Why are ?natively unfolded? proteins unstructured und

Proteins: Structure, Function and Bioinformatics 41, 415-427 DOI: 10.1002/1097-0134(20001115)41:3<415::aid-prot130>3.0.co;2-7

Citation Report

#	Article	IF	CITATIONS
1	Characterizing the function of unstructured proteins: Simulations of charged polymers under confinement. Journal of Chemical Physics, 2001, 115, 4909-4918.	1.2	18
2	Effects of Macromolecular Crowding on the Intrinsically Disordered Proteins c-Fos and p27Kip1. Biomacromolecules, 2001, 2, 538-540.	2.6	92
3	Characterization of NMR relaxation-active motions of a partially folded A-state analogue of ubiquitin. Journal of Molecular Biology, 2001, 305, 1085-1097.	2.0	28
4	Pesticides directly accelerate the rate of α-synuclein fibril formation: a possible factor in Parkinson's disease. FEBS Letters, 2001, 500, 105-108.	1.3	314
5	AFM force measurements on microtubule-associated proteins: the projection domain exerts a long-range repulsive force. FEBS Letters, 2001, 505, 374-378.	1.3	78
6	Trimethylamine-N -oxide-induced folding of α-synuclein. FEBS Letters, 2001, 509, 31-35.	1.3	175
7	Protein Folding: Binding of Conformationally Fluctuating Building Blocks Via Population Selection. Critical Reviews in Biochemistry and Molecular Biology, 2001, 36, 399-433.	2.3	58
8	Glycerol-Induced Aggregation of the Oligomeric L-Asparaginase II from E. coli Monitored with ATR-FTIR. International Journal of Molecular Sciences, 2001, 2, 109-120.	1.8	9
9	Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 2001, 19, 26-59.	1.3	2,005
10	Structured disorder and conformational selection. Proteins: Structure, Function and Bioinformatics, 2001, 44, 418-427.	1.5	184
11	Backbone dynamics of the natively unfolded pro-peptide of subtilisin by heteronuclear NMR relaxation studies. Journal of Biomolecular NMR, 2001, 20, 233-249.	1.6	68
12	Predicting properties of intrinsically unstructured proteins. Progress in Biophysics and Molecular Biology, 2001, 76, 131-173.	1.4	70
13	Protein functional epitopes: hot spots, dynamics and combinatorial libraries. Current Opinion in Structural Biology, 2001, 11, 364-369.	2.6	114
14	Evidence for a Partially Folded Intermediate in α-Synuclein Fibril Formation. Journal of Biological Chemistry, 2001, 276, 10737-10744.	1.6	955
15	Metal-triggered Structural Transformations, Aggregation, and Fibrillation of Human α-Synuclein. Journal of Biological Chemistry, 2001, 276, 44284-44296.	1.6	953
16	Interactions of the 18.5-kDa isoform of myelin basic protein with Ca2+-calmodulin: in vitro studies using fluorescence microscopy and spectroscopy. Biochemistry and Cell Biology, 2002, 80, 395-406.	0.9	24
17	The Saccharomyces cerevisiae Nucleoporin Nup2p Is a Natively Unfolded Protein. Journal of Biological Chemistry, 2002, 277, 33447-33455.	1.6	92
18	FlgM gains structure in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12681-12684.	3.3	290

#	Article	IF	CITATIONS
19	Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16419-16426.	3.3	268
20	The Solution Structure of Acyl Carrier Protein from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2002, 277, 15874-15880.	1.6	111
21	Unfolded proteins studied by raman optical activity. Advances in Protein Chemistry, 2002, 62, 51-90.	4.4	101
22	Stress-Induced Aggregation Profiles of CSTâ~α-Synuclein Fusion Proteins: Role of the C-Terminal Acidic Tail of α-Synuclein in Protein Thermosolubility and Stabilityâ€. Biochemistry, 2002, 41, 4137-4146.	1.2	50
23	Functional Consequences of Preorganized Helical Structure in the Intrinsically Disordered Cell-Cycle Inhibitor p27Kip1â€. Biochemistry, 2002, 41, 752-759.	1.2	142
24	Structural and Functional Implications of C-Terminal Regions of α-Synuclein. Biochemistry, 2002, 41, 13782-13790.	1.2	149
25	Biophysical Properties of the Synucleins and Their Propensities to Fibrillate. Journal of Biological Chemistry, 2002, 277, 11970-11978.	1.6	413
26	High-Risk (HPV16) Human Papillomavirus E7 Oncoprotein Is Highly Stable and Extended, with Conformational Transitions that Could Explain Its Multiple Cellular Binding Partners. Biochemistry, 2002, 41, 10510-10518.	1.2	58
27	Toward a taxonomy of the denatured state: Small angle scattering studies of unfolded proteins. Advances in Protein Chemistry, 2002, 62, 241-262.	4.4	145
28	Amyloid fibrils from the mammalian protein prothymosin \hat{I}_{\pm} . FEBS Letters, 2002, 517, 37-40.	1.3	32
29	Methionine oxidation inhibits fibrillation of human α-synuclein in vitro. FEBS Letters, 2002, 517, 239-244.	1.3	213
30	Partially structured state of the functional VH domain of the mouse anti-ferritin antibody F11. FEBS Letters, 2002, 518, 177-182.	1.3	7
31	The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded. FEBS Letters, 2002, 527, 303-308.	1.3	41
32	Loopy Proteins Appear Conserved in Evolution. Journal of Molecular Biology, 2002, 322, 53-64.	2.0	187
33	Dependence of α-Synuclein Aggregate Morphology on Solution Conditions. Journal of Molecular Biology, 2002, 322, 383-393.	2.0	487
34	Intrinsic Disorder in Cell-signaling and Cancer-associated Proteins. Journal of Molecular Biology, 2002, 323, 573-584.	2.0	1,077
35	Relating Interactions between Neurofilaments to the Structure of Axonal Neurofilament Distributions through Polymer Brush Models. Biophysical Journal, 2002, 82, 2360-2372.	0.2	78
36	Effects of the osmolyte trimethylamine-N-oxide on conformation, self-association, and two-dimensional crystallization of myelin basic protein. Journal of Structural Biology, 2002, 139, 13-26.	1.3	50

# 37	ARTICLE Synergistic Effects of Pesticides and Metals on the Fibrillation of α-Synuclein: Implications for Parkinson's Disease. NeuroToxicology, 2002, 23, 527-536.	IF 1.4	CITATIONS
38	Is polyproline II a major backbone conformation in unfolded proteins?. Advances in Protein Chemistry, 2002, 62, 163-240.	4.4	282
39	Intrinsically unstructured proteins. Trends in Biochemical Sciences, 2002, 27, 527-533.	3.7	1,868
40	Coupling of folding and binding for unstructured proteins. Current Opinion in Structural Biology, 2002, 12, 54-60.	2.6	1,223
41	Did evolution leap to create the protein universe?. Current Opinion in Structural Biology, 2002, 12, 409-416.	2.6	46
42	A Raman optical activity study of rheomorphism in caseins, synucleins and tau. FEBS Journal, 2002, 269, 148-156.	0.2	214
43	What does it mean to be natively unfolded?. FEBS Journal, 2002, 269, 2-12.	0.2	865
44	Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Molecular Microbiology, 2002, 45, 905-916.	1.2	82
45	Amyloid-fibril formation. FEBS Journal, 2002, 269, 3362-3371.	0.2	187
46	Intrinsic structural disorder and sequence features of the cell cycle inhibitor p57Kip2. Proteins: Structure, Function and Bioinformatics, 2002, 46, 1-7.	1.5	74
47	Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function and Bioinformatics, 2002, 47, 409-443.	1.5	1,130
48	The N-Terminal Domain of the Phosphoprotein of Morbilliviruses Belongs to the Natively Unfolded Class of Proteins. Virology, 2002, 296, 251-262.	1.1	95
49	Natively unfolded proteins: A point where biology waits for physics. Protein Science, 2002, 11, 739-756.	3.1	1,650
50	The Cell Biology of α Synuclein. NeuroMolecular Medicine, 2002, 1, 95-110.	1.8	28
51	Polycation-induced oligomerization and accelerated fibrillation of human alpha-synuclein in vitro. Protein Science, 2003, 12, 702-707.	3.1	122
52	Protein folding revisited. A polypeptide chain at the folding ? misfolding ? nonfolding cross-roads: which way to go?. Cellular and Molecular Life Sciences, 2003, 60, 1852-1871.	2.4	296
53	Are there temperature-dependent structural transitions in the "intrinsically unstructured" protein prothymosin α?. European Biophysics Journal, 2003, 31, 586-594.	1.2	11
54	Extended disordered proteins: targeting function with less scaffold. Trends in Biochemical Sciences, 2003, 28, 81-85.	3.7	311

#	Article	IF	CITATIONS
55	Order, Disorder, and Flexibility. Structure, 2003, 11, 1316-1317.	1.6	55
56	Intrinsically unstructured proteins evolve by repeat expansion. BioEssays, 2003, 25, 847-855.	1.2	247
57	The functional benefits of protein disorder. Computational and Theoretical Chemistry, 2003, 666-667, 361-371.	1.5	71
58	Structural basis of the fibrinogen–fibrin transformation: contributions from X-ray crystallography. Blood Reviews, 2003, 17, 33-41.	2.8	43
59	A novel strategy for the purification of recombinantly expressed unstructured protein domains. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 786, 247-254.	1.2	51
60	Lipid interaction of α-synuclein during the metal-catalyzed oxidation in the presence of Cu2+ and H2O2. Journal of Neurochemistry, 2003, 84, 1128-1142.	2.1	53
61	Local protein unfolding and pathogenesis of polyglutamine-expansion diseases. Proteins: Structure, Function and Bioinformatics, 2003, 51, 68-73.	1.5	13
62	The intracellular domain of theDrosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded. Proteins: Structure, Function and Bioinformatics, 2003, 53, 758-767.	1.5	60
63	Natively unfolded C-terminal domain of caldesmon remains substantially unstructured after the effective binding to calmodulin. Proteins: Structure, Function and Bioinformatics, 2003, 53, 855-Na.	1.5	97
64	Predicting intrinsic disorder from amino acid sequence. Proteins: Structure, Function and Bioinformatics, 2003, 53, 566-572.	1.5	415
65	Proteomic signatures: Amino acid and oligopeptide compositions differentiate among phyla. Proteins: Structure, Function and Bioinformatics, 2003, 54, 20-40.	1.5	130
66	Terminal deletion mutants of myelin basic protein: new insights into self-association and phospholipid interactions. Micron, 2003, 34, 25-37.	1.1	23
67	Relative Influence of Hydrophobicity and Net Charge in the Aggregation of Two Homologous Proteinsâ€. Biochemistry, 2003, 42, 15078-15083.	1.2	115
68	A Protein-Chameleon: Conformational Plasticity of α-Synuclein, a Disordered Protein Involved in Neurodegenerative Disorders. Journal of Biomolecular Structure and Dynamics, 2003, 21, 211-234.	2.0	450
69	Nuclear Localization of α-Synuclein and Its Interaction with Histonesâ€. Biochemistry, 2003, 42, 8465-8471.	1.2	299
70	Crystal Structure of Ribosomal Protein L30e from the Extreme ThermophileThermococcus celer:Â Thermal Stability and RNA Bindingâ€,‡. Biochemistry, 2003, 42, 2857-2865.	1.2	15
71	The Pentapeptide GGAGG Has PII Conformation. Journal of the American Chemical Society, 2003, 125, 8092-8093.	6.6	67
72	The N-terminal Domain of p53 is Natively Unfolded. Journal of Molecular Biology, 2003, 332, 1131-1141.	2.0	225

#	Article	IF	CITATIONS
73	Effect of Dextran on Protein Stability and Conformation Attributed to Macromolecular Crowding. Journal of Molecular Biology, 2003, 326, 1227-1237.	2.0	296
74	Mutual Induced Fit Binding of Xenopus Ribosomal Protein L5 to 5S rRNA. Journal of Molecular Biology, 2003, 330, 979-992.	2.0	35
75	Nitration inhibits fibrillation of human α-synuclein in vitro by formation of soluble oligomers. FEBS Letters, 2003, 542, 147-152.	1.3	152
76	New Insight into the Solution Structures of Wheat Gluten Proteins from Raman Optical Activityâ€. Biochemistry, 2003, 42, 5665-5673.	1.2	78
77	The Closely Related Estrogen-Regulated Trefoil Proteins TFF1 and TFF3 Have Markedly Different Hydrodynamic Properties, Overall Charge, and Distribution of Surface Charge. Biochemistry, 2003, 42, 8250-8259.	1.2	30
78	NORSp: predictions of long regions without regular secondary structure. Nucleic Acids Research, 2003, 31, 3833-3835.	6.5	124
79	The Association of α-Synuclein with Membranes Affects Bilayer Structure, Stability, and Fibril Formation. Journal of Biological Chemistry, 2003, 278, 40186-40197.	1.6	297
80	Transition from Natively Unfolded to Folded State Induced by Desiccation in an Anhydrobiotic Nematode Protein. Journal of Biological Chemistry, 2003, 278, 12977-12984.	1.6	185
81	Certain Metals Trigger Fibrillation of Methionine-oxidized α-Synuclein. Journal of Biological Chemistry, 2003, 278, 27630-27635.	1.6	171
82	Structural disorder and modular organization in Paramyxovirinae N and P. Journal of General Virology, 2003, 84, 3239-3252.	1.3	156
83	Conformational Switching and Fibrillogenesis in the Amyloidogenic Fragment of Apolipoprotein A-I. Journal of Biological Chemistry, 2003, 278, 2444-2451.	1.6	86
84	Amyloid-like Fibril Formation in an All β-Barrel Protein. Journal of Biological Chemistry, 2003, 278, 17701-17709.	1.6	58
85	Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 478-483.	3.3	37
86	The C-terminal Domain of the Measles Virus Nucleoprotein Is Intrinsically Disordered and Folds upon Binding to the C-terminal Moiety of the Phosphoprotein. Journal of Biological Chemistry, 2003, 278, 18638-18648.	1.6	260
87	Disorder in the nuclear pore complex: The FG repeat regions of nucleoporins are natively unfolded. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2450-2455.	3.3	444
88	Transactivation Functions of the N-Terminal Domains of Nuclear Hormone Receptors: Protein Folding and Coactivator Interactions. Molecular Endocrinology, 2003, 17, 1-10.	3.7	176
89	Structure and Behaviour of Proteins, Nucleic Acids and Viruses from Vibrational Raman Optical Activity. Spectroscopy, 2003, 17, 101-126.	0.8	64
90	Dehydration-Specific Induction of Hydrophilic Protein Genes in the Anhydrobiotic Nematode Aphelenchus avenae. Eukaryotic Cell, 2004, 3, 966-975.	3.4	117

#	Article	IF	CITATIONS
91	Cleavage and Serum Reactivity of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. Journal of Infectious Diseases, 2004, 190, 91-98.	1.9	32
92	TATA box binding protein induces structure in the recombinant glucocorticoid receptor AF1 domain. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16425-16430.	3.3	80
93	TC-1 Is a Novel Tumorigenic and Natively Disordered Protein Associated with Thyroid Cancer. Cancer Research, 2004, 64, 2766-2773.	0.4	64
94	The YefM Antitoxin Defines a Family of Natively Unfolded Proteins. Journal of Biological Chemistry, 2004, 279, 8252-8261.	1.6	75
95	pH and Cation-induced Thermodynamic Stability of Human Hyaluronan Binding Protein 1 Regulates Its Hyaluronan Affinity. Journal of Biological Chemistry, 2004, 279, 23061-23072.	1.6	10
96	Comparative analysis of protein unfoldedness in human housekeeping and non-housekeeping proteins. Bioinformatics, 2004, 20, 2904-2910.	1.8	18
97	Sequence determinants of amyloid fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 87-92.	3.3	376
98	The molecular basis of fibronectin-mediated bacterial adherence to host cells. Molecular Microbiology, 2004, 52, 631-641.	1.2	240
99	Combining prediction, computation and experiment for the characterization of protein disorder. Current Opinion in Structural Biology, 2004, 14, 570-576.	2.6	125
100	TPPP/p25: from unfolded protein to misfolding disease: prediction and experiments. Biology of the Cell, 2004, 96, 701-711.	0.7	56
101	Neurobiology of α-Synuclein. Molecular Neurobiology, 2004, 30, 001-022.	1.9	95
102	Chaperone-Like Manner of Human Neuronal Tau Towards Lactate Dehydrogenase. Neurochemical Research, 2004, 29, 1863-1872.	1.6	4
103	SMARCA2 and THAP11: potential candidates for polyglutamine disorders as evidenced from polymorphism and protein-folding simulation studies. Journal of Human Genetics, 2004, 49, 596-602.	1.1	16
104	Myelin basic protein—diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron, 2004, 35, 503-542.	1.1	230
105	Transcriptional coregulator SNW/SKIP: the concealed tie of dissimilar pathways. Cellular and Molecular Life Sciences, 2004, 61, 629-640.	2.4	70
106	Sequence patterns associated with disordered regions in proteins. Proteins: Structure, Function and Bioinformatics, 2004, 58, 144-150.	1.5	72
107	Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: Deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A-cyclin-depend. Proteins: Structure, Function and Bioinformatics, 2004, 58, 706-716.	1.5	15
108	Molecular mechanisms for organizing the neuronal cytoskeleton. BioEssays, 2004, 26, 1017-1025.	1.2	77

#	Article	IF	CITATIONS
109	Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: Hierarchy of structural loss from all-atom Monte Carlo simulations ofp27Kip1 unfolding-unbinding and structural determinants of the binding mechanism. Biopolymers, 2004, 75, 420-433.	1.2	7
110	The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. Journal of Molecular Recognition, 2004, 17, 456-464.	1.1	286
111	α-Synuclein: Stable compact and extended monomeric structures and pH dependence of dimer formation. Journal of the American Society for Mass Spectrometry, 2004, 15, 1435-1443.	1.2	140
112	Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1698, 131-153.	1.1	887
113	Studying the Folding Process of the Acylphosphatase fromSulfolobus solfataricus. A Comparative Analysis with Other Proteins from the Same Superfamilyâ€. Biochemistry, 2004, 43, 9116-9126.	1.2	19
114	Recombinant EWS-FLI1 Oncoprotein Activates Transcriptionâ€. Biochemistry, 2004, 43, 13579-13589.	1.2	53
115	Primary Structure Elements of Spider Dragline Silks and Their Contribution to Protein Solubilityâ€. Biochemistry, 2004, 43, 13604-13612.	1.2	335
116	Inhibiting Aggregation of α-Synuclein with Human Single Chain Antibody Fragmentsâ€. Biochemistry, 2004, 43, 2871-2878.	1.2	104
117	Homooligomerization of the Cytoplasmic Domain of the T Cell Receptor ζ Chain and of Other Proteins Containing the Immunoreceptor Tyrosine-Based Activation Motif. Biochemistry, 2004, 43, 2049-2061.	1.2	149
118	Forced Folding and Structural Analysis of Metastable Proteins. Journal of the American Chemical Society, 2004, 126, 9498-9499.	6.6	65
119	Induced α-Helix Structure in AF1 of the Androgen Receptor upon Binding Transcription Factor TFIIFâ€. Biochemistry, 2004, 43, 3008-3013.	1.2	102
120	Charge and Hydrophobicity Patterning along the Sequence Predicts the Folding Mechanism and Aggregation of Proteins:A A Computational Approach. Journal of Proteome Research, 2004, 3, 1243-1253.	1.8	45
121	Myelin basic protein?diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron, 2004, , .	1.1	0
122	The HPV16 E7 Viral Oncoprotein Self-Assembles into Defined Spherical Oligomersâ€. Biochemistry, 2004, 43, 3310-3317.	1.2	59
123	Role of Individual Methionines in the Fibrillation of Methionine-Oxidized α-Synuclein. Biochemistry, 2004, 43, 4621-4633.	1.2	98
124	The N-terminal domain (IF2N) of bacterial translation initiation factor IF2 is connected to the conserved C-terminal domains by a flexible linker. Protein Science, 2004, 13, 230-239.	3.1	21
125	Modulation of the structural integrity of helix F in apomyoglobin by single amino acid replacements. Protein Science, 2004, 13, 1572-1585.	3.1	30
126	SAXS Study of the PIR Domain from the Grb14 Molecular Adaptor: A Natively Unfolded Protein with a Transient Structure Primer?. Biophysical Journal, 2004, 87, 4056-4064.	0.2	48

#	Article	IF	CITATIONS
127	Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein. FEBS Letters, 2004, 576, 348-352.	1.3	120
128	The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner. Virus Research, 2004, 99, 157-167.	1.1	156
129	POPP the question: what do LEA proteins do?. Trends in Plant Science, 2004, 9, 13-17.	4.3	396
130	Prediction and Functional Analysis of Native Disorder in Proteins from the Three Kingdoms of Life. Journal of Molecular Biology, 2004, 337, 635-645.	2.0	1,828
131	Two Homologous Domains of Similar Structure but Different Stability in the Yeast Linker Histone, Hho1p. Journal of Molecular Biology, 2004, 338, 139-148.	2.0	31
132	Preformed Structural Elements Feature in Partner Recognition by Intrinsically Unstructured Proteins. Journal of Molecular Biology, 2004, 338, 1015-1026.	2.0	494
133	Crystal Structure of the Coiled-coil Dimerization Motif of Geminin: Structural and Functional Insights on DNA Replication Regulation. Journal of Molecular Biology, 2004, 342, 275-287.	2.0	29
134	Conformational Prerequisites for Formation of Amyloid Fibrils from Histones. Journal of Molecular Biology, 2004, 342, 1305-1324.	2.0	72
135	Analysis of Ordered and Disordered Protein Complexes Reveals Structural Features Discriminating Between Stable and Unstable Monomers. Journal of Molecular Biology, 2004, 341, 1327-1341.	2.0	153
136	Raman Optical Activity Demonstrates Poly(I-proline) II Helix in the N-terminal Region of the Ovine Prion Protein: Implications for Function and Misfunction. Journal of Molecular Biology, 2004, 343, 467-476.	2.0	77
137	No Need To Be HAMLET or BAMLET To Interact with Histones:  Binding of Monomeric α-Lactalbumin to Histones and Basic Poly-Amino Acids. Biochemistry, 2004, 43, 5575-5582.	1.2	45
138	Raman Spectroscopic Characterization of Secondary Structure in Natively Unfolded Proteins:Â α-Synuclein. Journal of the American Chemical Society, 2004, 126, 2399-2408.	6.6	421
139	Role of Proteinâ^'Water Interactions and Electrostatics in α-Synuclein Fibril Formationâ€. Biochemistry, 2004, 43, 3289-3300.	1.2	204
140	FMN binding and unfolding of Desulfovibrio desulfuricans flavodoxin: "hidden―intermediates at low denaturant concentrations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1747, 239-250.	1.1	18
141	Protein dynamics of bovine dentin phosphophoryn. Chemical Biology and Drug Design, 2005, 66, 59-67.	1.2	19
142	Prions as adaptive conduits of memory and inheritance. Nature Reviews Genetics, 2005, 6, 435-450.	7.7	500
143	Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 2005, 6, 197-208.	16.1	3,403
144	A quasi-atomic model of human adenovirus type 5 capsid. EMBO Journal, 2005, 24, 1645-1654.	3.5	130

ARTICLE IF CITATIONS # EspB from enterohaemorrhagic Escherichia $\hat{a} \in f$ coli is a natively partially folded protein. FEBS Journal, 2.2 18 145 2005, 272, 756-768. Protein dissection enhances the amyloidogenic properties of î±-lactalbumin. FEBS Journal, 2005, 272, 146 2.2 2176-2188. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS Journal, 2005, 272, 147 2.2 1,052 5129-5148. A review of protein structure and gene organisation for proteins associated with mineralised tissue and calcium phosphate stabilisation encoded on human chromosome 4. Archives of Oral Biology, 148 0.8 98 2005, 50, 599-609 Natively unfolded proteins. Current Opinion in Structural Biology, 2005, 15, 35-41. 149 653 2.6 Effect of metals on herbicides-α-synuclein association: A possible factor in neurodegenerative disease 1.3 studied by capillary electrophoresis. Electrophoresis, 2005, 26, 3256-3264. 151 The CBF Cold-response Pathway., 0, , 71-99. 7 Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. Journal of 1.1 762 Molecular Recognition, 2005, 18, 343-384. Assembly and function of the Photosystem II manganese stabilizing protein: lessons from its natively 153 1.6 5 unfolded behavior. Photosynthesis Research, 2005, 84, 283-288. Structure and Activity of the Photosystem II Manganese-Stabilizing Protein: Role of the Conserved 154 1.6 Disulfide Bond. Photosynthesis Research, 2005, 85, 359-372. Structure of Mycobacterium smegmatissingle-stranded DNA-binding protein and a comparative study involving homologus SSBs: biological implications of structural plasticity and variability in 155 2.5 29 quaternary association. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1140-1148. Comparison of cell-based and cell-free protocols for producing target proteins from the Arabidopsis thaliana genome for structural studies. Proteins: Structure, Function and Bioinformatics, 2005, 59, 156 1.5 633-643 Addressing the intrinsic disorder bottleneck in structural proteomics. Proteins: Structure, Function 157 1.5 77 and Bioinformatics, 2005, 59, 444-453. Protein flexibility and rigidity predicted from sequence. Proteins: Structure, Function and Bioinformatics, 2005, 61, 115-126. 1.5 161 Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins: 159 1.5 511 Structure, Function and Bioinformatics, 2005, 61, 176-182. Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes. Proteins: 86 Structure, Function and Bioinformatics, 2005, 62, 309-315. Assessing protein disorder and induced folding. Proteins: Structure, Function and Bioinformatics, 161 1.5388 2005, 62, 24-45. Natively unfolded regions of the vertebrate fibrinogen molecule. Proteins: Structure, Function and 1.5 Bioinformatics, 2005, 63, 391-397.

#	Article	IF	CITATIONS
163	PII structure in the model peptides for unfolded proteins: Studies on ubiquitin fragments and several alanine-rich peptides containing QQQ, SSS, FFF, and VVV. Proteins: Structure, Function and Bioinformatics, 2005, 63, 312-321.	1.5	21
164	Structure/function of KRAB repression domains: Structural properties of KRAB modules inferred from hydrodynamic, circular dichroism, and FTIR spectroscopic analyses. Proteins: Structure, Function and Bioinformatics, 2005, 62, 604-616.	1.5	15
165	Mass spectrometric analysis of the interactions between CP12, a chloroplast protein, and metal ions: a possible regulatory role within a PRK/GAPDH/CP12 complex. Rapid Communications in Mass Spectrometry, 2005, 19, 3379-3388.	0.7	28
166	Early-Stage Folding in Proteins(In Silico)Sequence-to-Structure Relation. Journal of Biomedicine and Biotechnology, 2005, 2005, 65-79.	3.0	22
169	A Microscopic Study of Disorder-Order Transitions in Molecular Recognition of Unstructured Proteins: Hierarchy of Structural Loss and the Transition State Determination from Monte Carlo Simulations of P27KIP1 Protein Coupled Unfolding and Unbinding. , 2005, , 199-230.		0
170	Prediction of unfolded segments in a protein sequence based on amino acid composition. Bioinformatics, 2005, 21, 1891-1900.	1.8	116
171	FoldIndex(C): a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 2005, 21, 3435-3438.	1.8	886
172	Understanding the relationship between the primary structure of proteins and their amyloidogenic propensity: clues from inclusion body formation. Protein Engineering, Design and Selection, 2005, 18, 175-180.	1.0	24
173	G protein-coupled receptors show unusual patterns of intrinsic unfolding. Protein Engineering, Design and Selection, 2005, 18, 103-110.	1.0	48
174	VaZyMolO: a tool to define and classify modularity in viral proteins. Journal of General Virology, 2005, 86, 743-749.	1.3	45
175	RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics, 2005, 21, 3369-3376.	1.8	606
176	"Natively Unfolded―VPg Is Essential for Sesbania Mosaic Virus Serine Protease Activity. Journal of Biological Chemistry, 2005, 280, 30291-30300.	1.6	44
177	Energetics of Structural Transitions of the Addiction Antitoxin MazE. Journal of Biological Chemistry, 2005, 280, 17397-17407.	1.6	23
178	IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 2005, 21, 3433-3434.	1.8	1,832
179	The Active Site Is the Least Stable Structure in the Unfolding Pathway of a Multidomain Cold-Adapted α-Amylase. Journal of Bacteriology, 2005, 187, 6197-6205.	1.0	46
180	Essential Amino Acids of the Hantaan Virus N Protein in Its Interaction with RNA. Journal of Virology, 2005, 79, 10032-10039.	1.5	43
181	Feature Selection Based on Physicochemical Properties of Redefined N-term Region and C-term Regions for Predicting Disorder. , 2005, , .		3
182	A Neural Network for Predicting Protein Disorder using Amino Acid Hydropathy Values. , 2005, , .		1

			-
#	ARTICLE A Complete Set of NMR Chemical Shifts and Spinâ~'Spin Coupling Constants forl-Alanyl-I-alanine	IF	CITATIONS
183	Zwitterion and Analysis of Its Conformational Behavior. Journal of the American Chemical Society, 2005, 127, 17079-17089.	6.6	38
184	Thermodynamic Characterization of the Osmolyte- and Ligand-Folded States of Bacillus subtilis Ribonuclease P Protein. Biochemistry, 2005, 44, 13014-13026.	1.2	12
185	New Reverse Micelle Surfactant Systems Optimized for High-Resolution NMR Spectroscopy of Encapsulated Proteins. Langmuir, 2005, 21, 10632-10637.	1.6	24
186	Sites of Tau Important for Aggregation Populate β-Structure and Bind to Microtubules and Polyanions. Journal of Biological Chemistry, 2005, 280, 24978-24986.	1.6	275
187	Characterization of Segments from the Central Region of BRCA1: An Intrinsically Disordered Scaffold for Multiple Protein–Protein and Protein–DNA Interactions?. Journal of Molecular Biology, 2005, 345, 275-287.	2.0	157
188	The Pairwise Energy Content Estimated from Amino Acid Composition Discriminates between Folded and Intrinsically Unstructured Proteins. Journal of Molecular Biology, 2005, 347, 827-839.	2.0	911
189	The GB1 Amyloid Fibril: Recruitment of the Peripheral β-Strands of the Domain Swapped Dimer into the Polymeric Interface. Journal of Molecular Biology, 2005, 348, 687-698.	2.0	45
190	Structure of a Full Length Psychrophilic Cellulase from Pseudoalteromonas haloplanktis revealed by X-ray Diffraction and Small Angle X-ray Scattering. Journal of Molecular Biology, 2005, 348, 1211-1224.	2.0	97
191	Heat Shock Prevents Alpha-synuclein-induced Apoptosis in a Yeast Model of Parkinson's Disease. Journal of Molecular Biology, 2005, 351, 1081-1100.	2.0	217
192	Effects of nitration on the structure and aggregation of α-synuclein. Molecular Brain Research, 2005, 134, 84-102.	2.5	144
193	Binding of Natively Unfolded HIF-11 \pm ODD Domain to p53. Molecular Cell, 2005, 17, 11-21.	4.5	98
194	A Flexible Domain Is Essential for the Large Step Size and Processivity of Myosin VI. Molecular Cell, 2005, 17, 603-609.	4.5	95
195	Gene regulation by the glucocorticoid receptor: Structure:function relationship. Journal of Steroid Biochemistry and Molecular Biology, 2005, 94, 383-394.	1.2	203
196	Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 158-166.	1.8	321
197	Gir2 is an intrinsically unstructured protein that is present in Saccharomyces cerevisiae as a group of heterogeneously electrophoretic migrating forms. Biochemical and Biophysical Research Communications, 2005, 332, 450-455.	1.0	17
198	The interplay between structure and function in intrinsically unstructured proteins. FEBS Letters, 2005, 579, 3346-3354.	1.3	634
199	Multi-chain immune recognition receptors: spatial organization and signal transduction. Seminars in Immunology, 2005, 17, 51-64.	2.7	45
200	NMR Relaxation Studies on the Hydrate Layer of Intrinsically Unstructured Proteins. Biophysical Journal, 2005, 88, 2030-2037.	0.2	89

# 201	ARTICLE Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression inEscherichia coli. Protein Science, 2005, 14, 582-592.	IF 3.1	CITATIONS
203	Comparing and Combining Predictors of Mostly Disordered Proteins. Biochemistry, 2005, 44, 1989-2000.	1.2	485
205	Uncovering the Unfoldome:Â Enriching Cell Extracts for Unstructured Proteins by Acid Treatment. Journal of Proteome Research, 2005, 4, 1610-1618.	1.8	71
206	Flexible peptides and cytoplasmic gels. Genome Biology, 2005, 6, 106.	13.9	6
207	Most nuclear systemic autoantigens are extremely disordered proteins: implications for the etiology of systemic autoimmunity. Arthritis Research and Therapy, 2005, 7, R1360.	1.6	34
208	Conformation of the Backbone in Unfolded Proteins. Chemical Reviews, 2006, 106, 1877-1897.	23.0	249
209	Disorder and Sequence Repeats in Hub Proteins and Their Implications for Network Evolution. Journal of Proteome Research, 2006, 5, 2985-2995.	1.8	312
210	Abundance of Intrinsic Disorder in Protein Associated with Cardiovascular Disease. Biochemistry, 2006, 45, 10448-10460.	1.2	179
211	The Aggregation and Fibrillation of α-Synuclein. Accounts of Chemical Research, 2006, 39, 628-634.	7.6	455
212	Surface Adhesins of Staphylococcus aureus. Advances in Microbial Physiology, 2006, 51, 187-224.	1.0	237
213	Intrinsic Disorder in Transcription Factors. Biochemistry, 2006, 45, 6873-6888.	1.2	654
215	Predicting Disordered Regions in Proteins Based on Decision Trees of Reduced Amino Acid Composition. Journal of Computational Biology, 2006, 13, 1579-1590.	0.8	1
216	FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics, 2006, 22, 2948-2949.	1.8	148
217	Intrinsically disordered C-terminal segments of voltage-activated potassium channels: a possible fishing rod-like mechanism for channel binding to scaffold proteins. Bioinformatics, 2006, 22, 1546-1550.	1.8	35
218	sgTarget: a target selection resource for structural genomics. Nucleic Acids Research, 2006, 34, W225-W230.	6.5	6
219	Low resolution structure of the human α4 protein (IgBP1) and studies on the stability of α4 and of its yeast ortholog Tap42. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 724-734.	1.1	17
220	Structural Investigation of Disordered Stress Proteins. Comparison of Full-Length Dehydrins with Isolated Peptides of Their Conserved Segments. Plant Physiology, 2006, 141, 638-650.	2.3	132
221	Protein Intrinsic Disorder and Human Papillomaviruses:Â Increased Amount of Disorder in E6 and E7 Oncoproteins from High Risk HPVs. Journal of Proteome Research, 2006, 5, 1829-1842.	1.8	126

