5	30

# 219	ARTICLE Variability in the mutation rates of RNA viruses. Future Virology, 2014, 9, 605-615.	IF 0.9	CITATIONS
220	EPIGENETIC VARIATION IN ASEXUALLY REPRODUCING ORGANISMS. Evolution; International Journal of Organic Evolution, 2014, 68, 644-655.	1.1	213
221	Delayed Lysis Confers Resistance to the Nucleoside Analogue 5-Fluorouracil and Alleviates Mutation Accumulation in the Single-Stranded DNA Bacteriophage ݕX174. Journal of Virology, 2014, 88, 5042-5049.	1.5	11
222	Epidemiological Feedbacks Affect Evolutionary Emergence of Pathogens. American Naturalist, 2014, 183, E105-E117.	1.0	22
223	Frequency-Dependent Selection Can Lead to Evolution of High Mutation Rates. American Naturalist, 2014, 183, E131-E153.	1.0	7
224	Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes. PLoS ONE, 2015, 10, e0130411.	1.1	20
225	The Rate and Molecular Spectrum of Spontaneous Mutations in the GC-Rich Multichromosome Genome of <i>Burkholderia cenocepacia</i> . Genetics, 2015, 200, 935-946.	1.2	75
226	Comparative insight into nucleotide excision repair components of Plasmodium falciparum. DNA Repair, 2015, 28, 60-72.	1.3	10
227	Effect of mismatch repair on the mutation rate of bacteriophage ϕX174. Virus Evolution, 2015, 1, vev010.	2.2	5
228	Coronavirus Host Range Expansion and Middle East Respiratory Syndrome Coronavirus Emergence: Biochemical Mechanisms and Evolutionary Perspectives. Annual Review of Virology, 2015, 2, 95-117.	3.0	75
229	A Relay Race on the Evolutionary Adaptation Spectrum. Cell, 2015, 163, 549-559.	13.5	73
230	Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model. Bulletin of Mathematical Biology, 2015, 77, 1985-2003.	0.9	1
231	Probability and time to fixation of an evolving sequence. Theoretical Population Biology, 2015, 104, 78-85.	0.5	1
232	Rates of Lateral Gene Transfer in Prokaryotes: High but Why?. Trends in Microbiology, 2015, 23, 598-605.	3.5	153
233	Control of Caenorhabditis elegans germ-line stem-cell cycling speed meets requirements of design to minimize mutation accumulation. BMC Biology, 2015, 13, 51.	1.7	15
234	Range expansion in asexual dandelions: selection for generalâ€purpose genotypes?. Journal of Ecology, 2015, 103, 261-268.	1.9	17
235	Fidelity drive: A mechanism for chaperone proteins to maintain stable mutation rates in prokaryotes over evolutionary time. Journal of Theoretical Biology, 2015, 364, 162-167.	0.8	1
236	Evolutionary dynamics of viral escape under antibodies stress: A biophysical model. Protein Science, 2016, 25, 1332-1340.	3.1	12

		KLFOKT	
# 237	ARTICLE Genes under weaker stabilizing selection increase network evolvability and rapid regulatory	IF 0.8	CITATIONS
237	adaptation to an environmental shift. Journal of Evolutionary Biology, 2016, 29, 1602-1616. Evolution of Genome Size in Asexual Digital Organisms. Scientific Reports, 2016, 6, 25786.	1.6	17
239	Convergence of Nanotechnology and Biotechnology. , 2016, , 253-277.		2
240	Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life. G3: Genes, Genomes, Genetics, 2016, 6, 2583-2591.	0.8	89
241	Genome Instability in DNA Viruses. , 2016, , 37-47.		3
242	A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 790, 41-55.	0.4	3
243	The Expensive Germline and the Evolution of Ageing. Current Biology, 2016, 26, R577-R586.	1.8	121
244	Genetic drift, selection and the evolution of the mutation rate. Nature Reviews Genetics, 2016, 17, 704-714.	7.7	648
245	Population Heterogeneity in Mutation Rate Increases the Frequency of Higher-Order Mutants and Reduces Long-Term Mutational Load. Molecular Biology and Evolution, 2017, 34, msw244.	3.5	28
