Expression of specific chemokines and chemokine reception of multiple sclerosis patients

Journal of Clinical Investigation 103, 807-815 DOI: 10.1172/jci5150

Citation Report

#	Article	IF	CITATIONS
1	The potential for targeting CD4+CD25+ regulatory T cells in the treatment of multiple sclerosis in humans. , 2005, , 133-151.		1
2	CXC and CC Chemokine Receptors on Coronary and Brain Endothelia. Molecular Medicine, 1999, 5, 795-805.	4.4	127
3	Chemokine Regulation of Immune-mediated Demyelinating Disease. ILAR Journal, 1999, 40, 183-189.	1.8	3
4	Sentries at the gate: chemokines and the blood-brain barrier. Journal of NeuroVirology, 1999, 5, 623-634.	2.1	37
5	Chemokine receptors and virus entry in the central nervous system. Journal of NeuroVirology, 1999, 5, 643-658.	2.1	71
6	CCR5 ⁺ and CXCR3 ⁺ T cells are increased in multiple sclerosis and their ligands MIP-11± and IP-10 are expressed in demyelinating brain lesions. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6873-6878.	7.1	825
7	Interfering with chemokine networks — the hope for new therapeutics. Current Opinion in Chemical Biology, 1999, 3, 407-417.	6.1	71
8	Chemokines, chemokine receptors and renal disease. Kidney International, 1999, 56, 347-348.	5.2	11
9	Role of chemokines in the regulation of Th1/Th2 and autoimmune encephalomyelitis. Journal of Clinical Immunology, 1999, 19, 273-279.	3.8	39
10	Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. Journal of Neuroimmunology, 1999, 98, 57-68.	2.3	152
11	Molecular pathogenesis of multiple sclerosis. Journal of Neuroimmunology, 1999, 100, 252-259.	2.3	106
12	Chemokine modulation of matrix metalloproteinase and TIMP production in adult rat brain microglia and a human microglial cell line in vitro. Clia, 1999, 28, 183-189.	4.9	118
13	Recent developments in modulating chemokine networks. Expert Opinion on Therapeutic Patents, 1999, 9, 1471-1489.	5.0	15
14	Chemokines in the CNS: plurifunctional mediators in diverse states. Trends in Neurosciences, 1999, 22, 504-512.	8.6	335
15	The pathology of multiple sclerosis and its evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1635-1640.	4.0	71
16	Aberrant T cell migration toward RANTES and MIP-1alpha in patients with multiple sclerosis: Overexpression of chemokine receptor CCR5. Brain, 2000, 123, 1874-1882.	7.6	81
17	Differential induction of chemokines in human microglia by type i and ii interferons. Glia, 2000, 29, 273-280.	4.9	67
18	Fractalkine modulates TNF-? secretion and neurotoxicity induced by microglial activation. Glia, 2000, 29, 305-315.	4.9	323

#	Article	IF	CITATIONS
19	Distinct patterns of stimulus-inducible chemokine mRNA accumulation in human fetal astrocytes and microglia. , 2000, 30, 74-81.		93
20	Interleukin-1?-induced expression of monocyte chemotactic protein-1 in the rabbit retina: An in situ and immunohistochemical study. , 2000, 30, 279-289.		10
21	Increased numbers of CCR5+ interferon-?- and tumor necrosis factor-?-secreting T lymphocytes in multiple sclerosis patients. Annals of Neurology, 2000, 47, 269-273.	5.3	92
22	The role of B cells and autoantibodies in multiple sclerosis. Annals of Neurology, 2000, 47, 694-706.	5.3	236
23	Macrophage inflammatory protein-1α (MIP-1α), MIP-1β , and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clinical and Experimental Immunology, 2000, 122, 257-263.	2.6	99
24	Single nucleotide polymorphisms in the coding regions of human CXC-chemokine receptors CXCR1, CXCR2 and CXCR3. Genes and Immunity, 2000, 1, 330-337.	4.1	29
25	Cytokine gene therapy of autoimmune demyelination revisited using herpes simplex virus type-1-derived vectors. Gene Therapy, 2000, 7, 1087-1093.	4.5	27
26	Experimental approaches to analysis of immune dysregulation in human allergic disease. Immunopharmacology, 2000, 48, 283-290.	2.0	3
27	Interleukin-1β induction of the chemokine RANTES promoter in the human astrocytoma line CH235 requires both constitutive and inducible transcription factors. Journal of Neuroimmunology, 2000, 105, 78-90.	2.3	38
28	RANTES production and expression is reduced in relapsing-remitting multiple sclerosis patients treated with interferon-β-1b. Journal of Neuroimmunology, 2000, 107, 100-107.	2.3	60
29	Expression of the β-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. Journal of Neuroimmunology, 2000, 108, 192-200.	2.3	203
30	Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer's disease. Journal of Neuroimmunology, 2000, 108, 227-235.	2.3	243
31	Cytokines and immunity in multiple sclerosis: the dual signal hypothesis. Journal of Neuroimmunology, 2000, 109, 3-9.	2.3	60
32	Sequential expression of chemokines in experimental autoimmune neuritis. Journal of Neuroimmunology, 2000, 110, 121-129.	2.3	75
33	The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system. Journal of Neuroimmunology, 2000, 110, 177-185.	2.3	142
34	Modulation of experimental autoimmune encephalomyelitis: effect of altered peptide ligand on chemokine and chemokine receptor expression. Journal of Neuroimmunology, 2000, 110, 195-208.	2.3	93
35	Interferon-Î ² treatment in multiple sclerosis patients decreases the number of circulating T cells producing interferon-Î ³ and interleukin-4. Journal of Neuroimmunology, 2000, 111, 86-92.	2.3	67
36	CCR5 Δ32, matrix metalloproteinase-9 and disease activity in multiple sclerosis. Journal of Neuroimmunology, 2000, 102, 98-106.	2.3	154