#	Article	IF	CITATIONS
222	New Views of Protein Structure: Implications for Potential New Protein Structure-Function Relationships. ACS Symposium Series, 2006, , 1-18.	0.5	1
223	Proteomic Studies of the Intrinsically Unstructured Mammalian Proteome. Journal of Proteome Research, 2006, 5, 2839-2848.	1.8	66
224	Conservation of Intrinsic Disorder in Protein Domains and Families:Â II. Functions of Conserved Disorder. Journal of Proteome Research, 2006, 5, 888-898.	1.8	126
225	Small-Angle X-ray Scattering Reveals an Extended Organization for the Autoinhibitory Resting State of the p47phoxModular Protein. Biochemistry, 2006, 45, 7185-7193.	1.2	32
226	Prevalent Structural Disorder inE.coliandS.cerevisiaeProteomes. Journal of Proteome Research, 2006, 5, 1996-2000.	1.8	119
227	Lipid-Binding Activity of Intrinsically Unstructured Cytoplasmic Domains of Multichain Immune Recognition Receptor Signaling Subunitsâ€. Biochemistry, 2006, 45, 15731-15739.	1.2	104
228	Conservation of Intrinsic Disorder in Protein Domains and Families:Â I. A Database of Conserved Predicted Disordered Regions. Journal of Proteome Research, 2006, 5, 879-887.	1.8	124
229	Proline Zwitterion Dynamics in Solution, Glass, and Crystalline State. Journal of the American Chemical Society, 2006, 128, 13451-13462.	6.6	82
230	Studies on titin PEVK peptides and their interaction. Archives of Biochemistry and Biophysics, 2006, 454, 16-25.	1.4	17
231	Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Letters, 2006, 580, 2041-2045.	1.3	262
232	Intrinsically Disordered Loops Inserted into the Structural Domains of Human Proteins. Journal of Molecular Biology, 2006, 355, 845-857.	2.0	36
233	Characterization of Intra-molecular Distances and Site-specific Dynamics in Chemically Unfolded Barstar: Evidence for Denaturant-dependent Non-random Structure. Journal of Molecular Biology, 2006, 359, 174-189.	2.0	42
234	Human Transcription Factors Contain a High Fraction of Intrinsically Disordered Regions Essential for Transcriptional Regulation. Journal of Molecular Biology, 2006, 359, 1137-1149.	2.0	252
235	The Third 20 Amino Acid Repeat Is the Tightest Binding Site of APC for β-Catenin. Journal of Molecular Biology, 2006, 360, 133-144.	2.0	78
236	Analysis of Molecular Recognition Features (MoRFs). Journal of Molecular Biology, 2006, 362, 1043-1059.	2.0	672
237	Delineation of Protein Structure Classes from Multivariate Analysis of Protein Raman Optical Activity Data. Journal of Molecular Biology, 2006, 363, 19-26.	2.0	57
238	Diminishing of aggregation for bovine liver catalase through acidic residues modification. International Journal of Biological Macromolecules, 2006, 40, 47-53.	3.6	22
239	Purification, crystallization and preliminary X-ray diffraction analysis of the phage T4 vertex protein gp24 and its mutant forms. Protein Expression and Purification, 2006, 49, 235-243.	0.6	4

#	Article	IF	CITATIONS
240	Honing thein silicotoolkit for detecting protein disorder. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1260-1266.	2.5	25
241	Role of lysine versus arginine in enzyme cold-adaptation: Modifying lysine to homo-arginine stabilizes the cold-adapted α-amylase from Pseudoalteramonas haloplanktis. Proteins: Structure, Function and Bioinformatics, 2006, 64, 486-501.	1.5	65
242	Insights into protein structure and function from disorder-complexity space. Proteins: Structure, Function and Bioinformatics, 2006, 66, 16-28.	1.5	23
243	A practical overview of protein disorder prediction methods. Proteins: Structure, Function and Bioinformatics, 2006, 65, 1-14.	1.5	241
244	Characterization of the residual structure in the unfolded state of the Δ131Δ fragment of staphylococcal nuclease. Proteins: Structure, Function and Bioinformatics, 2006, 65, 145-152.	1.5	38
245	Intrinsically unstructured N-terminal domain of bZIP transcription factor HY5. Proteins: Structure, Function and Bioinformatics, 2006, 65, 856-866.	1.5	38
246	Role of intrinsic disorder in transient interactions of hub proteins. Proteins: Structure, Function and Bioinformatics, 2006, 66, 761-765.	1.5	143
247	Prediction of natively unfolded regions in protein chains. Molecular Biology, 2006, 40, 298-304.	0.4	19
248	A search for amyloidogenic regions in protein chains. Molecular Biology, 2006, 40, 821-828.	0.4	15
249	Identification of β-aggregate sites in protein chains. Molecular Biology, 2006, 40, 839-843.	0.4	2
250	Unraveling the nature of the segmentation clock: Intrinsic disorder of clock proteins and their interaction map. Computational Biology and Chemistry, 2006, 30, 241-248.	1.1	12
251	The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Science, 2006, 15, 1042-1050.	3.1	44
252	Effect of N-terminal solubility enhancing fusion proteins on yield of purified target protein. Journal of Structural and Functional Genomics, 2006, 7, 1-14.	1.2	77
253	Structural disorder within the replicative complex of measles virus: Functional implications. Virology, 2006, 344, 94-110.	1.1	87
254	Structure and behaviour of biomolecules from Raman optical activity. Current Opinion in Structural Biology, 2006, 16, 638-643.	2.6	70
255	Rational drug design via intrinsically disordered protein. Trends in Biotechnology, 2006, 24, 435-442.	4.9	225
256	Abundance of intrinsically unstructured proteins in P. falciparum and other apicomplexan parasite proteomes. Molecular and Biochemical Parasitology, 2006, 150, 256-267.	0.5	108
257	Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 2006, 7, 208.	1.2	780

#	Article	IF	CITATIONS
258	Protein disorder prediction by condensed PSSM considering propensity for order or disorder. BMC Bioinformatics, 2006, 7, 319.	1.2	86
259	p53—A Natural Cancer Killer: Structural Insights and Therapeutic Concepts. Angewandte Chemie - International Edition, 2006, 45, 6440-6460.	7.2	98
260	Nanoimaging for protein misfolding and related diseases. Journal of Cellular Biochemistry, 2006, 99, 52-70.	1.2	43
262	Serine/arginine-rich splicing factors belong to a class of intrinsically disordered proteins. Nucleic Acids Research, 2006, 34, 305-312.	6.5	102
263	New Views of Protein Structure: Applications to the Caseins: Protein Structure and Functionality. ACS Symposium Series, 2006, , 52-70.	0.5	27
264	The N-Terminal A/B Domain of the Thyroid Hormone Receptor-β2 Isoform Influences Ligand-Dependent Recruitment of Coactivators to the Ligand-Binding Domain. Molecular Endocrinology, 2006, 20, 2036-2051.	3.7	21
265	Peptide Model Systems for Amyloid Fiber Formation: Design Strategies and Validation Methods. , 2006, 340, 253-276.		6
266	Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids Research, 2006, 34, W164-W168.	6.5	121
267	Spectroscopic Approaches to the Conformation of Tau Protein in Solution and in Paired Helical Filaments. Neurodegenerative Diseases, 2006, 3, 197-206.	0.8	57
268	Role of Protein Conformational Dynamics and DNA Integrity in Relevance to Neuronal Cell Death in Neurodegeneration. Current Alzheimer Research, 2006, 3, 297-309.	0.7	18
269	Large-Scale Prediction of Protein Structure and Function from Sequence. Current Pharmaceutical Design, 2006, 12, 2067-2086.	0.9	12
270	Intrinsic Disorder Is a Common Feature of Hub Proteins from Four Eukaryotic Interactomes. PLoS Computational Biology, 2006, 2, e100.	1.5	512
271	Prediction of Amyloidogenic and Disordered Regions in Protein Chains. PLoS Computational Biology, 2006, 2, e177.	1.5	155
273	Identifying sequence regions undergoing conformational change via predicted continuum secondary structure. Bioinformatics, 2006, 22, 1809-1814.	1.8	18
274	Competitive recruitment of the periplasmic translocation portal TolB by a natively disordered domain of colicin E9. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12353-12358.	3.3	68
275	Glutamic Acid-rich Proteins of Rod Photoreceptors Are Natively Unfolded*. Journal of Biological Chemistry, 2006, 281, 1449-1460.	1.6	57
276	A Novel Two-dimensional Electrophoresis Technique for the Identification of Intrinsically Unstructured Proteins. Molecular and Cellular Proteomics, 2006, 5, 265-273.	2.5	65
277	Predicting Disordered Regions in Proteins Based on Decision Trees of Reduced Amino Acid Composition. Journal of Computational Biology, 2006, 13, 1723-1734.	0.8	9

#	Article	IF	CITATIONS
278	The Disordered Amino-Terminus of SIMPL Interacts with Members of the 70-kDa Heat-Shock Protein Family. DNA and Cell Biology, 2006, 25, 704-714.	0.9	10
279	Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8390-8395.	3.3	428
280	HIV-1 Tat Is a Natively Unfolded Protein. Journal of Biological Chemistry, 2006, 281, 8347-8356.	1.6	111
281	Intrinsic Protein Disorder, Amino Acid Composition, and Histone Terminal Domains. Journal of Biological Chemistry, 2006, 281, 1853-1856.	1.6	217
282	The aggregation of alphaâ€synuclein is stimulated by FK506 binding proteins as shown by fluorescence correlation spectroscopy. FASEB Journal, 2006, 20, 524-526.	0.2	62
283	IS IT POSSIBLE TO PREDICT AMYLOIDOGENIC REGIONS FROM SEQUENCE ALONE?. Journal of Bioinformatics and Computational Biology, 2006, 04, 373-388.	0.3	26
284	TREND OF AMINO ACID COMPOSITION OF PROTEINS OF DIFFERENT TAXA. Journal of Bioinformatics and Computational Biology, 2006, 04, 597-608.	0.3	82
285	Effect of 4-Hydroxy-2-nonenal Modification on α-Synuclein Aggregation. Journal of Biological Chemistry, 2007, 282, 5862-5870.	1.6	166
286	In Vitro Polymerization of a Functional Escherichia coli Amyloid Protein. Journal of Biological Chemistry, 2007, 282, 3713-3719.	1.6	165
287	Intrinsic disorder in the C-terminal domain of the <i>Shaker</i> voltage-activated K ⁺ channel modulates its interaction with scaffold proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13022-13027.	3.3	60
288	Ebola Virus VP30 Is an RNA Binding Protein. Journal of Virology, 2007, 81, 8967-8976.	1.5	60
289	Predicting Protein Disorder and Induced Folding: From Theoretical Principles to Practical Applications. Current Protein and Peptide Science, 2007, 8, 135-149.	0.7	69
290	Production and Crystallization of Protein Domains: How Useful are Disorder Predictions ?. Current Protein and Peptide Science, 2007, 8, 151-160.	0.7	8
291	Natively Unstructured Loops Differ from Other Loops. PLoS Computational Biology, 2007, 3, e140.	1.5	84
292	Prediction of Protein Disorder at the Domain Level. Current Protein and Peptide Science, 2007, 8, 161-171.	0.7	71
293	RNA Chaperones, RNA Annealers and RNA Helicases. RNA Biology, 2007, 4, 118-130.	1.5	279
294	Towards Proteomic Approaches for the Identification of Structural Disorder. Current Protein and Peptide Science, 2007, 8, 173-179.	0.7	20
295	A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2649-2654.	3.3	296

#	Article	IF	CITATIONS
296	Desiccation and Zinc Binding Induce Transition of Tomato Abscisic Acid Stress Ripening 1, a Water Stress- and Salt Stress-Regulated Plant-Specific Protein, from Unfolded to Folded State. Plant Physiology, 2007, 143, 617-628.	2.3	94
297	Hacking the Code of Amyloid Formation. Prion, 2007, 1, 9-14.	0.9	49
298	A Decade of Computing to Traverse the Labyrinth of Protein Domains. Current Bioinformatics, 2007, 2, 113-131.	0.7	11
299	Expected packing density allows prediction of both amyloidogenic and disordered regions in protein chains. Journal of Physics Condensed Matter, 2007, 19, 285225.	0.7	6
300	RVCaB, a Calcium-binding Protein in Radish Vacuoles, is Predominantly an Unstructured Protein with a Polyproline Type II Helix. Journal of Biochemistry, 2007, 142, 201-211.	0.9	20
301	Protein Crystallization. , 2007, , 433-446.		0
302	iPDA: integrated protein disorder analyzer. Nucleic Acids Research, 2007, 35, W465-W472.	6.5	57
303	Low folding propensity and high translation efficiency distinguish <i>in vivo</i> substrates of GroEL from other <i>Escherichia coli</i> proteins. Bioinformatics, 2007, 23, 3276-3279.	1.8	23
304	Local structural disorder imparts plasticity on linear motifs. Bioinformatics, 2007, 23, 950-956.	1.8	376
305	Natively unstructured regions in proteins identified from contact predictions. Bioinformatics, 2007, 23, 2376-2384.	1.8	118
306	DNA Binding and Phosphorylation Induce Conformational Alterations in the Kinase-inducible Domain of CREB. Journal of Biological Chemistry, 2007, 282, 19872-19883.	1.6	29
307	YGR198w (YPP1) targets A30P α-synuclein to the vacuole for degradation. Journal of Cell Biology, 2007, 177, 1091-1104.	2.3	56
308	Structure and Function of a Mitochondrial Late Embryogenesis Abundant Protein Are Revealed by Desiccation. Plant Cell, 2007, 19, 1580-1589.	3.1	209
309	Predicting Simplified Features of Protein Structure. , 0, , 261-295.		0
310	The human cardiac hormone fragment N-terminal pro B-type natriuretic peptide is an intrinsically unstructured protein. Archives of Biochemistry and Biophysics, 2007, 461, 242-246.	1.4	9
311	DNA induces folding in \hat{I}_{\pm} -synuclein: Understanding the mechanism using chaperone property of osmolytes. Archives of Biochemistry and Biophysics, 2007, 464, 57-69.	1.4	71
312	Effects of different osmolytes on the induced folding of the N-terminal activation domain (AF1) of the glucocorticoid receptor. Archives of Biochemistry and Biophysics, 2007, 465, 452-460.	1.4	28
313	Solid-state NMR spectroscopy of 18.5 kDa myelin basic protein reconstituted with lipid vesicles: Spectroscopic characterisation and spectral assignments of solvent-exposed protein fragments. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1 <u>768, 3193-3205.</u>	1.4	43

~		_	
C	ON	12 E D O	DT
<u> </u>		INLEO	IN I

#	Article	IF	CITATIONS
314	Molecular Principles of the Interactions of Disordered Proteins. Journal of Molecular Biology, 2007, 372, 549-561.	2.0	242
315	Functional Anthology of Intrinsic Disorder. 1. Biological Processes and Functions of Proteins with Long Disordered Regions. Journal of Proteome Research, 2007, 6, 1882-1898.	1.8	525
316	Clustering of phosphorylation site recognition motifs can be exploited to predict the targets of cyclin-dependent kinase. Genome Biology, 2007, 8, R23.	13.9	74
317	Functional Anthology of Intrinsic Disorder. 3. Ligands, Post-Translational Modifications, and Diseases Associated with Intrinsically Disordered Proteins. Journal of Proteome Research, 2007, 6, 1917-1932.	1.8	369
318	Role of Different Regions of α-Synuclein in the Assembly of Fibrils. Biochemistry, 2007, 46, 13322-13330.	1.2	90
319	Myosin XVA. , 2008, , 441-467.		3
320	Molecular "Negativity―May Underlie Multiple Sclerosis: Role of the Myelin Basic Protein Family in the Pathogenesis of MS. International Review of Neurobiology, 2007, 79, 149-172.	0.9	47
321	The N-Terminal Module of HPV16 E7 Is an Intrinsically Disordered Domain That Confers Conformational and Recognition Plasticity to the Oncoprotein. Biochemistry, 2007, 46, 10405-10412.	1.2	55
322	Fesselin is a Natively Unfolded Protein. Journal of Proteome Research, 2007, 6, 3648-3654.	1.8	17
323	Mining α-Helix-Forming Molecular Recognition Features with Cross Species Sequence Alignments. Biochemistry, 2007, 46, 13468-13477.	1.2	300
325	Effects of Zinc Binding on the Structure and Dynamics of the Intrinsically Disordered Protein Prothymosin α:  Evidence for Metalation as an Entropic Switch. Biochemistry, 2007, 46, 13120-13130.	1.2	54
326	Functional Anthology of Intrinsic Disorder. 2. Cellular Components, Domains, Technical Terms, Developmental Processes, and Coding Sequence Diversities Correlated with Long Disordered Regions. Journal of Proteome Research, 2007, 6, 1899-1916.	1.8	244
327	Characterization of Molecular Recognition Features, MoRFs, and Their Binding Partners. Journal of Proteome Research, 2007, 6, 2351-2366.	1.8	433
329	The intracellular region of Notch ligands: does the tail make the difference?. Biology Direct, 2007, 2, 19.	1.9	42
330	Intrinsic Disorder and Functional Proteomics. Biophysical Journal, 2007, 92, 1439-1456.	0.2	643
331	Cytoplasmic Domain of Zebrafish Myelin Protein Zero: Adhesive Role Depends on β-Conformation. Biophysical Journal, 2007, 93, 3515-3528.	0.2	10
332	Intrinsic Disorder in the Protein Data Bank. Journal of Biomolecular Structure and Dynamics, 2007, 24, 325-341.	2.0	140
333	Gene Duplication and the Evolution of Vertebrate Skeletal Mineralization. Cells Tissues Organs, 2007, 186, 7-24.	1.3	66

#	Article	IF	CITATIONS
334	Substrates of the Methionine Sulfoxide Reductase System and Their Physiological Relevance. Current Topics in Developmental Biology, 2007, 80, 93-133.	1.0	103
335	α-Synuclein Multistate Folding Thermodynamics:  Implications for Protein Misfolding and Aggregation. Biochemistry, 2007, 46, 4499-4509.	1.2	90
336	Abundance of intrinsic disorder in SV-IV, a multifunctional androgen-dependent protein secreted from rat seminal vesicle. Nature Precedings, 2007, , .	0.1	0
337	Purification and spectroscopic characterization of the recombinant BG21 isoform of murine golli myelin basic protein. Journal of Neuroscience Research, 2007, 85, 272-284.	1.3	8
338	How does dextran sulfate prevent heat induced aggregation of protein?: The mechanism and its limitation as aggregation inhibitor. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 249-257.	1.1	33
339	Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs. BMC Structural Biology, 2007, 7, 25.	2.3	100
340	Modelling of the ABL and ARG proteins predicts two functionally critical regions that are natively unfolded. Proteins: Structure, Function and Bioinformatics, 2007, 67, 1-11.	1.5	4
341	Dynamic α-helices: Conformations that do not conform. Proteins: Structure, Function and Bioinformatics, 2007, 68, 109-122.	1.5	21
342	Investigating the structural stability of the Tup1â€interaction domain of Ssn6: Evidence for a conformational change on the complex. Proteins: Structure, Function and Bioinformatics, 2008, 70, 72-82.	1.5	13
343	Intrinsic disorder in yeast transcriptional regulatory network. Proteins: Structure, Function and Bioinformatics, 2007, 68, 602-605.	1.5	62
344	Operational definition of intrinsically unstructured protein sequences based on susceptibility to the 20S proteasome. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1357-1366.	1.5	93
345	Computational analysis of folding and mutation properties of C5 domain of myosin binding protein C. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1313-1322.	1.5	5
346	Intrinsically disordered protein from a pathogenic mesophile <i>Mycobacterium tuberculosis</i> adopts structured conformation at high temperature. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1123-1133.	1.5	18
347	Huntingtin interacting protein HYPK is intrinsically unstructured. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1686-1698.	1.5	29
348	Is the intrinsic disorder of proteins the cause of the scale-free architecture of protein–protein interaction networks?. Proteomics, 2007, 7, 961-964.	1.3	21
349	Structured proteins and proteins with intrinsic disorder. Molecular Biology, 2007, 41, 262-277.	0.4	15
350	Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death and Differentiation, 2007, 14, 128-136.	5.0	202
351	Neuropathology, biochemistry, and biophysics of αâ€synuclein aggregation. Journal of Neurochemistry, 2007, 103, 17-37.	2.1	471

#	Article	IF	Citations
352	Biochemical characterization of the recombinant human Nogo-A ectodomain. FEBS Journal, 2007, 274, 2603-2613.	2.2	15
353	The intracellular region of the Notch ligand Jaggedâ€l gains partial structure upon binding to synthetic membranes. FEBS Journal, 2007, 274, 5325-5336.	2.2	24
354	Predicting mostly disordered proteins by using structure-unknown protein data. BMC Bioinformatics, 2007, 8, 78.	1.2	57
355	Gene induction by desiccation stress in the entomopathogenic nematode Steinernema carpocapsae reveals parallels with drought tolerance mechanisms in plants. International Journal for Parasitology, 2007, 37, 763-776.	1.3	33
356	Protein aggregation in silico. Trends in Biotechnology, 2007, 25, 254-261.	4.9	62
357	N-terminal domains of native multidomain proteins have the potential to assist de novo folding of their downstream domains in vivo by acting as solubility enhancers. Protein Science, 2007, 16, 635-643.	3.1	38
358	Optimization of linear disorder predictors yields tight association between crystallographic disorder and hydrophobicity. Protein Science, 2007, 16, 2140-2152.	3.1	5
359	The intrinsically disordered TCâ€l interacts with Chibby via regions with high helical propensity. Protein Science, 2007, 16, 2510-2518.	3.1	25
360	Interactions between metals and αâ€synucleinâ€fâ~'â€ffunction or artefact?. FEBS Journal, 2007, 274, 3766-37	742.2	47
361	The continuing conundrum of the LEA proteins. Die Naturwissenschaften, 2007, 94, 791-812.	0.6	629
362	The Role of Multiphosphorylated Peptides in Mineralized Tissue Regeneration. International Journal of Peptide Research and Therapeutics, 2007, 13, 479-495.	0.9	20
363	A Tale of Two Citrullines—Structural and Functional Aspects of Myelin Basic Protein Deimination in Health and Disease. Neurochemical Research, 2007, 32, 137-158.	1.6	140
364	Dynamics of well-folded and natively disordered proteins in solution: a time-of-flight neutron scattering study. European Biophysics Journal, 2008, 37, 573-582.	1.2	62
365	Bridge helix and trigger loop perturbations generate superactive RNA polymerases. Journal of Biology, 2008, 7, 40.	2.7	81
366	Structure–function analysis of Knr4/Smi1, a newly member of intrinsically disordered proteins family, indispensable in the absence of a functional <i>PKC1–SLT2</i> pathway in <i>Saccharomyces cerevisiae</i> . Yeast, 2008, 25, 563-576.	0.8	17
367	Residual structure in disordered peptides and unfolded proteins from multivariate analysis and ab initio simulation of Raman optical activity data. Proteins: Structure, Function and Bioinformatics, 2008, 70, 823-833.	1.5	74
368	Apoâ€parvalbumin as an intrinsically disordered protein. Proteins: Structure, Function and Bioinformatics, 2008, 72, 822-836.	1.5	51
369	Mechanism of induced folding: Both folding before binding and binding before folding can be realized in staphylococcal nuclease mutants. Proteins: Structure, Function and Bioinformatics, 2008, 72, 837-847	1.5	48

#	Article	IF	CITATIONS
370	Isoformâ€specific variation in the intrinsic disorder of troponin I. Proteins: Structure, Function and Bioinformatics, 2008, 73, 338-350.	1.5	13
371	A robust approach for analyzing a heterogeneous structural ensemble. Proteins: Structure, Function and Bioinformatics, 2008, 73, 918-928.	1.5	11
372	Visualization of Intrinsically Disordered Regions of Proteins by High‣peed Atomic Force Microscopy. ChemPhysChem, 2008, 9, 1859-1866.	1.0	95
373	Using Bayesian multinomial classifier to predict whether a given protein sequence is intrinsically disordered. Journal of Theoretical Biology, 2008, 254, 799-803.	0.8	11
374	Interaction with Al and Zn induces structure formation and aggregation in natively unfolded caseins. Journal of Photochemistry and Photobiology B: Biology, 2008, 93, 36-43.	1.7	20
375	To be folded or to be unfolded?. Protein Science, 2008, 13, 2871-2877.	3.1	69
376	pHâ€induced folding of an apoptotic coiled coil. Protein Science, 2001, 10, 2531-2540.	3.1	27
377	Solvent-induced collapse of α-synuclein and acid-denatured cytochrome c. Protein Science, 2008, 10, 2195-2199.	3.1	169
378	Structure–function analysis of the filamentous actin binding domain of the neuronal scaffolding protein spinophilin. FEBS Journal, 2008, 275, 59-68.	2.2	10
379	Abundance of intrinsic disorder in SVâ€ŀV, a multifunctional androgenâ€dependent protein secreted from rat seminal vesicle. FEBS Journal, 2008, 275, 763-774.	2.2	6
380	Prediction of short loops in intrinsically disordered proteins. Molecular Biology, 2008, 42, 949-959.	0.4	4
381	Malleable machines take shape in eukaryotic transcriptional regulation. Nature Chemical Biology, 2008, 4, 728-737.	3.9	192
382	Potato virus A genome-linked protein VPg is an intrinsically disordered molten globule-like protein with a hydrophobic core. Virology, 2008, 377, 280-288.	1.1	65
383	LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 2008, 9, 118.	1.2	818
384	The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics, 2008, 9, S1.	1.2	485
385	Protein intrinsic disorder toolbox for comparative analysis of viral proteins. BMC Genomics, 2008, 9, S4.	1.2	61
386	Function and structure of inherently disordered proteins. Current Opinion in Structural Biology, 2008, 18, 756-764.	2.6	864
387	Intrinsic disorder in scaffold proteins: Getting more from less. Progress in Biophysics and Molecular Biology, 2008, 98, 85-106.	1.4	259

#	Article	IF	CITATIONS
388	Nitrated α–Synuclein Immunity Accelerates Degeneration of Nigral Dopaminergic Neurons. PLoS ONE, 2008, 3, e1376.	1.1	311
389	Chapter 6 Molecular and Cellular Biology of Synucleins. International Review of Cell and Molecular Biology, 2008, 270, 225-317.	1.6	90
390	Target Selection: Triage in the Structural Genomics Battlefield. Methods in Molecular Biology, 2008, 426, 37-47.	0.4	2
391	Prediction of Protein Disorder. Methods in Molecular Biology, 2008, 426, 103-115.	0.4	56
392	Kinetics of Folding and Binding of an Intrinsically Disordered Protein: The Inhibitor of Yeast Aspartic Proteinase YPrA. Journal of the American Chemical Society, 2008, 130, 11477-11485.	6.6	55
393	Stability and Kinetic Properties of C5-Domain from Myosin Binding Protein C and its Mutants. Biophysical Journal, 2008, 94, 1403-1411.	0.2	8
394	Structural Features of the Full-Length Adaptor Protein GADS in Solution Determined Using Small-Angle X-Ray Scattering. Biophysical Journal, 2008, 94, 1766-1772.	0.2	5
395	Backbone Dynamics of the 18.5kDa Isoform of Myelin Basic Protein Reveals Transient α-Helices and a Calmodulin-Binding Site. Biophysical Journal, 2008, 94, 4847-4866.	0.2	48
396	Biophysical Characterization of the Unstructured Cytoplasmic Domain of the Human Neuronal Adhesion Protein Neuroligin 3. Biophysical Journal, 2008, 95, 1928-1944.	0.2	45
397	The Twilight Zone between Protein Order and Disorder. Biophysical Journal, 2008, 95, 1612-1626.	0.2	29
398	Intrinsically Disordered Proteins in Human Diseases: Introducing the D ² Concept. Annual Review of Biophysics, 2008, 37, 215-246.	4.5	1,222
399	Rescuing Proteins of Low Kinetic Stability by Chaperones and Natural Ligands: Phenylketonuria, a Case Study. Progress in Molecular Biology and Translational Science, 2008, 83, 89-134.	0.9	31
400	Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes. Molecular BioSystems, 2008, 4, 328.	2.9	127
401	Controlled Chaos. Science, 2008, 322, 1340-1341.	6.0	61
402	A comparative analysis of viral matrix proteins using disorder predictors. Virology Journal, 2008, 5, 126.	1.4	60
403	Structural Proteomics. Methods in Molecular Biology, 2008, 426, v-vi.	0.4	21
404	Human Regulatory Protein Ki-1/57 Has Characteristics of an Intrinsically Unstructured Protein. Journal of Proteome Research, 2008, 7, 4465-4474.	1.8	21
405	Guiding Protein Aggregation with Macromolecular Crowding. Biochemistry, 2008, 47, 8993-9006.	1.2	165

#	Article	IF	CITATIONS
406	Regulation of Cell Division by Intrinsically Unstructured Proteins: Intrinsic Flexibility, Modularity, and Signaling Conduits. Biochemistry, 2008, 47, 7598-7609.	1.2	218
407	Partially Folded Bovine Pancreatic Trypsin Inhibitor Analogues Attain Fully Native Structures when Co-Crystallized with S195A Rat Trypsin. Journal of Molecular Biology, 2008, 375, 812-823.	2.0	3
408	Novel Enzymatic Activity Derived from the Semliki Forest Virus Capsid Protein. Journal of Molecular Biology, 2008, 376, 721-735.	2.0	20
409	Coulomb Forces Control the Density of the Collapsed Unfolded State of Barstar. Journal of Molecular Biology, 2008, 376, 597-605.	2.0	40
410	Intrinsically Disordered Human C/EBP Homologous Protein Regulates Biological Activity of Colon Cancer Cells during Calcium Stress. Journal of Molecular Biology, 2008, 380, 313-326.	2.0	22
411	Addition of a polypeptide stretch at the N-terminus improves the expression, stability and solubility of recombinant protein tyrosine phosphatases from Drosophila melanogaster. Protein Expression and Purification, 2008, 57, 234-243.	0.6	7
412	The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expression and Purification, 2008, 58, 210-221.	0.6	110
413	Expression and purification of the active variant of recombinant murine Golli-interacting protein (GIP)—characterization of its phosphatase activity and interaction with Golli-BG21. Protein Expression and Purification, 2008, 62, 36-43.	0.6	5
414	Role of Backboneâ^'Solvent Interactions in Determining Conformational Equilibria of Intrinsically Disordered Proteins. Journal of the American Chemical Society, 2008, 130, 7380-7392.	6.6	191
415	Applications of novel monoclonal antibodies specific for synuclein-Î ³ in evaluating its levels in sera and cancer tissues from colorectal cancer patients. Cancer Letters, 2008, 269, 148-158.	3.2	23
416	RNA association or phosphorylation of the RS domain prevents aggregation of RS domain-containing proteins. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 214-225.	1.1	34
417	Assessment of substrate-stabilizing factors for DnaK on the folding of aggregation-prone proteins. Biochemical and Biophysical Research Communications, 2008, 373, 74-79.	1.0	13
418	Intrinsic Structural Disorder of DF31, a <i>Drosophila</i> Protein of Chromatin Decondensation and Remodeling Activities. Journal of Proteome Research, 2008, 7, 2291-2299.	1.8	18
419	Late Embryogenesis Abundant Proteins. Advances in Botanical Research, 2008, , 211-255.	0.5	106
420	Osmolyte-Induced Folding of an Intrinsically Disordered Activation Function Subdomain of Glucocorticoid Receptor. Journal of Receptor and Signal Transduction Research, 2008, 28, 465-474.	1.3	7
421	Targeting the Human Cancer Pathway Protein Interaction Network by Structural Genomics. Molecular and Cellular Proteomics, 2008, 7, 2048-2060.	2.5	70
422	Variationally Determined Free Energy Profiles for Structural Models of Proteins:  Characteristic Temperatures for Folding and Trapping. Journal of Physical Chemistry B, 2008, 112, 6074-6082.	1.2	8
423	Natively Unfolded Protein Stability as a Coil-to-Globule Transition in Charge/Hydropathy Space. Journal of the American Chemical Society, 2008, 130, 9536-9542.	6.6	90

#	Article	IF	CITATIONS
424	Effect of Methionine Oxidation on the Structural Properties, Conformational Stability, and Aggregation of Immunoglobulin Light Chain LEN. Biochemistry, 2008, 47, 8665-8677.	1.2	34
425	Spermine Binding to Parkinson's Protein α-Synuclein and Its Disease-Related A30P and A53T Mutants. Journal of Physical Chemistry B, 2008, 112, 11147-11154.	1.2	52
426	Protein Disorder Is Positively Correlated with Gene Expression in <i>Escherichia coli</i> . Journal of Proteome Research, 2008, 7, 2234-2245.	1.8	32
427	Prevalence of Intrinsic Disorder in the Intracellular Region of Human Single-Pass Type I Proteins: The Case of the Notch Ligand Delta-4. Journal of Proteome Research, 2008, 7, 2496-2506.	1.8	41
428	Starmaker Exhibits Properties of an Intrinsically Disordered Protein. Biomacromolecules, 2008, 9, 2118-2125.	2.6	32
429	The Folding Kinetics of the SDS-Induced Molten Globule Form of Reduced Cytochrome <i>c</i> . Biochemistry, 2008, 47, 5450-5459.	1.2	24
430	The Reaction of α-Synuclein with Tyrosinase. Journal of Biological Chemistry, 2008, 283, 16808-16817.	1.6	116
431	An Unusual Intrinsically Disordered Protein from the Model Legume Lotus japonicus Stabilizes Proteins in Vitro. Journal of Biological Chemistry, 2008, 283, 31142-31152.	1.6	37
432	Modular Design of Cys-loop Ligand-gated Ion Channels: Functional 5-HT3 and GABA 🖥 Receptors Lacking the Large Cytoplasmic M3M4 Loop. Journal of General Physiology, 2008, 131, 137-146.	0.9	108
433	Flexibility of the Cytoplasmic Domain of the Phototaxis Transducer II from Natronomonas pharaonis. Journal of Biophysics, 2008, 2008, 1-11.	0.8	1
434	Novel mechanistic concept of platelet inhibition. Expert Opinion on Therapeutic Targets, 2008, 12, 677-692.	1.5	19
435	RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Research, 2008, 36, 712-725.	6.5	129
436	Molecular Dynamics Simulations of the Apo-, Holo-, and Acyl-forms of Escherichia coli Acyl Carrier Protein. Journal of Biological Chemistry, 2008, 283, 33620-33629.	1.6	48
437	Evidence for a Coiled-coil Interaction Mode of Disordered Proteins from Bacterial Type III Secretion Systems. Journal of Biological Chemistry, 2008, 283, 34062-34068.	1.6	38
438	Structural Insight into the Function of Myelin Basic Protein as a Ligand for Integrin αMβ2. Journal of Immunology, 2008, 180, 3946-3956.	0.4	61
439	Dissociation from the Oligomeric State Is the Rate-limiting Step in Fibril Formation by κ-Casein. Journal of Biological Chemistry, 2008, 283, 9012-9022.	1.6	76
440	Virulence Factor of Potato Virus Y, Genome-attached Terminal Protein VPg, Is a Highly Disordered Protein. Journal of Biological Chemistry, 2008, 283, 213-221.	1.6	66
441	Amyloidogenesis of Natively Unfolded Proteins. Current Alzheimer Research, 2008, 5, 260-287.	0.7	167