246	Transbiome invasions of femtoplankton. Contemporary Problems of Ecology, 2016, 9, 266-271. Temperatureâ€dependent mutational robustness can explain faster molecular evolution at warm	0.3	2
247	temperatures, affecting speciation rate and global patterns of species diversity. Ecography, 2016, 39, 1025-1033.	2.1	23
248	Genetic and epigenetic beterogeneity of epithelial ovarian cancer and the clinical implications for	0.8	15
249	molecular targeted therapy. Journal of Cellular and Molecular Medicine, 2016, 20, 581-593.	1.6	39
250	small effective population size. Biology Letters, 2017, 13, 20160849. Genomic Instability in Cancer: Teetering on the Limit of Tolerance. Cancer Research, 2017, 77, 2179-2185.	0.4	11
252	Representations of Search Spaces in the Problem of Mutational Pressure Optimization According to Protein-Coding Sequences. Journal of Computational Biology, 2017, 24, 1089-1098.	0.8	1
253	The Red Queen and King in finite populations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5396-E5405.	3.3	21
254	Dynamics and Fate of Beneficial Mutations Under Lineage Contamination by Linked Deleterious Mutations. Genetics, 2017, 205, 1305-1318.	1.2	24

#	Article	IF	CITATIONS
255	Evolutionary scalpels for dissecting tumor ecosystems. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1867, 69-83.	3.3	10
256	Variability in Fitness Effects Can Preclude Selection of the Fittest. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 399-417.	3.8	18
257	Known mutator alleles do not markedly increase mutation rate in clinical <i>Saccharomyces cerevisiae</i> strains. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162672.	1.2	8
258	Optimization of amino acid replacement costs by mutational pressure in bacterial genomes. Scientific Reports, 2017, 7, 1061.	1.6	22
259	Evolution and Diversity of Defensins in Vertebrates. , 2017, , 27-50.		5
260	Mutation Rate Evolution in Partially Selfing and Partially Asexual Organisms. Genetics, 2017, 207, 1561-1575.	1.2	13
261	Temperature effects on life-history trade-offs, germline maintenance and mutation rate under simulated climate warming. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171721.	1.2	40
262	Evolving mutation rate advances the invasion speed of a sexual species. BMC Evolutionary Biology, 2017, 17, 150.	3.2	16
263	Identification and Characterization of Domesticated Bacterial Transposases. Genome Biology and Evolution, 2017, 9, 2110-2121.	1.1	13
264	Darwinism for the Genomic Age: Connecting Mutation to Diversification. Frontiers in Genetics, 2017, 8, 12.	1.1	29
265	Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria. PLoS ONE, 2017, 12, e0182484.	1.1	9
266	Adaptation of A-to-I RNA editing in Drosophila. PLoS Genetics, 2017, 13, e1006648.	1.5	63
267	Targeting DNA repair: the genome as a potential biomarker. Journal of Pathology, 2018, 244, 586-597.	2.1	41
268	Sign of selection on mutation rate modifiers depends on population size. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3422-3427.	3.3	36
269	Evol = f(Evol). The Frontiers Collection, 2018, , 309-332.	0.1	0
270	Limited role of spatial self-structuring in emergent trade-offs during pathogen evolution. Scientific Reports, 2018, 8, 12476.	1.6	4
271	Robustness: The Explanatory Picture. History, Philosophy and Theory of the Life Sciences, 2018, , 95-121.	0.4	1
272	A planarian nidovirus expands the limits of RNA genome size. PLoS Pathogens, 2018, 14, e1007314.	2.1	108

#	ARTICLE	IF	CITATIONS
273	A discriminative test among the different theories proposed to explain the origin of the genetic code: The coevolution theory finds additional support. BioSystems, 2018, 169-170, 1-4.	0.9	16