#	Article	IF	CITATIONS
37	Chemokines and their receptors in neurobiology: perspectives in physiology and homeostasis. Journal of Neuroimmunology, 2000, 104, 92-97.	2.3	119
38	CC-chemokine receptor 5 polymorphism and age of onset in familial multiple sclerosis. Immunogenetics, 2000, 51, 281-288.	2.4	111
39	Regulation of Thl and Th2 immune responses by chemokines. Seminars in Immunopathology, 2000, 22, 329-344.	4.0	10
40	CXC chemokine receptor 3 expression on CD34+hematopoietic progenitors from human cord blood induced by granulocyte-macrophage colony-stimulating factor: chemotaxis and adhesion induced by its ligands, interferon γ–inducible protein 10 and monokine induced by interferon γ. Blood, 2000, 96, 1230-1238.	1.4	42
41	Chemokine expression in Th1 cell-induced lung injury: prominence of IFN-Î ³ -inducible chemokines. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L592-L599.	2.9	45
42	Leukocyte Homing to Synovium. , 2000, 3, 133-167.		12
43	Identification and Characterization of a Potent, Selective, and Orally Active Antagonist of the CC Chemokine Receptor-1. Journal of Biological Chemistry, 2000, 275, 19000-19008.	3.4	177
44	Adenovirus Vector-Induced Expression of the C-X-C Chemokine IP-10 Is Mediated through Capsid-Dependent Activation of NF-κB. Journal of Virology, 2000, 74, 3941-3947.	3.4	134
45	Cutting Edge: The T Cell Chemoattractant IFN-Inducible Protein 10 Is Essential in Host Defense Against Viral-Induced Neurologic Disease. Journal of Immunology, 2000, 165, 2327-2330.	0.8	249
46	Reduced Chemokine and Chemokine Receptor Expression in Spinal Cords of TCR BV8S2 Transgenic Mice Protected Against Experimental Autoimmune Encephalomyelitis with BV8S2 Protein. Journal of Immunology, 2000, 164, 3924-3931.	0.8	34
47	Transcriptional Analysis of Multiple Sclerosis Brain Lesions Reveals a Complex Pattern of Cytokine Expression. Journal of Immunology, 2000, 165, 6576-6582.	0.8	145
48	IFN-γ Shapes Immune Invasion of the Central Nervous System Via Regulation of Chemokines. Journal of Immunology, 2000, 164, 2759-2768.	0.8	285
49	Macrophage Inflammatory Protein-2 and KC Induce Chemokine Production by Mouse Astrocytes. Journal of Immunology, 2000, 165, 4015-4023.	0.8	62
50	CXCR3 Expression and Activation of Eosinophils: Role of IFN-γ-Inducible Protein-10 and Monokine Induced by IFN-γ. Journal of Immunology, 2000, 165, 1548-1556.	0.8	147
51	Induction of the Chemokines Interleukin-8 and IP-10 by Human Immunodeficiency Virus Type 1 Tat in Astrocytes. Journal of Virology, 2000, 74, 9214-9221.	3.4	167
52	Therapeutic Potential of Phosphodiesterase-4 and -3 Inhibitors in Th1-Mediated Autoimmune Diseases. Journal of Immunology, 2000, 164, 1117-1124.	0.8	96
53	The Murine Chemokine CXCL11 (IFN-Inducible T Cell α Chemoattractant) Is an IFN-Î ³ - and Lipopolysaccharide- Inducible Glucocorticoid-Attenuated Response Gene Expressed in Lung and Other Tissues During Endotoxemia. Journal of Immunology, 2000, 164, 6322-6331.	0.8	81
54	Experimental Autoimmune Encephalomyelitis on the SJL Mouse: Effect of γδT Cell Depletion on Chemokine and Chemokine Receptor Expression in the Central Nervous System. Journal of Immunology, 2000, 164, 2120-2130.	0.8	82

#	Article	IF	CITATIONS
55	A Central Role for CD4+ T Cells and RANTES in Virus-Induced Central Nervous System Inflammation and Demyelination. Journal of Virology, 2000, 74, 1415-1424.	3.4	234
57	Expression of multiple functional chemokine receptors and monocyte chemoattractant protein-1 in human neurons. Neuroscience, 2000, 97, 591-600.	2.3	202
58	Pathogenetic role of autoantibodies in neurological diseases. Trends in Neurosciences, 2000, 23, 317-327.	8.6	138
59	IP-10 Is Critical for Effector T Cell Trafficking and Host Survival in Toxoplasma gondii Infection. Immunity, 2000, 12, 483-494.	14.3	267
60	RANTES: a new prostaglandin dependent endogenous pyrogen in the rat. Neuropharmacology, 2000, 39, 2505-2513.	4.1	28
61	A search for susceptibility genes in multiple sclerosis. Molecular Biology, 2000, 34, 561-577.	1.3	7
62	Chemokine receptor antagonism as a new therapy for multiple sclerosis. Expert Opinion on Investigational Drugs, 2000, 9, 1079-1097.	4.1	41
63	Chemokines and chemokine receptors in the pathogenesis of multiple sclerosis. Multiple Sclerosis Journal, 2000, 6, 3-13.	3.0	71
64	Chapter 17. Chemokines: Targets for novel therapeutics. Annual Reports in Medicinal Chemistry, 2000, 35, 191-200.	0.9	7
65	Chemokines regulate lymphocyte homing to the intestinal mucosa. Gastroenterology, 2001, 120, 291-294.	1.3	33
66	T Cell Effector Subsets: Extending the Th1/Th2 Paradigm. Advances in Immunology, 2001, 78, 233-266.	2.2	47
67	CXCR3 and CCR5 Ligands in Rheumatoid Arthritis Synovium. Clinical Immunology, 2001, 98, 39-45.	3.2	316
68	CCR1+/CCR5+ Mononuclear Phagocytes Accumulate in the Central Nervous System of Patients with Multiple Sclerosis. American Journal of Pathology, 2001, 159, 1701-1710.	3.8	238
69	In vivo stability of human chemokine and chemokine receptor expression. Human Immunology, 2001, 62, 668-678.	2.4	13
70	The chemokine system: novel broad-spectrum therapeutic targets. Current Opinion in Pharmacology, 2001, 1, 417-424.	3.5	42
71	Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends in Molecular Medicine, 2001, 7, 115-121.	6.7	558
72	Factors modifying the migration of lymphocytes across the blood–brain barrier. International Immunopharmacology, 2001, 1, 2043-2062.	3.8	63
74	Distinct chemokine receptor and cytokine expression profile in secondary progressive MS. Neurology, 2001, 57, 1371-1376.	1.1	77