		CITATION REPORT		
#	Article		IF	CITATIONS
442	Disordered Flanks Prevent Peptide Aggregation. PLoS Computational Biology, 2008, 4, e10	000241.	1.5	54
443	Intrinsic Structural Disorder in Adenovirus E1A: a Viral Molecular Hub Linking Multiple Dive Processes. Journal of Virology, 2008, 82, 7252-7263.	rse	1.5	129
444	Protein Disordered Region Prediction by SVM with Post-Processing. , 2008, , .			1
445	Aggregation and Fibrillation Study of .ALPHAsynuclein Under Applied Voltage. Electroche 2008, 76, 614-618.	mistry,	0.6	3
446	A Rescue Factor for Alzheimers Diseases: Discovery, Activity, Structure,and Mechanism. Cu Medicinal Chemistry, 2008, 15, 2086-2098.	ırrent	1.2	31
447	α-Synuclein Misfolding and Neurodegenerative Diseases. Current Protein and P 2008, 9, 507-540.	eptide Science,	0.7	177
448	TOP-IDP-Scale: A New Amino Acid Scale Measuring Propensity for Intrinsic Disorder. Protei Peptide Letters, 2008, 15, 956-963.	n and	0.4	361
449	Protein Solubility and Folding Enhancement by Interaction with RNA. PLoS ONE, 2008, 3, e	2677.	1.1	63
450	Understanding eukaryotic linear motifs and their role in cell signaling and regulation. From Bioscience - Landmark, 2008, Volume, 6580.	iers in	3.0	284
451	Intrinsic disorder in proteins associated with neurodegenerative diseases. Frontiers in Bios Landmark, 2009, 14, 5188.	cience -	3.0	201
452	Intrinsically Unstructured Proteins: Potential Targets for Drug Discovery. American Journal Infectious Diseases, 2009, 5, 126-134.	of	0.1	7
453	Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein. Biochemical 2009, 422, 207-215.	lournal,	1.7	88
454	Secretory Granule to the Nucleus. Journal of Biological Chemistry, 2009, 284, 25723-2573	.4.	1.6	36
455	Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. P of the National Academy of Sciences of the United States of America, 2009, 106, 20740-2	roceedings 0745.	3.3	211
456	Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence. Proceedings of the National Academy of Sciences of the United States of An 106, 5645-5650.	nerica, 2009,	3.3	379
457	Protein Ionizable Groups: pK Values and Their Contribution to Protein Stability and Solubili of Biological Chemistry, 2009, 284, 13285-13289.	ty. Journal	1.6	369
458	The C-terminal domain of the HIV-1 Vif protein is natively unfolded in its unbound state. Pr Engineering, Design and Selection, 2009, 22, 281-287.	otein	1.0	29
459	Intrinsic Disorder in Protein Interactions: Insights From a Comprehensive Structural Analys Computational Biology, 2009, 5, e1000316.	is. PLoS	1.5	104

#	Article	IF	CITATIONS
460	The interwinding nature of protein–protein interfaces and its implication for protein complex formation. Bioinformatics, 2009, 25, 3108-3113.	1.8	16
461	An Overview of the Importance of Conformational Flexibility in Gene Regulation by the Transcription Factors. Journal of Biophysics, 2009, 2009, 1-9.	0.8	7
462	Folding by Numbers: Primary Sequence Statistics and Their Use in Studying Protein Folding. International Journal of Molecular Sciences, 2009, 10, 1567-1589.	1.8	17
463	Accelerated Fibrillation of α-Synuclein Induced by the Combined Action of Macromolecular Crowding and Factors Inducing Partial Folding. Current Alzheimer Research, 2009, 6, 252-260.	0.7	36
464	Influence of Sequence Changes and Environment on Intrinsically Disordered Proteins. PLoS Computational Biology, 2009, 5, e1000497.	1.5	47
465	When cells lose water: Lessons from biophysics and molecular biology. Progress in Biophysics and Molecular Biology, 2009, 99, 1-6.	1.4	43
466	Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics, 2009, 10, S12.	1.2	126
467	Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics, 2009, 10, S7.	1.2	236
468	Functionalization of a nanopore: The nuclear pore complex paradigm. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1533-1539.	1.9	21
469	Cold stability of intrinsically disordered proteins. FEBS Letters, 2009, 583, 465-469.	1.3	50
470	Leucineâ€rich hydrophobic clusters promote folding of the Nâ€terminus of the intrinsically disordered transactivation domain of p53. FEBS Letters, 2009, 583, 556-560.	1.3	31
471	CDF it all: Consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Letters, 2009, 583, 1469-1474.	1.3	123
472	Dopamine D ² receptor knockout mice develop features of Parkinson disease. Annals of Neurology, 2009, 66, 472-484.	2.8	41
473	Limitations of Induced Folding in Molecular Recognition by Intrinsically Disordered Proteins. ChemPhysChem, 2009, 10, 1415-1419.	1.0	91
474	ABSINTH: A new continuum solvation model for simulations of polypeptides in aqueous solutions. Journal of Computational Chemistry, 2009, 30, 673-699.	1.5	307
475	Intrinsically Disordered Proteins and Their Environment: Effects of Strong Denaturants, Temperature, pH, Counter Ions, Membranes, Binding Partners, Osmolytes, and Macromolecular Crowding. Protein Journal, 2009, 28, 305-325.	0.7	303
476	Functional aspects of protein flexibility. Cellular and Molecular Life Sciences, 2009, 66, 2231-2247.	2.4	207
477	Human FEZ1 has characteristics of a natively unfolded protein and dimerizes in solution. Proteins: Structure, Function and Bioinformatics, 2009, 74, 104-121.	1.5	34

#	Article	IF	CITATIONS
478	Isoformâ€specific variation in the intrinsic disorder of the ecdysteroid receptor Nâ€ŧerminal domain. Proteins: Structure, Function and Bioinformatics, 2009, 76, 291-308.	1.5	27
479	Order propensity of an intrinsically disordered protein, the cyclinâ€dependentâ€kinase inhibitor Sic1. Proteins: Structure, Function and Bioinformatics, 2009, 76, 731-746.	1.5	64
480	Assessment of disorder predictions in CASP8. Proteins: Structure, Function and Bioinformatics, 2009, 77, 210-216.	1.5	104
481	Characterization of intrinsically disordered proteins with electrospray ionization mass spectrometry: Conformational heterogeneity of αâ€synuclein. Proteins: Structure, Function and Bioinformatics, 2010, 78, 714-722.	1.5	94
482	Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors. BMC Structural Biology, 2009, 9, 26.	2.3	36
483	Are the same or different amino acid residues responsible for correct and incorrect protein folding?. Biochemistry (Moscow), 2009, 74, 186-193.	0.7	3
484	Fusion of barnase to antiferritin antibody F11 VH domain results in a partially folded functionally active protein. Biochemistry (Moscow), 2009, 74, 672-680.	0.7	2
485	Intrinsic disorder and coiledâ€coil formation in prostate apoptosis response factor 4. FEBS Journal, 2009, 276, 3710-3728.	2.2	24
486	Dynamic interactions of proteins in complex networks: a more structured view. FEBS Journal, 2009, 276, 5390-5405.	2.2	104
487	Solution structure and dynamics of the chimeric SH3 domains, SHH- and SHA-"Bergeracs― Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1813-1822.	1.1	13
488	α-Synuclein aggregation variable temperature and variable pH kinetic data: A re-analysis using the Finke–Watzky 2-step model of nucleation and autocatalytic growth. Biophysical Chemistry, 2009, 140, 9-15.	1.5	70
489	The rod-shaped conformation of Starmaker. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1616-1624.	1.1	18
490	Teachings from the egg: New and unexpected functions of RNAs. Molecular Reproduction and Development, 2009, 76, 922-932.	1.0	17
491	Human full-length Securin is a natively unfolded protein. Protein Science, 2009, 14, 1410-1418.	3.1	59
492	Multiple diverse ligands binding at a single protein site: A matter of pre-existing populations. Protein Science, 2009, 11, 184-197.	3.1	364
493	Tuning the Globular Assembly of Hydrophobic/Hydrophilic Heteropolymer Sequences. Journal of Physical Chemistry B, 2009, 113, 14043-14046.	1.2	21
494	Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research, 2009, 8, 211-226.	1.8	76
495	The Tooth Enamel Protein, Porcine Amelogenin, Is an Intrinsically Disordered Protein with an Extended Molecular Configuration in the Monomeric Form. Biochemistry, 2009, 48, 2272-2281.	1.2	144

#	Article	IF	CITATIONS
496	Intrinsic Disorder in Proteins Associated with Neurodegenerative Diseases. Focus on Structural Biology, 2009, , 21-75.	0.1	8
497	CLPH, a Novel Casein Kinase 2-Phosphorylated Disordered Protein, Is Specifically Associated with Postmeiotic Germ Cells in Rat Spermatogenesis. Journal of Proteome Research, 2009, 8, 2953-2965.	1.8	15
498	AP7, a Partially Disordered Pseudo C-RING Protein, Is Capable of Forming Stabilized Aragonite in Vitro. Biochemistry, 2009, 48, 1332-1339.	1.2	54
499	Dephosphorylation of α _s - and β-Caseins and Its Effect on Chaperone Activity: A Structural and Functional Investigation. Journal of Agricultural and Food Chemistry, 2009, 57, 5956-5964.	2.4	38
500	Myelin Basic Protein, A Saucy Molecule With High Responsiveness to the Environment or Just an Unusual Membrane Protein?. , 2009, , 173-193.		0
502	Characterization of the Trypanosoma cruzi ortholog of the SBDS protein reveals an intrinsically disordered extended C-terminal region showing RNA-interacting activity. Biochimie, 2009, 91, 475-483.	1.3	3
503	SECIS-binding protein 2, a key player in selenoprotein synthesis, is an intrinsically disordered protein. Biochimie, 2009, 91, 1003-1009.	1.3	10
504	Structure and dynamics of the N-terminal half of hepatitis C virus core protein: An intrinsically unstructured protein. Biochemical and Biophysical Research Communications, 2009, 378, 27-31.	1.0	37
505	The lipid peroxidation metabolite 4-oxo-2-nonenal cross-links α-synuclein causing rapid formation of stable oligomers. Biochemical and Biophysical Research Communications, 2009, 378, 872-876.	1.0	37
506	Domain 3 of non-structural protein 5A from hepatitis C virus is natively unfolded. Biochemical and Biophysical Research Communications, 2009, 381, 634-638.	1.0	81
507	Reconciling binding mechanisms of intrinsically disordered proteins. Biochemical and Biophysical Research Communications, 2009, 382, 479-482.	1.0	83
508	Membrane binding mode of intrinsically disordered cytoplasmic domains of T cell receptor signaling subunits depends on lipid composition. Biochemical and Biophysical Research Communications, 2009, 389, 388-393.	1.0	35
509	Exploring the evolutionary rate differences of party hub and date hub proteins in Saccharomyces cerevisiae protein–protein interaction network. Gene, 2009, 429, 18-22.	1.0	22
510	Evolutionary constraints on hub and non-hub proteins in human protein interaction network: Insight from protein connectivity and intrinsic disorder. Gene, 2009, 434, 50-55.	1.0	30
511	Heterologous expression, isotopic-labeling and immuno-characterization of Cin1, a novel protein secreted by the phytopathogenic fungus Venturia inaequalis. Protein Expression and Purification, 2009, 65, 140-147.	0.6	4
512	Role of intrinsically disordered protein regions/domains in transcriptional regulation. Life Sciences, 2009, 84, 189-193.	2.0	66
513	The Desmoglein-Specific Cytoplasmic Region Is Intrinsically Disordered in Solution and Interacts with Multiple Desmosomal Protein Partners. Journal of Molecular Biology, 2009, 386, 531-543.	2.0	25
514	Modular Organization of Rabies Virus Phosphoprotein. Journal of Molecular Biology, 2009, 388, 978-996.	2.0	104

#	Article	IF	CITATIONS
515	Structural Characterization of the Natively Unfolded N-Terminal Domain of Human c-Src Kinase: Insights into the Role of Phosphorylation of the Unique Domain. Journal of Molecular Biology, 2009, 391, 136-148.	2.0	74
516	Structural Reorganization of α-Synuclein at Low pH Observed by NMR and REMD Simulations. Journal of Molecular Biology, 2009, 391, 784-796.	2.0	170
517	Interaction between Intrinsically Disordered Proteins Frequently Occurs in a Human Protein–Protein Interaction Network. Journal of Molecular Biology, 2009, 392, 1253-1265.	2.0	57
518	Role of naturally occurring osmolytes in protein folding and stability. Archives of Biochemistry and Biophysics, 2009, 491, 1-6.	1.4	131
519	Stabilization of a metastable state of Torpedo californica acetylcholinesterase by chemical chaperones. Protein Science, 2009, 12, 2337-2347.	3.1	27
520	p25α is flexible but natively folded and binds tubulin with oligomeric stoichiometry. Protein Science, 2009, 14, 1396-1409.	3.1	40
521	Intrinsic disorder in Viral Proteins Genome-Linked: experimental and predictive analyses. Virology Journal, 2009, 6, 23.	1.4	80
522	The interaction between the measles virus nucleoprotein and the Interferon Regulator Factor 3 relies on a specific cellular environment. Virology Journal, 2009, 6, 59.	1.4	23
523	Protein intrinsic disorder and influenza virulence: the 1918 H1N1 and H5N1 viruses. Virology Journal, 2009, 6, 69.	1.4	71
524	A FRET-Based Method for Probing the Conformational Behavior of an Intrinsically Disordered Repeat Domain from <i>Bordetella pertussis</i> Adenylate Cyclase. Biochemistry, 2009, 48, 11273-11282.	1.2	44
525	From Protein Structure to Function with Bioinformatics. , 2009, , .		29
526	Insights into the regulation of intrinsically disordered proteins in the human proteome by analyzing sequence and gene expression data. Genome Biology, 2009, 10, R50.	13.9	65
527	Analysis of structured and intrinsically disordered regions of transmembrane proteins. Molecular BioSystems, 2009, 5, 1688.	2.9	59
528	Predicting intrinsic disorder in proteins: an overview. Cell Research, 2009, 19, 929-949.	5.7	389
529	Toxic effects of dopamine metabolism in Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, S35-S38.	1.1	56
530	A Robust Approach for Analyzing a Heterogeneous Structural Ensemble. Biophysical Journal, 2009, 96, 318a.	0.2	Ο
531	Mapping the Interaction of Pro-Apoptotic tBID with Pro-Survival BCL-XL. Biochemistry, 2009, 48, 8704-8711.	1.2	28
532	Biophysics of Parkinsons Disease: Structure and Aggregation of α- Synuclein. Current Protein and Peptide Science, 2009, 10, 483-499.	0.7	292

#	Article	IF	CITATIONS
534	Active Form of Neuroprotective Humanin, HN, and Inactive Analog, S7AHN, are Monomeric and Disordered in Aqueous Phosphate Solution at pH 6.0; No Correlation of Solution Structure with Activity. Protein and Peptide Letters, 2009, 16, 132-137.	0.4	6
535	The Importance of Being Flexible: The Case of Basic Region Leucine Zipper Transcriptional Regulators. Current Protein and Peptide Science, 2009, 10, 244-269.	0.7	91
536	Targeting the Progression of Parkinsons Disease. Current Neuropharmacology, 2009, 7, 9-36.	1.4	69
537	Probing Early Events in Ferrous Cytochrome c Folding with Time- Resolved Natural and Magnetic Circular Dichroism Spectroscopies Current Protein and Peptide Science, 2009, 10, 464-475.	0.7	15
538	Unfoldomics of Human Genetic Diseases: Illustrative Examples of Ordered and Intrinsically Disordered Members of the Human Diseasome. Protein and Peptide Letters, 2009, 16, 1533-1547.	0.4	57
539	Structural Disorder in Proteins of the Rhabdoviridae Replication Complex. Protein and Peptide Letters, 2010, 17, 979-987.	0.4	23
540	Formation and participation of nano-amyloids in pathogenesis of Alzheimer's disease and other amyloidogenic diseases. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2010, 4, 228-236.	0.2	1
541	Effect of the redox state on HIV-1 tat protein multimerization and cell internalization and trafficking. Molecular and Cellular Biochemistry, 2010, 345, 105-118.	1.4	15
542	The protein kingdom extended: Ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Progress in Biophysics and Molecular Biology, 2010, 102, 73-84.	1.4	181
543	Structural Diversity in Free and Bound States of Intrinsically Disordered Protein Phosphatase 1 Regulators. Structure, 2010, 18, 1094-1103.	1.6	110
544	Predictors of natively unfolded proteins: unanimous consensus score to detect a twilight zone between order and disorder in generic datasets. BMC Bioinformatics, 2010, 11, 198.	1.2	6
545	Bayesian statistical modelling of human protein interaction network incorporating protein disorder information. BMC Bioinformatics, 2010, 11, 46.	1.2	15
553	Insights into Multienzyme Docking in Hybrid PKS–NRPS Megasynthetases Revealed by Heterologous Expression and Genetic Engineering. ChemBioChem, 2010, 11, 1069-1075.	1.3	14
554	PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 996-1010.	1.1	993
555	Understanding protein non-folding. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1231-1264.	1.1	1,030
556	αS1-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form. BMC Cell Biology, 2010, 11, 65.	3.0	26
557	Expression profiling and cross-species RNA interference (RNAi) of desiccation-induced transcripts in the anhydrobiotic nematode Aphelenchus avenae. BMC Molecular Biology, 2010, 11, 6.	3.0	35
558	Archaic chaos: intrinsically disordered proteins in Archaea. BMC Systems Biology, 2010, 4, S1.	3.0	111

#	Article	IF	CITATIONS
559	Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins. Protein Science, 2010, 19, 929-943.	3.1	41
560	Functional dissection of an intrinsically disordered protein: Understanding the roles of different domains of Knr4 protein in protein–protein interactions. Protein Science, 2010, 19, 1376-1385.	3.1	11
561	¹⁹ F NMR studies of αâ€synucleinâ€membrane interactions. Protein Science, 2010, 19, 1686-1691.	3.1	58
562	The intermembrane space domain of Tim23 is intrinsically disordered with a distinct binding region for presequences. Protein Science, 2010, 19, 2045-2054.	3.1	40
563	Modularity of intrinsic disorder in the human proteome. Proteins: Structure, Function and Bioinformatics, 2010, 78, 212-221.	1.5	98
564	Identification, analysis, and prediction of protein ubiquitination sites. Proteins: Structure, Function and Bioinformatics, 2010, 78, 365-380.	1.5	513
565	Dry molten globule intermediates and the mechanism of protein unfolding. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2725-2737.	1.5	100
566	Prevalence of intrinsic disorder in the hepatitis C virus ARFP/Core+1/S protein. FEBS Journal, 2010, 277, 774-789.	2.2	13
567	Protein tandem repeats $\hat{a} \in \hat{~}$ the more perfect, the less structured. FEBS Journal, 2010, 277, 2673-2682.	2.2	119
568	SPA: Short peptide analyzer of intrinsic disorder status of short peptides. Genes To Cells, 2010, 15, 635-646.	0.5	8
569	Structural Disorder within Henipavirus Nucleoprotein and Phosphoprotein: From Predictions to Experimental Assessment. PLoS ONE, 2010, 5, e11684.	1.1	78
570	Reduction in Structural Disorder and Functional Complexity in the Thermal Adaptation of Prokaryotes. PLoS ONE, 2010, 5, e12069.	1.1	69
571	DNA induced folding/fibrillation of alpha-synuclein: new insights in Parkinson's disease. Frontiers in Bioscience - Landmark, 2010, 15, 418.	3.0	41
572	Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proceedings of the United States of America, 2010, 107, 14609-14614.	3.3	453
573	Dual coding in alternative reading frames correlates with intrinsic protein disorder. Proceedings of the United States of America, 2010, 107, 5429-5434.	3.3	92
574	Exploring the Differences in Evolutionary Rates between Monogenic and Polygenic Disease Genes in Human. Molecular Biology and Evolution, 2010, 27, 934-941.	3.5	35
575	Bioinformatical approaches to characterize intrinsically disordered/unstructured proteins. Briefings in Bioinformatics, 2010, 11, 225-243.	3.2	107
576	Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16084-16089.	3.3	72

#	Article	IF	CITATIONS
577	To fold or expand—a charged question. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14519-14520.	3.3	11
578	Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics, 2010, 26, i489-i496.	1.8	154
579	ComSin: database of protein structures in bound (complex) and unbound (single) states in relation to their intrinsic disorder. Nucleic Acids Research, 2010, 38, D283-D287.	6.5	31
580	c-Fos Proteasomal Degradation Is Activated by a Default Mechanism, and Its Regulation by NAD(P)H:Quinone Oxidoreductase 1 Determines c-Fos Serum Response Kinetics. Molecular and Cellular Biology, 2010, 30, 3767-3778.	1.1	44
581	Unfolding of Metastable Linker Region Is at the Core of Hsp33 Activation as a Redox-regulated Chaperone. Journal of Biological Chemistry, 2010, 285, 11243-11251.	1.6	56
582	N-terminal Domains of DELLA Proteins Are Intrinsically Unstructured in the Absence of Interaction with GID1/Gibberellic Acid Receptors. Journal of Biological Chemistry, 2010, 285, 11557-11571.	1.6	67
583	A Bimodal Distribution of Two Distinct Categories of Intrinsically Disordered Structures with Separate Functions in FG Nucleoporins. Molecular and Cellular Proteomics, 2010, 9, 2205-2224.	2.5	289
584	Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8183-8188.	3.3	484
585	DNA search efficiency is modulated by charge composition and distribution in the intrinsically disordered tail. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21004-21009.	3.3	110
586	The Mysterious Unfoldome: Structureless, Underappreciated, Yet Vital Part of Any Given Proteome. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-14.	3.0	206
587	Evolution of Characterized Phosphorylation Sites in Budding Yeast. Molecular Biology and Evolution, 2010, 27, 2027-2037.	3.5	62
588	<i>Phytolacca americana</i> lectin (Pa-2; pokeweed mitogen): an intrinsically unordered protein and its conversion into partial order at low pH. Bioscience Reports, 2010, 30, 125-134.	1.1	12
589	Library of Disordered Patterns in 3D Protein Structures. PLoS Computational Biology, 2010, 6, e1000958.	1.5	60
590	Intrinsically Disordered Regions May Lower the Hydration Free Energy in Proteins: A Case Study of Nudix Hydrolase in the Bacterium Deinococcus radiodurans. PLoS Computational Biology, 2010, 6, e1000854.	1.5	19
591	Comparing Models of Evolution for Ordered and Disordered Proteins. Molecular Biology and Evolution, 2010, 27, 609-621.	3.5	165
592	FEATURE SELECTION FOR IDENTIFYING PROTEIN-DISORDERED REGIONS. Biomedical Engineering - Applications, Basis and Communications, 2010, 22, 119-125.	0.3	1
593	The SCHOOL of nature: II. Protein order, disorder, and oligomericity in transmembrane signaling. Self/nonself, 2010, 1, 89-102.	2.0	14
594	Structural disorder and dynamics of elastinThis paper is one of a selection of papers published in this special issue entitled "Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases―and has undergone the Journal's usual peer review process Biochemistry and Cell Biology. 2010. 88. 239-250.	0.9	142

ARTICLE IF CITATIONS Protein-DNA Interaction at the Origin of Neurological Diseases: A Hypothesis. Journal of Alzheimer's 595 1.2 37 Disease, 2010, 22, 375-391. LEA Proteins: Versatility of Form and Function. Topics in Current Genetics, 2010, , 91-108. Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: 597 1.3 116 another illustration of the D²concept. Expert Review of Proteomics, 2010, 7, 543-564. Sequence Determinants of Compaction in Intrinsically Disordered Proteins. Biophysical Journal, 2010, 342 98, 2383-2390. The O-Glycosylated Linker from the Trichoderma reesei Family 7 Cellulase Is a Flexible, Disordered 599 0.2 96 Protein. Éiophysical Journal, 2010, 99, 3773-3781. Human FEZ1 Protein Forms a Disulfide Bond Mediated Dimer: Implications for Cargo Transport. Journal 1.8 of Proteome Research, 2010, 9, 4595-4603. The Clustering and Spatial Arrangement of Î²-Sheet Sequence, but Not Order, Govern α-Synuclein 601 1.2 25 Fibrillogenesis. Biochemistry, 2010, 49, 1533-1540. Detection of Transient Interchain Interactions in the Intrinsically Disordered Protein α-Synuclein by NMR Paramagnetic Relaxation Enhancement. Journal of the American Chemical Society, 2010, 132, 6.6 93 5546-5547. 603 Protein intrinsic disorder and oligomericity in cell signaling. Molecular BioSystems, 2010, 6, 451-461. 2.9 49 Single-Molecule Fluorescence Studies of Intrinsically Disordered Proteins. Methods in Enzymology, 604 0.4 104 2010, 472, 179-204. Using dairy ingredients to alter texture of foods: Implications based on oral processing 605 1.5 48 considerations. International Dairy Journal, 2010, 20, 562-570. Conformational diseases: Looking into the eyes. Brain Research Bulletin, 2010, 81, 12-24. 606 1.4 96 Drugs for †protein clouds': targeting intrinsically disordered transcription factors. Current Opinion 607 1.7 151 in Pharmacology, 2010, 10, 782-788. Methionine oxidation stabilizes non-toxic oligomers of î±-synuclein through strengthening the auto-inhibitory intra-molecular long-range interactions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 322-330. 608 1.8 The N-terminal part of Binder of SPerm 5 (BSP5), which promotes sperm capacitation in bovine species 609 1.0 9 is intrinsically disordered. Biochemical and Biophysical Research Communications, 2010, 394, 1036-1041. Ribosomal protein L2 associates with E. coli HtpG and activates its ATPase activity. Biochemical and Biophysical Research Communications, 2010, 400, 241-245. Molecular simulations of protein disorderThis paper is one of a selection of papers published in this special issue entitled "Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual 611 0.9 68 Meeting — Protein Folding: Principles and Diseases†and has undergone the Journal's usual peer review process.. Biochemistry and Cell Biology, 2010, 88, 269-290. Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture. 1.2 38 Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3255-3263.

#	Article	IF	CITATIONS
613	Computational Resources for the Prediction and Analysis of Native Disorder in Proteins. Methods in Molecular Biology, 2010, 604, 369-393.	0.4	14
614	The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer's disease: oligomer size or conformation?. Alzheimer's Research and Therapy, 2010, 2, 12.	3.0	131
616	Electrostatics in the stability and misfolding of the prion protein: salt bridges, self energy, and solvationThis paper is one of a selection of papers published in this special issue entitled "Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases―and has undergone the Journal's usual peer review process Biochemistry and Cell Biology 2010, 88, 371-381	0.9	32
617	The yin and yang of amyloid: insights from α-synuclein and repeat domain of Pmel17. Physical Chemistry Chemical Physics, 2011, 13, 20066.	1.3	20
618	Studying disorder-to-order transitions from structural analysis. , 2011, , .		0
619	Cunning Simplicity of a Stoichiometry Driven Protein Folding Thesis. Journal of Biomolecular Structure and Dynamics, 2011, 28, 595-598.	2.0	4
620	Homogeneous and Heterogeneous Tertiary Structure Ensembles of Amyloid-Î ² Peptides. Biochemistry, 2011, 50, 7612-7628.	1.2	130
621	Tauons and Prions: Infamous Cousins?. Journal of Alzheimer's Disease, 2011, 26, 413-430.	1.2	33
622	Basis of the Intrinsic Flexibility of the Cε3 Domain of IgE. Biochemistry, 2011, 50, 4608-4614.	1.2	19
623	A C-RING-like Domain Participates in Protein Self-Assembly and Mineral Nucleation. Biochemistry, 2011, 50, 8880-8887.	1.2	25
624	Polymorph Crystal Selection by n16, an Intrinsically Disordered Nacre Framework Protein. Crystal Growth and Design, 2011, 11, 4690-4696.	1.4	38
625	Structural Characterization of Partially Disordered Human Chibby: Insights into Its Function in the Wnt-Signaling Pathway. Biochemistry, 2011, 50, 715-726.	1.2	21
627	Compaction Properties of an Intrinsically Disordered Protein: Sic1 and Its Kinase-Inhibitor Domain. Biophysical Journal, 2011, 100, 2243-2252.	0.2	62
628	SUBCLASSIFYING DISORDERED PROTEINS BY THE CH-CDF PLOT METHOD. , 2011, , .		36
630	Insights on the Role of (Dis)order from Protein–Protein Interaction Linear Free-Energy Relationships. Journal of the American Chemical Society, 2011, 133, 9976-9979.	6.6	31
631	Motion of a Disordered Polypeptide Chain as Studied by Paramagnetic Relaxation Enhancements, ¹⁵ N Relaxation, and Molecular Dynamics Simulations: How Fast Is Segmental Diffusion in Denatured Ubiquitin?. Journal of the American Chemical Society, 2011, 133, 14614-14628.	6.6	53
632	Expanding the proteome: disordered and alternatively folded proteins. Quarterly Reviews of Biophysics, 2011, 44, 467-518.	2.4	150
633	On the quest for selective constraints shaping the expressivity of the genes casting retropseudogenes in human. BMC Genomics, 2011, 12, 401.	1.2	3

# 634	ARTICLE Mapping Unstructured Regions and Synergistic Folding in Intrinsically Disordered Proteins with Amide H/D Exchange Mass Spectrometry. Biochemistry, 2011, 50, 8722-8732.	IF 1.2	Citations
635	Flexible Nets of Malleable Guardians: Intrinsically Disordered Chaperones in Neurodegenerative Diseases. Chemical Reviews, 2011, 111, 1134-1166.	23.0	65
636	Determinants of translation efficiency and accuracy. Molecular Systems Biology, 2011, 7, 481.	3.2	391
637	The role of β-amyloid peptide in neurodegenerative diseases. Ageing Research Reviews, 2011, 10, 440-452.	5.0	49
638	Identification of two hydrophilins that contribute to the desiccation and freezing tolerance of yeast (Saccharomyces cerevisiae) cells. Cryobiology, 2011, 62, 188-193.	0.3	24
639	Intrinsically disordered proteins from A to Z. International Journal of Biochemistry and Cell Biology, 2011, 43, 1090-1103.	1.2	372
640	Molecular mechanisms of the anomalous thermal aggregation of green fluorescent protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1930-1939.	1.1	15
641	Foldamer Structuring by Covalently Bound Macromolecules. Journal of the American Chemical Society, 2011, 133, 19650-19652.	6.6	20
642	Intrinsic disorder in S100 proteins. Molecular BioSystems, 2011, 7, 2164.	2.9	28
643	Formation of Framework Nacre Polypeptide Supramolecular Assemblies That Nucleate Polymorphs. Biomacromolecules, 2011, 12, 1883-1890.	2.6	31
644	Disorder Targets Misorder in Nuclear Quality ControlÂDegradation: A Disordered Ubiquitin Ligase Directly Recognizes Its Misfolded Substrates. Molecular Cell, 2011, 41, 93-106.	4.5	172
645	Time-Resolved Small-Angle X-ray Scattering Study of the Folding Dynamics of Barnase. Journal of Molecular Biology, 2011, 405, 1284-1294.	2.0	43
646	Assays for α-synuclein aggregation. Methods, 2011, 53, 295-305.	1.9	98
647	Sequential Melting of Two Hydrophobic Clusters within the Green Fluorescent Protein GFP-cycle3. Biochemistry, 2011, 50, 7735-7744.	1.2	15
648	Structural analysis of human respiratory syncytial virus P protein: identification of intrinsically disordered domains. Brazilian Journal of Microbiology, 2011, 42, 340-345.	0.8	15
650	The Dynamic Structure of the Estrogen Receptor. Journal of Amino Acids, 2011, 2011, 1-7.	5.8	162
651	Interaction of Sesbania Mosaic Virus Movement Protein with VPg and P10: Implication to Specificity of Genome Recognition. PLoS ONE, 2011, 6, e15609.	1.1	18
652	TBP Binding-Induced Folding of the Glucocorticoid Receptor AF1 Domain Facilitates Its Interaction with Steroid Receptor Coactivator-1. PLoS ONE, 2011, 6, e21939.	1.1	28
#	Article	IF	CITATIONS
--	---	---	---
653	Disorder Predictors Also Predict Backbone Dynamics for a Family of Disordered Proteins. PLoS ONE, 2011, 6, e29207.	1.1	10
664	Comparative analysis of <i>LEAâ€like 11â€24</i> gene expression and regulation in related plant species within the Linderniaceae that differ in desiccation tolerance. New Phytologist, 2011, 190, 75-88.	3.5	33
665	Evolution and disorder. Current Opinion in Structural Biology, 2011, 21, 441-446.	2.6	243
666	Uncoupled binding and folding of immune signaling-related intrinsically disordered proteins. Progress in Biophysics and Molecular Biology, 2011, 106, 525-536.	1.4	25
667	Intrinsic disorder in the common N-terminus of human adenovirus 5 E1B-55K and its related E1BN proteins indicated by studies on E1B-93R. Virology, 2011, 418, 133-143.	1.1	15
668	Prediction of disorder with new computational tool: BVDEA. Expert Systems With Applications, 2011, 38, 14451-14459.	4.4	10
669	The role of the C-terminus of human α-synuclein: Intra-disulfide bonds between the C-terminus and other regions stabilize non-fibrillar monomeric isomers. FEBS Letters, 2011, 585, 561-566.	1.3	59
670	Heightened stability of polcalcin Phl p 7 is correlated with strategic placement of apolar residues. Biophysical Chemistry, 2011, 159, 110-119.	1.5	3
671	Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics, 2011, 3, 1163.	1.0	108
672	Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chemical Society Reviews, 2011, 40, 1623-1634.	18.7	226
672 673	Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chemical Society Reviews, 2011, 40, 1623-1634. Length-Dependent Aggregation of Uninterrupted Polyalanine Peptides. Biochemistry, 2011, 50, 9200-9211.	18.7 1.2	226 44
672 673 674	Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chemical Society Reviews, 2011, 40, 1623-1634. Length-Dependent Aggregation of Uninterrupted Polyalanine Peptides. Biochemistry, 2011, 50, 9200-9211. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. Plant Molecular Biology, 2011, 77, 205-223.	18.7 1.2 2.0	226 44 135
672673674675	Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chemical Society Reviews, 2011, 40, 1623-1634. Length-Dependent Aggregation of Uninterrupted Polyalanine Peptides. Biochemistry, 2011, 50, 9200-9211. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of CRAS proteins are involved in molecular recognition during plant development. Plant Molecular Biology, 2011, 77, 205-223. Evidences of a natively unfolded state for the human topoisomerase IB N-terminal domain. Amino Acids, 2011, 41, 945-953.	18.7 1.2 2.0 1.2	226 44 135 8
 672 673 674 675 676 	Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chemical Society Reviews, 2011, 40, 1623-1634. Length-Dependent Aggregation of Uninterrupted Polyalanine Peptides. Biochemistry, 2011, 50, 9200-9211. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of CRAS proteins are involved in molecular recognition during plant development. Plant Molecular Biology, 2011, 77, 205-223. Evidences of a natively unfolded state for the human topoisomerase IB N-terminal domain. Amino Acids, 2011, 41, 945-953. Why does the silica-binding protein â@ceSi-tagâ@-bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered polypeptide to solid surfaces. Colloids and Surfaces B: Biointerfaces, 2011, 86, 359-363.	18.7 1.2 2.0 1.2 2.5	226 44 135 8 43
 672 673 674 675 676 677 	Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chemical Society Reviews, 2011, 40, 1623-1634. Length-Dependent Aggregation of Uninterrupted Polyalanine Peptides. Biochemistry, 2011, 50, 9200-9211. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of CRAS proteins are involved in molecular recognition during plant development. Plant Molecular Biology, 2011, 77, 205-223. Evidences of a natively unfolded state for the human topoisomerase IB N-terminal domain. Amino Acids, 2011, 41, 945-953. Why does the silica-binding protein "Si-tagâ€-bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered Protein: Sic1, the Cyclin-Dependent Kinase Inhibitor of Saccharomyces cerevisiae. Molecular Biotechnology, 2011, 47, 34-42.	 18.7 1.2 2.0 1.2 2.5 1.3 	226 44 135 8 43 10
 672 673 674 675 676 677 678 	Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chemical Society Reviews, 2011, 40, 1623-1634. Length-Dependent Aggregation of Uninterrupted Polyalanine Peptides. Biochemistry, 2011, 50, 9200-9211. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. Plant Molecular Biology, 2011, 77, 205-223. Evidences of a natively unfolded state for the human topoisomerase IB N-terminal domain. Amino Acids, 2011, 41, 945-953. Why does the silica-binding protein acceSi-tagae-bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically Disordered Protein: Sic1, the Cyclin-Dependent Kinase Inhibitor of Saccharomyces cerevisiae. Molecular Biotechnology, 2011, 47, 34-42. Assessing the contribution of alternative splicing to proteome diversity in Arabidopsis thaliana using proteomics data. BMC Plant Biology, 2011, 11, 82.	 18.7 1.2 2.0 1.2 1.3 1.6 	226 44 135 8 43 10
 672 673 674 675 676 677 678 679 	Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chemical Society Reviews, 2011, 40, 1623-1634. Length-Dependent Aggregation of Uninterrupted Polyalanine Peptides. Biochemistry, 2011, 50, 9200-9211. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. Plant Molecular Biology, 2011, 77, 205-223. Evidences of a natively unfolded state for the human topoisomerase IB N-terminal domain. Amino Acids, 2011, 41, 945-953. Why does the silica-binding protein aCcoSi-tagaC-bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered polypeptide to solid surfaces. Colloids and Surfaces B: Biointerfaces, 2011, 86, 359-363. Defining Structural Domains of an Intrinsically Disordered Protein: Sic1, the Cyclin-Dependent Kinase Inhibitor of Saccharomyces cerevisiae. Molecular Biotechnology, 2011, 47, 34-42. Assessing the contribution of alternative splicing to proteome diversity in Arabidopsis thaliana using proteomics data. BMC Plant Biology, 2011, 11, 82. Binary classification of protein molecules into intrinsically disordered and ordered segments. BMC Structural Biology, 2011, 11, 29.	 18.7 1.2 2.0 1.2 1.2 1.3 1.6 2.3 	 226 44 135 8 43 10 37 69