274	Complexities of Viral Mutation Rates. Journal of Virology, 2018, 92, .	1.5	282
275	A speed–fidelity trade-off determines the mutation rate and virulence of an RNA virus. PLoS Biology, 2018, 16, e2006459.	2.6	88
276	High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genetics, 2018, 14, e1007324.	1.5	72
277	Generation of Immortalised But Unstable Cells after hTERT Introduction in Telomere-Compromised and p53-Deficient vHMECs. International Journal of Molecular Sciences, 2018, 19, 2078.	1.8	3
278	Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Nucleic Acids Research, 2018, 46, 9236-9250.	6.5	33
279	Aging is an adaptation that selects in animals against disruption of homeostasis. Medical Hypotheses, 2018, 119, 68-78.	0.8	4
280	Mutation bias and GC content shape antimutator invasions. Nature Communications, 2019, 10, 3114.	5.8	17
281	Somatic Mutation and Evolution in Plants. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 49-73.	3.8	71
282	Evolution of Stress-Induced Mutagenesis in the Presence of Horizontal Gene Transfer. American Naturalist, 2019, 194, 73-89.	1.0	10
283	Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies. Annual Review of Genomics and Human Genetics, 2019, 20, 461-493.	2.5	186
284	Elevated mutation rates are unlikely to evolve in sexual species, not even under rapid environmental change. BMC Evolutionary Biology, 2019, 19, 175.	3.2	4
285	Genomic clustering of fitnessâ€affecting mutations favors the evolution of chromosomal instability. Evolutionary Applications, 2019, 12, 301-313.	1.5	3
286	Migration promotes mutator alleles in subdivided populations. Evolution; International Journal of Organic Evolution, 2019, 73, 600-608.	1.1	4
287	The Life of an Insect Endosymbiont from the Cradle to the Grave. Current Biology, 2019, 29, R485-R495.	1.8	157
288	Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer, 2019, 19, 359.	1.1	65
289	Sexual selection, body mass and molecular evolution interact to predict diversification in birds. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190172.	1.2	17
290	Mutation rate variability as a driving force in adaptive evolution. Physical Review E, 2019, 99, 022424.	0.8	7

#	ARTICLE Experimentally reduced insulin/IGF-1 signaling in adulthood extends lifespan of parents and improves	IF	CITATIONS
291	Darwinian fitness of their offspring. Evolution Letters, 2019, 3, 207-216. Digital Pathology Platform for Respiratory Tract Infection Diagnosis via Multiplex Single-Particle	1.6	30
293	Detections. ACS Sensors, 2020, 5, 3398-3403. High and Highly Variable Spontaneous Mutation Rates in <i>Daphnia</i> . Molecular Biology and	3.5	36
295	Experimental evidence for effects of sexual selection on condition-dependent mutation rates. Nature	3.4	24
296	Infectious Bronchitis Virus Evolution, Diagnosis and Control. Veterinary Sciences, 2020, 7, 79.	0.6	41
297	Evolutionary epidemiology of Streptococcus iniae: Linking mutation rate dynamics with adaptation to novel immunological landscapes. Infection, Genetics and Evolution, 2020, 85, 104435.	1.0	11
298	Evolutionary innovation using EDGE, a system for localized elevated mutagenesis. PLoS ONE, 2020, 15, e0232330.	1.1	3
299	Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	47
300	Trade-off between somatic and germline repair in a vertebrate supports the expensive germ line hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8973-8979.	3.3	33
301	Convergent Evolution, Evolving Evolvability, and the Origins of Lethal Cancer. Molecular Cancer Research, 2020, 18, 801-810.	1.5	48