	Сітатіс	n Report	
#	Article	IF	Citations
75	Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain, 2001, 124, 480-492.	7.6	219
76	Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood, 2001, 98, 3554-3561.	1.4	227
77	Investigating Chemokines and Chemokine Receptors in Patients With Multiple Sclerosis. Archives of Neurology, 2001, 58, 1975.	4.5	97
78	Chemokines and viral diseases of the central nervous system. Advances in Virus Research, 2001, 56, 127-173.	2.1	23
79	The role of chemokines and chemokine receptors in CNS inflammation. Progress in Brain Research, 2001, 132, 533-544.	1.4	35
80	Multiple sclerosis: recent developments in neuropathology, pathogenesis, magnetic resonance imaging studies and treatment. Current Opinion in Neurology, 2001, 14, 259-269.	3.6	111
81	TNFα production by CD4 ⁺ T cells predicts long-term increase in lesion load on MRI in MS. Neurology, 2001, 57, 1129-1131.	1.1	22
82	Hypoxia induces expression of the chemokines monocyte chemoattractant protein-1 (MCP-1) and IL-8 in human dermal fibroblasts. Clinical and Experimental Immunology, 2001, 123, 36-41.	2.6	78
83	The heat shock response reduces myelin oligodendrocyte glycoproteinâ€induced experimental autoimmune encephalomyelitis in mice. Journal of Neurochemistry, 2001, 77, 568-579.	3.9	32
84	Chemokines CXCL10 and CCL2: differential involvement in intrathecal inflammation in multiple sclerosis. European Journal of Neurology, 2001, 8, 665-672.	3.3	103
85	CXCR3 expression in human central nervous system diseases. Neuropathology and Applied Neurobiology, 2001, 27, 127-138.	3.2	80
86	Differential release of β-chemokines in serum and CSF of patients with relapsing-remitting multiple sclerosis. Acta Neurologica Scandinavica, 2001, 104, 88-91.	2.1	40
87	Selective CC chemokine receptor expression by central nervous system-infiltrating encephalitogenic T cells during experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2001, 66, 705-714.	2.9	50
88	17?-estradiol inhibits cytokine, chemokine, and chemokine receptor mRNA expression in the central nervous system of female mice with experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2001, 65, 529-542.	2.9	125
89	lschemia-induced neuronal expression of the microglia attracting chemokine secondary lymphoid-tissue chemokine (SLC). Clia, 2001, 34, 121-133.	4.9	126
90	Upregulation of transcription factors controlling MHC expression in multiple sclerosis lesions. Glia, 2001, 36, 68-77.	4.9	82
91	Immune function of microglia. Glia, 2001, 36, 165-179.	4.9	1,126
92	Inflammation in the nervous system: The human perspective. Glia, 2001, 36, 235-243.	4.9	90

~		~	
(REDU	DT
\sim	плп	NLFU	

#	Article	IF	CITATIONS
93	Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Annals of Neurology, 2001, 49, 650-658.	5.3	98
94	Complex immunomodulatory effects of interferon-β in multiple sclerosis include the upregulation of T helper 1-associated marker genes. Annals of Neurology, 2001, 50, 349-357.	5.3	171
95	Chemokine Regulation of Normal and Pathologic Immune Responses. Stem Cells, 2001, 19, 388-396.	3.2	107
96	Annotated References by Year. , 2001, , 651-770.		0
97	Chemokines and Their Receptors in the Central Nervous System. Frontiers in Neuroendocrinology, 2001, 22, 147-184.	5.2	348
98	The neuroimmunology of multiple sclerosis: possible roles of T and B lymphocytes in immunopathogenesis. Journal of Clinical Immunology, 2001, 21, 81-92.	3.8	155
99	Inflammation in the central nervous system in multiple sclerosis: The role of chemokines and their receptors. Inflammopharmacology, 2001, 9, 23-33.	3.9	1
100	Chemokine Expression and Viral Infection of the Central Nervous System: Regulation of Host Defense and Neuropathology. Immunologic Research, 2001, 24, 111-120.	2.9	17
101	HIV in the CNS: Pathogenic relationships to systemic HIV disease and other CNS diseases. Journal of NeuroVirology, 2001, 7, 85-96.	2.1	19
102	Chemokines and central nervous system disorders. Journal of NeuroVirology, 2001, 7, 493-500.	2.1	24
103	Multiple Sclerosis: Current Pathophysiological Concepts. Laboratory Investigation, 2001, 81, 263-281.	3.7	193
104	Chemokines and disease. Nature Immunology, 2001, 2, 108-115.	14.5	1,293
105	Lymphocyte traffic control by chemokines. Nature Immunology, 2001, 2, 123-128.	14.5	1,115
106	RANTES promotes growth and survival of human first-trimester forebrain astrocytes. Nature Cell Biology, 2001, 3, 150-157.	10.3	78
107	Regulation of chemokine receptor CCR5 and production of RANTES and MIP-11 [±] by interferon-1 ² . Journal of Neuroimmunology, 2001, 112, 174-180.	2.3	84
108	Multiple sclerosis: Genomic rewards. Journal of Neuroimmunology, 2001, 113, 171-184.	2.3	123
109	Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. Journal of Neuroimmunology, 2001, 114, 207-212.	2.3	120
110	In vivo neutralization of endogenous brain fractalkine increases hippocampal TNFα and 8-isoprostane production induced by intracerebroventricular injection of LPS. Journal of Neuroimmunology, 2001, 115, 135-143.	2.3	85

ARTICLE IF CITATIONS Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and 2.3 158 undergoing immunomodulatory therapies. Journal of Neuroimmunology, 2001, 115, 192-198. Induction of selected chemokines in glial cells infected with Theiler's virus. Journal of 2.3 Neuroimmunology, 2001, 117, 166-170. Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using 3.9 188 gridded cDNA arrays. Journal of Neurochemistry, 2001, 77, 132-145. Selective Immunointervention in Autoimmune Diseases: Lessons from Multiple Sclerosis. Journal of Chemotherapy, 2001, 13, 219-234. Expression of chemokine receptors in vernal keratoconjunctivitis. British Journal of Ophthalmology, 3.9 38 2001, 85, 1357-1361. Expression of Mig (Monokine Induced by Interferon-Î³) Is Important in T Lymphocyte Recruitment and Host Defense Following Viral Infection of the Central Nervous System. Journal of Immunology, 2001, 0.8 166, 1790-1795. CXCL10 (IFN-Î³-Inducible Protein-10) Control of Encephalitogenic CD4+ T Cell Accumulation in the Central Nervous System During Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 0.8 247 2001, 166, 7617-7624. Neutralization of the Chemokine CXCL10 Reduces Inflammatory Cell Invasion and Demyelination and Improves Neurological Function in a Viral Model of Multiple Sclérosis. Journal of Immunólogy, 2001, 0.8 202 167, 4091-4097. Depletion of CCR5-Expressing Cells with Bispecific Antibodies and Chemokine Toxins: A New Strategy in 0.8 40 the Treatment of Chronic Inflammatory Diseases and HIV. Journal of Immunology, 2001, 166, 2420-2426. Expression and Characterization of the Chemokine Receptors CCR2 and CCR5 in Mice. Journal of 0.8 Immunology, 2001, 166, 4697-4704. Microglial chemokines and chemokine receptors. Progress in Brain Research, 2001, 132, 525-532. 1.4 27 Expression and Modulation of IFN-Î³-Inducible Chemokines (IP-10, Mig, and I-TAC) in Human Brain Endothelium and Astrocytes: Possible Relevance for the Immune Invasion of the Central Nervous 1.2 System and the Pathogenesis of Multiple Sclerosis. Journal of Interferon and Cytokine Research, 2002, 22.631-640. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proceedings of the National Academy of Sciences of the United States of America, 7.1 250 2002, 99, 10276-10281. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain, 2002, 125, 1,078 1450-1461. Differentiation of Human CD8+ T Cells from a Memory to Memory/Effector Phenotype. Journal of 201 0.8 Immunology, 2002, 168, 5538-5550. Leukocyte Infiltration, But Not Neurodegeneration, in the CNS of Transgenic Mice with Astrocyte Production of the CXC Chemokine Ligand 10. Journal of Immunology, 2002, 169, 1505-1515. Morphine Regulates Gene Expression of α- and Î2-Chemokines and Their Receptors on Astroglial Cells Via 0.8 105 the Opioid \hat{I}_{4}^{4} Receptor. Journal of Immunology, 2002, 169, 3589-3599.