#	Article	IF	CITATIONS
681	Intrinsic disorder of <i>Drosophila melanogaster</i> hormone receptor 38 Nâ€ŧerminal domain. Proteins: Structure, Function and Bioinformatics, 2011, 79, 376-392.	1.5	15
682	Abundance and functional roles of intrinsic disorder in allergenic proteins and allergen representative peptides. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2595-2606.	1.5	6
683	Probing structural transitions in both structured and disordered proteins using siteâ€directed spinâ€labeling EPR spectroscopy. Journal of Peptide Science, 2011, 17, 315-328.	0.8	36
684	The N ^O â€binding region of the vesicular stomatitis virus phosphoprotein is globally disordered but contains transient αâ€helices. Protein Science, 2011, 20, 542-556.	3.1	49
685	Probing the selfâ€association, intermolecular contacts, and folding propensity of amelogenin. Protein Science, 2011, 20, 724-734.	3.1	28
686	Contextâ€dependent resistance to proteolysis of intrinsically disordered proteins. Protein Science, 2011, 20, 1285-1297.	3.1	77
687	Fractal dimension of an intrinsically disordered protein: Smallâ€angle Xâ€ray scattering and computational study of the bacteriophage λ N protein. Protein Science, 2011, 20, 1955-1970.	3.1	37
688	De Novo Design of Supercharged, Unfolded Protein Polymers, and Their Assembly into Supramolecular Aggregates. Macromolecular Rapid Communications, 2011, 32, 186-190.	2.0	46
689	Highâ€Resolution Characterization of Intrinsic Disorder in Proteins: Expanding the Suite of ¹³ Câ€Detected NMR Spectroscopy Experiments to Determine Key Observables. ChemBioChem, 2011, 12, 2347-2352.	1.3	25
690	Hybrid feature selection by combining filters and wrappers. Expert Systems With Applications, 2011, 38, 8144-8150.	4.4	279
691	Intrinsically disordered proteins may escape unwanted interactions via functional misfolding. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 693-712.	1.1	56
692	PsbO, the manganese-stabilizing protein: Analysis of the structure–function relations that provide insights into its role in photosystem II. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 179-190.	1.7	57
693	Protein Stability in the Presence of Cosolutes. Methods in Enzymology, 2011, 492, 61-125.	0.4	25
694	Differential occurrence of protein intrinsic disorder in the cytoplasmic signaling domains of cell receptors. Self/nonself, 2011, 2, 55-72.	2.0	22
695	Proteins without 3D structure: definition, detection and beyond. Bioinformatics, 2011, 27, 1449-1454.	1.8	29
696	The diversity of physical forces and mechanisms in intermolecular interactions. Physical Biology, 2011, 8, 035002.	0.8	35
697	ATP Binding to Hemoglobin Response Gene 1 Protein Is Necessary for Regulation of the Mating Type Locus in Candida albicans. Journal of Biological Chemistry, 2011, 286, 13914-13924.	1.6	2
698	Modeling the Self-assembly of the Cellulosome Enzyme Complex. Journal of Biological Chemistry, 2011, 286, 5614-5623.	1.6	43

#	Article	IF	CITATIONS
699	The Cancer/Testis Antigen Prostate-associated Gene 4 (PAGE4) Is a Highly Intrinsically Disordered Protein. Journal of Biological Chemistry, 2011, 286, 13985-13994.	1.6	58
700	RNase Y in Bacillus subtilis: a Natively Disordered Protein That Is the Functional Equivalent of RNase E from Escherichia coli. Journal of Bacteriology, 2011, 193, 5431-5441.	1.0	102
701	Calcium-induced Folding of Intrinsically Disordered Repeat-in-Toxin (RTX) Motifs via Changes of Protein Charges and Oligomerization States. Journal of Biological Chemistry, 2011, 286, 16997-17004.	1.6	46
702	Disordered Binding of Small Molecules to Aβ(12–28). Journal of Biological Chemistry, 2011, 286, 41578-41588.	1.6	46
703	Chaperoning Roles of Macromolecules Interacting with Proteins in Vivo. International Journal of Molecular Sciences, 2011, 12, 1979-1990.	1.8	14
704	Novel Strategies for Drug Discovery Based on Intrinsically Disordered Proteins (IDPs). International Journal of Molecular Sciences, 2011, 12, 3205-3219.	1.8	59
705	Anchoring Intrinsically Disordered Proteins to Multiple Targets: Lessons from N-Terminus of the p53 Protein. International Journal of Molecular Sciences, 2011, 12, 1410-1430.	1.8	21
706	Importance of Electrostatic Interactions in the Association of Intrinsically Disordered Histone Chaperone Chz1 and Histone H2A.Z-H2B. PLoS Computational Biology, 2012, 8, e1002608.	1.5	69
707	Mutual synergistic protein folding in split intein. Bioscience Reports, 2012, 32, 433-442.	1.1	19
708	ESpritz: accurate and fast prediction of protein disorder. Bioinformatics, 2012, 28, 503-509.	1.8	445
709	Phosphorylation of Intrinsically Disordered Regions in Remorin Proteins. Frontiers in Plant Science, 2012, 3, 86.	1.7	57
710	Macromolecule-Assisted de novo Protein Folding. International Journal of Molecular Sciences, 2012, 13, 10368-10386.	1.8	9
711	Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation. Frontiers in Physiology, 2012, 3, 435.	1.3	25
712	Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder. PLoS Computational Biology, 2012, 8, e1002709.	1.5	123
713	Accurate prediction of protein structural classes using functional domains and predicted secondary structure sequences. Journal of Biomolecular Structure and Dynamics, 2012, 29, 1127-1137.	2.0	17
714	Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16155-16160.	3.3	393
715	D2P2: database of disordered protein predictions. Nucleic Acids Research, 2012, 41, D508-D516.	6.5	570
716	Non-Gaussian Statistics and Nanosecond Dynamics of Electrostatic Fluctuations Affecting Optical Transitions in Proteins, Journal of Physical Chemistry B, 2012, 116, 10294-10300	1.2	22

ARTICLE IF CITATIONS # NOT THAT RIGID MIDGETS AND NOT SO FLEXIBLE GIANTS: ON THE ABUNDANCE AND ROLES OF INTRINSIC 717 0.5 19 DISORDER IN SHORT AND LONG PROTEINS. Journal of Biological Systems, 2012, 20, 471-511. Prediction of protein disordered regions in a protein sequence based on gap-constraint subsequence 718 patterns., 2012,,. Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational 719 1.8 45 molecular recognition events. Bioinformatics, 2012, 28, 1438-1445. Nucleocytoplasmic Transport: A Role for Nonspecific Competition in Karyopherin-Nucleoporin Interactions. Molecular and Cellular Proteomics, 2012, 11, 31-46. Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses. 722 0.9 40 Journal of Pathogens, 2012, 2012, 1-13. Curcumin-glucoside, A Novel Synthetic Derivative of Curcumin, Inhibits & amp;#945;-Synuclein Oligomer Formation: Relevance to Parkinson's Disease. Current Pharmaceutical Design, 2012, 18, 76-84. Local Flexibility Facilitates Oxidization of Buried Methionine Residues. Protein and Peptide Letters, 724 0.4 26 2012, 19, 688-697. Editorial [Hot Topic: Intrinsically Disordered Proteins: A Focused Look at Fuzzy Subjects (Guest) Tj ETQq1 1 0.784314, rgBT /Qverlock How Random are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective. Current 726 0.7 287 Protein and Peptide Science, 2012, 13, 55-75. 727 Juxtanodin is an intrinsically disordered F-actin-binding protein. Scientific Reports, 2012, 2, 899. 1.6 Comprehensive Comparative Assessment of In-Silico Predictors of Disordered Regions. Current 728 170 0.7 Protein and Peptide Science, 2012, 13, 6-18. Emerging Role for Copper-Bound α-Synuclein in Parkinson's Disease Etiology. , 2012, , 307-338. 729 Intrinsically disordered proteins: a 10-year recap. Trends in Biochemical Sciences, 2012, 37, 509-516. 731 3.7 543 Thermo-resistant intrinsically disordered proteins are efficient 20S proteasome substrates. Molecular BioSystems, 2012, 8, 368-373. 39 The Intrinsically Disordered N-terminal Region of AtREM1.3 Remorin Protein Mediates Protein-Protein 733 1.6 86 Interactions. Journal of Biological Chemistry, 2012, 287, 39982-39991. Denaturant-Induced Conformational Transitions in Intrinsically Disordered Proteins., 2012, 896, 734 197-213. Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opinion on Drug 735 2.596 Discovery, 2012, 7, 475-488. Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha-synuclein aggregation. Physical Biology, 2012, 9, 056005.

#	Article	IF	CITATIONS
738	When a domain is not a domain, and why it is important to properly filter proteins in databases. BioEssays, 2012, 34, 1060-1069.	1.2	6
739	Exclusively Heteronuclear ¹³ Câ€Detected Aminoâ€Acidâ€Selective NMR Experiments for the Study of Intrinsically Disordered Proteins (IDPs). ChemBioChem, 2012, 13, 2425-2432.	1.3	43
740	Speeding up sequence specific assignment of IDPs. Journal of Biomolecular NMR, 2012, 53, 293-301.	1.6	66
741	O-GlcNAc modification of PPARÎ ³ reduces its transcriptional activity. Biochemical and Biophysical Research Communications, 2012, 417, 1158-1163.	1.0	67
742	High-throughput characterization of intrinsic disorder in proteins from the Protein Structure Initiative. Journal of Structural Biology, 2012, 180, 201-215.	1.3	34
744	More than just tails: intrinsic disorder in histone proteins. Molecular BioSystems, 2012, 8, 1886.	2.9	99
745	Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies. Molecular BioSystems, 2012, 8, 392-410.	2.9	43
746	Modulation of an IDP binding mechanism and rates by helix propensity and non-native interactions: association of HIF11 [±] with CBP. Molecular BioSystems, 2012, 8, 256-267.	2.9	83
747	Location of disorder in coiled coilproteins is influenced by its biological role and subcellular localization: a GO-based study on human proteome. Molecular BioSystems, 2012, 8, 346-352.	2.9	16
748	Attributes of short linear motifs. Molecular BioSystems, 2012, 8, 268-281.	2.9	502
749	The Roles of Intrinsic Disorder in Orchestrating the Wnt-Pathway. Journal of Biomolecular Structure and Dynamics, 2012, 29, 843-861.	2.0	44
750	Investigation of the Polymeric Properties of α-Synuclein and Comparison with NMR Experiments: A Replica Exchange Molecular Dynamics Study. Journal of Chemical Theory and Computation, 2012, 8, 3929-3942.	2.3	31
751	Hydrophobic Moments, Shape, and Packing in Disordered Proteins. Journal of Physical Chemistry B, 2012, 116, 6326-6335.	1.2	16
752	Structure and Vibrational Motion of Insulin from Raman Optical Activity Spectra. Analytical Chemistry, 2012, 84, 2440-2451.	3.2	64
753	Identification of an Aggregation-Prone Structure of Tau. Journal of the American Chemical Society, 2012, 134, 16607-16613.	6.6	127
754	Fibrillation Mechanism of a Model Intrinsically Disordered Protein Revealed by 2D Correlation Deep UV Resonance Raman Spectroscopy. Biomacromolecules, 2012, 13, 1503-1509.	2.6	20
755	End Effects Influence Short Model Peptide Conformation. Journal of the American Chemical Society, 2012, 134, 1571-1576.	6.6	33
756	Sweeping Away Protein Aggregation with Entropic Bristles: Intrinsically Disordered Protein Fusions Enhance Soluble Expression. Biochemistry, 2012, 51, 7250-7262.	1.2	100

#	Article	IF	CITATIONS
757	Towards the physical basis of how intrinsic disorder mediates protein function. Archives of Biochemistry and Biophysics, 2012, 524, 123-131.	1.4	74
758	Disordered Competitive Recruiter: Fast and Foldable. Journal of Molecular Biology, 2012, 418, 267-268.	2.0	21
759	On the Possible Amyloid Origin of Protein Folds. Journal of Molecular Biology, 2012, 421, 417-426.	2.0	119
760	Electrostatically Accelerated Coupled Binding and Folding of Intrinsically Disordered Proteins. Journal of Molecular Biology, 2012, 422, 674-684.	2.0	71
761	C-terminal acidic domain of ubiquitin-conjugating enzymes: A multi-functional conserved intrinsically disordered domain in family 3 of E2 enzymes. Journal of Structural Biology, 2012, 178, 245-259.	1.3	17
762	The transiently ordered regions in intrinsically disordered ExsE are correlated with structural elements involved in chaperone binding. Biochemical and Biophysical Research Communications, 2012, 417, 129-134.	1.0	8
763	Beyond †furballs' and †dumpling soups' – towards a molecular architecture of signaling complexes and networks. FEBS Letters, 2012, 586, 2740-2750.	1.3	23
764	Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: Role of the inÂvitro hetero-complex formation in chaperone activity. Biochimie, 2012, 94, 975-984.	1.3	31
765	Evolutionary conservation and disease gene association of the human genes composing pseudogenes. Gene, 2012, 501, 164-170.	1.0	3
766	Loops and repeats in proteins as footprints of molecular evolution. Biochemistry (Moscow), 2012, 77, 1487-1499.	0.7	5
767	Evolutionary dynamics of human autoimmune disease genes and malfunctioned immunological genes. BMC Evolutionary Biology, 2012, 12, 10.	3.2	3
769	Intrinsically disordered regions have specific functions in mitochondrial and nuclear proteins. Molecular BioSystems, 2012, 8, 247-255.	2.9	13
770	3.9 Intrinsically Disordered Proteins. , 2012, , 170-211.		2
772	Protein intrinsic disorder and induced pluripotent stem cells. Molecular BioSystems, 2012, 8, 134-150.	2.9	45
775	A Desolvation Model for Trifluoroethanol-Induced Aggregation of Enhanced Green Fluorescent Protein. Biophysical Journal, 2012, 102, 897-906.	0.2	35
776	Solution Model of the Intrinsically Disordered Polyglutamine Tract-Binding Protein-1. Biophysical Journal, 2012, 102, 1608-1616.	0.2	16
777	Probing the diverse landscape of protein flexibility and binding. Current Opinion in Structural Biology, 2012, 22, 643-650.	2.6	94
778	Identification of Intrinsically Disordered Proteins by a Special 2D Electrophoresis. Methods in Molecular Biology, 2012, 896, 215-222.	0.4	7

CITATION REPORT ARTICLE IF CITATIONS pH-Induced Changes in Intrinsically Disordered Proteins. Methods in Molecular Biology, 2012, 896, 0.4 6 223-231. Role of an intrinsically disordered conformation in AMPK-mediated phosphorylation of ULK1 and regulation of autophagy. Molecular BioSystems, 2012, 8, 91-96. Multiparametric Analysis of Intrinsically Disordered Proteins: Looking at Intrinsic Disorder through 3.2 77 Compound Eyes. Analytical Chemistry, 2012, 84, 2096-2104. Structural disorder within paramyxovirus nucleoproteins and phosphoproteins. Molecular BioSystems, 2012, 8, 69-81. Influence of Serum Proteins on Conformation of Prostate-Specific Antigen. Journal of Biomolecular 2.0 16 Structure and Dynamics, 2012, 29, 1051-1064. Intrinsically disordered regions as affinity tuners in protein–DNA interactions. Molecular BioSystems, 2012, 8, 47-57. Aromatic residues link binding and function of intrinsically disordered proteins. Molecular 2.9 31 BioSystems, 2012, 8, 237-246. The SbASR-1 Gene Cloned from an Extreme Halophyte Salicornia brachiata Enhances Salt Tolerance in Transgenic Tobacco. Marine Biotechnology, 2012, 14, 782-792. 1.1 Order and disorder in viral proteins: new insights into an old paradigm. Future Virology, 2012, 7, 0.9 8 1183-1191. Inherent Structural Disorder and Dimerisation of Murine Norovirus NS1-2 Protein. PLoS ONE, 2012, 7, 1.1 e30534. Free Cysteine Modulates the Conformation of Human C/EBP Homologous Protein. PLoS ONE, 2012, 7, 1.1 6 e34680. Computational and Statistical Analyses of Amino Acid Usage and Physico-Chemical Properties of the 1.1 Twelve Late Embryogenesis Abundánt Protein Classes. PLoS ONE, 2012, 7, e36968. \hat{I}^3 -Synuclein Interacts with Phospholipase C \hat{I}^2 2 to Modulate G Protein Activation. PLoS ONE, 2012, 7, 1.1 8 e41067. GAGE Cancer-Germline Antigens Are Recruited to the Nuclear Envelope by Germ Cell-Less (GCL). PLoS 1.1 14 ONE, 2012, 7, e45819. Intrinsically Disordered Proteins in Biomineralization., 2012,,. 16 Applications of Bioinformatics and Experimental Methods to Intrinsic Disorder-Based Protein-Protein Interactions., 2012,,. v»¿Protein Flexibility and Coiled-Coil Propensity: New Insights Into Type III and Other Bacterial Secretion 2 Systems. , 2012, , .

797Ensemble modeling of protein disordered states: Experimental restraint contributions and validation.1.5107Proteins: Structure, Function and Bioinformatics, 2012, 80, 556-572.1.5107

#

779

782

784

786

787

788

789

790

791

792

793

794

795

#	Article	IF	CITATIONS
798	Intrinsic Protein Flexibility in Regulation of Cell Proliferation: Advantages for Signaling and Opportunities for Novel Therapeutics. Advances in Experimental Medicine and Biology, 2012, 725, 27-49.	0.8	27
799	Recent progress in NMR spectroscopy: Toward the study of intrinsically disordered proteins of increasing size and complexity. IUBMB Life, 2012, 64, 473-481.	1.5	53
800	Molecular Mechanisms of Prolactin and Its Receptor. Endocrine Reviews, 2012, 33, 504-525.	8.9	131
801	Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. Journal of Biomolecular Structure and Dynamics, 2012, 30, 137-149.	2.0	465
802	Intrinsically Disordered Proteins: From Sequence and Conformational Properties toward Drug Discovery. ChemBioChem, 2012, 13, 930-950.	1.3	85
803	Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cellular and Molecular Life Sciences, 2012, 69, 1211-1259.	2.4	94
804	Characterization of Molten Globule PopB in Absence and Presence of Its Chaperone PcrH. Protein Journal, 2012, 31, 401-416.	0.7	10
805	Backbone and side chain NMR assignments for the intrinsically disordered cytoplasmic domain of human neuroligin-3. Biomolecular NMR Assignments, 2012, 6, 15-18.	0.4	7
806	Conformational analyses of peptides and proteins by vibrational Raman optical activity. Analytical and Bioanalytical Chemistry, 2012, 403, 2203-2212.	1.9	22
807	Lengthâ€dependent compaction of intrinsically disordered proteins. FEBS Letters, 2012, 586, 70-73.	1.3	26
808	Folding of the glucocorticoid receptor N-terminal transactivation function: Dynamics and regulation. Molecular and Cellular Endocrinology, 2012, 348, 450-456.	1.6	44
809	Natively Unfolded State for Engineering Nanoscale Fibrillar Arrays. Macromolecular Bioscience, 2012, 12, 195-201.	2.1	5
810	A SAXS-based ensemble model of the native and phosphorylated regulatory domain of the CFTR. Cellular and Molecular Life Sciences, 2013, 70, 923-933.	2.4	18
811	Anomalous Protein–DNA Interactions Behind Neurological Disorders. Advances in Protein Chemistry and Structural Biology, 2013, 91, 37-63.	1.0	8
812	How to design a drug for the disordered proteins?. Drug Discovery Today, 2013, 18, 910-915.	3.2	71
813	Unusual biophysics of intrinsically disordered proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 932-951.	1.1	459
814	Time Window Expansion for HDX Analysis of an Intrinsically Disordered Protein. Journal of the American Society for Mass Spectrometry, 2013, 24, 1584-1592.	1.2	67
815	Salt Stress in Plants. , 2013, , .		50

#	Article	IF	CITATIONS
816	IsUnstruct: prediction of the residue status to be ordered or disordered in the protein chain by a method based on the Ising model. Journal of Biomolecular Structure and Dynamics, 2013, 31, 1034-1043.	2.0	48
817	DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinformatics, 2013, 14, 88.	1.2	74
818	Genealogy of an ancient protein family: the Sirtuins, a family of disordered members. BMC Evolutionary Biology, 2013, 13, 60.	3.2	47
819	Fast hydrogen exchange affects 15N relaxation measurements in intrinsically disordered proteins. Journal of Biomolecular NMR, 2013, 55, 249-256.	1.6	18
820	Aβ Monomers Transiently Sample Oligomer and Fibril-Like Configurations: Ensemble Characterization Using a Combined MD/NMR Approach. Journal of Molecular Biology, 2013, 425, 3338-3359.	2.0	198
821	Unfolded protein ensembles, folding trajectories, and refolding rate prediction. Journal of Chemical Physics, 2013, 139, 121925.	1.2	11
822	Interaction between DNA and chromosomal proteins HMGB1 and H1 studied by IR/VCD spectroscopy. Journal of Molecular Structure, 2013, 1044, 167-172.	1.8	12
823	New molecular interaction of IIA ^{Ntr} and HPr from <i>Burkholderia pseudomallei</i> iodentified by Xâ€ray crystallography and docking studies. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1499-1508.	1.5	2
824	Zwitterionic conformers of pyrrolysine and their interactions with metal ions—a theoretical study. Journal of Molecular Modeling, 2013, 19, 2981-2991.	0.8	5
825	Inherent Relationships among Different Biophysical Prediction Methods for Intrinsically Disordered Proteins. Biophysical Journal, 2013, 104, 488-495.	0.2	13
826	Breaking the amyloidogenicity code: Methods to predict amyloids from amino acid sequence. FEBS Letters, 2013, 587, 1089-1095.	1.3	62
827	Folding Factors and Partners for the Intrinsically Disordered Protein Micro-Exon Gene 14 (MEG-14). Biophysical Journal, 2013, 104, 2512-2520.	0.2	21
828	Underâ€folded proteins: Conformational ensembles and their roles in protein folding, function, and pathogenesis. Biopolymers, 2013, 99, 870-887.	1.2	37
829	The conformational ensemble of the disordered and aggregation-protective 182–291 region of ataxin-3. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5236-5247.	1.1	14
830	From Sequence and Forces to Structure, Function, and Evolution of Intrinsically Disordered Proteins. Structure, 2013, 21, 1492-1499.	1.6	196
831	Restrictions to protein folding determined by the protein size. FEBS Letters, 2013, 587, 1884-1890.	1.3	19
832	Solvent interaction analysis of intrinsically disordered proteins in aqueous two-phase systems. Molecular BioSystems, 2013, 9, 3068.	2.9	14
833	The Arginine-Rich RNA-Binding Motif of HIV-1 Rev Is Intrinsically Disordered and Folds upon RRE Binding. Biophysical Journal, 2013, 105, 1004-1017.	0.2	44

# 834	ARTICLE High-dimensionality 13C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins, Journal of Biomolecular NMR, 2013, 57, 353-361	IF 1.6	CITATIONS
835	Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 725-738.	1.1	68
836	Buried and Accessible Surface Area Control Intrinsic Protein Flexibility. Journal of Molecular Biology, 2013, 425, 3250-3263.	2.0	62
837	Electrostatic Effect of the Ribosomal Surface on Nascent Polypeptide Dynamics. ACS Chemical Biology, 2013, 8, 1195-1204.	1.6	74
838	Protein intrinsic disorder in the acetylome of intracellular and extracellular Toxoplasma gondii. Molecular BioSystems, 2013, 9, 645.	2.9	57
839	An assignment of intrinsically disordered regions of proteins based on NMR structures. Journal of Structural Biology, 2013, 181, 29-36.	1.3	26
840	New Insights into Desiccation-Associated Gene Regulation by Lilium longiflorum ASR during Pollen Maturation and in Transgenic Arabidopsis. International Review of Cell and Molecular Biology, 2013, 301, 37-94.	1.6	12
841	On the functional and structural characterization of hubs in protein–protein interaction networks. Biotechnology Advances, 2013, 31, 274-286.	6.0	54
842	Describing sequence–ensemble relationships for intrinsically disordered proteins. Biochemical Journal, 2013, 449, 307-318.	1.7	109
843	A flash in the pan: Dissecting dynamic amyloid intermediates using fluorescence. FEBS Letters, 2013, 587, 1096-1105.	1.3	13
844	RAPID: Fast and accurate sequence-based prediction of intrinsic disorder content on proteomic scale. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1671-1680.	1.1	49
845	Hydrogen-exchange mass spectrometry for the study of intrinsic disorder in proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1202-1209.	1.1	74
846	Long indels are disordered: A study of disorder and indels in homologous eukaryotic proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 890-897.	1.1	30
847	Polypeptide chain collapse and protein folding. Archives of Biochemistry and Biophysics, 2013, 531, 24-33.	1.4	52
848	A polymetamorphic protein. Protein Science, 2013, 22, 641-649.	3.1	7
849	Genetics and Biosynthesis of Milk Proteins. , 2013, , 431-461.		3
850	LEA Proteins in Salt Stress Tolerance. , 2013, , 79-112.		12
851	A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Science, 2013, 22, 693-724.	3.1	415

		EPORT	
#	Article	IF	CITATIONS
853	Intrinsic Structural Disorder in Cytoskeletal Proteins. Cytoskeleton, 2013, 70, 550-571.	1.0	52
854	The Effects of Mutations on Protein Function: A Comparative Study of Three Databases of Mutations in Humans. Israel Journal of Chemistry, 2013, 53, 217-226.	1.0	2
855	Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death and Differentiation, 2013, 20, 1257-1267.	5.0	71
856	Conformational Propensities of Intrinsically Disordered Proteins from NMR Chemical Shifts. ChemPhysChem, 2013, 14, 3034-3045.	1.0	69
857	Differences in \hat{I}^2 -strand Populations of Monomeric A \hat{I}^2 40 and A \hat{I}^2 42. Biophysical Journal, 2013, 104, 2714-2724.	0.2	133
858	Reverse engineering the antigenic architecture of the haemagglutinin from influenza H5N1 clade 1 and 2.2 viruses with fine epitope mapping using monoclonal antibodies. Molecular Immunology, 2013, 53, 435-442.	1.0	9
859	Analyses of the general rule on residue pair frequencies in local amino acid sequences of soluble, ordered proteins. Protein Science, 2013, 22, 725-733.	3.1	2
860	Mass spectrometry methods for intrinsically disordered proteins. Analyst, The, 2013, 138, 32-42.	1.7	76
861	Dissecting Partner Recognition by an Intrinsically Disordered Protein Using Descriptive Random Mutagenesis. Journal of Molecular Biology, 2013, 425, 3495-3509.	2.0	25
862	Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization. Journal of Structural Biology, 2013, 183, 205-215.	1.3	43
863	The most important thing is the tail: Multitudinous functionalities of intrinsically disordered protein termini. FEBS Letters, 2013, 587, 1891-1901.	1.3	117
864	Analysis of Molecular Recognition Features (MoRFs) in membrane proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 798-807.	1.1	24
865	BIOCHEMICAL AND BIOPHYSICAL CHARACTERIZATION OF RECOMBINANT YEAST PROTEASOME MATURATION FACTOR UMP1. Computational and Structural Biotechnology Journal, 2013, 7, e201304006.	1.9	20
866	Amyloid β-protein oligomers and Alzheimer's disease. Alzheimer's Research and Therapy, 2013, 5, 60.	3.0	209
867	Naturally Split Inteins Assemble through a "Capture and Collapse―Mechanism. Journal of the American Chemical Society, 2013, 135, 18673-18681.	6.6	63
868	Analysis of a Single α-Synuclein Fibrillation by the Interaction with a Protein Nanopore. Analytical Chemistry, 2013, 85, 8254-8261.	3.2	67
869	Distribution and cluster analysis of predicted intrinsically disordered protein Pfam domains. Intrinsically Disordered Proteins, 2013, 1, e25724.	1.9	12
870	MFDp2. Intrinsically Disordered Proteins, 2013, 1, e24428.	1.9	92

			_
#	ARTICLE	IF	CITATIONS
871	Digested disorder. Intrinsically Disordered Proteins, 2013, 1, e25496.	1.9	8
872	The alphabet of intrinsic disorder. Intrinsically Disordered Proteins, 2013, 1, e24684.	1.9	95
873	Structural characterizations of phosphorylatable residues in transmembrane proteins from <i>Arabidopsis thaliana</i> . Intrinsically Disordered Proteins, 2013, 1, e25713.	1.9	5
874	Transient disorder. Intrinsically Disordered Proteins, 2013, 1, e26412.	1.9	16
875	Digested disorder. Intrinsically Disordered Proteins, 2013, 1, e27454.	1.9	6
876	Protein Conformational Disorder and Enzyme Catalysis. Topics in Current Chemistry, 2013, 337, 41-67.	4.0	47
877	What's in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins, 2013, 1, e24157.	1.9	226
878	Multifarious Roles of Intrinsic Disorder in Proteins Illustrate Its Broad Impact on Plant Biology. Plant Cell, 2013, 25, 38-55.	3.1	138
879	A transient α-helical molecular recognition element in the disordered N-terminus of the Sgs1 helicase is critical for chromosome stability and binding of Top3/Rmi1. Nucleic Acids Research, 2013, 41, 10215-10227.	6.5	21
880	Extracting structural information from charge-state distributions of intrinsically disordered proteins by non-denaturing electrospray-ionization mass spectrometry. Intrinsically Disordered Proteins, 2013, 1, e25068.	1.9	33
881	mpMoRFsDB: a database of molecular recognition features in membrane proteins. Bioinformatics, 2013, 29, 2517-2518.	1.8	7
882	The alphabet of intrinsic disorder. Intrinsically Disordered Proteins, 2013, 1, e24360.	1.9	208
883	Intrinsic Disorder in Pathogen Effectors: Protein Flexibility as an Evolutionary Hallmark in a Molecular Arms Race. Plant Cell, 2013, 25, 3153-3157.	3.1	76
884	Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2875-84.	3.3	81
885	Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13392-13397.	3.3	745
886	The Allosteric Mechanism Induced by Protein Kinase A (PKA) Phosphorylation of Dematin (Band 4.9). Journal of Biological Chemistry, 2013, 288, 8313-8320.	1.6	16
887	Novel allergens from ancient foods: Man e 5 from manioc (<i><scp>M</scp>anihot) Tj ETQq0 0 0 rgBT /Overlock Nutrition and Food Research, 2013, 57, 1100-1109.</i>	10 Tf 50 1 1.5	107 Td (escu 16
888	Disorderness in <i>Escherichia coli</i> proteome: perception of folding fidelity and protein–protein interactions. Journal of Biomolecular Structure and Dynamics, 2013, 31, 472-476.	2.0	15

#	Article	IF	CITATIONS
889	Single-molecule spectroscopy of the unexpected collapse of an unfolded protein at low pH. Journal of Chemical Physics, 2013, 139, 121930.	1.2	20
890	Disorder in the lifetime of a protein. Intrinsically Disordered Proteins, 2013, 1, e26782.	1.9	9
891	Rapid Evolutionary Dynamics of Structural Disorder as a Potential Driving Force for Biological Divergence in Flaviviruses. Genome Biology and Evolution, 2013, 5, 504-513.	1.1	25
892	The Gold Nanorod-Biology Interface: From Proteins to Cells to Tissue. Current Physical Chemistry, 2013, 3, 128-135.	0.1	5
893	Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication. PLoS ONE, 2013, 8, e67965.	1.1	19
894	Conformational Dissection of a Viral Intrinsically Disordered Domain Involved in Cellular Transformation. PLoS ONE, 2013, 8, e72760.	1.1	17
895	Ordered Disorder of the Astrocytic Dystrophin-Associated Protein Complex in the Norm and Pathology. PLoS ONE, 2013, 8, e73476.	1.1	12
896	Intrinsic Disorder-based Protein Interactions and their Modulators. Current Pharmaceutical Design, 2013, 19, 4191-4213.	0.9	231
897	Intrinsic Disorder in the BK Channel and Its Interactome. PLoS ONE, 2014, 9, e94331.	1.1	16
898	Biophysical Characterisation of Calumenin as a Charged F508del-CFTR Folding Modulator. PLoS ONE, 2014, 9, e104970.	1.1	9
899	Comparison of Amino Acids Physico-Chemical Properties and Usage of Late Embryogenesis Abundant Proteins, Hydrophilins and WHy Domain. PLoS ONE, 2014, 9, e109570.	1.1	20
900	Coupled Protein Diffusion and Folding in the Cell. PLoS ONE, 2014, 9, e113040.	1.1	36
901	Dynamic New World: Refining Our View of Protein Structure, Function and Evolution. Proteomes, 2014, 2, 128-153.	1.7	19
902	The triple power of DÂ ³ : Protein intrinsic disorder in degenerative diseases. Frontiers in Bioscience - Landmark, 2014, 19, 181.	3.0	78
904	A Novel Approach for Predicting Disordered Regions in A Protein Sequence. Osong Public Health and Research Perspectives, 2014, 5, 211-218.	0.7	4
905	Does Lack of Secondary Structure Imply Intrinsic Disorder in Proteins? A Sequence Analysis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1827-1834.	1.1	12
906	In vitro aggregation assays for the characterization of α-synuclein prion-like properties. Prion, 2014, 8, 19-32.	0.9	66
907	pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Research, 2014, 42, D326-D335.	6.5	195

