Oncolytic potential of E1B 55 kDa-deleted YKL-1 recomb p53 functional status

International Journal of Cancer 88, 454-463

DOI: 10.1002/1097-0215(20001101)88:3<454::aid-ijc19>3.0.co;2-t

Citation Report

#	Article	IF	CITATIONS
1	Targeting the Replication of Adenoviral Gene Therapy Vectors to Lung Cancer Cells: The Importance of the Adenoviral E1b-55kD Gene. Human Gene Therapy, 1999, 10, 579-590.	1.4	66
2	Does the Antitumor Adenovirus ONYX-015/dl1520 Selectively Target Cells Defective in the p53 Pathway?. Journal of Virology, 2001, 75, 5443-5447.	1.5	72
3	Antitumoral effects of recombinant adenovirus YKL-1001, conditionally replicating in α-fetoprotein-producing human liver cancer cells. Cancer Letters, 2002, 180, 23-32.	3.2	32
4	Oncolysis of human gastric cancers by an E1B 55 kDa-deleted YKL-1 adenovirus. Cancer Letters, 2002, 185, 225-233.	3.2	5
5	Evaluation of E1B gene-attenuated replicating adenoviruses for cancer gene therapy. Cancer Gene Therapy, 2002, 9, 725-736.	2.2	71
6	Replication of an E1B 55-Kilodalton Protein-Deficient Adenovirus (ONYX-015) Is Restored by Gain-of-Function Rather than Loss-of-Function p53 Mutants. Journal of Virology, 2003, 77, 11588-11595.	1.5	41
7	Kinetics of iodide uptake and efflux in various human thyroid cancer cells by expressing sodium iodide symporter gene via a recombinant adenovirus. Oncology Reports, 2003, 10, 845.	1.2	15
8	Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats. European Journal of Nuclear Medicine and Molecular Imaging, 2004, 31, 1304-11.	3.3	10
9	Imaging of adenovirus-mediated expression of human sodium iodide symporter gene by 99mTcO4 scintigraphy in mice. Nuclear Medicine and Biology, 2004, 31, 31-40.	0.3	23
10	Promyelocytic leukemia protein-induced growth suppression and cell death in liver cancer cells. Cancer Gene Therapy, 2005, 12, 1-11.	2.2	14
11	ADP-overexpressing adenovirus elicits enhanced cytopathic effect by induction of apoptosis. Cancer Gene Therapy, 2005, 12, 61-71.	2.2	56
12	Potent antitumor efficacy of an E1B 55kDa-deficient adenovirus carrying murineendostatin in hepatocellular carcinoma. International Journal of Cancer, 2005, 113, 640-648.	2.3	37
13	Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Therapy, 2006, 13, 1010-1020.	2.3	94
14	p53 promotes adenoviral replication and increases late viral gene expression. Oncogene, 2006, 25, 1509-1520.	2.6	41
15	Relaxin Expression From Tumor-Targeting Adenoviruses and Its Intratumoral Spread, Apoptosis Induction, and Efficacy. Journal of the National Cancer Institute, 2006, 98, 1482-1493.	3.0	189
16	Markedly Enhanced Cytolysis byE1B-19kD-Deleted Oncolytic Adenovirus in Combination with Cisplatin. Human Gene Therapy, 2006, 17, 379-390.	1.4	49
17	Retinoic acid attenuates promyelocytic leukemia protein-induced cell death in breast cancer cells by activation of the ubiquitin–proteasome pathway. Cancer Letters, 2007, 247, 213-223.	3.2	8
18	E1A- and E1B-Double Mutant Replicating Adenovirus Elicits Enhanced Oncolytic and Antitumor Effects. Human Gene Therapy, 2007, 18, 773-786.	1.4	60

#	Article	IF	CITATIONS
19	Imaging of Viral Thymidine Kinase Gene Expression by Replicating Oncolytic Adenovirus and Prediction of Therapeutic Efficacy. Yonsei Medical Journal, 2008, 49, 811.	0.9	5
20	The Estrogen Receptor α Pathway Induces Oncogenic <i>Wip1</i> Phosphatase Gene Expression. Molecular Cancer Research, 2009, 7, 713-723.	1.5	23
21	Adenoviral Vector-Based Strategies for Cancer Therapy. Current Drug Therapy, 2009, 4, 117-138.	0.2	54
22	Tumor suppression by apoptotic and antiâ€angiogenic effects of mortalinâ€targeting adenoâ€oncolytic virus. Journal of Gene Medicine, 2010, 12, 586-595.	1.4	46
23	Mild Hyperthermia Induced by Gold Nanorod-Mediated Plasmonic Photothermal Therapy Enhances Transduction and Replication of Oncolytic Adenoviral Gene Delivery. ACS Nano, 2016, 10, 10533-10543.	7.3	90
24	TGF- \hat{l}^2 upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene, 2017, 36, 2715-2723.	2.6	65
25	Modelling heterogeneity in viral-tumour dynamics: The effects of gene-attenuation on viral characteristics. Journal of Theoretical Biology, 2018, 454, 41-52.	0.8	8
26	The Adenovirus Death Protein – a small membrane protein controls cell lysis and disease. FEBS Letters, 2020, 594, 1861-1878.	1.3	24
27	Evaluation of E1B-mutant Replicating Adenoviruses for Cancer Gene Therapy. Cancer Research and Treatment, 2001, 33, 500-511.	1.3	0
28	Markedly Enhanced Cytolysis by E1B-19kD-Deleted Oncolytic Adenovirus in Combination with Cisplatin. Human Gene Therapy, 2006, .	1.4	0
29	Preferentially enhanced gene expression from a synthetic human telomerase reverse transcriptase promoter in human cancer cells. Oncology Reports, 0, , .	1.2	4