CITATION REPORT

128	IFN-γ-Inducible Protein 10 (IP-10; CXCL10)-Deficient Mice Reveal a Role for IP-10 in Effector T Cell Generation and Trafficking. Journal of Immunology, 2002, 168, 3195-3204.	0.8	971
-----	--	-----	-----

111

113

114

115

117

119

121

123

124

125

#	Article	IF	CITATIONS
129	Targeting the Function of IFN-Î ³ -Inducible Protein 10 Suppresses Ongoing Adjuvant Arthritis. Journal of Immunology, 2002, 169, 2685-2693.	0.8	126
130	IFN-γ-Inducible T Cell α Chemoattractant Is a Potent Stimulator of Normal Human Blood T Lymphocyte Transendothelial Migration: Differential Regulation by IFN-γ and TNF-α. Journal of Immunology, 2002, 168, 6420-6428.	0.8	65
131	Plasmid DNA Encoding IFN-Î ³ -Inducible Protein 10 Redirects Antigen-Specific T Cell Polarization and Suppresses Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2002, 168, 5885-5892.	0.8	108
132	Mouse Hepatitis Virus Infection of the Central Nervous System: Chemokine-Mediated Regulation of Host Defense and Disease. Viral Immunology, 2002, 15, 261-272.	1.3	55
133	Chemokine Expression Patterns Differ within Anatomically Distinct Regions of the Genital Tract during Chlamydia trachomatis Infection. Infection and Immunity, 2002, 70, 1538-1546.	2.2	63
134	The Ribonuclease Protection Assay: A Powerful Tool for the Veterinary Pathologist. Veterinary Pathology, 2002, 39, 2-9.	1.7	19
135	Chemokine receptors in the brain: their role in HIV infection and pathogenesis. Aids, 2002, 16, 1709-1730.	2.2	44
136	Methylprednisolone Acts on Peripheral Blood Mononuclear Cells and Endothelium in Inhibiting Migration Phenomena in Patients With Multiple Sclerosis. Archives of Neurology, 2002, 59, 774.	4.5	43
137	The CXC Chemokine Murine Monokine Induced by IFN-γ (CXC Chemokine Ligand 9) Is Made by APCs, Targets Lymphocytes Including Activated B Cells, and Supports Antibody Responses to a Bacterial Pathogen In Vivo. Journal of Immunology, 2002, 169, 1433-1443.	0.8	120
138	Expression of chemokines in cerebrospinal fluid and serum of patients with chronic inflammatory demyelinating polyneuropathy. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 320-323.	1.9	32
139	The Chemokine System in Neuroinflammation: An Update. Journal of Infectious Diseases, 2002, 186, S152-S156.	4.0	125
140	Expression of chemokine receptors in the different clinical forms of multiple sclerosis. Multiple Sclerosis Journal, 2002, 8, 390-395.	3.0	36
141	Chemokines and chemokine receptors in leukocyte trafficking. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R7-R28.	1.8	572
142	The chemokine receptor CCR5 deletion mutation is associated with MS in HLA-DR4–positive Russians. Neurology, 2002, 59, 1652-1655.	1.1	35
143	Selective suppression of chemokine receptor CXCR3 expression by interferon-b1a in multiple sclerosis. Multiple Sclerosis Journal, 2002, 8, 104-107.	3.0	32
144	Disease severity in Danish multiple sclerosis patients evaluated by MRI and three genetic markers (HLA-DRB1*1501, CCR5 deletion mutation, apolipoprotein E). Multiple Sclerosis Journal, 2002, 8, 295-298.	3.0	55
145	Expression of interferon-gamma-inducible protein-10 in human endometrial stromal cells. Molecular Human Reproduction, 2002, 8, 176-180.	2.8	22
146	G-CSF Therapy of Ongoing Experimental Allergic Encephalomyelitis Via Chemokine- and Cytokine-Based Immune Deviation. Journal of Immunology, 2002, 168, 2011-2019.	0.8	115

ARTICLE IF CITATIONS # Activation of p38 and ERK Signaling during Adenovirus Vector Cell Entry Lead to Expression of the 147 3.4 123 C-X-C Chemokine IP-10. Journal of Virology, 2002, 76, 1559-1568. 148 MIG–differential gene expression in mouse brain endothelial cells. NeuroReport, 2002, 13, 9-14. 1.2 Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for 149 7.6 139 IPâ€10. Brain, 2002, 125, 823-834. Expression of the Chemokine Receptors CCR4, CCR5, and CXCR3 by Human Tissue-Infiltrating 241 Lymphocytes. American Journal of Pathology, 2002, 160, 347-355. CD40-CD40L Interactions Induce Chemokine Expression by Human Microglia. American Journal of 151 3.8 86 Pathology, 2002, 160, 559-567. Experimental Autoimmune Encephalomyelitis: CC Chemokine Receptor Expression by Trafficking Cells. Journal of Autoimmunity, 2002, 19, 175-181. 6.5 IP-10 and MCP-1 levels in CSF and serum from multiple sclerosis patients with different clinical 153 0.6 92 subtypes of the disease. Journal of the Neurological Sciences, 2002, 195, 41-46. Gelatinase B, PECAM-1 and MCP-3 gene polymorphisms in Belgian multiple sclerosis. Journal of the Neurological Sciences, 2002, 200, 43-48. 154 0.6 19 Mechanisms of demyelination and tissue destruction in multiple sclerosis. Clinical Neurology and 155 1.4 57 Neurosurgery, 2002, 104, 168-171. The CXCR3 Binding Chemokine IP-10/CXCL10:  Structure and Receptor Interactions. Biochemistry, 2002, 2.5 41, 10418-10425. Bystander CD8 T Cell-Mediated Demyelination After Viral Infection of the Central Nervous System. 157 0.8 69 Journal of Immunology, 2002, 169, 1550-1555. Reduced Expression of Th1-Associated Chemokine Receptors on Peripheral Blood Lymphocytes at 79 Diagnosis of Type 1 Diabetes. Diabetes, 2002, 51, 2474-2480. Differential mechanisms of action of interferon- \hat{l}^2 and glatiramer acetate in MS. Neurology, 2002, 59, 159 1.1 234 802-808. \hat{I}^{3}/\hat{I} T Cells in Multiple Sclerosis: Chemokine and Chemokine Receptor Expression. Clinical Immunology, 3.2 2002, 103, 309-316. Statins as immunomodulators. Neurology, 2002, 59, 990-997. 161 207 1.1 Interactions between opioid and chemokine receptors: heterologous desensitization. Cytokine and Growth Factor Reviews, 2002, 13, 209-222. A comparison of the mechanisms of action of interferon beta and glatiramer acetate in the treatment 163 2.539 of multiple sclerosis. Clinical Therapeutics, 2002, 24, 1998-2021. Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. 164 2.3 99 Neuroscience, 2002, 112, 487-497.