#	Article	IF	CITATIONS
908	Interplay between Chaperones and Protein Disorder Promotes the Evolution of Protein Networks. PLoS Computational Biology, 2014, 10, e1003674.	1.5	31
909	What Macromolecular Crowding Can Do to a Protein. International Journal of Molecular Sciences, 2014, 15, 23090-23140.	1.8	425
910	Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets. 1. NMR and MD Characterization of the Complex between the c-Crk N-SH3 Domain and the Peptide Sos. Biochemistry, 2014, 53, 6473-6495.	1.2	46
911	Kinetics and Thermodynamics of Membrane Protein Folding. Biomolecules, 2014, 4, 354-373.	1.8	27
912	DBC1/CCAR2 and CCAR1 Are Largely Disordered Proteins that Have Evolved from One Common Ancestor. BioMed Research International, 2014, 2014, 1-13.	0.9	24
913	A comparative study of Whi5 and retinoblastoma proteins: from sequence and structure analysis to intracellular networks. Frontiers in Physiology, 2013, 4, 315.	1.3	17
914	Actinous enigma or enigmatic actin. Intrinsically Disordered Proteins, 2014, 2, e34500.	1.9	14
915	"CON-CON―assignment strategy for highly flexible intrinsically disordered proteins. Journal of Biomolecular NMR, 2014, 60, 209-218.	1.6	30
916	Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins: Structure, Function and Bioinformatics, 2014, 82, 145-158.	1.5	104
917	Calibrated Langevin-dynamics simulations of intrinsically disordered proteins. Physical Review E, 2014, 90, 042709.	0.8	19
918	Biomimetic proteinâ€based elastomeric hydrogels for biomedical applications. Polymer International, 2014, 63, 1545-1557.	1.6	27
919	An overview of the sequence features of N- and C-terminal segments of the human chemokine receptors. Cytokine, 2014, 70, 141-150.	1.4	14
920	Intrinsically disordered proteins (IDPs) in trypanosomatids. BMC Genomics, 2014, 15, 1100.	1.2	11
921	Papillomavirus binding factor (PBF) is an intrinsically disordered protein with potential participation in osteosarcoma genesis, in silico evidence. Theoretical Biology and Medical Modelling, 2014, 11, 51.	2.1	1
922	Correlations between predicted protein disorder and post-translational modifications in plants. Bioinformatics, 2014, 30, 1095-1103.	1.8	36
923	Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms. Journal of Biological Chemistry, 2014, 289, 6740-6750.	1.6	27
924	The intrinsically disordered amino-terminal region of human RecQL4: multiple DNA-binding domains confer annealing, strand exchange and G4 DNA binding. Nucleic Acids Research, 2014, 42, 12614-12627.	6.5	62
925	The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Research, 2014, 42, D259-D266.	6.5	260

#	Article	IF	CITATIONS
926	Single-molecule spectroscopy of unfolded proteins and chaperonin action. Biological Chemistry, 2014, 395, 689-698.	1.2	7
927	15. Protein- and peptide-based materials: a source of inspiration for innovation. , 2014, , 415-442.		4
928	IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Research, 2014, 42, D320-D325.	6.5	88
929	Evidence of a conserved intrinsically disordered region in the Câ€ŧerminus of the stringent response protein Rel from mycobacteria. FEBS Letters, 2014, 588, 1839-1849.	1.3	5
930	Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1481-1485.	1.1	95
931	p15PAF Is an Intrinsically Disordered Protein with Nonrandom Structural Preferences at Sites of Interaction with Other Proteins. Biophysical Journal, 2014, 106, 865-874.	0.2	54
932	Homodimerization propensity of the intrinsically disordered N-terminal domain of Ultraspiracle from Aedes aegypti. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1153-1166.	1.1	21
933	Bioinformatical Approaches to Unstructured/Disordered Proteins and Their Interactions. Springer Series in Bio-/neuroinformatics, 2014, , 525-556.	0.1	1
934	Amino acid/water interactions study: a new amino acid scale. Journal of Biomolecular Structure and Dynamics, 2014, 32, 959-968.	2.0	42
935	Coarse-Grained Modeling of Protein Dynamics. Springer Series in Bio-/neuroinformatics, 2014, , 55-79.	0.1	8
936	A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cellular and Molecular Life Sciences, 2014, 71, 1477-1504.	2.4	119
937	Protein Structure Prediction. Methods in Molecular Biology, 2014, , .	0.4	13
938	Keeping the eIF2 alpha kinase Gcn2 in check. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1948-1968.	1.9	231
939	Inteins: nature's gift to protein chemists. Chemical Science, 2014, 5, 446-461.	3.7	310
940	Internal Nanosecond Dynamics in the Intrinsically Disordered Myelin Basic Protein. Journal of the American Chemical Society, 2014, 136, 6987-6994.	6.6	87
941	Advantages of proteins being disordered. Protein Science, 2014, 23, 539-550.	3.1	140
942	Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4874-4879.	3.3	212
943	On the structural organization of the intracellular domains of CFTR. International Journal of Biochemistry and Cell Biology, 2014, 52, 7-14.	1.2	13

#	Article	IF	CITATIONS
944	The N-terminal extension of S12 influences small ribosomal subunit assembly in Escherichia coli. Rna, 2014, 20, 321-330.	1.6	16
945	Performance of Protein Disorder Prediction Programs on Amino Acid Substitutions. Human Mutation, 2014, 35, 794-804.	1.1	20
946	Disordered Proteinaceous Machines. Chemical Reviews, 2014, 114, 6806-6843.	23.0	109
947	Pathological Unfoldomics of Uncontrolled Chaos: Intrinsically Disordered Proteins and Human Diseases. Chemical Reviews, 2014, 114, 6844-6879.	23.0	231
948	Structural Disorder in Viral Proteins. Chemical Reviews, 2014, 114, 6880-6911.	23.0	181
949	Introducing Protein Intrinsic Disorder. Chemical Reviews, 2014, 114, 6561-6588.	23.0	628
950	Origin and Spread of de Novo Genes in <i>Drosophila melanogaster</i> Populations. Science, 2014, 343, 769-772.	6.0	220
951	Malaria proteomics: Insights into the parasite–host interactions in the pathogenic space. Journal of Proteomics, 2014, 97, 107-125.	1.2	27
952	A Mass-Spectrometry-Based Framework To Define the Extent of Disorder in Proteins. Analytical Chemistry, 2014, 86, 10979-10991.	3.2	91
953	Identification of Atg3 as an intrinsically disordered polypeptide yields insights into the molecular dynamics of autophagy-related proteins in yeast. Autophagy, 2014, 10, 1093-1104.	4.3	38
954	The intrinsically disordered structural platform of the plant defence hub protein <scp>RPM</scp> 1â€interacting protein 4 provides insights into its mode of action in the hostâ€pathogen interface and evolution of the nitrateâ€induced domain protein family. FEBS Journal, 2014, 281, 3955-3979.	2.2	50
955	Multi-responsive biomaterials and nanobioconjugates from resilin-like protein polymers. Journal of Materials Chemistry B, 2014, 2, 5936-5947.	2.9	44
956	Evolutionarily conserved and conformationally constrained short peptides might serve as DNA recognition elements in intrinsically disordered regions. Molecular BioSystems, 2014, 10, 1469.	2.9	4
957	The intrinsic disorder status of the human hepatitis C virus proteome. Molecular BioSystems, 2014, 10, 1345-1363.	2.9	57
958	Calcium, Acylation, and Molecular Confinement Favor Folding of Bordetella pertussis Adenylate Cyclase CyaA Toxin into a Monomeric and Cytotoxic Form. Journal of Biological Chemistry, 2014, 289, 30702-30716.	1.6	51
960	Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer?. Molecular BioSystems, 2014, 10, 2626-2642.	2.9	80
961	Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition. Journal of Physical Chemistry B, 2014, 118, 10565-10575.	1.2	11
962	Evolution of Specificity in Protein-Protein Interactions. Biophysical Journal, 2014, 107, 1686-1696.	0.2	29

#	Article	IF	CITATIONS
963	The Language of Protein Polymers. ACS Symposium Series, 2014, , 15-33.	0.5	2
964	Toward a common aggregation mechanism for a β-barrel protein family: Insights derived from a stable dimeric species. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1599-1607.	1.1	7
965	Introduction to Intrinsically Disordered Proteins (IDPs). Chemical Reviews, 2014, 114, 6557-6560.	23.0	118
966	Purification and Biophysical Characterization of the CapA Membrane Protein FTT0807 from <i>Francisella tularensis</i> . Biochemistry, 2014, 53, 1958-1970.	1.2	8
967	Multi-scale Ensemble Modeling of Modular Proteins with Intrinsically Disordered Linker Regions: Application to p53. Biophysical Journal, 2014, 107, 721-729.	0.2	28
968	Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. Journal of Biomolecular Structure and Dynamics, 2014, 32, 448-464.	2.0	146
969	Effect of Trichoderma reesei Proteinases on the Affinity of an Inorganic-Binding Peptide. Applied Biochemistry and Biotechnology, 2014, 173, 2225-2240.	1.4	9
970	Potential lactoferrin activity against pathogenic viruses. Comptes Rendus - Biologies, 2014, 337, 581-595.	0.1	88
971	Intrinsic Disorder in Plant Proteins and Phytopathogenic Bacterial Effectors. Chemical Reviews, 2014, 114, 6912-6932.	23.0	39
972	Rotational aspects of non-ionized creatine in the gas phase. Monatshefte Für Chemie, 2014, 145, 1431-1441.	0.9	4
973	Selection of relevant features from amino acids enables development of robust classifiers. Amino Acids, 2014, 46, 1343-1351.	1.2	8
974	New 13C-detected experiments for the assignment of intrinsically disordered proteins. Journal of Biomolecular NMR, 2014, 59, 43-50.	1.6	25
975	Microenvironmentally controlled secondary structure motifs of apolipoprotein A-I derived peptides. Molecular and Cellular Biochemistry, 2014, 393, 99-109.	1.4	13
976	Classification of Intrinsically Disordered Regions and Proteins. Chemical Reviews, 2014, 114, 6589-6631.	23.0	1,618
977	Molecular landscape of the interaction between the urease accessory proteins UreE and UreG. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1662-1674.	1.1	44
978	Conditionally and Transiently Disordered Proteins: Awakening Cryptic Disorder To Regulate Protein Function. Chemical Reviews, 2014, 114, 6779-6805.	23.0	165
979	Ab initio- and density-functional studies of conformational behaviour of N-formylmethionine in gaseous phase. Chemical Papers, 2014, 68, .	1.0	4
980	Prediction of Linear Cationic Antimicrobial Peptides Based on Characteristics Responsible for Their Interaction with the Membranes. Journal of Chemical Information and Modeling, 2014, 54, 1512-1523.	2.5	67

#	Article	IF	CITATIONS
981	Ordered Water within the Collapsed Globules of an Amyloidogenic Intrinsically Disordered Protein. Journal of Physical Chemistry B, 2014, 118, 9191-9198.	1.2	36
982	Dancing retro: solution structure and micelle interactions of the retro-SH3-domain, retro-SHH-â€~Bergerac'. Journal of Biomolecular Structure and Dynamics, 2014, 32, 257-272.	2.0	8
983	Bootstrapping New Protein Folds. Biophysical Journal, 2014, 107, 1040-1041.	0.2	3
984	Hydrogen Bond Dynamics in Intrinsically Disordered Proteins. Journal of Physical Chemistry B, 2014, 118, 3018-3025.	1.2	31
985	Association Between Foldability and Aggregation Propensity in Small Disulfide-Rich Proteins. Antioxidants and Redox Signaling, 2014, 21, 368-383.	2.5	25
986	High-yield soluble expression of recombinant influenza virus antigens from Escherichia coli and their potential uses in diagnosis. Journal of Virological Methods, 2014, 196, 56-64.	1.0	11
987	Intrinsic Disorder in Proteins Involved in the Innate Antiviral Immunity: Another Flexible Side of a Molecular Arms Race. Journal of Molecular Biology, 2014, 426, 1322-1350.	2.0	37
988	Epitope distribution in ordered and disordered protein regions — Part A. T-cell epitope frequency, affinity and hydropathy. Journal of Immunological Methods, 2014, 406, 83-103.	0.6	13
989	Dynamical properties of α-synuclein in soluble and fibrillar forms by Quasi Elastic Neutron Scattering. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1307-1316.	1.1	5
990	Epitope distribution in ordered and disordered protein regions. Part B — Ordered regions and disordered binding sites are targets of T- and B-cell immunity. Journal of Immunological Methods, 2014, 407, 90-107.	0.6	15
991	Intrinsically disordered proteins implicated in paramyxoviral replication machinery. Current Opinion in Virology, 2014, 5, 72-81.	2.6	23
992	Mechanism of Folding and Binding of an Intrinsically Disordered Protein As Revealed by ab Initio Simulations. Journal of Chemical Theory and Computation, 2014, 10, 2224-2231.	2.3	41
993	Intrinsically Disordered Proteins and Intrinsically Disordered Protein Regions. Annual Review of Biochemistry, 2014, 83, 553-584.	5.0	850
994	The structural and functional signatures of proteins that undergo multiple events of postâ€translational modification. Protein Science, 2014, 23, 1077-1093.	3.1	287
995	Why Are the Truncated Cyclin Es More Effective CDK2 Activators than the Full-Length Isoforms?. Biochemistry, 2014, 53, 4612-4624.	1.2	16
996	Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chemical Reviews, 2014, 114, 6733-6778.	23.0	389
997	Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Frontiers in Molecular Biosciences, 2014, 1, 6.	1.6	79
998	ABSINTH Implicit Solvation Model and Force Field Paradigm for Use in Simulations of Intrinsically Disordered Proteins. , 2014, , 208-231.		0

#	Article	IF	CITATIONS
999	Long Molecular Dynamics Simulations of Intrinsically Disordered Proteins Reveal Preformed Structural Elements for Target Binding. , 2014, , 260-283.		0
1000	Improving protein order-disorder classification using charge-hydropathy plots. BMC Bioinformatics, 2014, 15, S4.	1.2	63
1001	Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex. Scientific Reports, 2015, 5, 15795.	1.6	21
1002	Intrinsically Disordered Energy Landscapes. Scientific Reports, 2015, 5, 10386.	1.6	80
1003	PrP charge structure encodes interdomain interactions. Scientific Reports, 2015, 5, 13623.	1.6	20
1004	Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads. Scientific Reports, 2015, 5, 11740.	1.6	33
1005	Content of intrinsic disorder influences the outcome of cell-free protein synthesis. Scientific Reports, 2015, 5, 14079.	1.6	9
1006	General overview on structure prediction of twilight-zone proteins. Theoretical Biology and Medical Modelling, 2015, 12, 15.	2.1	68
1007	Unstructural biology of the dengue virus proteins. FEBS Journal, 2015, 282, 3368-3394.	2.2	58
1008	In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae. International Journal of Molecular Sciences, 2015, 16, 19812-19835.	1.8	20
1009	Identifying Similar Patterns of Structural Flexibility in Proteins by Disorder Prediction and Dynamic Programming. International Journal of Molecular Sciences, 2015, 16, 13829-13849.	1.8	7
1010	Protein flexibility in the light of structural alphabets. Frontiers in Molecular Biosciences, 2015, 2, 20.	1.6	71
1011	Fairy ââ,¬Å"tailsââ,¬Â• flexibility and function of intrinsically disordered extensions in the photosynthetic world. Frontiers in Molecular Biosciences, 2015, 2, 23.	1.6	29
1012	Computational approaches for inferring the functions of intrinsically disordered proteins. Frontiers in Molecular Biosciences, 2015, 2, 45.	1.6	37
1013	DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach. PLoS ONE, 2015, 10, e0128334.	1.1	2
1014	Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates. PLoS ONE, 2015, 10, e0136362.	1.1	31
1015	DisPredict: A Predictor of Disordered Protein Using Optimized RBF Kernel. PLoS ONE, 2015, 10, e0141551.	1.1	23
1016	The Structural Characterization of Tumor Fusion Genes and Proteins. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-9.	0.7	14

#	Article	IF	CITATIONS
1017	Identification of proteins associated with amyloidosis by polarity index method. Acta Biochimica Polonica, 2015, 62, 41-55.	0.3	6
1018	Biochemical Analysis of Phytolacca DOPA Dioxygenase. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	0
1019	Unfolding and refolding of a protein by cholesterol and cyclodextrin: a single molecule study. Physical Chemistry Chemical Physics, 2015, 17, 8017-8027.	1.3	17
1020	Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders. Frontiers in Aging Neuroscience, 2015, 7, 18.	1.7	152
1021	Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields. Journal of Physical Chemistry B, 2015, 119, 7902-7910.	1.2	16
1022	Protein dynamics: from rattling in a cage to structural relaxation. Soft Matter, 2015, 11, 4984-4998.	1.2	104
1023	Detection of links between Ebola nucleocapsid and virulence using disorder analysis. Molecular BioSystems, 2015, 11, 2337-2344.	2.9	19
1024	Disorder-to-Order Transition in the CyaA Toxin RTX Domain: Implications for Toxin Secretion. Toxins, 2015, 7, 1-20.	1.5	38
1025	Induced Dipole–Dipole Interactions Influence the Unfolding Pathways of Wild-Type and Mutant Amyloid β-Peptides. Journal of Physical Chemistry B, 2015, 119, 15574-15582.	1.2	30
1026	Binding Rate Constants Reveal Distinct Features of Disordered Protein Domains. Biochemistry, 2015, 54, 4741-4750.	1.2	51
1027	MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochemical Journal, 2015, 472, 17-32.	1.7	76
1028	Gas phase conformational behavior of selenomethionine: A computational elucidation. Journal of Structural Chemistry, 2015, 56, 1235-1245.	0.3	0
1029	In various protein complexes, disordered protomers have large perâ€residue surface areas and area of proteinâ€, DNA―and RNAâ€binding interfaces. FEBS Letters, 2015, 589, 2561-2569.	1.3	42
1030	"Invisible―Conformers of an Antifungal Disulfide Protein Revealed by Constrained Cold and Heat Unfolding, CESTâ€NMR Experiments, and Molecular Dynamics Calculations. Chemistry - A European Journal, 2015, 21, 5136-5144.	1.7	47
1031	Longitudinal relaxation properties of 1HN and 1Hα determined by direct-detected 13C NMR experiments to study intrinsically disordered proteins (IDPs). Journal of Magnetic Resonance, 2015, 254, 19-26.	1.2	8
1032	Probing protein disorder and complexity at single-molecule resolution. Seminars in Cell and Developmental Biology, 2015, 37, 26-34.	2.3	21
1033	Functional roles of transiently and intrinsically disordered regions within proteins. FEBS Journal, 2015, 282, 1182-1189.	2.2	165
1034	Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets. Virus Research, 2015, 207, 155-164.	1.1	16

#	Article	IF	CITATIONS
1035	Atomic force microscopy based nanoassay: a new method to study α-Synuclein-dopamine bioaffinity interactions. Scientific Reports, 2014, 4, 5366.	1.6	10
1036	KSHV ORF57, a Protein of Many Faces. Viruses, 2015, 7, 604-633.	1.5	39
1037	Conformational heterogeneity and intrinsic disorder in enzyme regulation: Glucokinase as a case study. Intrinsically Disordered Proteins, 2015, 3, e1011008.	1.9	10
1038	Order and disorder in intermediate filament proteins. FEBS Letters, 2015, 589, 2464-2476.	1.3	44
1039	Treponema pallidum subsp. pallidum TP0136 Protein Is Heterogeneous among Isolates and Binds Cellular and Plasma Fibronectin via its NH2-Terminal End. PLoS Neglected Tropical Diseases, 2015, 9, e0003662.	1.3	32
1040	Unzippers, Resolvers and Sensors: A Structural and Functional Biochemistry Tale of RNA Helicases. International Journal of Molecular Sciences, 2015, 16, 2269-2293.	1.8	23
1041	Human consensus interferons: Bridging the natural and artificial cytokines with intrinsic disorder. Cytokine and Growth Factor Reviews, 2015, 26, 637-645.	3.2	6
1042	A fast recoiling silk-like elastomer facilitates nanosecond nematocyst discharge. BMC Biology, 2015, 13, 3.	1.7	34
1043	Protein Misfolding in Lipid-Mimetic Environments. Advances in Experimental Medicine and Biology, 2015, 855, 33-66.	0.8	12
1044	The multifaceted roles of intrinsic disorder in protein complexes. FEBS Letters, 2015, 589, 2498-2506.	1.3	110
1045	Paradoxes and wonders of intrinsic disorder: Prevalence of exceptionality. Intrinsically Disordered Proteins, 2015, 3, e1065029.	1.9	11
1046	Effects of Polymer Hydrophobicity on Protein Structure and Aggregation Kinetics in Crowded Milieu. Biochemistry, 2015, 54, 2957-2966.	1.2	38
1047	Elucidating evolutionary features and functional implications of orphan genes in Leishmania major. Infection, Genetics and Evolution, 2015, 32, 330-337.	1.0	14
1048	Free Energy Surface of an Intrinsically Disordered Protein: Comparison between Temperature Replica Exchange Molecular Dynamics and Bias-Exchange Metadynamics. Journal of Chemical Theory and Computation, 2015, 11, 2776-2782.	2.3	69
1049	Intrinsic disorder and metal binding in UreG proteins from Archae hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) dependent urease. Journal of Biological Inorganic Chemistry, 2015, 20, 739-755.	1.1	19
1050	A study of procyanidin binding to Histatin 5 using Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS) and molecular simulations. Physical Chemistry Chemical Physics, 2015, 17, 12247-12258.	1.3	6
1051	Intrinsic disorder of human <scp>Y</scp> in <scp>Y</scp> ang 1 protein. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1284-1296.	1.5	21
1052	Quantification of expression of dehydrin isoforms in the desiccation tolerant plant Craterostigma plantagineum using specifically designed reference genes. Plant Science, 2015, 236, 103-115.	1.7	20

#	Article	IF	CITATIONS
1053	Hidden disorder propensity of the N-terminal segment of universal adapter protein 14-3-3 is manifested in its monomeric form: Novel insights into protein dimerization and multifunctionality. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 492-504.	1.1	22
1054	Can proteins be intrinsically disordered inside a membrane?. Intrinsically Disordered Proteins, 2015, 3, e984570.	1.9	8
1055	Structural predictions of neurobiologically relevant G-protein coupled receptors and intrinsically disordered proteins. Archives of Biochemistry and Biophysics, 2015, 582, 91-100.	1.4	4
1056	High-resolution structural characterization of Noxa, an intrinsically disordered protein, by microsecond molecular dynamics simulations. Molecular BioSystems, 2015, 11, 1850-1856.	2.9	7
1057	Pliable natural biocide: Jaburetox is an intrinsically disordered insecticidal and fungicidal polypeptide derived from jack bean urease. FEBS Journal, 2015, 282, 1043-1064.	2.2	30
1058	The intrinsic disorder alphabet. III. Dual personality of serine. Intrinsically Disordered Proteins, 2015, 3, e1027032.	1.9	37
1059	Progress in studying intrinsically disordered proteins with atomistic simulations. Progress in Biophysics and Molecular Biology, 2015, 119, 47-52.	1.4	30
1060	Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an "Elephant and Blind Men―Situation. Advances in Experimental Medicine and Biology, 2015, 870, 215-260.	0.8	33
1061	M1 RNA is important for the in-cell solubility of its cognate C5 protein: Implications for RNA-mediated protein folding. RNA Biology, 2015, 12, 1198-1208.	1.5	26
1062	Designing pH induced fold switch in proteins. Journal of Chemical Physics, 2015, 142, 185102.	1.2	6
1063	Polymorphism Analysis Reveals Reduced Negative Selection and Elevated Rate of Insertions and Deletions in Intrinsically Disordered Protein Regions. Genome Biology and Evolution, 2015, 7, 1815-1826.	1.1	27
1064	Calcium Ion Binding Properties and the Effect of Phosphorylation on the Intrinsically Disordered Starmaker Protein. Biochemistry, 2015, 54, 6525-6534.	1.2	25
1065	The Protein Ensemble Database. Advances in Experimental Medicine and Biology, 2015, 870, 335-349.	0.8	23
1066	Assembly of Stefin B into Polymorphic Oligomers Probed by Discrete Molecular Dynamics. Journal of Chemical Theory and Computation, 2015, 11, 2355-2366.	2.3	13
1067	Flexibility and Disorder in Gene Regulation: Lacl/GalR and Hox Proteins. Journal of Biological Chemistry, 2015, 290, 24669-24677.	1.6	19
1068	Unfoldome variation upon plant-pathogen interactions: strawberry infection by Colletotrichum acutatum. Plant Molecular Biology, 2015, 89, 49-65.	2.0	3
1069	Intrinsically disordered proteins in the nucleus of human cells. Biochemistry and Biophysics Reports, 2015, 1, 33-51.	0.7	44
1070	Elastinâ€like polypeptides as models of intrinsically disordered proteins. FEBS Letters, 2015, 589, 2477-2486.	1.3	209

#	Article	IF	CITATIONS
1071	Abundance of intrinsic structural disorder in the histone H1 subtypes. Computational Biology and Chemistry, 2015, 59, 16-27.	1.1	9
1072	A practical guide to small angle Xâ€ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Letters, 2015, 589, 2570-2577.	1.3	461
1073	Role of structural flexibility in the evolution of emerin. Journal of Theoretical Biology, 2015, 385, 102-111.	0.8	7
1074	Entropic clocks in the service of electrical signaling: â€~Ball and chain' mechanisms for ion channel inactivation and clustering. FEBS Letters, 2015, 589, 2441-2447.	1.3	15
1075	Testing the transferability of a coarse-grained model to intrinsically disordered proteins. Physical Chemistry Chemical Physics, 2015, 17, 31741-31749.	1.3	22
1076	Dynamics of the Intrinsically Disordered Câ€Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy. ChemBioChem, 2015, 16, 268-276.	1.3	31
1077	Are Protein Folding Intermediates the Evolutionary Consequence of Functional Constraints?. Journal of Physical Chemistry B, 2015, 119, 1323-1333.	1.2	22
1078	Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Letters, 2015, 589, 15-22.	1.3	203
1079	Demonstration of a Folding after Binding Mechanism in the Recognition between the Measles Virus N _{TAIL} and X Domains. ACS Chemical Biology, 2015, 10, 795-802.	1.6	63
1080	Structural Proteomics. Methods in Molecular Biology, 2015, 1261, v.	0.4	6
1081	Low complexity and disordered regions of proteins have different structural and amino acid preferences. Molecular BioSystems, 2015, 11, 585-594.	2.9	40
1082	Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features. Briefings in Bioinformatics, 2015, 16, 640-657.	3.2	76
1083	Intrinsically disordered proteins and multicellular organisms. Seminars in Cell and Developmental Biology, 2015, 37, 44-55.	2.3	128
1084	Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures. Environmental Microbiology, 2015, 17, 2407-2420.	1.8	25
1085	Histones: At the Crossroads of Peptide and Protein Chemistry. Chemical Reviews, 2015, 115, 2296-2349.	23.0	188
1086	Proteins without unique 3D structures: Biotechnological applications of intrinsically unstable/disordered proteins. Biotechnology Journal, 2015, 10, 356-366.	1.8	28
1087	Casein structures in the context of unfolded proteins. International Dairy Journal, 2015, 46, 2-11.	1.5	51

ARTICLE IF CITATIONS Overview of Autophagy., 2016, , 3-84. 1089 0 1090 Overview of Autophagy., 2016, , 1-71. AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species. Current 1091 0.9 75 Pharmaceutical Design, 2016, 22, 3950-3970. Structure and function relationships of proteins based on polar profile: a review.. Acta Biochimica 1092 0.3 Polonica, 2016, 63, 229-33. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein 1093 1.8 94 Interactions in Intra-Nuclear Compartments. International Journal of Molecular Sciences, 2016, 17, 24. p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure–Function Continuum Concept. International Journal of Molecular Sciences, 2016, 17, 1874. 1094 1.8 Yersinia pestis Caf1 Protein: Effect of Sequence Polymorphism on Intrinsic Disorder Propensity, 1095 1.1 6 Serological Cross-Reactivity and Cross-Protectivity of Isoforms. PLoS ONE, 2016, 11, e0162308. Prothymosin-α Variants Elicit Anti-HIV-1 Response via TLR4 Dependent and Independent Pathways. PLoS 1096 1.1 ONE, 2016, 11, e0156486. Estimation of Position Specific Energy as a Feature of Protein Residues from Sequence Alone for 1097 1.1 17 Structural Classification. PLoS ONE, 2016, 11, e0161452. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic 1098 1.1 Disorder Propensity, and Contribution to Virulence. PLoS ONE, 2016, 11, e0168089. 1099 Expression, Purification, and Characterization of Interleukin-11 Orthologues. Molecules, 2016, 21, 1632. 3 1.7 Kinetics of Amyloid Formation by Different Proteins and Peptides: Polymorphism and Sizes of Folding Nuclei of Fibrils., 2016,,. Protein Composition Determines the Effect of Crowding on the Properties of Disordered Proteins. 1101 0.2 48 Biophysical Journal, 2016, 111, 28-37. Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. Molecular BioSystems, 2016, 12, 2798-2817. 1103 Finding Our Way in the Dark Proteome. Journal of the American Chemical Society, 2016, 138, 9730-9742. 6.6 111 Exploring the Transition of Human α-Synuclein from Native to the Fibrillar State: Insights into the 1104 Pathogenesis of Parkinson's Disease. Journal of Fluorescence, 2016, 26, 1659-1669. Chicken cathelicidins as potent intrinsically disordered biocides with antimicrobial activity against 1105 1.0 12 infectious pathogens. Developmental and Comparative Immunology, 2016, 65, 8-24. Single-molecule Spectroscopy: Exploring Heterogeneity in Chemical and Biological Systems. Chemical Record, 2016, 16, 601-613.