302	The strategy of endogenization in evolutionary biology. SynthÈse, 2021, 198, 3413-3435.	0.6	8
303	Selective Interference and the Evolution of Sex. Journal of Heredity, 2021, 112, 9-18.	1.0	37
304	Genomic Variation, Evolvability, and the Paradox of Mental Illness. Frontiers in Psychiatry, 2020, 11, 593233.	1.3	2
305	Quantitative evaluation of DNA damage caused by atmospheric and room-temperature plasma (ARTP) and other mutagenesis methods using a rapid umu-microplate test protocol for microbial mutation breeding. Chinese Journal of Chemical Engineering, 2021, 39, 205-210.	1.7	10
307	Temporal Dynamics and Evolution of SARS-CoV-2 Demonstrate the Necessity of Ongoing Viral Genome Sequencing in Ontario, Canada. MSphere, 2021, 6, .	1.3	7
308	The rate and molecular spectrum of mutation are selectively maintained in yeast. Nature Communications, 2021, 12, 4044.	5.8	18
310	Precise measurement of the fitness effects of spontaneous mutations by droplet digital PCR in <i>Burkholderia cenocepacia</i> . Genetics, 2021, 219, .	1.2	1
311	From DNA damage to mutations: All roads lead to aging. Ageing Research Reviews, 2021, 68, 101316.	5.0	55

#	Article	IF	CITATIONS
312	Transposable elements and introgression introduce genetic variation in the invasive ant <i>Cardiocondyla obscurior</i> . Molecular Ecology, 2021, 30, 6211-6228.	2.0	20
314	Mutagenesis Associated with Repair of DNA Double-Strand Breaks Under Stress. , 2013, , 21-39.		2
315	The Evolutionary Origin and Maintenance of Sexual Recombination: A Review of Contemporary Models. , 2003, , 27-138.		29
316	Extreme Views on Prokaryote Evolution. Soil Biology, 2008, , 45-70.	0.6	24
317	General Models of Multilocus Evolution. Genetics, 2002, 161, 1727-1750.	1.2	198
318	The Effect of Deleterious Alleles on Adaptation in Asexual Populations. Genetics, 2002, 162, 395-411.	1.2	131
319	Fitness Evolution and the Rise of Mutator Alleles in Experimental <i>Escherichia coli</i> Populations. Genetics, 2002, 162, 557-566.	1.2	132
320	The Evolution of Mutator Genes in Bacterial Populations: The Roles of Environmental Change and Timing. Genetics, 2003, 164, 843-854.	1.2	100
321	The causes of Pseudomonas diversity. Microbiology (United Kingdom), 2000, 146, 2345-2350.	0.7	276
322	The fate of microbial mutators. Microbiology (United Kingdom), 2002, 148, 1247-1252.	0.7	89
327	The Study of Microbial Adaptation by Long-Term Experimental Evolution. , 0, , 55-81.		2
328	Testing the Effect of Metabolic Rate on DNA Variability at the Intra-Specific Level. PLoS ONE, 2010, 5, e9686.	1.1	5
329	Mutation Size Optimizes Speciation in an Evolutionary Model. PLoS ONE, 2010, 5, e11952.	1.1	7
330	Choosing Fitness-Enhancing Innovations Can Be Detrimental under Fluctuating Environments. PLoS ONE, 2011, 6, e26770.	1.1	6
331	Whole Genome Sequencing of Mutation Accumulation Lines Reveals a Low Mutation Rate in the Social Amoeba Dictyostelium discoideum. PLoS ONE, 2012, 7, e46759.	1.1	50
332	The Evolutionary Consequences of Disrupted Male Mating Signals: An Agent-Based Modelling Exploration of Endocrine Disrupting Chemicals in the Guppy. PLoS ONE, 2014, 9, e103100.	1.1	9
333	Induced Mutations in Yeast Cell Populations Adapting to an Unforeseen Challenge. PLoS ONE, 2014, 9, e111133.	1.1	10
334	Simulating the Impact of the Natural Radiation Background on Bacterial Systems: Implications for Very Low Radiation Biological Experiments. PLoS ONE, 2016, 11, e0166364.	1.1	18