#	Article	IF	CITATIONS
165	Microglial Chemokines and Chemokine Receptors. , 2002, , 289-299.		3
166	Activation of Group III Metabotropic Glutamate Receptors Inhibits the Production of RANTES in Glial Cell Cultures. Journal of Neuroscience, 2002, 22, 5403-5411.	3.6	79
167	Pertussis Toxin-Induced Reversible Encephalopathy Dependent on Monocyte Chemoattractant Protein-1 Overexpression in Mice. Journal of Neuroscience, 2002, 22, 10633-10642.	3.6	63
168	The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis. Journal of Neuroimmunology, 2002, 122, 1-8.	2.3	98
169	Chemokine receptor expression on B cells and effect of interferon-β in multiple sclerosis. Journal of Neuroimmunology, 2002, 122, 125-131.	2.3	34
170	GROα/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways and for tau hyperphosphorylation—a role in Alzheimer's disease?. Journal of Neuroimmunology, 2002, 122, 55-64.	2.3	94
171	Interferon β-1b modulates MCP-1 expression and production in relapsing–remitting multiple sclerosis. Journal of Neuroimmunology, 2002, 123, 170-179.	2.3	25
172	Interferon-β treatment alters peripheral blood monocytes chemokine production in MS patients. Journal of Neuroimmunology, 2002, 126, 205-212.	2.3	46
173	Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. Journal of Neuroimmunology, 2002, 127, 59-68.	2.3	231
174	Chemokine receptor expression on MBP-reactive T cells: CXCR6 is a marker of IFNÎ ³ -producing effector cells. Journal of Neuroimmunology, 2002, 127, 96-105.	2.3	32
175	Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. Journal of Neuroimmunology, 2002, 130, 10-21.	2.3	112
176	Phagocytotic removal of apoptotic, inflammatory lymphocytes in the central nervous system by microglia and its functional implications. Journal of Neuroimmunology, 2002, 130, 1-9.	2.3	48
177	Expression of chemokine receptor CXCR3 on cerebrospinal fluid T-cells is related to active MRI lesion appearance in patients with relapsing–remitting multiple sclerosis. Journal of Neuroimmunology, 2002, 131, 186-190.	2.3	36
178	Chemokine receptors associated with immunity within and outside the central nervous system in early relapsing–remitting multiple sclerosis. Journal of Neuroimmunology, 2002, 133, 184-192.	2.3	18
179	VIP and PACAP down-regulate CXCL10 (IP-10) and up-regulate CCL22 (MDC) in spleen cells. Journal of Neuroimmunology, 2002, 133, 81-94.	2.3	37
180	Chemokine receptor expression on T cells is related to new lesion development in multiple sclerosis. Journal of Neuroimmunology, 2002, 133, 225-232.	2.3	34
181	Inflammation in multiple sclerosis: the good, the bad, and the complex. Lancet Neurology, The, 2002, 1, 499-509.	10.2	146
182	Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis. European Journal of Immunology, 2002, 32, 1784.	2.9	88

#	Article	IF	CITATIONS
183	Effects of cytokine deficiency on chemokine expression in CNS of mice with EAE. Journal of Neuroscience Research, 2002, 67, 680-688.	2.9	34
184	Involvement of the interferon-?-induced T cell-attracting chemokines, interferon-?-inducible 10-kd protein (CXCL10) and monokine induced by interferon-? (CXCL9), in the salivary gland lesions of patients with Sj�gren's syndrome. Arthritis and Rheumatism, 2002, 46, 2730-2741.	6.7	204
185	RANTES stimulates inflammatory cascades and receptor modulation in murine astrocytes. Glia, 2002, 39, 19-30.	4.9	54
186	The relative number of macrophages/microglia expressing macrophage colony-stimulating factor and its receptor decreases in multiple sclerosis lesions. Glia, 2002, 40, 121-129.	4.9	27
187	Differential intracellular expression of CCR5 and chemokines in multiple sclerosis subtypes. Journal of Neurology, 2002, 249, 576-583.	3.6	30
188	Interferonâ€Î² activates multiple signaling cascades in primary human microglia. Journal of Neurochemistry, 2002, 81, 1361-1371.	3.9	71
189	Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. Journal of Neurochemistry, 2002, 82, 1311-1329.	3.9	274
190	Elevated expression of CCR5 by myeloid (CD11c +) blood dendritic cells in multiple sclerosis and acute optic neuritis. Clinical and Experimental Immunology, 2002, 127, 519-526.	2.6	51
191	T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation: implications for CNS trafficking. Clinical and Experimental Immunology, 2002, 129, 510-518.	2.6	136
192	Dendritic cells, chemokine receptors and autoimmune inflammatory diseases. Immunology and Cell Biology, 2002, 80, 497-505.	2.3	106
193	Inflammation and therapeutic vaccination in CNS diseases. Nature, 2002, 420, 879-884.	27.8	246
194	Chemokine receptors: multifaceted therapeutic targets. Nature Reviews Immunology, 2002, 2, 106-115.	22.7	662
195	CXC Chemokine Receptors in the Central Nervous System: Role in Cerebellar Neuromodulation and Development. Journal of NeuroVirology, 2002, 8, 559-572.	2.1	58
196	Expression of CCR2, CCR5, and CXCR3 by CD4+ T Cells is Stable During a 2-Year Longitudinal Study but Varies Widely Between Individuals. Journal of NeuroVirology, 2003, 9, 291-299.	2.1	13
197	Adenovirus-Mediated Expression of CXCL10 in the Central Nervous System Results in T-Cell Recruitment and Limited Neuropathology. Journal of NeuroVirology, 2003, 9, 315-324.	2.1	17
198	Chemokine and chemokine receptor expression during experimental autoimmune uveoretinitis in mice. , 2003, 241, 111-115.		41
200	Crystal Structures of Oligomeric Forms of the IP-10/CXCL10 Chemokine. Structure, 2003, 11, 521-532.	3.3	70
201	Multiple sclerosis in the Japanese population. Lancet Neurology, The, 2003, 2, 117-127.	10.2	382