#	Article	IF	CITATIONS
1107	The role of protein intrinsic disorder in major psychiatric disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 848-860.	1.1	9
1108	Native globular actin has a thermodynamically unstable quasiâ€stationary structure with elements of intrinsic disorder. FEBS Journal, 2016, 283, 438-445.	2.2	10
1109	Relevance of Intrinsic Disorder in Protein Structure and Function. SpringerBriefs in Biochemistry and Molecular Biology, 2016, , 29-72.	0.3	1
1110	Intrinsic disorder in spondins and some of their interacting partners. Intrinsically Disordered Proteins, 2016, 4, e1255295.	1.9	11
1111	Understanding the roles of intrinsic disorder in subunits of hemoglobin and the disease process of sickle cell anemia. Intrinsically Disordered Proteins, 2016, 4, e1248273.	1.9	8
1112	Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition. Scientific Reports, 2016, 6, 25205.	1.6	4
1113	How disordered is my protein and what is its disorder for? A guide through the "dark side―of the protein universe. Intrinsically Disordered Proteins, 2016, 4, e1259708.	1.9	87
1114	Comparison of the intrinsic disorder propensities of the RuBisCO activase enzyme from the motile and non-motile oceanic green microalgae. Intrinsically Disordered Proteins, 2016, 4, e1253526.	1.9	6
1115	Insights into Coupled Folding and Binding Mechanisms from Kinetic Studies. Journal of Biological Chemistry, 2016, 291, 6689-6695.	1.6	141
1116	Biocidal activity of chicken defensin-9 against microbial pathogens. Biochemistry and Cell Biology, 2016, 94, 176-187.	0.9	13
1117	Overexpression and purification of folded domain of prostate cancer related proteins MSMB and PSA. Molecular Biology Reports, 2016, 43, 349-358.	1.0	1
1118	Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling <scp>ATP</scp> ase gene. Plant Biotechnology Journal, 2016, 14, 581-591.	4.1	7
1119	Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System. Biochemistry, 2016, 55, 2401-2410.	1.2	25
1120	Functional correlations of respiratory syncytial virus proteins to intrinsic disorder. Molecular BioSystems, 2016, 12, 1507-1526.	2.9	19
1121	Hydrophilins in the filamentous fungus <i>Neosartorya fischeri</i> (<i>Aspergillus fischeri</i>) have protective activity against several types of microbial water stress. Environmental Microbiology Reports, 2016, 8, 45-52.	1.0	10
1122	Troponins, intrinsic disorder, and cardiomyopathy. Biological Chemistry, 2016, 397, 731-751.	1.2	18
1123	Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins. Annual Review of Biophysics, 2016, 45, 207-231.	4.5	271
1124	A simplified method for the purification of an intrinsically disordered coagulant protein from defatted Moringa oleifera seeds. Process Biochemistry, 2016, 51, 1085-1091.	1.8	41

#	Article	IF	CITATIONS
1125	Hydrophobicity-dependent effects of polymers on different protein conformations. RSC Advances, 2016, 6, 42971-42983.	1.7	3
1126	Small Heat-shock Proteins Prevent α-Synuclein Aggregation via Transient Interactions and Their Efficacy Is Affected by the Rate of Aggregation. Journal of Biological Chemistry, 2016, 291, 22618-22629.	1.6	96
1127	Is unphosphorylated Rex, as multifunctional protein of HTLV-1, a fully intrinsically disordered protein? An in silico study. Biochemistry and Biophysics Reports, 2016, 8, 14-22.	0.7	2
1128	Characterizing the denatured state ensemble of ubiquitin under native conditions using replica exchange molecular dynamics. RSC Advances, 2016, 6, 95584-95589.	1.7	1
1129	Structure and properties of native and unfolded lysing enzyme from T. harzianum: Chemical and pH denaturation. International Journal of Biological Macromolecules, 2016, 92, 860-866.	3.6	5
1130	Interaction between intrinsically disordered regions in transcription factors Sp1 and TAF4. Protein Science, 2016, 25, 2006-2017.	3.1	14
1131	Globular–disorder transition in proteins: a compromise between hydrophobic and electrostatic interactions?. Physical Chemistry Chemical Physics, 2016, 18, 23207-23214.	1.3	8
1133	Nickel impact on human health: An intrinsic disorder perspective. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1714-1731.	1.1	151
1134	Lecture 17. , 2016, , 253-273.		0
1135	Lecture 24. , 2016, , 387-407.		0
1135 1136	Lecture 24. , 2016, , 387-407. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19.	9.5	0 8
1135 1136 1137	Lecture 24., 2016, , 387-407. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochemical Society Transactions, 2016, 44, 1185-1200.	9.5	0 8 323
1135 1136 1137 1138	Lecture 24., 2016, , 387-407. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochemical Society Transactions, 2016, 44, 1185-1200. New structural insights into Golgi Reassembly and Stacking Protein (GRASP) in solution. Scientific Reports, 2016, 6, 29976.	9.5 1.6 1.6	0 8 323 24
1135 1136 1137 1138 1138	Lecture 24., 2016, , 387-407. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochemical Society Transactions, 2016, 44, 1185-1200. New structural insights into Golgi Reassembly and Stacking Protein (GRASP) in solution. Scientific Reports, 2016, 6, 29976. Bioinformatical parsing of folding-on-binding proteins reveals their compositional and evolutionary sequence design. Scientific Reports, 2016, 5, 18586.	9.5 1.6 1.6	0 8 323 24 9
1135 1136 1137 1138 1139 1140	Lecture 24., 2016, , 387-407. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochemical Society Transactions, 2016, 44, 1185-1200. New structural insights into Golgi Reassembly and Stacking Protein (GRASP) in solution. Scientific Reports, 2016, 6, 29976. Bioinformatical parsing of folding-on-binding proteins reveals their compositional and evolutionary sequence design. Scientific Reports, 2016, 5, 18586. Three reasons protein disorder analysis makes more sense in the light of collagen. Protein Science, 2016, 25, 1030-1036.	9.5 1.6 1.6 3.1	0 8 323 24 9
1135 1136 1137 1138 1139 1140	Lecture 24., 2016, , 387-407. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochemical Society Transactions, 2016, 44, 1185-1200. New structural insights into Golgi Reassembly and Stacking Protein (GRASP) in solution. Scientific Reports, 2016, 6, 29976. Bioinformatical parsing of folding-on-binding proteins reveals their compositional and evolutionary sequence design. Scientific Reports, 2016, 5, 18586. Three reasons protein disorder analysis makes more sense in the light of collagen. Protein Science, 2016, 25, 1030-1036. Disorder transitions and conformational diversity cooperatively modulate biological function in proteins. Protein Science, 2016, 25, 1138-1146.	9.5 1.6 1.6 3.1 3.1	0 8 323 24 9 7 7
 1135 1136 1137 1138 1139 1140 1141 1142 	Lecture 24., 2016, , 387-407. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochemical Society Transactions, 2016, 44, 1185-1200. New structural insights into Golgi Reassembly and Stacking Protein (GRASP) in solution. Scientific Reports, 2016, 6, 29976. Bioinformatical parsing of folding-on-binding proteins reveals their compositional and evolutionary sequence design. Scientific Reports, 2016, 5, 18586. Three reasons protein disorder analysis makes more sense in the light of collagen. Protein Science, 2016, 25, 1030-1036. Disorder transitions and conformational diversity cooperatively modulate biological function in proteins. Protein Science, 2016, 25, 1138-1146. Tandem amino acid repeats in the green anole (Anolis carolinensis) and other squamates may have a role in increasing genetic variability. BMC Genomics, 2016, 17, 109.	9.5 1.6 1.6 3.1 3.1 1.2	0 8 323 24 9 7 23 1

#	Article	IF	CITATIONS
1144	Virucidal activity of human α- and β-defensins against hepatitis C virus genotype 4. Molecular BioSystems, 2016, 12, 2785-2797.	2.9	10
1145	Predicting Conformational Disorder. Methods in Molecular Biology, 2016, 1415, 265-299.	0.4	10
1146	Disordered nucleiome: Abundance of intrinsic disorder in the DNA―and RNAâ€binding proteins in 1121 species from Eukaryota, Bacteria and Archaea. Proteomics, 2016, 16, 1486-1498.	1.3	92
1147	Interplay between binding affinity and kinetics in protein–protein interactions. Proteins: Structure, Function and Bioinformatics, 2016, 84, 920-933.	1.5	11
1148	Understanding the dynamics of monomeric, dimeric, and tetrameric αâ€synuclein structures in water. FEBS Open Bio, 2016, 6, 666-686.	1.0	14
1149	Intrinsically disordered proteins in PubMed: what can the tip of the iceberg tell us about what lies below?. RSC Advances, 2016, 6, 11513-11521.	1.7	15
1150	Paradoxes and wonders of intrinsic disorder: Complexity of simplicity. Intrinsically Disordered Proteins, 2016, 4, e1135015.	1.9	45
1151	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
1152	Coupled binding and folding of intrinsically disordered proteins: what can we learn from kinetics?. Current Opinion in Structural Biology, 2016, 36, 18-24.	2.6	78
1153	Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation. Molecular BioSystems, 2016, 12, 634-652.	2.9	56
1154	Characterization of $A\hat{l}^2$ Monomers through the Convergence of Ensemble Properties among Simulations with Multiple Force Fields. Journal of Physical Chemistry B, 2016, 120, 259-277.	1.2	81
1155	Molecular recognition features (MoRFs) in three domains of life. Molecular BioSystems, 2016, 12, 697-710.	2.9	141
1156	Evolution of disorder in Mediator complex and its functional relevance. Nucleic Acids Research, 2016, 44, 1591-1612.	6.5	55
1157	Are the curli proteins CsgE and CsgF intrinsically disordered?. Intrinsically Disordered Proteins, 2016, 4, e1130675.	1.9	6
1158	Intrinsic disorder and multiple phosphorylations constrain the evolution of the flightin N-terminal region. Journal of Proteomics, 2016, 135, 191-200.	1.2	11
1159	Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins. Journal of Biological Chemistry, 2016, 291, 6681-6688.	1.6	164
1160	Molecular Science of Fluctuations Toward Biological Functions. , 2016, , .		6
1161	Casein and casein micelle structures, functions and diversity in 20Âspecies. International Dairy Journal, 2016, 60, 2-13.	1.5	68

#	Article	IF	CITATIONS
1162	Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chemical Reviews, 2016, 116, 6424-6462.	23.0	161
1163	Spatiotemporal Fluctuations of Protein Folding in Living Cells. , 2016, , 205-219.		0
1164	A review of multi-domain and flexible molecular chaperones studies by small-angle X-ray scattering. Biophysical Reviews, 2016, 8, 107-120.	1.5	23
1165	(Intrinsically disordered) splice variants in the proteome: implications for novel drug discovery. Genes and Genomics, 2016, 38, 577-594.	0.5	10
1166	Transport Selectivity of Nuclear Pores, Phase Separation, and Membraneless Organelles. Trends in Biochemical Sciences, 2016, 41, 46-61.	3.7	343
1167	Prediction of Disordered Regions in Proteins Using Physicochemical Properties of Amino Acids. International Journal of Peptide Research and Therapeutics, 2016, 22, 31-36.	0.9	1
1168	Antimicrobial potentials and structural disorder of human and animal defensins. Cytokine and Growth Factor Reviews, 2016, 28, 95-111.	3.2	60
1169	Bioinformatics-based study on prokaryotic, archaeal and eukaryotic nucleic acid-binding proteins for identification of low-complexity and intrinsically disordered regions. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2016, 9, 2-16.	1.1	1
1170	Protein unfolding in crowded milieu: what crowding can do to a protein undergoing unfolding?. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2155-2170.	2.0	28
1171	Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chemical Reviews, 2016, 116, 835-877.	23.0	373
1172	Deciphering the cause of evolutionary variance within intrinsically disordered regions in human proteins. Journal of Biomolecular Structure and Dynamics, 2017, 35, 233-249.	2.0	9
1173	Abundance and functional roles of intrinsic disorder in the antimicrobial peptides of the NK-lysin family. Journal of Biomolecular Structure and Dynamics, 2017, 35, 836-856.	2.0	10
1174	Protein intrinsic disorder-based liquid–liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles. Advances in Colloid and Interface Science, 2017, 239, 97-114.	7.0	174
1175	Nucleoplasmin-like domain of FKBP39 from Drosophila melanogaster forms a tetramer with partly disordered tentacle-like C-terminal segments. Scientific Reports, 2017, 7, 40405.	1.6	7
1176	Insights into the mechanism of Apoptin's exquisitely selective anti-tumor action from atomic level characterization of its conformation and dynamics. Archives of Biochemistry and Biophysics, 2017, 614, 53-64.	1.4	3
1177	On the potential of using peculiarities of the protein intrinsic disorder distribution in mitochondrial cytochrome <i>b</i> to identify the source of animal meats. Intrinsically Disordered Proteins, 2017, 5, e1264350.	1.9	1
1178	Bioinformatics Approaches to the Structure and Function of Intrinsically Disordered Proteins. , 2017, , 167-203.		5
1179	The folding competence of HIV-1 Tat mediated by interaction with TAR RNA. RNA Biology, 2017, 14, 926-937.	1.5	27

#	Article	IF	CITATIONS
1180	The Dynamic Multisite Interactions between Two Intrinsically Disordered Proteins. Angewandte Chemie, 2017, 129, 7623-7627.	1.6	2
1181	Phase Separation and Single-Chain Compactness of Charged Disordered Proteins Are Strongly Correlated. Biophysical Journal, 2017, 112, 2043-2046.	0.2	192
1182	The Dynamic Multisite Interactions between Two Intrinsically Disordered Proteins. Angewandte Chemie - International Edition, 2017, 56, 7515-7519.	7.2	39
1183	Fly Fishing for Histones: Catch and Release by Histone Chaperone Intrinsically Disordered Regions and Acidic Stretches. Journal of Molecular Biology, 2017, 429, 2401-2426.	2.0	62
1184	Hydrophilic Acylated Surface Protein A (HASPA) of Leishmania donovani: Expression, Purification and Biophysico-Chemical Characterization. Protein Journal, 2017, 36, 343-351.	0.7	4
1185	Intrinsic disorder here, there, and everywhere, and nowhere to escape from it. Cellular and Molecular Life Sciences, 2017, 74, 3065-3067.	2.4	25
1186	Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions. Cellular and Molecular Life Sciences, 2017, 74, 3069-3090.	2.4	153
1187	Artificially Engineered Protein Polymers. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 549-575.	3.3	73
1188	Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chemical Society Reviews, 2017, 46, 4661-4708.	18.7	670
1189	Intrinsically Disordered Proteins as Important Players during Desiccation Stress of Soybean Radicles. Journal of Proteome Research, 2017, 16, 2393-2409.	1.8	13
1190	Trehalose induced conformational changes in the amyloid-β peptide. Pathology Research and Practice, 2017, 213, 643-648.	1.0	9
1191	Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins. Journal of Computer-Aided Molecular Design, 2017, 31, 453-466.	1.3	31
1192	Functions of intrinsic disorder in transmembrane proteins. Cellular and Molecular Life Sciences, 2017, 74, 3205-3224.	2.4	63
1193	Disulfide bonds and disorder in granulinâ€3: An unusual handshake between structural stability and plasticity. Protein Science, 2017, 26, 1759-1772.	3.1	18
1194	To be disordered or not to be disordered: is that still a question for proteins in the cell?. Cellular and Molecular Life Sciences, 2017, 74, 3185-3204.	2.4	33
1195	Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 1203-1215.	1.2	49
1196	Designing Smart Materials with Recombinant Proteins. Macromolecular Bioscience, 2017, 17, 1600554.	2.1	25
1197	The impact of binding of macrocyclic metal complexes on amyloid fibrillization of insulin and lysozyme. Journal of Molecular Recognition, 2017, 30, e2622.	1.1	20

#	Article	IF	CITATIONS
1198	Thermal compaction of the intrinsically disordered protein tau: entropic, structural, and hydrophobic factors. Physical Chemistry Chemical Physics, 2017, 19, 8435-8446.	1.3	33
1199	Simulations of disordered proteins and systems with conformational heterogeneity. Current Opinion in Structural Biology, 2017, 43, 95-103.	2.6	78
1200	Conformational heterogeneity in tails of DNA-binding proteins is augmented by proline containing repeats. Molecular BioSystems, 2017, 13, 2531-2544.	2.9	3
1201	Regulation of Surface Charge by Biological Osmolytes. Journal of the American Chemical Society, 2017, 139, 15013-15021.	6.6	21
1202	Sequence composition predicts immunoglobulin superfamily members that could share the intrinsically disordered properties of antibody CH1 domains. Scientific Reports, 2017, 7, 12404.	1.6	7
1203	The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll–Mr. Hyde― behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy, 2017, 13, 2115-2162.	4.3	48
1204	Foldability of a Natural De Novo Evolved Protein. Structure, 2017, 25, 1687-1696.e4.	1.6	44
1205	Paradoxes and wonders of intrinsic disorder: Stability of instability. Intrinsically Disordered Proteins, 2017, 5, e1327757.	1.9	31
1206	Flexibility of the "rigid―classics or rugged bottom of the folding funnels of myoglobin, lysozyme, RNase A, chymotrypsin, cytochrome <i>c</i> , and carboxypeptidase A1. Intrinsically Disordered Proteins, 2017, 5, e1355205.	1.9	2
1207	Diacylglycerol Acyltransferase 1 Is Regulated by Its N-Terminal Domain in Response to Allosteric Effectors. Plant Physiology, 2017, 175, 667-680.	2.3	43
1208	Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9882-9887.	3.3	67
1209	Defining the domains of Cia2 required for its essential function in vivo and in vitro. Metallomics, 2017, 9, 1645-1654.	1.0	6
1210	In search for globally disordered apo-parvalbumins: Case of parvalbumin β-1 from coho salmon. Cell Calcium, 2017, 67, 53-64.	1.1	12
1211	Structural properties of the intrinsically disordered, multiple calcium ion-binding otolith matrix macromolecule-64 (OMM-64). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1358-1371.	1.1	17
1212	Aggregation properties of a disordered protein are tunable by pH and depend on its net charge per residue. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2543-2550.	1.1	29
1213	Drug and dye binding induced folding of the intrinsically disordered antimicrobial peptide CM15. RSC Advances, 2017, 7, 41091-41097.	1.7	17
1214	The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1291-1303.	1.1	16
1215	Native Hydrophobic Binding Interactions at the Transition State for Association between the TAZ1 Domain of CBP and the Disordered TAD-STAT2 Are Not a Requirement. Biochemistry, 2017, 56, 4145-4153.	1.2	25

#	Article	IF	CITATIONS
1216	Comprehensive Proteomic Analysis of PGC7-Interacting Proteins. Journal of Proteome Research, 2017, 16, 3113-3123.	1.8	5
1217	The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner. Journal of Biological Chemistry, 2017, 292, 14680-14694.	1.6	23
1218	Floppy but not sloppy: Interaction mechanism of FG-nucleoporins and nuclear transport receptors. Seminars in Cell and Developmental Biology, 2017, 68, 34-41.	2.3	81
1219	A pH-dependent switch promotes β-synuclein fibril formation via glutamate residues. Journal of Biological Chemistry, 2017, 292, 16368-16379.	1.6	41
1220	Functionality of intrinsic disorder in tumor necrosis factorâ€Î± and its receptors. FEBS Journal, 2017, 284, 3589-3618.	2.2	13
1221	Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites. Scientific Reports, 2017, 7, 5755.	1.6	17
1222	Predictions of Backbone Dynamics in Intrinsically Disordered Proteins Using De Novo Fragment-Based Protein Structure Predictions. Scientific Reports, 2017, 7, 6999.	1.6	11
1223	Directly watching biomolecules in action by high-speed atomic force microscopy. Biophysical Reviews, 2017, 9, 421-429.	1.5	38
1224	An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations. Biophysical Journal, 2017, 113, 550-557.	0.2	110
1225	Features of reactive cysteines discovered through computation: from kinase inhibition to enrichment around protein degrons. Scientific Reports, 2017, 7, 16338.	1.6	19
1226	Disulfide driven folding for a conditionally disordered protein. Scientific Reports, 2017, 7, 16994.	1.6	14
1227	Allosteric Modulation of Grb2 Recruitment to the Intrinsically Disordered Scaffold Protein, LAT, by Remote Site Phosphorylation. Journal of the American Chemical Society, 2017, 139, 18009-18015.	6.6	27
1228	Transiently disordered tails accelerate folding of globular proteins. FEBS Letters, 2017, 591, 2180-2191.	1.3	3
1229	Some additional remarks to the solution of the protein folding puzzle. Physics of Life Reviews, 2017, 21, 77-79.	1.5	4
1230	Quantifying Protection in Disordered Proteins Using Millisecond Hydrogen Exchange-Mass Spectrometry and Peptic Reference Peptides. Biochemistry, 2017, 56, 4064-4072.	1.2	10
1231	Letter to the Editor: A response to Horne and Lucey (2017). Journal of Dairy Science, 2017, 100, 5121-5124.	1.4	6
1232	Analyzing the Folding and Binding Steps of an Intrinsically Disordered Protein by Protein Engineering. Biochemistry, 2017, 56, 3780-3786.	1.2	28
1233	Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions. Journal of Molecular Modeling, 2017, 23, 206.	0.8	33

#	Article	IF	CITATIONS
1234	Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder. Current Opinion in Structural Biology, 2017, 44, 18-30.	2.6	515
1235	Intrinsic disorder in proteins involved in amyotrophic lateral sclerosis. Cellular and Molecular Life Sciences, 2017, 74, 1297-1318.	2.4	42
1236	Prediction of Protein Secondary Structure. Methods in Molecular Biology, 2017, , .	0.4	9
1237	How to Predict Disorder in a Protein of Interest. Methods in Molecular Biology, 2017, 1484, 137-158.	0.4	14
1238	Erythropoietin and co.: intrinsic structure and functional disorder. Molecular BioSystems, 2017, 13, 56-72.	2.9	21
1239	Challenging drug target for Parkinson's disease: Pathological complex of the chameleon TPPP/p25 and alpha-synuclein proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 310-323.	1.8	23
1240	Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins. Journal of Molecular Liquids, 2017, 228, 176-193.	2.3	103
1241	The Proline/Clycine-Rich Region of the Biofilm Adhesion Protein Aap Forms an Extended Stalk that Resists Compaction. Journal of Molecular Biology, 2017, 429, 261-279.	2.0	26
1242	Structures and Short Linear Motif of Disordered Transcription Factor Regions Provide Clues to the Interactome of the Cellular Hub Protein Radical-induced Cell Death1. Journal of Biological Chemistry, 2017, 292, 512-527.	1.6	55
1243	Charge pattern matching as a â€~fuzzy' mode of molecular recognition for the functional phase separations of intrinsically disordered proteins. New Journal of Physics, 2017, 19, 115003.	1.2	96
1244	Structural disorder and induced folding within two cereal, ABA stress and ripening (ASR) proteins. Scientific Reports, 2017, 7, 15544.	1.6	47
1245	Potential Roles of Intrinsic Disorder in Maternal-Effect Proteins Involved in the Maintenance of DNA Methylation. International Journal of Molecular Sciences, 2017, 18, 1898.	1.8	9
1246	A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. International Journal of Molecular Sciences, 2017, 18, 2010.	1.8	37
1247	Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules, 2017, 22, 2027.	1.7	49
1248	Overview of Autophagy. , 2017, , 1-122.		1
1249	Overview of Autophagy. , 2017, , 3-90.		1
1250	The metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil. PLoS ONE, 2017, 12, e0172507.	1.1	6
1251	Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1. PLoS Computational Biology, 2017, 13, e1005468.	1.5	32

#	Article	IF	CITATIONS
1252	Quantiprot - a Python package for quantitative analysis of protein sequences. BMC Bioinformatics, 2017, 18, 339.	1.2	8
1253	Synuclein misfolding as a therapeutic target. , 2017, , 21-47.		0
1254	Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. International Journal of Molecular Sciences, 2017, 18, 2761.	1.8	85
1255	Cancer/Testis Antigens: "Smart―Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers. International Journal of Molecular Sciences, 2017, 18, 740.	1.8	27
1256	On the Regularities of the Polar Profiles of Proteins Related to Ebola Virus Infection and their Functional Domains. Cell Biochemistry and Biophysics, 2018, 76, 411-431.	0.9	4
1257	FTIR fingerprinting of structural changes of milk proteins induced by heat treatment, deamidation and dephosphorylation. Food Hydrocolloids, 2018, 80, 160-167.	5.6	57
1258	Thermophilic Adaptation in Prokaryotes Is Constrained by Metabolic Costs of Proteostasis. Molecular Biology and Evolution, 2018, 35, 211-224.	3.5	15
1259	A subset of functional adaptation mutations alter propensity for α-helical conformation in the intrinsically disordered glucocorticoid receptor tau1core activation domain. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1452-1461.	1.1	8
1260	Intrinsically Disordered Proteins Link Alternative Splicing and Post-translational Modifications to Complex Cell Signaling and Regulation. Journal of Molecular Biology, 2018, 430, 2342-2359.	2.0	79
1261	Deciphering the dark proteome of Chikungunya virus. Scientific Reports, 2018, 8, 5822.	1.6	37
1262	Promiscuous and Selective: How Intrinsically Disordered BH3 Proteins Interact with Their Pro-survival Partner MCL-1. Journal of Molecular Biology, 2018, 430, 2468-2477.	2.0	16
1263	Arrestins: structural disorder creates rich functionality. Protein and Cell, 2018, 9, 986-1003.	4.8	23
1264	Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins. Accounts of Chemical Research, 2018, 51, 745-752.	7.6	39
1265	Effect of pH on Aβ ₄₂ Monomer and Fibrilâ€like Oligomers—Decoding in Silico of the Roles of p <i>K</i> Values of Charged Residues. ChemPhysChem, 2018, 19, 1103-1116.	1.0	13
1266	Disorder-to-order transitions in the molten globule-like Golgi Reassembly and Stacking Protein. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 855-865.	1.1	18
1267	Large-scale aggregation analysis of eukaryotic proteins reveals an involvement of intrinsically disordered regions in protein folding. Scientific Reports, 2018, 8, 678.	1.6	26
1268	IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Current Opinion in Structural Biology, 2018, 49, 36-43.	2.6	98
1269	Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chemical Reviews, 2018, 118, 1691-1741.	23.0	577

#	Article	IF	CITATIONS
1270	Predictive Model of Linear Antimicrobial Peptides Active against Gram-Negative Bacteria. Journal of Chemical Information and Modeling, 2018, 58, 1141-1151.	2.5	57
1271	Prosystemin, a prohormone that modulates plant defense barriers, is an intrinsically disordered protein. Protein Science, 2018, 27, 620-632.	3.1	16
1272	ɑ-Synuclein strains and seeding in Parkinson's disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences. Cell and Tissue Research, 2018, 373, 195-212.	1.5	93
1273	Modeling the Early Stages of Phase Separation in Disordered Elastin-like Proteins. Biophysical Journal, 2018, 114, 1563-1578.	0.2	16
1274	Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX. Cellular and Molecular Life Sciences, 2018, 75, 3283-3296.	2.4	20
1275	An Extended Guinier Analysis for Intrinsically Disordered Proteins. Journal of Molecular Biology, 2018, 430, 2540-2553.	2.0	64
1276	Looking at the Disordered Proteins through the Computational Microscope. ACS Central Science, 2018, 4, 534-542.	5.3	46
1277	Protein plasticity driven by disorder and collapse governs the heterogeneous binding of CytR to DNA. Nucleic Acids Research, 2018, 46, 4044-4053.	6.5	19
1278	Characterization of the structural ensembles of p53 TAD2 by molecular dynamics simulations with different force fields. Physical Chemistry Chemical Physics, 2018, 20, 8676-8684.	1.3	24
1279	50+ Years of Protein Folding. Biochemistry (Moscow), 2018, 83, S3-S18.	0.7	31
1280	The Molten Globule Concept: 45 Years Later. Biochemistry (Moscow), 2018, 83, S33-S47.	0.7	26
1281	Exploring the sequence–structure–function relationship for the intrinsically disordered βγ-crystallin Hahellin. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1171-1181.	2.0	4
1282	Intrinsically Disordered Regions in Serum Albumin: What Are They For?. Cell Biochemistry and Biophysics, 2018, 76, 39-57.	0.9	23
1283	Dissecting physical structure of calreticulin, an intrinsically disordered Ca ²⁺ -buffering chaperone from endoplasmic reticulum. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1617-1636.	2.0	14
1284	Isolated Potato Virus A coat protein possesses unusual properties and forms different short virus-like particles. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1728-1738.	2.0	10
1285	Intrinsic Disorder, Protein–Protein Interactions, and Disease. Advances in Protein Chemistry and Structural Biology, 2018, 110, 85-121.	1.0	91
1286	Intrinsically Disordered Proteome of Human Membraneâ€Less Organelles. Proteomics, 2018, 18, e1700193.	1.3	151
1287	Potential functions of LEA proteins from the brine shrimp <i>Artemia franciscana</i> – anhydrobiosis meets bioinformatics. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3291-3309.	2.0	23

#	Article	IF	CITATIONS
1288	Role of Sporadic Parkinson Disease Associated Mutations A18T and A29S in Enhanced α-Synuclein Fibrillation and Cytotoxicity. ACS Chemical Neuroscience, 2018, 9, 230-240.	1.7	14
1289	A comprehensive <i>in silico</i> analysis of huntingtin and its interactome. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3155-3171.	2.0	6
1290	<i>In silico</i> evaluation of the resistance of the T790M variant of epidermal growth factor receptor kinase to cancer drug Erlotinib. Journal of Biomolecular Structure and Dynamics, 2018, 36, 4209-4219.	2.0	11
1291	pH-Induced Folding of the Caspase-Cleaved Par-4 Tumor Suppressor: Evidence of Structure Outside of the Coiled Coil Domain. Biomolecules, 2018, 8, 162.	1.8	9
1292	Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Briefings in Functional Genomics, 2020, 19, 60-68.	1.3	14
1293	Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide. Journal of Physical Chemistry B, 2018, 122, 11906-11921.	1.2	10
1294	Diffusion-limited association of disordered protein by non-native electrostatic interactions. Nature Communications, 2018, 9, 4707.	5.8	45
1295	Intrinsic disorder in the regulatory N-terminal domain of diacylglycerol acyltransferase 1 from Brassica napus. Scientific Reports, 2018, 8, 16665.	1.6	10
1296	Disorder in Proteins. , 2018, , .		0
1297	Structural Studies of Macromolecules in Solution using Small Angle X-Ray Scattering. Journal of Visualized Experiments, 2018, , .	0.2	4
1298	Physicochemical Aspects of the Biological Functions of Trehalose and Group 3 LEA Proteins as Desiccation Protectants. Advances in Experimental Medicine and Biology, 2018, 1081, 271-286.	0.8	9
1299	Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nature Communications, 2018, 9, 4152.	5.8	102
1300	Dynamics of partially folded and unfolded proteins investigated with quasielastic neutron spectroscopy. AIP Conference Proceedings, 2018, , .	0.3	0
1301	Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands. Methods in Enzymology, 2018, 611, 703-734.	0.4	14
1302	Effect of an Intrinsically Disordered Plant Stress Protein on the Properties of Water. Biophysical Journal, 2018, 115, 1696-1706.	0.2	23
1303	Bringing Darkness to Light: Intrinsic Disorder as a Means to Dig into the Dark Proteome. Proteomics, 2018, 18, e1800352.	1.3	3
1304	Formation of Heterotypic Amyloids: αâ€ S ynuclein in Coâ€Aggregation. Proteomics, 2018, 18, e1800059.	1.3	8
1305	Intrinsically Disordered Proteins: The Dark Horse of the Dark Proteome. Proteomics, 2018, 18, e1800061.	1.3	66

#	Article	IF	CITATIONS
1306	Zn2+-binding in the glutamate-rich region of the intrinsically disordered protein prothymosin-alpha. Journal of Biological Inorganic Chemistry, 2018, 23, 1255-1263.	1.1	4
1307	Biased Distribution of Amino Acid in Intrinsically Disordered Proteins and Regions. , 2018, , .		0
1308	Flexibility of the Sec13/31 cage is influenced by the Sec31 C-terminal disordered domain. Journal of Structural Biology, 2018, 204, 250-260.	1.3	8
1309	Born This Way: Using Intrinsic Disorder to Map the Connections between SLITRKs, TSHR, and Male Sexual Orientation. Proteomics, 2018, 18, e1800307.	1.3	3
1310	The transition state structure for binding between TAZ1 of CBP and the disordered Hif-1α CAD. Scientific Reports, 2018, 8, 7872.	1.6	28
1311	Pentraxins CRP-I and CRP-II are post-translationally deiminated and differ in tissue specificity in cod (Gadus morhua L.) ontogeny. Developmental and Comparative Immunology, 2018, 87, 1-11.	1.0	32
1312	A Low Computational Complexity Scheme for the Prediction of Intrinsically Disordered Protein Regions. Mathematical Problems in Engineering, 2018, 2018, 1-7.	0.6	9
1313	Intrinsically disordered N-terminal domain of the Helicoverpa armigera Ultraspiracle stabilizes the dimeric form via a scorpion-like structure. Journal of Steroid Biochemistry and Molecular Biology, 2018, 183, 167-183.	1.2	5
1314	Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Cellular and Molecular Life Sciences, 2018, 75, 3907-3929.	2.4	71
1315	Characterization of intrinsically disordered proteins and their dynamic complexes: From in vitro to cell-like environments. Progress in Nuclear Magnetic Resonance Spectroscopy, 2018, 109, 79-100.	3.9	67
1316	Electrostatic control of calcineurin's intrinsically-disordered regulatory domain binding to calmodulin. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2651-2659.	1.1	9
1317	Stabilization of Mineral Precursors by Intrinsically Disordered Proteins. Advanced Functional Materials, 2018, 28, 1802063.	7.8	24
1318	Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Frontiers in Genetics, 2018, 9, 158.	1.1	190
1319	IDPpi: Protein-Protein Interaction Analyses of Human Intrinsically Disordered Proteins. Scientific Reports, 2018, 8, 10563.	1.6	18
1320	Copy Number Variation in SOX6 Contributes to Chicken Muscle Development. Genes, 2018, 9, 42.	1.0	23
1321	The Proof Is in the <i>Pidan</i> : Generalizing Proteins as Patchy Particles. ACS Central Science, 2018, 4, 840-853.	5.3	21
1322	The Cyanobacterial Ribosomal-Associated Protein LrtA from Synechocystis sp. PCC 6803 Is an Oligomeric Protein in Solution with Chameleonic Sequence Properties. International Journal of Molecular Sciences, 2018, 19, 1857.	1.8	5
1323	Anti-Correlation between the Dynamics of the Active Site Loop and C-Terminal Tail in Relation to the Homodimer Asymmetry of the Mouse Erythroid 5-Aminolevulinate Synthase. International Journal of Molecular Sciences, 2018, 19, 1899.	1.8	7
#	Article	IF	CITATIONS
------	--	-----	-----------
1324	Prediction of Disordered Regions and Their Roles in the Anti-Pathogenic and Immunomodulatory Functions of Butyrophilins. Molecules, 2018, 23, 328.	1.7	8
1325	Conformational response to charge clustering in synthetic intrinsically disordered proteins. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2204-2214.	1.1	16
1326	Hydration effects on Leu's polyproline II population in AcLXPNH2. Chemical Communications, 2018, 54, 5764-5767.	2.2	3
1327	Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave. BMC Genomics, 2018, 19, 588.	1.2	64
1328	Role of Intrinsic Disorder in Animal Desiccation Tolerance. Proteomics, 2018, 18, e1800067.	1.3	34
1329	Understanding the interactability of chikungunya virus proteins <i>via</i> molecular recognition feature analysis. RSC Advances, 2018, 8, 27293-27303.	1.7	23
1330	PAGE4 and Conformational Switching: Insights from Molecular Dynamics Simulations and Implications for Prostate Cancer. Journal of Molecular Biology, 2018, 430, 2422-2438.	2.0	36
1331	The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. International Journal of Biological Macromolecules, 2018, 117, 1224-1251.	3.6	45
1332	Entropic Control of an Excited Folded-Like Conformation in a Disordered Protein Ensemble. Journal of Molecular Biology, 2018, 430, 2688-2694.	2.0	14
1333	Role of Liquid–Liquid Phase Separation in Assembly of Elastin and Other Extracellular Matrix Proteins. Journal of Molecular Biology, 2018, 430, 4741-4753.	2.0	86
1334	Conformational Characterization of Intrinsically Disordered Proteins and Its Biological Significance. , 2018, , 381-399.		5
1335	Composition-related structural transition of random peptides: insight into the boundary between intrinsically disordered proteins and folded proteins. Journal of Biomolecular Structure and Dynamics, 2019, 37, 1956-1967.	2.0	4
1336	Protein Three-Dimensional Structure Prediction. , 2019, , 497-511.		4
1337	Genome-wide identification, expression analysis and functional study of the GRAS gene family in Tartary buckwheat (Fagopyrum tataricum). BMC Plant Biology, 2019, 19, 342.	1.6	72
1338	Affinity versus specificity in coupled binding and folding reactions. Protein Engineering, Design and Selection, 2019, 32, 355-357.	1.0	9
1339	Multi-functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder-based proteoforms. Cellular and Molecular Life Sciences, 2019, 76, 4461-4492.	2.4	47
1340	Intrinsically disordered proteins and structured proteins with intrinsically disordered regions have different functional roles in the cell. PLoS ONE, 2019, 14, e0217889.	1.1	84
1341	The role of water in amyloid aggregation kinetics. Current Opinion in Structural Biology, 2019, 58, 115-123.	2.6	27

#	Article	IF	CITATIONS
1342	Intrinsically disordered domains: Sequence âž" disorder âž" function relationships. Protein Science, 2019, 28, 1652-1663.	3.1	31
1343	Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity – an X-ray and light scattering study. Physical Chemistry Chemical Physics, 2019, 21, 18727-18740.	1.3	10
1344	Sequence characteristics responsible for proteinâ€protein interactions in the intrinsically disordered regions of caseins, amelogenins, and small heatâ€shock proteins. Biopolymers, 2019, 110, e23319.	1.2	23
1345	Interplay of Protein Disorder in Retinoic Acid Receptor Heterodimer and Its Corepressor Regulates Gene Expression. Structure, 2019, 27, 1270-1285.e6.	1.6	50
1346	Evaluation of Properties and Structural Transitions of Poly-L-lysine: Effects of pH and Temperature. Journal of Macromolecular Science - Physics, 2019, 58, 673-688.	0.4	11
1347	bHLH–PAS Proteins: Their Structure and Intrinsic Disorder. International Journal of Molecular Sciences, 2019, 20, 3653.	1.8	27
1348	Stabilization of Intrinsically Disordered DKK2 Protein by Fusion to RNA-Binding Domain. International Journal of Molecular Sciences, 2019, 20, 2847.	1.8	5
1349	Introduction to intrinsically disordered proteins and regions. , 2019, , 1-34.		17
1350	Single-molecule fluorescence studies of IDPs and IDRs. , 2019, , 93-136.		0
1351	Global Dynamics in Protein Disorder during Maize Seed Development. Genes, 2019, 10, 502.	1.0	4
1352	Sequence specificity despite intrinsic disorder: How a disease-associated Val/Met polymorphism rearranges tertiary interactions in a long disordered protein. PLoS Computational Biology, 2019, 15, e1007390.	1.5	13
1353	Analysis of Heterodimeric "Mutual Synergistic Folding―Complexes. International Journal of Molecular Sciences, 2019, 20, 5136.	1.8	7
1354	αâ€Synuclein Spontaneously Adopts Stable and Reversible αâ€Helical Structure in Waterâ€Less Environment. ChemPhysChem, 2019, 20, 2783-2790.	1.0	4
1355	Workingâ€age people with disability and labour force participation: Geographic variations in Australia. Australian Journal of Social Issues, 2019, 54, 323-340.	1.7	5
1356	Zika and Flavivirus Shell Disorder: Virulence and Fetal Morbidity. Biomolecules, 2019, 9, 710.	1.8	22
1357	Calibration between trigger and color: Neutralization of a genetically encoded coulombic switch and dynamic arrest precisely tune reflectin assembly. Journal of Biological Chemistry, 2019, 294, 16804-16815.	1.6	25
1358	Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development. International Journal of Molecular Sciences, 2019, 20, 5260.	1.8	18
1359	The Significance of the Intrinsically Disordered Regions for the Functions of the bHLH Transcription Factors. International Journal of Molecular Sciences, 2019, 20, 5306.	1.8	29