# 335	ARTICLE Experimental Evolution and Population Genetics of RNA Viruses. The Open Evolution Journal, 2009, 3, 9-16.	IF 0.2	Citations
336	Phenotypic evolution in microalgae: a dramatic morphological shift in Dictyosphaerium chlorelloides (Chlorophyta) after exposure to TNT Acta Botanica Malacitana, 0, 31, 141-147.	0.0	6
338	Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli. ELife, 2017, 6, .	2.8	86
340	Computational algorithmic and molecular dynamics study of functional and structural impacts of non-synonymous single nucleotide polymorphisms in human DHFR gene. Computational Biology and Chemistry, 2021, 95, 107587.	1.1	2
341	Dossier Évolution et créationnisme. Génétique moléculaire et évolution. Natures Sciences Societes 2008, 16, 44-48.	' 0.1	0
342	Heat Shock Proteins and their Role in Generating, Maintaining and Even Preventing Alternative Insect Phenotypes. , 2009, , .		1
343	Yeast Prions Are Pathogenic, In-Register Parallel Amyloids. , 2013, , 217-231.		0
344	Biological Species as a Form of Existence, the Higher Form. , 0, , .		0
362	Selection on mutators is not frequency-dependent. ELife, 2019, 8, .	2.8	6
363	Veräderungen im Genom: Mutationen. , 2020, , 493-568.		0
364	Morphological and molecular evidence for the recognition of <italic>Hypoglossum sabahense</italic> sp. nov. (Delesseriaceae, Rhodophyta) from Sabah, Malaysia. Algae, 2020, 35, 157-165.	0.9	1
366	Bioindicator snake shows genomic signatures of natural and anthropogenic barriers to gene flow. PLoS ONE, 2021, 16, e0259124.	1.1	8
367	Causes of Variation in the Rate of Molecular Evolution. , 2020, , 45-64.		8
369	Some Example Meta-Artifacts Inspired by Science and Nature. , 0, , 243-264.		0
374	Capturing the facets of evolvability in a mechanistic framework. Trends in Ecology and Evolution, 2022, 37, 430-439.	4.2	10
377	Pedigree derived mutation rate across the entire mitochondrial genome of the Norfolk Island population. Scientific Reports, 2022, 12, 6827.	1.6	4
378	Microsatellite loci reveal distinct populations with high diversity for the pathogenic fungus Pseudocercospora ulei from North-Western Amazonia. European Journal of Plant Pathology, 0, , .	0.8	1
380	Recent insights into the evolution of mutation rates in yeast. Current Opinion in Genetics and Development, 2022, 76, 101953.	1.5	6

	CHAIO	N REPORT	
#	Article	IF	CITATIONS
381	The Adaptive Potential of Nonheritable Somatic Mutations. American Naturalist, 2022, 200, 755-772.	1.0	2
382	Is the Mutation Rate Lower in Genomic Regions of Stronger Selective Constraints?. Molecular Biology and Evolution, 2022, 39, .	3.5	15
383	Age-related somatic mutation burden in human tissues. Frontiers in Aging, 0, 3, .	1.2	16
384	Whole-Genome Sequencing and Drug-Susceptibility Analysis of Serial Mycobacterium abscessus Isolates from Thai Patients. Biology, 2022, 11, 1319.	1.3	2
385	Multigenerational downregulation of insulin/IGFâ€l signalling in adulthood improves lineage survival, reproduction, and fitness in <i>C. elegans</i> supporting the developmental theory of ageing. Evolution; International Journal of Organic Evolution, 0, , .	1.1	0
386	Very Low Rates of Spontaneous Gene Deletions and Gene Duplications in Dictyostelium discoideum. Journal of Molecular Evolution, 0, , .	0.8	0
387	Increased male investment in sperm competition results in reduced maintenance of gametes. PLoS Biology, 2023, 21, e3002049.	2.6	3
388	Range expansions of sexual versus asexual organisms: Effects of reproductive assurance and migration load. Journal of Evolutionary Biology, 2023, 36, 698-708.	0.8	0
397	Role of Nanotechnology Against Malaria: Current Perspectives and Strategies. AAPS Advances in the Pharmaceutical Sciences Series, 2023, , 197-238.	0.2	0