#	Article	IF	CITATIONS
202	Cytokines and chemokines in neuro-Behçet's disease compared to multiple sclerosis and other neurological diseases. Journal of Neuroimmunology, 2003, 145, 127-134.	2.3	82
203	C–C chemokine receptor 2 gene polymorphism in Japanese patients with multiple sclerosis. Journal of Neuroimmunology, 2003, 145, 135-138.	2.3	39
204	Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain–Barré syndrome and experimental autoimmune neuritis. Journal of Neuroimmunology, 2003, 134, 118-127.	2.3	64
205	Regulation of chemokine receptor expression in human microglia and astrocytes. Journal of Neuroimmunology, 2003, 136, 84-93.	2.3	199
206	IL-12 dependent/IFNÎ ³ independent expression of CCR5 by myelin-reactive T cells correlates with encephalitogenicity. Journal of Neuroimmunology, 2003, 137, 109-116.	2.3	35
207	The development of clinical activity in relapsing–remitting MS is associated with a decrease of FasL mRNA and an increase of Fas mRNA in peripheral blood. Journal of Neuroimmunology, 2003, 138, 123-131.	2.3	17
208	Interferon-β1a does not reduce expression of CCR5 and CXCR3 on circulating T cells. Journal of Neuroimmunology, 2003, 141, 150-154.	2.3	11
209	Cytokine regulation of MCP-1 expression in brain and retinal microvascular endothelial cells. Journal of Neuroimmunology, 2003, 142, 1-9.	2.3	72
210	Effector stage CC chemokine receptor-1 selective antagonism reduces multiple sclerosis-like rat disease. Journal of Neuroimmunology, 2003, 142, 75-85.	2.3	36
211	Chemokine receptors in inflammation: an overview. Journal of Immunological Methods, 2003, 273, 3-13.	1.4	151
212	Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes. Glia, 2003, 41, 371-381.	4.9	147
213	Astrocytes are the major intracerebral source of macrophage inflammatory protein-3?/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia, 2003, 41, 290-300.	4.9	105
214	Differential effects of Th1 and Th2 lymphocyte supernatants on human microglia. Glia, 2003, 42, 36-45.	4.9	35
215	Molecular characterization of the chemokine receptor CXCR3: evidence for the involvement of distinct extracellular domains in a multi-step model of ligand binding and receptor activation. European Journal of Immunology, 2003, 33, 2927-2936.	2.9	82
216	Promoter polymorphism of IL-10 and severity of multiple sclerosis. Acta Neurologica Scandinavica, 2003, 108, 396-400.	2.1	56
217	Evidence favoring the involvement of CC chemokine receptor (CCR) 5 in T-lymphocyte accumulation in optic neuritis. Acta Neurologica Scandinavica, 2003, 107, 221-227.	2.1	6
218	Concentrations of Interferonâ€Î³â€Induced Proteinâ€10 (IPâ€10), an Antiangiogenic Substance, are Decreased in Peritoneal Fluid of Women with Advanced Endometriosis. American Journal of Reproductive Immunology, 2003, 50, 60-65.	1.2	43
219	Chemokine receptors on infiltrating leucocytes in inflammatory pathologies of the central nervous system (CNS). Neuropathology and Applied Neurobiology, 2003, 29, 584-595.	3.2	52

#	Article	IF	CITATIONS
220	Multiple sclerosis: a study of chemokine receptors and regulatory T cells in relation to MRI variables. European Journal of Neurology, 2003, 10, 529-535.	3.3	28
221	Immune parameters associated with early treatment effects of high-dose intravenous methylprednisolone in multiple sclerosis. Journal of the Neurological Sciences, 2003, 216, 61-66.	0.6	24
222	Chemokines and their receptors in the CNS: expression of CXCL12/SDF-1 and CXCR4 and their role in astrocyte proliferation. Toxicology Letters, 2003, 139, 181-189.	0.8	88
223	CC Chemokine Receptor 8 in the Central Nervous System Is Associated with Phagocytic Macrophages. American Journal of Pathology, 2003, 162, 427-438.	3.8	59
224	Unraveling the Chemistry of Chemokine Receptor Ligands. Chemical Reviews, 2003, 103, 3733-3752.	47.7	55
225	Complement component anaphylatoxins upregulate chemokine expression by human astrocytes. FEBS Letters, 2003, 537, 17-22.	2.8	46
226	Chemokines and matrix metalloproteinase-9 in leukocyte recruitment to the central nervous system. Brain Research Bulletin, 2003, 61, 347-355.	3.0	108
227	The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Seminars in Immunology, 2003, 15, 23-32.	5.6	374
228	Strategies for chemokine antagonists as therapeutics. Seminars in Immunology, 2003, 15, 57-65.	5.6	89
229	Structure-Function Relationship between the Human Chemokine Receptor CXCR3 and Its Ligands. Journal of Biological Chemistry, 2003, 278, 289-295.	3.4	166
230	Functional Expression of Chemokine Receptor CCR5 on CD4 + T Cells during Virus-Induced Central Nervous System Disease. Journal of Virology, 2003, 77, 191-198.	3.4	60
231	Longitudinal study of chemokine receptor expression on peripheral lymphocytes in multiple sclerosis: CXCR3 upregulation is associated with relapse. Multiple Sclerosis Journal, 2003, 9, 189-198.	3.0	36
232	Inhibition of Interferon (IFN) γ-induced Jak-STAT1 Activation in Microglia by Vasoactive Intestinal Peptide. Journal of Biological Chemistry, 2003, 278, 27620-27629.	3.4	73
233	Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. Journal of Leukocyte Biology, 2003, 73, 771-780.	3.3	146
234	Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. Journal of Leukocyte Biology, 2003, 73, 584-590.	3.3	159
235	CC Chemokines Mediate Leukocyte Trafficking into the Central Nervous System during Murine Neurocysticercosis: Role of Î ³ δT Cells in Amplification of the Host Immune Response. Infection and Immunity, 2003, 71, 2634-2642.	2.2	50
236	Differential Responses to IFN-Î \pm Subtypes in Human T Cells and Dendritic Cells. Journal of Immunology, 2003, 171, 5255-5263.	0.8	104
237	Endothelial inflammation: the role of differential expression of N-deacetylase/N-sulphotransferase enzymes in alteration of the immunological properties of heparan sulphate. Journal of Cell Science, 2003, 116, 3591-3600.	2.0	95