#	Article	IF	CITATIONS
1360	Cementum protein 1â€derived peptide (CEMP 1â€p1) modulates hydroxyapatite crystal formation in vitro. Journal of Peptide Science, 2019, 25, e3211.	0.8	6
1361	Identifying molecular recognition features in intrinsically disordered regions of proteins by transfer learning. Bioinformatics, 2020, 36, 1107-1113.	1.8	37
1362	Sequential, Structural and FunctionalÂProperties of Protein Complexes Are Defined by How Folding and Binding Intertwine. Journal of Molecular Biology, 2019, 431, 4408-4428.	2.0	12
1363	Supramolecular Fuzziness of Intracellular Liquid Droplets: Liquid–Liquid Phase Transitions, Membrane-Less Organelles, and Intrinsic Disorder. Molecules, 2019, 24, 3265.	1.7	30
1364	Structural Plasticity of Intrinsically Disordered LEA Proteins from Xerophyta schlechteri Provides Protection In Vitro and In Vivo. Frontiers in Plant Science, 2019, 10, 1272.	1.7	23
1365	Role of protein conformation and weak interactions on Î ³ -gliadin liquid-liquid phase separation. Scientific Reports, 2019, 9, 13391.	1.6	18
1366	Protein Abundance Biases the Amino Acid Composition of Disordered Regions to Minimize Non-functional Interactions. Journal of Molecular Biology, 2019, 431, 4978-4992.	2.0	31
1367	Generation of the configurational ensemble of an intrinsically disordered protein from unbiased molecular dynamics simulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20446-20452.	3.3	88
1368	Intrinsically Disordered Proteins and Their "Mysterious―(Meta)Physics. Frontiers in Physics, 2019, 7, .	1.0	352
1369	A Shift in Aggregation Avoidance Strategy Marks a Long-Term Direction to Protein Evolution. Genetics, 2019, 211, 1345-1355.	1.2	21
1370	Thermodynamically driven assemblies and liquid–liquid phase separations in biology. Soft Matter, 2019, 15, 1135-1154.	1.2	77
1371	The transcription factor YY 2 has less momentous properties of an intrinsically disordered protein than its paralog YY 1. FEBS Letters, 2019, 593, 1787-1798.	1.3	7
1372	The microtubule skeleton and the evolution of neuronal complexity in vertebrates. Biological Chemistry, 2019, 400, 1163-1179.	1.2	19
1373	Functions of intrinsic disorder in proteins involved in DNA demethylation during pre-implantation embryonic development. International Journal of Biological Macromolecules, 2019, 136, 962-979.	3.6	2
1374	The Functionally Important N-Terminal Half of Fission Yeast Mid1p Anillin Is Intrinsically Disordered and Undergoes Phase Separation. Biochemistry, 2019, 58, 3031-3041.	1.2	21
1375	De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative Bacteria. Pharmaceuticals, 2019, 12, 82.	1.7	42
1376	Intrinsic Disorder-Based Emergence in Cellular Biology: Physiological and Pathological Liquid-Liquid Phase Transitions in Cells. Polymers, 2019, 11, 990.	2.0	54
1377	Ferroptosis – An iron- and disorder-dependent programmed cell death. International Journal of Biological Macromolecules, 2019, 135, 1052-1069.	3.6	38

#	Article	IF	CITATIONS
1378	Tetramer formation by the caspaseâ€activated fragment of the Parâ€4 tumor suppressor. FEBS Journal, 2019, 286, 4060-4073.	2.2	6
1379	The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins. Journal of Membrane Biology, 2019, 252, 273-292.	1.0	14
1380	Self-assembly in elastin-like recombinamers: a mechanism to mimic natural complexity. Materials Today Bio, 2019, 2, 100007.	2.6	30
1381	Protein intrinsic disorder and structure-function continuum. Progress in Molecular Biology and Translational Science, 2019, 166, 1-17.	0.9	78
1382	Translational diffusion of unfolded and intrinsically disordered proteins. Progress in Molecular Biology and Translational Science, 2019, 166, 85-108.	0.9	7
1383	The dark proteome of cancer: Intrinsic disorderedness and functionality of HIF- $1\hat{1}\pm$ along with its interacting proteins. Progress in Molecular Biology and Translational Science, 2019, 166, 371-403.	0.9	25
1384	Bacterial functional amyloids: Order from disorder. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 954-960.	1.1	36
1385	Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Frontiers in Pharmacology, 2019, 10, 324.	1.6	50
1386	HIV Vaccine Mystery and Viral Shell Disorder. Biomolecules, 2019, 9, 178.	1.8	36
1387	Stochasticity of Biological Soft Matter: Emerging Concepts in Intrinsically Disordered Proteins and Biological Phase Separation. Trends in Biochemical Sciences, 2019, 44, 716-728.	3.7	94
1388	Structure of proteins: Evolution with unsolved mysteries. Progress in Biophysics and Molecular Biology, 2019, 149, 160-172.	1.4	8
1389	Engineering Order and Cooperativity in a Disordered Protein. Biochemistry, 2019, 58, 2389-2397.	1.2	10
1390	Molecular Origin of the Stability Difference in Four Shark IgNAR Constant Domains. Biophysical Journal, 2019, 116, 1907-1917.	0.2	6
1391	The <scp>GRASP</scp> domain in golgi reassembly and stacking proteins: differences and similarities between lower and higher Eukaryotes. FEBS Journal, 2019, 286, 3340-3358.	2.2	16
1392	Commonly used FRET fluorophores promote collapse of an otherwise disordered protein. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8889-8894.	3.3	43
1393	Modulation of Disordered Proteins with a Focus on Neurodegenerative Diseases and Other Pathologies. International Journal of Molecular Sciences, 2019, 20, 1322.	1.8	45
1394	Extreme Fuzziness: Direct Interactions between Two IDPs. Biomolecules, 2019, 9, 81.	1.8	20
1395	ls it possible for short peptide composed of positively- and negatively-charged "hydrophilic―amino acid residue-clusters to form metastable "hydrophobic―packing?. Physical Chemistry Chemical Physics, 2019, 21, 9683-9693.	1.3	5

#	Article	IF	CITATIONS
1396	Troubleshooting Guide to Expressing Intrinsically Disordered Proteins for Use in NMR Experiments. Frontiers in Molecular Biosciences, 2019, 5, 118.	1.6	14
1397	Complete Phase Diagram for Liquid–Liquid Phase Separation of Intrinsically Disordered Proteins. Journal of Physical Chemistry Letters, 2019, 10, 1644-1652.	2.1	204
1398	An Intrinsic Hydrophobicity Scale for Amino Acids and Its Application to Fluorinated Compounds. Angewandte Chemie - International Edition, 2019, 58, 8216-8220.	7.2	30
1399	Eine intrinsische Hydrophobieskala für Aminosären und ihre Anwendung auf fluorierte Verbindungen. Angewandte Chemie, 2019, 131, 8300-8304.	1.6	2
1400	Intrinsic disorder associated with 14-3-3 proteins and their partners. Progress in Molecular Biology and Translational Science, 2019, 166, 19-61.	0.9	47
1401	Molecular design of self-coacervation phenomena in block polyampholytes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8224-8232.	3.3	88
1402	Position-, disorder-, and salt-dependent diffusion in binding-coupled-folding of intrinsically disordered proteins. Physical Chemistry Chemical Physics, 2019, 21, 5634-5645.	1.3	18
1403	On the Need to Develop Guidelines for Characterizing and Reporting Intrinsic Disorder in Proteins. Proteomics, 2019, 19, 1800415.	1.3	7
1404	Misprediction of Structural Disorder in Halophiles. Molecules, 2019, 24, 479.	1.7	5
1405	Evolutionary Approach of Intrinsically Disordered CIP/KIP Proteins. Scientific Reports, 2019, 9, 1575.	1.6	16
1406	Functional and dysfunctional folding, association and aggregation of caseins. Advances in Protein Chemistry and Structural Biology, 2019, 118, 163-216.	1.0	22
1407	Evolutionary conservation of the intrinsic disorder-based Radical-Induced Cell Death1 hub interactome. Scientific Reports, 2019, 9, 18927.	1.6	19
1408	Structural Features of Tight-Junction Proteins. International Journal of Molecular Sciences, 2019, 20, 6020.	1.8	98
1409	Binding of LcrV protein from Yersinia pestis to human T-cells induces apoptosis, which is completely blocked by specific antibodies. International Journal of Biological Macromolecules, 2019, 122, 1062-1070.	3.6	5
1410	Bioinformatical Approaches to Unstructured/Disordered Proteins and Their Complexes. Springer Series on Bio- and Neurosystems, 2019, , 561-596.	0.2	0
1411	Protein Dynamics Simulations Using Coarse-Grained Models. Springer Series on Bio- and Neurosystems, 2019, , 61-87.	0.2	4
1412	Sequence and structural analysis of fibronectinâ€binding protein reveals importance of multiple intrinsic disordered tandem repeats. Journal of Molecular Recognition, 2019, 32, e2768.	1.1	5
1413	Structural disorder in the proteome and interactome of Alkhurma virus (ALKV). Cellular and Molecular Life Sciences, 2019, 76, 577-608.	2.4	17

#	Article	IF	CITATIONS
1414	Increased sequence hydrophobicity reduces conformational specificity: A mutational case study of the Arc repressor protein. Proteins: Structure, Function and Bioinformatics, 2019, 87, 23-33.	1.5	3
1415	Folding of poly-amino acids and intrinsically disordered proteins in overcrowded milieu induced by pH change. International Journal of Biological Macromolecules, 2019, 125, 244-255.	3.6	11
1416	Targeting intrinsically disordered proteins at the edge of chaos. Drug Discovery Today, 2019, 24, 217-227.	3.2	98
1417	The intrinsically disordered C-terminal F domain of the ecdysteroid receptor from Aedes aegypti exhibits metal ion-binding ability. Journal of Steroid Biochemistry and Molecular Biology, 2019, 186, 42-55.	1.2	7
1418	A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Briefings in Bioinformatics, 2019, 20, 330-346.	3.2	129
1419	Codon selection reduces GC content bias in nucleic acids encoding for intrinsically disordered proteins. Cellular and Molecular Life Sciences, 2020, 77, 149-160.	2.4	8
1420	Ligand interactions and the protein order-disorder energetic continuum. Seminars in Cell and Developmental Biology, 2020, 99, 78-85.	2.3	4
1421	PhaSepDB: a database of liquid–liquid phase separation related proteins. Nucleic Acids Research, 2020, 48, D354-D359.	6.5	157
1422	Controlling Structure and Dimensions of a Disordered Protein via Mutations. Biochemistry, 2020, 59, 171-174.	1.2	4
1423	Universal and simple method for facile fabrication of sustainable high internal phase emulsions solely using meat protein particles with various pH values. Food Hydrocolloids, 2020, 100, 105444.	5.6	40
1424	Structural and functional analysis of "non-smelly―proteins. Cellular and Molecular Life Sciences, 2020, 77, 2423-2440.	2.4	16
1425	DISOselect: Disorder predictor selection at the protein level. Protein Science, 2020, 29, 184-200.	3.1	10
1426	Sequence-dependent self-coacervation in high charge-density polyampholytes. Molecular Systems Design and Engineering, 2020, 5, 632-644.	1.7	72
1427	βâ€amyloid model core peptides: Effects of hydrophobes and disulfides. Protein Science, 2020, 29, 527-541.	3.1	5
1428	Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. International Journal of Biological Macromolecules, 2020, 145, 904-913.	3.6	17
1429	Accuracy of protein-level disorder predictions. Briefings in Bioinformatics, 2020, 21, 1509-1522.	3.2	36
1430	The dark side of Alzheimer's disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cellular and Molecular Life Sciences, 2020, 77, 4163-4208.	2.4	23
1431	Folding perspectives of an intrinsically disordered transactivation domain and its single mutation breaking the folding propensity. International Journal of Biological Macromolecules, 2020, 155, 1359-1372.	3.6	7

#	Article	IF	CITATIONS
1432	Emerging consensus on the collapse of unfolded and intrinsically disordered proteins in water. Current Opinion in Structural Biology, 2020, 60, 27-38.	2.6	26
1433	Evolutionary Forces and Codon Bias in Different Flavors of Intrinsic Disorder in the Human Proteome. Journal of Molecular Evolution, 2020, 88, 164-178.	0.8	26
1434	Myelin basic protein (MBP) charge variants show different sphingomyelin-mediated interactions with myelin-like lipid monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183077.	1.4	12
1435	Expanding the understanding of the heterogeneous nature of melanoma with bioinformatics and disorder-based proteomics. International Journal of Biological Macromolecules, 2020, 150, 1281-1293.	3.6	4
1436	Computational Disorder Analysis in Ethylene Response Factors Uncovers Binding Motifs Critical to Their Diverse Functions. International Journal of Molecular Sciences, 2020, 21, 74.	1.8	7
1437	Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses, 2020, 12, 1179.	1.5	34
1438	Proteins in Calcium Phosphates Biomineralization. , 2020, , .		3
1439	A Novel Strategy for the Development of Vaccines for SARS-CoV-2 (COVID-19) and Other Viruses Using Al and Viral Shell Disorder. Journal of Proteome Research, 2020, 19, 4355-4363.	1.8	14
1440	Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid–liquid phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18540-18549.	3.3	150
1441	Short Disordered Epitope of CRTAM Ig-Like V Domain as a Potential Target for Blocking Antibodies. International Journal of Molecular Sciences, 2020, 21, 8798.	1.8	0
1442	Yersinia pestis Plasminogen Activator. Biomolecules, 2020, 10, 1554.	1.8	12
1443	Liquid–Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus–Host Interactions. International Journal of Molecular Sciences, 2020, 21, 9045.	1.8	110
1444	Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases. Molecules, 2020, 25, 5338.	1.7	6
1445	Roles, Characteristics, and Analysis of Intrinsically Disordered Proteins: A Minireview. Life, 2020, 10, 320.	1.1	11
1446	The Anti-Inflammatory Protein TNIP1 Is Intrinsically Disordered with Structural Flexibility Contributed by Its AHD1-UBAN Domain. Biomolecules, 2020, 10, 1531.	1.8	4
1447	Loops linking secondary structure elements affect the stability of the molten globule intermediate state of apomyoglobin. FEBS Letters, 2020, 594, 3293-3304.	1.3	4
1448	Functional 3D architecture in an intrinsically disordered E3 ligase domain facilitates ubiquitin transfer. Nature Communications, 2020, 11, 3807.	5.8	11
1449	Diversity and genome mapping assessment of disordered and functional domains in trypanosomatids. Journal of Proteomics, 2020, 227, 103919.	1.2	2

#	Article	IF	CITATIONS
1450	Extracellular vesicles and post-translational protein deimination signatures in haemolymph of the American lobster (Homarus americanus). Fish and Shellfish Immunology, 2020, 106, 79-102.	1.6	13
1451	Shell Disorder Analysis Suggests That Pangolins Offered a Window for a Silent Spread of an Attenuated SARS-CoV-2 Precursor among Humans. Journal of Proteome Research, 2020, 19, 4543-4552.	1.8	23
1452	Disorder and cysteines in proteins: A design for orchestration of conformational see-saw and modulatory functions. Progress in Molecular Biology and Translational Science, 2020, 174, 331-373.	0.9	22
1453	The Dynamism of Intrinsically Disordered Proteins: Binding-Induced Folding, Amyloid Formation, and Phase Separation. Journal of Physical Chemistry B, 2020, 124, 11541-11560.	1.2	31
1454	Fast kinetics of environmentally induced α-synuclein aggregation mediated by structural alteration in NAC region and result in structure dependent cytotoxicity. Scientific Reports, 2020, 10, 18412.	1.6	18
1455	The exquisite structural biophysics of the Golgi Reassembly and Stacking Proteins. International Journal of Biological Macromolecules, 2020, 164, 3632-3644.	3.6	11
1456	DispHred: A Server to Predict pH-Dependent Order–Disorder Transitions in Intrinsically Disordered Proteins. International Journal of Molecular Sciences, 2020, 21, 5814.	1.8	15
1457	Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET. Journal of the American Chemical Society, 2020, 142, 15697-15710.	6.6	120
1458	Structural Biology of Calcium Phosphate Nanoclusters Sequestered by Phosphoproteins. Crystals, 2020, 10, 755.	1.0	27
1459	The Pathophysiological Significance of Fibulin-3. Biomolecules, 2020, 10, 1294.	1.8	29
1460	Zooming into the Dark Side of Human Annexin-S100 Complexes: Dynamic Alliance of Flexible Partners. International Journal of Molecular Sciences, 2020, 21, 5879.	1.8	18
1461	Intrinsic Disorder in Human Proteins Encoded by Core Duplicon Gene Families. Journal of Physical Chemistry B, 2020, 124, 8050-8070.	1.2	4
1462	Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. International Journal of Molecular Sciences, 2020, 21, 6208.	1.8	61
1463	IDRMutPred: predicting disease-associated germline nonsynonymous single nucleotide variants (nsSNVs) in intrinsically disordered regions. Bioinformatics, 2020, 36, 4977-4983.	1.8	5
1464	The intrinsically disordered region of GCE protein adopts a more fixed structure by interacting with the LBD of the nuclear receptor FTZ-F1. Cell Communication and Signaling, 2020, 18, 180.	2.7	8
1465	Net Charge and Nonpolar Content Guide the Identification of Folded and Prion Proteins. Biochemistry, 2020, 59, 1881-1895.	1.2	6
1466	<scp>C1188D</scp> mutation abolishes specific recognition between <scp>MLL1â€CXXC</scp> domain and <scp>CpG</scp> site by inducing conformational switch of flexible Nâ€terminal. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1401-1412.	1.5	1
1467	Intrinsic Disorder in Tetratricopeptide Repeat Proteins. International Journal of Molecular Sciences, 2020, 21, 3709.	1.8	9

#	Article	IF	CITATIONS
1468	Intrinsic disorder in protein senseâ€antisense recognition. Journal of Molecular Recognition, 2020, 33, e2868.	1.1	7
1469	Conformational dynamics of p53ÂN-terminal TAD2 region under different solvent conditions. Archives of Biochemistry and Biophysics, 2020, 689, 108459.	1.4	14
1470	The BADC and BCCP subunits of chloroplast acetyl-CoA carboxylase sense the pH changes of the light–dark cycle. Journal of Biological Chemistry, 2020, 295, 9901-9916.	1.6	20
1471	Functional derivatives of human dentin matrix protein 1 modulate morphology of calcium carbonate crystals. FASEB Journal, 2020, 34, 6147-6165.	0.2	9
1472	Protein folding: how, why, and beyond. , 2020, , 3-22.		0
1473	Group 3 LEA Protein Model Peptides Suppress Heat-Induced Lysozyme Aggregation. Elucidation of the Underlying Mechanism Using Coarse-Grained Molecular Simulations. Journal of Physical Chemistry B, 2020, 124, 2747-2759.	1.2	7
1474	Competitive binding of HIF-1α and CITED2 to the TAZ1 domain of CBP from molecular simulations. Physical Chemistry Chemical Physics, 2020, 22, 8118-8127.	1.3	15
1475	Shell disorder analysis predicts greater resilience of the SARS-CoV-2 (COVID-19) outside the body and in body fluids. Microbial Pathogenesis, 2020, 144, 104177.	1.3	71
1476	Sequence-Dependent Correlated Segments in the Intrinsically Disordered Region of ChiZ. Biomolecules, 2020, 10, 946.	1.8	19
1477	WT and A53T α-Synuclein Systems: Melting Diagram and Its New Interpretation. International Journal of Molecular Sciences, 2020, 21, 3997.	1.8	7
1478	Computational prediction of protein aggregation: Advances in proteomics, conformation-specific algorithms and biotechnological applications. Computational and Structural Biotechnology Journal, 2020, 18, 1403-1413.	1.9	45
1479	Computational Investigation of Structural Interfaces of Protein Complexes with Short Linear Motifs. Journal of Proteome Research, 2020, 19, 3254-3263.	1.8	1
1480	1H, 13C and 15N NMR chemical shift assignments of cAMP-regulated phosphoprotein-19 and -16 (ARPP-19) Tj E	۲Qq0 0 0 ۱ 0.4	rgBT /Overloc
1481	Structure and dynamics at N―and Câ€terminal regions of intrinsically disordered human câ€Myc PEST degron reveal a pHâ€induced transition. Proteins: Structure, Function and Bioinformatics, 2020, 88, 889-909.	1.5	8
1482	Mutually exclusive locales for N-linked glycans and disorder in human glycoproteins. Scientific Reports, 2020, 10, 6040.	1.6	9
1483	IDPs and their complexes in GPCR and nuclear receptor signaling. Progress in Molecular Biology and Translational Science, 2020, 174, 105-155.	0.9	6
1484	Deiminated proteins and extracellular vesicles as novel biomarkers in pinnipeds: Grey seal (Halichoerus gryptus) and harbour seal (Phoca vitulina). Biochimie, 2020, 171-172, 79-90.	1.3	13
1485	Peptidylarginine Deiminase Isozyme-Specific PAD2, PAD3 and PAD4 Inhibitors Differentially Modulate Extracellular Vesicle Signatures and Cell Invasion in Two Glioblastoma Multiforme Cell Lines. International Journal of Molecular Sciences, 2020, 21, 1495.	1.8	43

#	Article	IF	CITATIONS
1486	Taurine Induces an Ordered but Functionally Inactive Conformation in Intrinsically Disordered Casein Proteins. Scientific Reports, 2020, 10, 3503.	1.6	9
1487	Solution of Levinthal's Paradox and a Physical Theory of Protein Folding Times. Biomolecules, 2020, 10, 250.	1.8	21
1488	A structural entropy index to analyse local conformations in intrinsically disordered proteins. Journal of Structural Biology, 2020, 210, 107464.	1.3	13
1489	Nipah shell disorder, modes of infection, and virulence. Microbial Pathogenesis, 2020, 141, 103976.	1.3	16
1490	Supercharged Proteins and Polypeptides. Advanced Materials, 2020, 32, e1905309.	11.1	58
1491	Interaction with zinc oxide nanoparticle kinetically traps α-synuclein fibrillation into off-pathway non-toxic intermediates. International Journal of Biological Macromolecules, 2020, 150, 68-79.	3.6	11
1493	Physical Chemistry of the Protein Backbone: Enabling the Mechanisms of Intrinsic Protein Disorder. Journal of Physical Chemistry B, 2020, 124, 4379-4390.	1.2	12
1494	The intracellular domain of BP180/collagen XVII is intrinsically disordered and partially folds in an an anionic membrane lipid-mimicking environment. Amino Acids, 2020, 52, 619-627.	1.2	4
1495	Dispersion from Cα or NH: 4D experiments for backbone resonance assignment of intrinsically disordered proteins. Journal of Biomolecular NMR, 2020, 74, 147-159.	1.6	9
1496	Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. Progress in Molecular Biology and Translational Science, 2020, 174, 1-78.	0.9	54
1497	Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins. Journal of Physical Chemistry Letters, 2020, 11, 3408-3415.	2.1	70
1498	Post-translational protein deimination signatures and extracellular vesicles (EVs) in the Atlantic horseshoe crab (Limulus polyphemus). Developmental and Comparative Immunology, 2020, 110, 103714.	1.0	12
1499	Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties. Annual Review of Physical Chemistry, 2020, 71, 53-75.	4.8	368
1500	Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3034-3060.	2.0	27
1501	Unique and exclusive peptide signatures directly identify intrinsically disordered proteins from sequences without structural information. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2885-2893.	2.0	4
1502	Phenotypic suppression caused by resonance with light-dark cycles indicates the presence of a 24-hours oscillator in yeast and suggests a new role of intrinsically disordered protein regions as internal mediators. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2490-2501.	2.0	7
1503	Biomineralization process in hard tissues: The interaction complexity within protein and inorganic counterparts. Acta Biomaterialia, 2021, 120, 20-37.	4.1	73
1504	Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cellular and Molecular Life Sciences, 2021, 78, 1655-1688.	2.4	92

#	Article	IF	CITATIONS
1505	IDPology of the living cell: intrinsic disorder in the subcellular compartments of the human cell. Cellular and Molecular Life Sciences, 2021, 78, 2371-2385.	2.4	15
1506	Mutations in membraneâ€fusion subunit of spike glycoprotein play crucial role in the recent outbreak of COVIDâ€19. Journal of Medical Virology, 2021, 93, 2790-2798.	2.5	9
1507	Structure-function relationship of Gossypium hirsutum NAC transcription factor, GhNAC4 with regard to ABA and abiotic stress responses. Plant Science, 2021, 302, 110718.	1.7	19
1508	Bioinformatics analysis of correlation between protein function and intrinsic disorder. International Journal of Biological Macromolecules, 2021, 167, 446-456.	3.6	6
1509	Intrinsically disordered features of carbonic anhydrase IX proteoglycan-like domain. Cellular and Molecular Life Sciences, 2021, 78, 2059-2067.	2.4	10
1510	Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy. Nature Nanotechnology, 2021, 16, 181-189.	15.6	69
1511	Fuzzy Association of an Intrinsically Disordered Protein with Acidic Membranes. Jacs Au, 2021, 1, 66-78.	3.6	21
1512	Significant compaction of H4 histone tail upon charge neutralization by acetylation and its mimics, possible effects on chromatin structure. Journal of Molecular Biology, 2021, 433, 166683.	2.0	4
1513	Towards an understanding of the role of intrinsic protein disorder on plant adaptation to environmental challenges. Cell Stress and Chaperones, 2021, 26, 141-150.	1.2	11
1514	The Methods and Tools for Intrinsic Disorder Prediction and their Application to Systems Medicine. , 2021, , 159-169.		3
1516	Novel anoplinâ€based (lipo)â€peptide models show potent antimicrobial activity. Journal of Peptide Science, 2021, 27, e3303.	0.8	1
1517	Shell disorder and the HIV vaccine mystery: lessons from the legendary Oswald Avery. Journal of Biomolecular Structure and Dynamics, 2021, , 1-10.	2.0	3
1518	New genotypes of Helicobacter Pylori VacA d-region identified from global strains. BMC Molecular and Cell Biology, 2021, 22, 4.	1.0	11
1519	Computational tools and approaches for aquaporin (AQP) research. , 2021, , 1-32.		0
1520	A combined evolutionary and structural approach to disclose the primary structural determinants essential for proneurotrophins biological functions. Computational and Structural Biotechnology Journal, 2021, 19, 2891-2904.	1.9	4
1521	System-Wide Pollution of Biomedical Data: Consequence of the Search for Hub Genes of Hepatocellular Carcinoma Without Spatiotemporal Consideration. Molecular Diagnosis and Therapy, 2021, 25, 9-27.	1.6	4
1522	Resilin-mimetics as a smart biomaterial platform for biomedical applications. Nature Communications, 2021, 12, 149.	5.8	69
1523	Characterization of Proteins from Putative Human DNA and RNA Viruses. Current Proteomics, 2022, 19, 65-82.	0.1	1

#	Article	IF	CITATIONS
1524	Structural and Functional Characterization of the ABA-Water Deficit Stress Domain from Wheat and Barley: An Intrinsically Disordered Domain behind the Versatile Functions of the Plant Abscissic Acid, Stress and Ripening Protein Family. International Journal of Molecular Sciences, 2021, 22, 2314.	1.8	9
1525	Multifunctionality and intrinsic disorder of royal jelly proteome. Proteomics, 2021, 21, e2000237.	1.3	5
1526	Bioinformatics-based Identification of Proteins Expressed by Arthropod- borne Viruses Transmitted by Aedes Aegypti Mosquito. Current Proteomics, 2021, 18, 81-94.	0.1	1
1527	Fluorescence-based techniques for the detection of the oligomeric status of proteins: implication in amyloidogenic diseases. European Biophysics Journal, 2021, 50, 671-685.	1.2	4
1528	Recent Force Field Strategies for Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling, 2021, 61, 1037-1047.	2.5	67
1529	The Participation of the Intrinsically Disordered Regions of the bHLH-PAS Transcription Factors in Disease Development. International Journal of Molecular Sciences, 2021, 22, 2868.	1.8	2
1530	Comprehensive Intrinsic Disorder Analysis of 6108 Viral Proteomes: From the Extent of Intrinsic Disorder Penetrance to Functional Annotation of Disordered Viral Proteins. Journal of Proteome Research, 2021, 20, 2704-2713.	1.8	16
1531	In Silico Analysis of Huntingtin Homologs in Lower Eukaryotes. International Journal of Molecular Sciences, 2021, 22, 3214.	1.8	1
1532	Structural Analysis of the cl-Par-4 Tumor Suppressor as a Function of Ionic Environment. Biomolecules, 2021, 11, 386.	1.8	4
1533	Membraneless organelles restructured and built by pandemic viruses: HIV-1 and SARS-CoV-2. Journal of Molecular Cell Biology, 2021, 13, 259-268.	1.5	28
1536	Isolation and Characterization of Human Colon Adenocarcinoma Stem-Like Cells Based on the Endogenous Expression of the Stem Markers. International Journal of Molecular Sciences, 2021, 22, 4682.	1.8	6
1537	Prevalence and functionality of intrinsic disorder in human FG-nucleoporins. International Journal of Biological Macromolecules, 2021, 175, 156-170.	3.6	14
1538	Intrinsically Disordered Proteins as Regulators of Transient Biological Processes and as Untapped Drug Targets. Molecules, 2021, 26, 2118.	1.7	13
1539	Exploring the Conformational Landscape of the Neh4 and Neh5 Domains of Nrf2 Using Two Different Force Fields and Circular Dichroism. Journal of Chemical Theory and Computation, 2021, 17, 3145-3156.	2.3	11
1540	Structural Insights into the Interaction of the Intrinsically Disordered Co-activator TIF2 with Retinoic Acid Receptor Heterodimer (RXR/RAR). Journal of Molecular Biology, 2021, 433, 166899.	2.0	14
1542	PhosIDP: a web tool to visualize the location of phosphorylation sites in disordered regions. Scientific Reports, 2021, 11, 9930.	1.6	7
1543	RLIP76: A Structural and Functional Triumvirate. Cancers, 2021, 13, 2206.	1.7	4
1544	Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals, 2021, 14, 471.	1.7	46

#	Article	IF	CITATIONS
1545	Knl1 participates in spindle assembly checkpoint signaling in maize. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
1546	Recent Developments in the Field of Intrinsically Disordered Proteins: Intrinsic Disorder–Based Emergence in Cellular Biology in Light of the Physiological and Pathological Liquid–Liquid Phase Transitions. Annual Review of Biophysics, 2021, 50, 135-156.	4.5	57
1547	Peptide array–based interactomics. Analytical and Bioanalytical Chemistry, 2021, 413, 5561-5566.	1.9	8
1548	The Effects of Different Glycosaminoglycans on the Structure and Aggregation of the Amyloid-β (16–22) Peptide. Journal of Physical Chemistry B, 2021, 125, 5511-5525.	1.2	3
1550	Functional and Predictive Structural Characterization of WRINKLED2, A Unique Oil Biosynthesis Regulator in Avocado. Frontiers in Plant Science, 2021, 12, 648494.	1.7	9
1551	Molecular characterization and in-silico analysis of AsSGU (Secreted Glycocojugate of Unknown) Tj ETQq1 1 0.78 101184.	4314 rgBT 0.4	/Overlock 1 0
1552	On the specificity of protein–protein interactions in the context of disorder. Biochemical Journal, 2021, 478, 2035-2050.	1.7	41
1553	The effects of intramolecular and intermolecular electrostatic repulsions on the stability and aggregation of <scp>NISTmAb</scp> revealed by <scp>HDXâ€MS</scp> , <scp>DSC,</scp> and <scp>nanoDSF</scp> . Protein Science, 2021, 30, 1686-1700.	3.1	15
1554	Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. International Journal of Molecular Sciences, 2021, 22, 6016.	1.8	28
1555	Illuminating Disorder Induced by Glu in a Stable Arg-Anchored Transmembrane Helix. ACS Omega, 2021, 6, 20611-20618.	1.6	1
1556	Salt-Dependent Conformational Changes of Intrinsically Disordered Proteins. Journal of Physical Chemistry Letters, 2021, 12, 6684-6691.	2.1	32
1557	The C-terminal tail extension of myosin 16 acts as a molten globule, including intrinsically disordered regions, and interacts with the N-terminal ankyrin. Journal of Biological Chemistry, 2021, 297, 100716.	1.6	3
1558	Cancer-Associated Mutations Perturb the Disordered Ensemble and Interactions of the Intrinsically Disordered p53 Transactivation Domain. Journal of Molecular Biology, 2021, 433, 167048.	2.0	14
1559	Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly. Journal of Cell Science, 2021, 134, .	1.2	29
1560	Prion-Like Proteins in Phase Separation and Their Link to Disease. Biomolecules, 2021, 11, 1014.	1.8	26
1561	On the roles of intrinsically disordered proteins and regions in cell communication and signaling. Cell Communication and Signaling, 2021, 19, 88.	2.7	57
1562	Structural Analysis of the Menangle Virus P Protein Reveals a Soft Boundary between Ordered and Disordered Regions. Viruses, 2021, 13, 1737.	1.5	0
1563	What's in the BAGs? Intrinsic disorder angle of the multifunctionality of the members of a family of chaperone regulators. Journal of Cellular Biochemistry, 2021, , .	1.2	3

#	Article	IF	Citations
1564	Interaction mechanism of endogenous PP2A inhibitor protein ENSA with PP2A. FEBS Journal, 2022, 289, 519-534.		3
1566	Insight into Calcium-Binding Motifs of Intrinsically Disordered Proteins. Biomolecules, 2021, 11, 1173.	1.8	16
1567	Polyampholyte physics: Liquid–liquid phase separation and biological condensates. Current Opinion in Colloid and Interface Science, 2021, 54, 101457.	3.4	32
1568	Role of conformational dynamics and flexibilities in the steroid receptor-coregulator protein complex formation. General and Comparative Endocrinology, 2021, 309, 113780.	0.8	1
1569	FG nucleoporins feature unique patterns that distinguish them from other IDPs. Biophysical Journal, 2021, 120, 3382-3391.	0.2	6
1570	Conformational dynamics of 13 amino acids long NSP11 of SARS-CoV-2 under membrane mimetics and different solvent conditions. Microbial Pathogenesis, 2021, 158, 105041.	1.3	26
1571	Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins. Methods, 2021, 193, 116-135.	1.9	25
1572	Transient Electrostatic Interactions between Fcp1 and Rap74 Bias the Conformational Ensemble of the Complex with Minimal Impact on Binding Affinity. Journal of Physical Chemistry B, 2021, 125, 10917-10927.	1.2	3
1573	Selfâ€assembling systems comprising intrinsically disordered protein polymers like elastinâ€like recombinamers. Journal of Peptide Science, 2022, 28, e3362.	0.8	8
1574	Intrinsically disordered proteins: Chronology of a discovery. Biophysical Chemistry, 2021, 279, 106694.	1.5	18
1575	Spectroscopic studies on the stability and nucleation-independent fibrillation of partially-unfolded proteins in crowded environment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120307.	2.0	3
1576	Bioinformatics-Based Characterization of Proteins Related to SARS-CoV- 2 Using the Polarity Index Method® (PIM®) and Intrinsic Disorder Predisposition. Current Proteomics, 2022, 19, 51-64.	0.1	1
1577	Chapter 9. Elastin-like Recombinamers (ELRs) for Biomedical Applications. RSC Soft Matter, 2021, , 205-235.	0.2	1
1578	Conformational landscape of multidomain SMAD proteins. Computational and Structural Biotechnology Journal, 2021, 19, 5210-5224.	1.9	9
1579	Cryptic amyloidogenic regions in intrinsically disordered proteins: Function and disease association. Computational and Structural Biotechnology Journal, 2021, 19, 4192-4206.	1.9	9
1580	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlock 10 4.3	Tf 50 142 To
1581	SCHOOL Model and New Targeting Strategies. Advances in Experimental Medicine and Biology, 2008, 640, 268-311.	0.8	13
1582	Factors Affecting the Fibrillation of $\hat{I}\pm$ -Synuclein, a Natively Unfolded Protein. , 2006, , 265-285.		4

# 1583	ARTICLE α-Synuclein Aggregation and Parkinson's Disease. , 2007, , 61-110.	IF	CITATIONS
1584	Disordered RNA-Binding Region Prediction with DisoRDPbind. Methods in Molecular Biology, 2020, 2106, 225-239.	0.4	16
1585	Predicting Conformational Properties of Intrinsically Disordered Proteins from Sequence. Methods in Molecular Biology, 2020, 2141, 347-389.	0.4	9
1586	Analyzing IDPs in Interactomes. Methods in Molecular Biology, 2020, 2141, 895-945.	0.4	24
1587	Bioinformatics Approaches to the Structure and Function of Intrinsically Disordered Proteins. , 2009, , 113-140.		1
1588	Structural Disorder and Its Connection with Misfolding Diseases. Focus on Structural Biology, 2009, , 1-19.	0.1	4
1589	Interplay Between Protein Order, Disorder and Oligomericity in Receptor Signaling. Advances in Experimental Medicine and Biology, 2012, 725, 50-73.	0.8	6
1590	Molecular Recognition by the EWS Transcriptional Activation Domain. Advances in Experimental Medicine and Biology, 2012, 725, 106-125.	0.8	7
1591	POODLE: Tools Predicting Intrinsically Disordered Regions of Amino Acid Sequence. Methods in Molecular Biology, 2014, 1137, 131-145.	0.4	7
1592	Prediction of Intrinsic Disorder in Proteins Using MFDp2. Methods in Molecular Biology, 2014, 1137, 147-162.	0.4	37
1593	Prediction and Analysis of Intrinsically Disordered Proteins. Methods in Molecular Biology, 2015, 1261, 35-59.	0.4	9
1594	Prediction of Intrinsic Disorder and Its Use in Functional Proteomics. Methods in Molecular Biology, 2007, 408, 69-92.	0.4	37
1595	Conformational Disorder. Methods in Molecular Biology, 2010, 609, 307-325.	0.4	19
1596	Conformational Characterization of Intrinsically Disordered Proteins and Its Biological Significance. , 2017, , 1-20.		2
1597	Turning White Matter "Inside-Out―by Hyper-deimination of Myelin Basic Protein (MBP). , 2017, , 337-389.		2
1598	Prediction of Natively Disordered Regions in Proteins Using a Bio-basis Function Neural Network. Lecture Notes in Computer Science, 2004, , 108-116.	1.0	9
1599	Enhancing Protein Disorder Detection by Refined Secondary Structure Prediction. , 2007, , 395-409.		1
1600	Conformational Motions of Disordered Proteins. , 2018, , 381-399.		1

ARTICLE IF CITATIONS Overview of Autophagy., 2016, , 3-73. 1601 1 Liquid–Liquid Phase Separation of Peptide/Oligonucleotide Complexes in Crowded Macromolecular 1.2 19 Media. Journal of Physical Chemistry B, 2021, 125, 49-57. The emerging role of α-synuclein truncation in aggregation and disease. Journal of Biological 1603 99 1.6 Chemistry, 2020, 295, 10224-10244. Proteinâ€"Sol: a web tool for predicting protein solubility from sequence. Bioinformatics, 2017, 33, 1604 1.8 404 3098-3100. The role of disorder in RNA binding affinity and specificity. Open Biology, 2020, 10, 200328. 1605 1.5 27 Protein tandem repeats - the more perfect, the less structured. FEBS Journal, 2010, 277, 2673-2682. 2.2 DISCRIMINATION OF NATIVE FOLDS USING NETWORK PROPERTIES OF PROTEIN STRUCTURES., 2007, , . 1618 2 A comprehensive overview of sequence-based protein-binding residue predictions for structured and 1619 disordered regions., 2020,, 33-58. On the intrinsic disorder status of the major players in programmed cell death pathways. 1620 0.8 20 F1000Research, 2013, 2, 190. Why do proteins aggregate? "Intrinsically insoluble proteins―and "dark mediators―revealed by studies on "insoluble proteins―solubilized in pure water. F1000Research, 2013, 2, 94. New technologies to analyse protein function: an intrinsic disorder perspective. F1000Research, 2020, 1622 17 0.8 9, 101. Prediction of Intrinsic Disorder in MERS-CoV/HCoV-EMC Supports a High Oral-Fecal Transmission. 1.4 PLOS Currents, 2013, 5, . Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Computational 1624 1.5 427 Biology, 2018, 14, e1005941. Improved Disorder Prediction by Combination of Orthogonal Approaches. PLoS ONE, 2009, 4, e4433. 1.1 170 1626 Dopamine-Induced Conformational Changes in Alpha-Synuclein. PLoS ONE, 2009, 4, e6906. 59 1.1 Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin. PLoS 1.1 ONE, 2011, 6, é18028. Differences in the Number of Intrinsically Disordered Regions between Yeast Duplicated Proteins, and 1628 1.1 12 Their Relationship with Functional Divergence. PLoS ONE, 2011, 6, e24989. Molecular Phylogeny of OVOL Genes Illustrates a Conserved C2H2 Zinc Finger Domain Coupled by 1629 1.1 Hypervariable Unstructured Regions. PLoS ONE, 2012, 7, e39399.

#	Article	IF	Citations
1630	Interaction of the Transactivation Domain of B-Myb with the TAZ2 Domain of the Coactivator p300: Molecular Features and Properties of the Complex. PLoS ONE, 2012, 7, e52906.	1.1	7
1631	Genome-Wide Analysis of Protein Disorder in Arabidopsis thaliana: Implications for Plant Environmental Adaptation. PLoS ONE, 2013, 8, e55524.	1.1	55
1632	The Transcriptional Repressor Domain of Gli3 Is Intrinsically Disordered. PLoS ONE, 2013, 8, e76972.	1.1	5
1633	Identifying Novel Cell Cycle Proteins in Apicomplexa Parasites through Co-Expression Decision Analysis. PLoS ONE, 2014, 9, e97625.	1.1	16
1634	Hypo- and Hypermorphic FOXC1 Mutations in Dominant Glaucoma: Transactivation and Phenotypic Variability. PLoS ONE, 2015, 10, e0119272.	1.1	24
1635	Hbr1 Activates and Represses Hyphal Growth in Candida albicans and Regulates Fungal Morphogenesis under Embedded Conditions. PLoS ONE, 2015, 10, e0126919.	1.1	5
1636	Comparative genomic analysis of mollicutes with and without a chaperonin system. PLoS ONE, 2018, 13, e0192619.	1.1	6
1637	Mechanisms of Macromolecular Interactions Mediated by Protein Intrinsic Disorder. Molecules and Cells, 2020, 43, 899-908.	1.0	13
1638	Predictive Modeling of Protein Folding Thermodynamics, Mutational Effects and Free-Energy Landscapes. Proceedings of the Indian National Science Academy, 0, 82, .	0.5	3
1639	Probing protein structure by limited proteolysis Acta Biochimica Polonica, 2019, 51, 299-321.	0.3	383
1640	Detection of selective cationic amphipatic antibacterial peptides by Hidden Markov models Acta Biochimica Polonica, 2009, 56, .	0.3	21
1641	Frequencies of Specific Peptides in Intrinsic Disordered Protein Domains. Protein and Peptide Letters, 2010, 17, 1398-1402.	0.4	4
1642	α-Lactalbumin: Of Camels and Cows. Protein and Peptide Letters, 2016, 23, 1072-1080.	0.4	19
1643	Disordered Interactome of Human Papillomavirus. Current Pharmaceutical Design, 2014, 20, 1274-1292.	0.9	22
1644	At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Acta Naturae, 2017, 9, 4-16.	1.7	12
1645	The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biology Reports, 2013, 5, 1.	4.0	78
1646	Unfoldomics of prostate cancer: on the abundance and roles of intrinsically disordered proteins in prostate cancer. Asian Journal of Andrology, 2016, 18, 662.	0.8	6
1647	Navigating the dynamic landscape of alpha-synuclein morphology: a review of the physiologically relevant tetrameric conformation. Neural Regeneration Research, 2020, 15, 407.	1.6	17

#	Article	IF	CITATIONS
1648	Insights into Late Embryogenesis Abundant (LEA) Proteins in Plants: From Structure to the Functions. American Journal of Plant Sciences, 2014, 05, 3440-3455.	0.3	77
1649	The Assessment of the Arising of Food Allergy among Antiacid Users Using Mathematical Model. Applied Mathematics, 2012, 03, 293-307.	0.1	3
1650	Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World Journal of Biological Chemistry, 2019, 10, 44-64.	1.7	6
1651	In vivo putative O-GlcNAcylation of human SCP1 and evidence for possible role of its N-terminal disordered structure. BMB Reports, 2014, 47, 593-598.	1.1	6
1652	Design of 4-(4-dialkylaminostyryl) -pyridinium dyes for fluorescent detection of amyloid fibrils. Biopolymers and Cell, 2016, 32, 289-299.	0.1	4
1653	Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. ELife, 2015, 4, .	2.8	264
1654	A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes. ELife, 2016, 5, .	2.8	56
1655	The liquid structure of elastin. ELife, 2017, 6, .	2.8	137
1656	Intrinsically disordered caldesmon binds calmodulin via the "buttons on a string―mechanism. PeerJ, 2015, 3, e1265.	0.9	9
1657	Malleable ribonucleoprotein machine: protein intrinsic disorder in the <i>Saccharomyces cerevisiae</i> spliceosome. PeerJ, 2013, 1, e2.	0.9	32
1658	Association between intrinsic disorder and serine/threonine phosphorylation in <i>Mycobacterium tuberculosis</i> . PeerJ, 2015, 3, e724.	0.9	10
1659	Charge and hydrophobicity are key features in sequence-trained machine learning models for predicting the biophysical properties of clinical-stage antibodies. PeerJ, 2019, 7, e8199.	0.9	21
1660	Flexible spandrels of the global plant virome: Proteomic-wide evolutionary patterns of structural intrinsic protein disorder elucidate modulation at the functional virus–host interplay. Progress in Molecular Biology and Translational Science, 2021, 183, 355-409.	0.9	0
1661	Intrinsic disorder in integral membrane proteins. Progress in Molecular Biology and Translational Science, 2021, 183, 101-134.	0.9	1
1662	Target-binding behavior of IDPs via pre-structured motifs. Progress in Molecular Biology and Translational Science, 2021, 183, 187-247.	0.9	4
1663	Intrinsic disorder in protein kinase A anchoring proteins signaling complexes. Progress in Molecular Biology and Translational Science, 2021, 183, 271-294.	0.9	2
1664	Influence of the macromolecular crowder alginate in the fibrillar organization of the functional amyloid FapC from Pseudomonas aeruginosa. Archives of Biochemistry and Biophysics, 2021, 713, 109062.	1.4	5
1665	Analysis of unstructured regions of human cytoplasmic tyrosyl-tRNA synthetase by methods of bioinformatics. Biopolymers and Cell, 2005, 21, 446-453.	0.1	2

#	Article		CITATIONS
1666	The Frontiers of Developing a Method for Prediction of Disordered Regions in a Protein. Seibutsu Butsuri, 2007, 47, 248-252.	0.0	0
1669	Cloning, purification and characterization of the ribosomal protein L11 from E. coli. American Journal of Molecular Biology, 2011, 01, 33-42.	0.1	0
1672	Conformational and Disorder to Order Transitions in Proteins: Structure / Function Correlation in Apolipoproteins. , 0, , .		1
1673	Analysis of molecular recognition features in membrane proteins. EMBnet Journal, 2012, 18, 114.	0.2	0
1674	Enhanced Prediction of Intrinsically Disordered Regions with the Optimized Data. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 0, , 39-44.	0.2	0
1675	Protein Misfolding and Aggregation. Biological and Medical Physics Series, 2015, , 95-127.	0.3	0
1676	Unfoldomes and Unfoldomics: Introducing Intrinsically Disordered Proteins. , 2016, , 125-150.		2
1680	Electronegativity and intrinsic disorder of preeclampsia-related proteins. Acta Biochimica Polonica, 2017, 64, 99-111.	0.3	0
1682	Expression, purification, and characterization of an intrinsically disordered Late Embryogenesis Abundant (LEA) protein from Artemia franciscana utilizing Escherichia coli and Nicotiana tabacum. FASEB Journal, 2017, 31, 914.3.	0.2	1
1685	Prion-Like Propagation in Neurodegenerative Diseases. , 2018, , 189-242.		0
1689	The Amino Acid Sequences of Proteins Determine Folding and Non-folding. , 2019, , 37-83.		0
1690	Novel Interaction Mechanism between the Intrinsically Disordered Proteins. Seibutsu Butsuri, 2019, 59, 202-204.	0.0	0
1693	On the Importance of Computational Biology and Bioinformatics to the Origins and Rapid Progression of the Intrinsically Disordered Proteins Field. , 2019, , .		0
1697	MODELLING OF 3D-STRUCTURES OF THE RARE MELANOCORTIN-1-RECEPTOR MUTATIONS ASSOCIATED TO MELANISM IN THE BANANAQUIT. Acta Biologica Colombiana, 2020, 26, 30-41.	0.1	0
1699	DispHScan: A Multi-Sequence Web Tool for Predicting Protein Disorder as a Function of pH. Biomolecules, 2021, 11, 1596.	1.8	4
1700	Transient disorder along pathways to amyloid. Biophysical Chemistry, 2022, 281, 106711.	1.5	38
1701	Rapid Identification of Secondary Structure and Binding Site Residues in an Intrinsically Disordered Protein Segment. Frontiers in Genetics, 2021, 12, 755292.	1.1	8
1702	Computational Prediction of Intrinsic Disorder in Protein Sequences with the disCoP Meta-predictor. Methods in Molecular Biology, 2020, 2141, 21-35.	0.4	4

#	Article	IF	CITATIONS
1703	Intrinsic Disorder in Plant Transcription Factor Systems: Functional Implications. International Journal of Molecular Sciences, 2020, 21, 9755.	1.8	14
1705	The perinuclear region concentrates disordered proteins with predicted phase separation distributed in a 3D network of cytoskeletal filaments and organelles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119161.	1.9	11
1706	A novel mode of interaction between intrinsically disordered proteins. Biophysics and Physicobiology, 2020, 17, 86-93.	0.5	8
1708	Determining the Protective Activity of IDPs Under Partial Dehydration and Freeze-Thaw Conditions. Methods in Molecular Biology, 2020, 2141, 519-528.	0.4	3
1709	Exploring Protein Intrinsic Disorder with MobiDB. Methods in Molecular Biology, 2020, 2141, 127-143.	0.4	2
1710	DeepCLD: An efficient sequence-based predictor of intrinsically disordered proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	1.9	1
1711	The protein disorder cycle. Biophysical Reviews, 2021, 13, 1155-1162.	1.5	9
1712	Bioinformatic Analysis of Lytic Polysaccharide Monooxygenases Reveals the Pan-Families Occurrence of Intrinsically Disordered C-Terminal Extensions. Biomolecules, 2021, 11, 1632.	1.8	25
1716	Cell Biology of α-Synuclein: Implications in Parkinson's Disease and Other Lewy Body Diseases. , 0, , 111-124.		0
1717	Local Structure Prediction of Proteins. , 2007, , 207-254.		1
1718	Protein Structure and Its Folding Rate. , 2008, , 273-301.		0
1722	Intracellular hyaluronic acid-binding protein 4 (HABP4): a candidate tumor suppressor in colorectal cancer. Oncotarget, 2020, 11, 4325-4337.	0.8	3
1728	At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Acta Naturae, 2017, 9, 4-16.	1.7	6
1729	Missense Mutations Modify the Conformational Ensemble of the α-Synuclein Monomer Which Exhibits a Two-Phase Characteristic. Frontiers in Molecular Biosciences, 2021, 8, 786123.	1.6	9
1730	Effect of Disease Causing Missense Mutations on Intrinsically Disordered Regions in Proteins. Protein and Peptide Letters, 2022, 29, 254-267.	0.4	3
1731	New Findings on LMO7 Transcripts, Proteins and Regulatory Regions in Human and Vertebrate Model Organisms and the Intracellular Distribution in Skeletal Muscle Cells. International Journal of Molecular Sciences, 2021, 22, 12885.	1.8	2
1732	Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nature Computational Science, 2021, 1, 732-743.	3.8	128
1733	Protein folding, misfolding, and un/non-folding: overview of the SP16 Session at the 20th IUPAB congress, 45th Annual Meeting of SBBf, and 50th Annual Meeting of SBBq. Biophysical Reviews, 2021, 13,	1.5	1

#	Article		CITATIONS
1734	Phase separation of FG-nucleoporins in nuclear pore complexes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119205.	1.9	26
1736	Matrin3: Disorder and ALS Pathogenesis. Frontiers in Molecular Biosciences, 2021, 8, 794646.	1.6	10
1737	Biochemical Principles in Prion-Based Inheritance. Epigenomes, 2022, 6, 4.	0.8	6
1738	Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins. International Journal of Molecular Sciences, 2022, 23, 923.	1.8	6
1739	The role of membranes in function and dysfunction of intrinsically disordered amyloidogenic proteins. Advances in Protein Chemistry and Structural Biology, 2022, 128, 397-434.	1.0	1
1740	Methods for recombinant production and purification of intrinsically disordered proteins. , 2022, , 41-48.		0
1741	Experimental methods to study intrinsically disordered proteins. , 2022, , 505-533.		3
1742	Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins. International Journal of Molecular Sciences, 2022, 23, 1537.	1.8	2
1743	Conformational and Solvation Dynamics of an Amyloidogenic Intrinsically Disordered Domain of a Melanosomal Protein. Journal of Physical Chemistry B, 2022, 126, 443-452.	1.2	3
1745	Modified Histone Peptides Linked to Magnetic Beads Reduce Binding Specificity. International Journal of Molecular Sciences, 2022, 23, 1691.	1.8	1
1746	Intrinsically disordered proteins/regions and insight into their biomolecular interactions. Biophysical Chemistry, 2022, 283, 106769.	1.5	28
1747	Computational, Experimental, and Clinical Evidence of a Specific but Peculiar Evolutionary Nature of (COVID-19) SARS-CoV-2. Journal of Proteome Research, 2022, 21, 874-890.	1.8	18
1748	The Physical Basis for pH Sensitivity in Biomolecular Structure and Function, With Application to the Spike Protein of SARS-CoV-2. Frontiers in Molecular Biosciences, 2022, 9, 834011.	1.6	3
1750	Intrinsically Disordered Proteins: Critical Components of the Wetware. Chemical Reviews, 2022, 122, 6614-6633.	23.0	48
1752	Amyloid Cross-Seeding: Mechanism, Implication, and Inhibition. Molecules, 2022, 27, 1776.	1.7	34
1753	Characterization of intrinsically disordered regions in proteins informed by human genetic diversity. PLoS Computational Biology, 2022, 18, e1009911.	1.5	13
1754	Macromolecular Crowding Is More than Hard-Core Repulsions. Annual Review of Biophysics, 2022, 51, 267-300.	4.5	51
1755	An Intrinsically Disordered Peptide Tag that Confers an Unusual Solubility to Aggregation-Prone Proteins. Applied and Environmental Microbiology, 2022, 88, e0009722.	1.4	9

#	Article		CITATIONS
1756	The PentUnFOLD algorithm as a tool to distinguish the dark and the light sides of the structural instability of proteins. Amino Acids, 2022, 54, 1155-1171.	1.2	3
1759	Identification of Intrinsically Disordered Proteins and Regions in a Non-Model Insect Species Ostrinia nubilalis (Hbn.). Biomolecules, 2022, 12, 592.	1.8	3
1760	Liquid–liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cellular and Molecular Life Sciences, 2022, 79, 251.	2.4	42
1761	N′-terminal- and Ca2+-induced stabilization of high-order oligomers of full-length Danio rerio and Homo sapiens otolin-1. International Journal of Biological Macromolecules, 2022, 209, 1032-1047.	3.6	2
1763	idpr: A package for profiling and analyzing Intrinsically Disordered Proteins in R. PLoS ONE, 2022, 17, e0266929.	1.1	6
1764	Macromolecular Crowding and Intrinsically Disordered Proteins: A Polymer Physics Perspective. ChemSystemsChem, 2022, 4, .	1.1	13
1765	AlphaFold illuminates half of the dark human proteins. Current Opinion in Structural Biology, 2022, 74, 102372.	2.6	45
1766	Factors Affecting the Fibrillation of $\hat{I}\pm$ -Synuclein, a Natively Unfolded Protein. , 0, , 265-285.		0
1769	Predicting Protein Conformational Disorder and Disordered Binding Sites. Methods in Molecular Biology, 2022, 2449, 95-147.	0.4	4
1770	Prediction of the Effect of pH on the Aggregation and Conditional Folding of Intrinsically Disordered Proteins with SolupHred and DispHred. Methods in Molecular Biology, 2022, 2449, 197-211.	0.4	3
1771	Connecting conformational stiffness of the protein with energy landscape by a single experiment. Nanoscale, 2022, 14, 7659-7673.	2.8	8
1772	Structural Insights into the Intrinsically Disordered GPCR C-Terminal Region, Major Actor in Arrestin-GPCR Interaction. Biomolecules, 2022, 12, 617.	1.8	7
1773	Theater in the Self-Cleaning Cell: Intrinsically Disordered Proteins or Protein Regions Acting with Membranes in Autophagy. Membranes, 2022, 12, 457.	1.4	1
1774	Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2. Biomolecules, 2022, 12, 631.	1.8	4
1775	Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Molecular Biomedicine, 2022, 3, 13.	1.7	42
1776	Disentangling the Protein Order/Disorder Continuum Using a Sequence-Based Foldability Score. SSRN Electronic Journal, 0, , .	0.4	0
1777	Negatively Charged Disordered Regions are Prevalent and Functionally Important Across Proteomes. Journal of Molecular Biology, 2022, 434, 167660.	2.0	19
1778	In Silico Characterization of FPOX Properties from <i>Eupenicillium terrenum</i> . Journal of Molecular Recognition, 0, , .	1.1	0

#	Article	IF	CITATIONS
1779	Intrinsic disorder, extraterrestrial peptides, and prebiotic life on the earth. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5481-5485.	2.0	2
1780	Molecular and computational analysis of spike protein of newly emerged omicron variant in comparison to the delta variant of SARS-CoV-2 in Iraq. Molecular Biology Reports, 2022, 49, 7437-7445.	1.0	19
1781	Dynamical Behavior of Disordered Regions in Disease-Related Proteins Revealed by Quasielastic Neutron Scattering. Medicina (Lithuania), 2022, 58, 795.	0.8	1
1782	Electronic Polarization at the Interface between the p53 Transactivation Domain and Two Binding Partners. Journal of Physical Chemistry B, O, , .	1.2	1
1783	Compositional Bias of Intrinsically Disordered Proteins and Regions and Their Predictions. Biomolecules, 2022, 12, 888.	1.8	11
1784	More is simpler: Decomposition of <scp>ligandâ€binding</scp> affinity for proteins being disordered. Protein Science, 2022, 31, .	3.1	4
1785	Dendritic peptide-conjugated polymeric nanovectors for non-toxic delivery of plasmid DNA and enhanced non-viral transfection of immune cells. IScience, 2022, 25, 104555.	1.9	5
1786	CARs-DB: A Database of Cryptic Amyloidogenic Regions in Intrinsically Disordered Proteins. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4
1787	Activation of p53: How phosphorylated Ser15 triggers sequential phosphorylation of p53 at Thr18 by <scp>CK11´</scp> . Proteins: Structure, Function and Bioinformatics, 2022, 90, 2009-2022.	1.5	3
1788	Editorial: Intrinsically Disordered Proteins and Regions: The Challenge to the Structure-Function Relationship. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4
1789	Negative Thermal Expansion and Disorder-to-Order Collapse of an Intrinsically Disordered Protein under Marginally Denaturing Conditions. Journal of Physical Chemistry B, 2022, 126, 5055-5065.	1.2	2
1790	Comparative study of structures and functional motifs in lectins from the commercially important photosynthetic microorganisms. Biochimie, 2022, 201, 63-74.	1.3	1
1791	Hepatitis C Virus Infection and Intrinsic Disorder in the Signaling Pathways Induced by Toll-Like Receptors. Biology, 2022, 11, 1091.	1.3	4
1792	Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	7
1793	Structural characterisation of amyloidogenic intrinsically disordered zinc finger protein isoforms DPF3b and DPF3a. International Journal of Biological Macromolecules, 2022, 218, 57-71.	3.6	5
1794	Systematic discovery of biomolecular condensate-specific protein phosphorylation. Nature Chemical Biology, 2022, 18, 1104-1114.	3.9	39
1796	Impact of aromatic residues on the intrinsic disorder and transitional behaviour of model IDPs. Materials Today Bio, 2022, 16, 100400.	2.6	0
1797	Guide to studying intrinsically disordered proteins by high-speed atomic force microscopy. Methods, 2022, 207, 44-56.	1.9	4

#	Article	IF	CITATIONS
1798	Comparative structural and dynamics study of free and gRNA-bound FnCas9 and SpCas9 proteins. Computational and Structural Biotechnology Journal, 2022, 20, 4172-4184.	1.9	0
1799	An Alzheimer's Disease Mechanism Based on Early Pathology, Anatomy, Vascular-Induced Flow, and Migration of Maximum Flow Stress Energy Location with Increasing Vascular Disease. Journal of Alzheimer's Disease, 2022, , 1-27.	1.2	0
1800	An <i>in silico</i> study of how histone tail conformation affects the binding affinity of ING family proteins. PeerJ, 0, 10, e14029.	0.9	0
1801	Polarizable Force Field of Intrinsically Disordered Proteins with CMAP and Reweighting Optimization. Journal of Chemical Information and Modeling, 2022, 62, 4970-4982.	2.5	3
1802	Integration of Nanometer-Range Label-to-Label Distances and Their Distributions into Modelling Approaches. Biomolecules, 2022, 12, 1369.	1.8	8
1803	The Ni(II)-Binding Activity of the Intrinsically Disordered Region of Human NDRG1, a Protein Involved in Cancer Development. Biomolecules, 2022, 12, 1272.	1.8	3
1804	A Study on the Nature of SARS-CoV-2 Using the Shell Disorder Models: Reproducibility, Evolution, Spread, and Attenuation. Biomolecules, 2022, 12, 1353.	1.8	2
1805	The Role of Disordered Regions in Orchestrating the Properties of Multidomain Proteins: The SARS-CoV-2 Nucleocapsid Protein and Its Interaction with Enoxaparin. Biomolecules, 2022, 12, 1302.	1.8	4
1806	Understanding the helical stability of charged peptides. Proteins: Structure, Function and Bioinformatics, 2023, 91, 268-276.	1.5	1
1807	Evaluating the role of trypsin in silk degumming: An in silico approach. Journal of Biotechnology, 2022, 359, 35-47.	1.9	4
1808	Nanomedicines Meet Disordered Proteins: A Shift from Traditional Materials and Concepts to Innovative Polymers. Journal of Personalized Medicine, 2022, 12, 1662.	1.1	1
1809	Does one plus one always equal two? Structural differences between nesfatin-1, -2, and nesfatin-1/2. Cell Communication and Signaling, 2022, 20, .	2.7	1
1810	Ferritin self-assembly, structure, function, and biotechnological applications. International Journal of Biological Macromolecules, 2023, 224, 319-343.	3.6	11
1811	A sequenceâ€based foldability score combined with <scp>AlphaFold2</scp> predictions to disentangle the protein order/disorder continuum. Proteins: Structure, Function and Bioinformatics, 2023, 91, 466-484.	1.5	9
1812	Looking at the Pathogenesis of the Rabies Lyssavirus Strain Pasteur Vaccins through a Prism of the Disorder-Based Bioinformatics. Biomolecules, 2022, 12, 1436.	1.8	0
1813	Calcium-Bound S100P Protein Is a Promiscuous Binding Partner of the Four-Helical Cytokines. International Journal of Molecular Sciences, 2022, 23, 12000.	1.8	3
1815	A simple method to purify intrinsically disordered proteins by adjusting trichloroacetic acid concentration. Protein Expression and Purification, 2023, 202, 106183.	0.6	1
1816	Combining enhanced sampling and deep learning dimensionality reduction for the study of the heat shock protein B8 and its pathological mutant K141E. RSC Advances, 2022, 12, 31996-32011.	1.7	1

~			_
(15	глті	ON	VEDODT.
	IAH		KLPOR

#	Article	IF	CITATIONS
1817	Droplets of life: role of phase separation in virus replication and compartmentalization. , 2023, , 567-615.		0
1818	Biochemical and structural biology aspects of liquid–liquid phase separation: protein side of liquid–liquid phase separation, membrane-less organelles, and biomolecular condensates. , 2023, , 101-132.		0
1819	Guidelines for experimental characterization of liquid–liquid phase separation inÂvitro. , 2023, , 233-249.		0
1820	Liquid–liquid phase separation, membrane-less organelles, and biomolecular condensates in cardiovascular disease. , 2023, , 663-679.		0
1822	Rapid prediction and analysis of protein intrinsic disorder. Protein Science, 2022, 31, .	3.1	36
1823	The Conformation of the Intrinsically Disordered N-Terminal Region of Barrier-to-Autointegration Factor (BAF) is Regulated by pH and Phosphorylation. Journal of Molecular Biology, 2023, 435, 167888.	2.0	4
1824	Intrinsically Disordered Proteins: An Overview. International Journal of Molecular Sciences, 2022, 23, 14050.	1.8	30
1825	Enrichment patterns of intrinsic disorder in proteins. Biophysical Reviews, 2022, 14, 1487-1493.	1.5	2
1826	Disordered protein networks as mechanistic drivers of membrane remodeling and endocytosis. , 2023, , 427-454.		3
1827	Thermodynamic perspective of protein disorder and phase separation: model systems. , 2023, , 97-126.		1
1828	Structure and disorder: protein functions depend on this new binary transforming lock-and-key into structure-function continuum. , 2023, , 127-148.		1
1829	How binding to surfaces affects disorder?. , 2023, , 455-489.		2
1830	The roles of prion-like domains in amyloid formation, phase separation, and solubility. , 2023, , 397-426.		0
1831	Role of plasticity and disorder in protein moonlighting: blurring of lines between biocatalysts and other biologically active proteins. , 2023, , 279-301.		2
1832	Intrinsic Disorder as a Natural Preservative: High Levels of Intrinsic Disorder in Proteins Found in the 2600-Year-Old Human Brain. Biology, 2022, 11, 1704.	1.3	3
1833	Bioinformatics Insights on the Physicochemical Properties of SCN5A Mutant Proteins Associated with the Brugada Syndrome. Current Medicinal Chemistry, 2023, 30, 1776-1796.	1.2	0
1834	Different Forms of Disorder in NMDA-Sensitive Glutamate Receptor Cytoplasmic Domains Are Associated with Differences in Condensate Formation. Biomolecules, 2023, 13, 4.	1.8	5
1835	EGFR TKI resistance in lung cancer cells using RNA sequencing and analytical bioinformatics tools. Journal of Biomolecular Structure and Dynamics, 2023, 41, 9808-9827.	2.0	1

	C	CITATION REPORT	
#	Article	IF	CITATIONS
1836	The significance of bioelectricity on all levels of organization of an organism. Part 1: From the subcellular level to cells. Progress in Biophysics and Molecular Biology, 2023, 177, 185-201.	1.4	4
1837	Unveiling the Metal-Dependent Aggregation Properties of the C-terminal Region of Amyloidogenic Intrinsically Disordered Protein Isoforms DPF3b and DPF3a. International Journal of Molecular Sciences, 2022, 23, 15291.	1.8	3
1838	HybridRNAbind: prediction of RNA interacting residues across structure-annotated and disorder-annotated proteins. Nucleic Acids Research, 2023, 51, e25-e25.	6.5	3
1839	Conformational Search for the Building Block of Proteins Based on the Gradient Gravitational Search Algorithm (ConfGGS) Using Force Fields: CHARMM, AMBER, and OPLS-AA. Journal of Chemice Information and Modeling, 2023, 63, 670-690.	al 2.5	2
1841	Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology. Biomolecules, 2023, 13, 124.	1.8	6
1842	Classification of proteins inducing liquid–liquid phase separation: sequential, structural and functional characterization. Journal of Biochemistry, 2023, 173, 255-264.	0.9	3
1843	Eco-Corona Dictates Mobility of Nanoplastics in Saturated Porous Media: The Critical Role of Preferential Binding of Macromolecules. Environmental Science & Technology, 2023, 57, 331-3	39. 4.6	10
1844	Molecular Determinants of Fibrillation in a Viral Amyloidogenic Domain from Combined Biochemical and Biophysical Studies. International Journal of Molecular Sciences, 2023, 24, 399.	1.8	2
1845	Design and Development of Hydrophobicity and Net charge Based Artificial Neural Network Model fo IDP/IDPR Prediction. Procedia Computer Science, 2023, 218, 438-448.	or 1.2	0
1846	Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. International Journal of Molecular Sciences, 2023, 24, 2151.	1.8	5
1847	Aggregation of Disordered Proteins Associated with Neurodegeneration. International Journal of Molecular Sciences, 2023, 24, 3380.	1.8	16
1848	Conformational Analysis of Charged Homo-Polypeptides. Biomolecules, 2023, 13, 363.	1.8	1
1849	Electronegative clusters modulate folding status and RNA binding of unstructured RNAâ€binding proteins. Protein Science, 2023, 32, .	3.1	2
1851	IDP Force Fields Applied to Model PPII-Rich 33-mer Cliadin Peptides. Journal of Physical Chemistry B, 2023, 127, 2407-2417.	1.2	Ο
1852	Structure and functions of the N-terminal domain of steroid hormone receptors. Vitamins and Hormones, 2023, , .	0.7	0
1853	Biophysical and Integrative Characterization of Protein Intrinsic Disorder as a Prime Target for Drug Discovery. Biomolecules, 2023, 13, 530.	1.8	2
1854	Interpreting Transient Interactions of Intrinsically Disordered Proteins. Journal of Physical Chemistry B, 2023, 127, 2395-2406.	1.2	0
1855	Computational Methods to Predict Intrinsically Disordered Regions and Functional Regions in Them. Methods in Molecular Biology, 2023, , 231-245.	0.4	0

#	Article	IF	CITATIONS
1856	Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle. Retrovirology, 2023, 20, .	0.9	4
1857	Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Autoencoder. International Journal of Molecular Sciences, 2023, 24, 6896.	1.8	7
1905	The molecular basis for cellular function of intrinsically disordered protein regions. Nature Reviews Molecular Cell Biology, 2024, 25, 187-211.	16.1	25
1907	Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality. Advances in Protein Chemistry and Structural Biology, 2023, , .	1.0	0