#	Article	IF	CITATIONS
238	Disease-modifying therapies in multiple sclerosis: an update on recent and ongoing trials and future strategies. Expert Opinion on Investigational Drugs, 2003, 12, 689-712.	4.1	32
239	Human cerebrospinal fluid central memory CD4 ⁺ T cells: Evidence for trafficking through choroid plexus and meninges via P-selectin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8389-8394.	7.1	486
240	Perforin-Dependent Brain-Infiltrating Cytotoxic CD8+ T Lymphocytes Mediate Experimental Cerebral Malaria Pathogenesis. Journal of Immunology, 2003, 170, 2221-2228.	0.8	267
241	Inhibition of IFN-γ-Inducible Protein-10 Abrogates Colitis in IL-10â^'/â^' Mice. Journal of Immunology, 2003, 171, 1401-1406.	0.8	142
242	Immunoregulatory Role of Ocular Macrophages: The Macrophages Produce RANTES to Suppress Experimental Autoimmune Uveitis. Journal of Immunology, 2003, 171, 2652-2659.	0.8	52
243	CXCR3 and Heparin Binding Sites of the Chemokine IP-10 (CXCL10). Journal of Biological Chemistry, 2003, 278, 17066-17074.	3.4	83
244	CXCR3 Is Induced Early on the Pathway of CD4+ T Cell Differentiation and Bridges Central and Peripheral Functions. Journal of Immunology, 2003, 171, 2812-2824.	0.8	83
245	Chapter 7 Pathology and Pathogenesis of Multiple Sclerosis. Blue Books of Practical Neurology, 2003, 27, 93-113.	0.1	Ο
246	CX ₃ CL1 and CX ₃ CR1 Expression in Human Brain Tissue: Noninflammatory Control versus Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2003, 62, 899-907.	1.7	72
247	Oligodendroglial-derived stress signals recruit microglia in vitro. NeuroReport, 2003, 14, 1001-1005.	1.2	7
248	Oligodendroglial-derived stress signals recruit microglia in vitro. NeuroReport, 2003, 14, 1001-1005.	1.2	8
249	CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C–dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/PI-3 kinase. Blood, 2003, 102, 1959-1965.	1.4	161
250	Chemokine Expression by Glial Cells Directs Leukocytes to Sites of Axonal Injury in the CNS. Journal of Neuroscience, 2003, 23, 7922-7930.	3.6	434
251	Chemokines and chemokine receptors in autoimmune encephalomyelitis as a model for central nervous system inflammatory disease regulation. Frontiers in Bioscience - Landmark, 2004, 9, 1500.	3.0	29
252	Chemokine network in multiple sclerosis: role in pathogenesis and targeting for future treatments. Expert Review of Neurotherapeutics, 2004, 4, 439-453.	2.8	18
253	Antibody Targeting of the CC Chemokine Ligand 5 Results in Diminished Leukocyte Infiltration into the Central Nervous System and Reduced Neurologic Disease in a Viral Model of Multiple Sclerosis. Journal of Immunology, 2004, 172, 4018-4025.	0.8	126
254	Influence of C C R5 δ32 polymorphism on multiple sclerosis susceptibility and disease course. Multiple Sclerosis Journal, 2004, 10, 149-152.	3.0	42
255	Allergic humans are hypoâ€responsive to CXCR3 chemokines in a Th1 immunityâ€promoting loop. FASEB Journal, 2004, 18, 1-19.	0.5	83

#	Article	IF	CITATIONS
256	Optic neuritis: chemokine receptor CXCR3 and its ligands. British Journal of Ophthalmology, 2004, 88, 1146-1148.	3.9	10
257	RANTES: a genetic risk marker for multiple sclerosis. Multiple Sclerosis Journal, 2004, 10, 536-539.	3.0	41
258	Increased Adhesion Molecule and Chemokine Receptor Expression on CD8+T Cells Trafficking to Cerebrospinal Fluid in HIVâ€I Infection. Journal of Infectious Diseases, 2004, 189, 2202-2212.	4.0	73
259	Anti-TNFα Therapy Modulates the Phenotype of Peripheral Blood CD4+T Cells in Patients with Posterior Segment Intraocular Inflammation. , 2004, 45, 170.		59
260	Efficient T-Cell Surveillance of the CNS Requires Expression of the CXC Chemokine Receptor 3. Journal of Neuroscience, 2004, 24, 4849-4858.	3.6	88
261	Expression of Th1/Th2-Related Chemokine Receptors on Peripheral T Cells and Correlation with Clinical Disease Activity in Patients with Multiple Sclerosis. European Neurology, 2004, 52, 162-168.	1.4	39
262	Steroid Therapy Altered Serum Levels of CCL2 and CCL5 Chemokines in Multiple Sclerosis Patients during Relapse. European Neurology, 2004, 52, 237-241.	1.4	14
263	CCR2 expressing CD4+ T lymphocytes are preferentially recruited to the ileum in Crohn's disease. Gut, 2004, 53, 1287-1294.	12.1	63
264	Interference with Heparin Binding and Oligomerization Creates a Novel Anti-Inflammatory Strategy Targeting the Chemokine System. Journal of Immunology, 2004, 173, 5776-5785.	0.8	147
265	VIP/PACAP preferentially attract Th2 effectors through differential regulation of chemokine production by dendritic cells. FASEB Journal, 2004, 18, 1453-1455.	0.5	99
266	Reduced Expression of Chemokine Receptors on Peripheral Blood Lymphocytes in Patients with Hepatocellular Carcinoma. American Journal of Gastroenterology, 2004, 99, 1111-1121.	0.4	26
267	Role of Microglia in Central Nervous System Infections. Clinical Microbiology Reviews, 2004, 17, 942-964.	13.6	590
268	Distinct roles for IP-10/C XC L10 in three animal models, Theiler's virus infection, EA E, and MHV infection, for multiple sclerosis: implication of differing roles for IP-10. Multiple Sclerosis Journal, 2004, 10, 26-34.	3.0	79
269	I-TAC/CXCL11 is a natural antagonist for CCR5. Journal of Leukocyte Biology, 2004, 76, 701-708.	3.3	49
270	Increased circulating and intrahepatic T-cell-specific chemokines in chronic hepatitis C: relationship with the type of virological response to peginterferon plus ribavirin combination therapy. Alimentary Pharmacology and Therapeutics, 2004, 19, 551-562.	3.7	39
271	Chemokine CCL2 and chemokine receptor CCR2 in early active multiple sclerosis. European Journal of Neurology, 2004, 11, 445-449.	3.3	79
272	Interleukin-8 and RANTES levels in patients with relapsing-remitting multiple sclerosis (RR-MS) treated with cladribine. Acta Neurologica Scandinavica, 2004, 109, 390-392.	2.1	54
273	Chemokine receptors and early activation markers in acute anterior uveitis. Acta Ophthalmologica, 2004, 82, 179-183.	0.3	6

#	ARTICLE	IF	CITATIONS
274	Expression and Regulation of the Chemokine Receptor CXCR3 on Lymphocytes from Normal and Inflammatory Bowel Disease Mucosa. Inflammatory Bowel Diseases, 2004, 10, 778-788.	1.9	30
275	Regulation of RANTES/CCL5 expression in human astrocytes by interleukin-1 and interferon-beta. Journal of Neurochemistry, 2004, 90, 297-308.	3.9	53
276	Cyclophosphamide modulates CD4+ T cells into a T helper type 2 phenotype and reverses increased IFN-Î ³ production of CD8+ T cells in secondary progressive multiple sclerosis. Journal of Neuroimmunology, 2004, 146, 189-198.	2.3	45
277	CSF chemokine levels in relapsing neuromyelitis optica and multiple sclerosis. Journal of Neuroimmunology, 2004, 149, 182-186.	2.3	71
278	Acute exposure to CXC chemokine ligand 10, but not its chronic astroglial production, alters synaptic plasticity in mouse hippocampal slices. Journal of Neuroimmunology, 2004, 150, 37-47.	2.3	50
279	Alterations in chemokine expression following Theiler's virus infection and restraint stress. Journal of Neuroimmunology, 2004, 151, 103-115.	2.3	30
280	Gene expression profiling of relevant biomarkers for treatment evaluation in multiple sclerosis. Journal of Neuroimmunology, 2004, 152, 126-139.	2.3	62
281	15-Deoxy-Δ (12,14)-PGJ2 inhibits astrocyte IL-1 signaling: inhibition of NF-κB and MAP kinase pathways and suppression of cytokine and chemokine expression. Journal of Neuroimmunology, 2004, 153, 132-142.	2.3	15
282	CXCR3 marks CD4+ memory T lymphocytes that are competent to migrate across a human brain microvascular endothelial cell layer. Journal of Neuroimmunology, 2004, 153, 150-157.	2.3	68
283	The chemokine CXCL10 modulates excitatory activity and intracellular calcium signaling in cultured hippocampal neurons. Journal of Neuroimmunology, 2004, 156, 74-87.	2.3	81
284	Is damage in central nervous system due to inflammation?. Autoimmunity Reviews, 2004, 3, 251-260.	5.8	101
285	Chemokines and Glial Cells: A Complex Network in the Central Nervous System. Neurochemical Research, 2004, 29, 1017-1038.	3.3	183
286	Recent neuropathological findings in MS?implications for diagnosis and therapy. Journal of Neurology, 2004, 251, IV2-5.	3.6	36
287	What do we know about the mechanism of action of disease-modifying treatments in MS?. Journal of Neurology, 2004, 251, v12-v29.	3.6	67
289	Increase in CCR5 Delta32/Delta32 genotype in multiple sclerosis. Acta Neurologica Scandinavica, 2004, 109, 342-347.	2.1	40
290	Interferon-inducible protein 10/CXCL10 is increased in the cerebrospinal fluid of patients with central nervous system lupus. Arthritis and Rheumatism, 2004, 50, 3731-3732.	6.7	49
291	Expression of CCR7 in multiple sclerosis: Implications for CNS immunity. Annals of Neurology, 2004, 55, 627-638.	5.3	235
292	Induction of glial L-CCR mRNA expression in spinal cord and brain in experimental autoimmune encephalomyelitis. Glia, 2004, 46, 84-94.	4.9	37

	CHANNE	LFORT	
#	Article	IF	CITATIONS
293	Adenosine A3 receptor-induced CCL2 synthesis in cultured mouse astrocytes. Glia, 2004, 46, 410-418.	4.9	89
294	Regulation of neuroinflammation: The role of CXCL10 in lymphocyte infiltration during autoimmune encephalomyelitis. Journal of Cellular Biochemistry, 2004, 92, 213-222.	2.6	44
295	Chemokine Monokine Induced by IFN-γ/CXC Chemokine Ligand 9 Stimulates T Lymphocyte Proliferation and Effector Cytokine Production. Journal of Immunology, 2004, 172, 7417-7424.	0.8	108
296	Immunotherapeutic approaches in multiple sclerosis. Journal of the Neurological Sciences, 2004, 223, 13-24.	0.6	35
297	Cellular Damage and Repair in Multiple Sclerosis. , 2004, , 733-762.		10
298	Macrophage brain infiltration in experimental autoimmune encephalomyelitis is not completely compromised by suppressed T-cell invasion: in vivo magnetic resonance imaging illustration in effective anti-VLA-4 antibody treatment. Multiple Sclerosis Journal, 2004, 10, 540-548.	3.0	44
299	A1 Adenosine Receptor Upregulation and Activation Attenuates Neuroinflammation and Demyelination in a Model of Multiple Sclerosis. Journal of Neuroscience, 2004, 24, 1521-1529.	3.6	297
300	Inflammatory potential and migratory capacities across human brain endothelial cells of distinct glatiramer acetate-reactive T cells generated in treated multiple sclerosis patients. Clinical Immunology, 2004, 111, 38-46.	3.2	18
301	Increased Th1 activity in patients with coronary artery disease. Cytokine, 2004, 26, 131-137.	3.2	74
302	Spinal cord molecular profiling provides a better understanding of Amyotrophic Lateral Sclerosis pathogenesis. Brain Research Reviews, 2004, 45, 213-229.	9.0	33
303	Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Research Reviews, 2004, 46, 261-281.	9.0	205
304	Monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 are involved in both excitotoxin-induced neurodegeneration and regeneration. Experimental Cell Research, 2004, 297, 197-211.	2.6	93
305	Decreased CD14+CCR2+ monocytes in active multiple sclerosis. Neuroscience Letters, 2004, 363, 187-189.	2.1	12
306	IFN??-1a Treatment and Reestablishment of Th1 Regulation in MS Patients. Clinical Neuropharmacology, 2004, 27, 258-269.	0.7	9
307	Acute Disseminated Encephalomyelitis in Childhood: Epidemiologic, Clinical and Laboratory Features. Pediatric Infectious Disease Journal, 2004, 23, 756-764.	2.0	362
308	IFN-Inducible Protein 10/CXC Chemokine Ligand 10-Independent Induction of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2004, 172, 550-559.	0.8	122
309	Regulation of Cellular and Molecular Trafficking across Human Brain Endothelial Cells by Th1- and Th2-Polarized Lymphocytes. Journal of Neuropathology and Experimental Neurology, 2004, 63, 223-232.	1.7	35
310	Expression of Chemokine Receptors CCR1 and CCR5 Reflects Differential Activation of Mononuclear Phagocytes in Pattern II and Pattern III Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 2004, 63, 262-273.	1.7	66

#	Article	IF	CITATIONS
311	Association of CCR5 Δ32 deletion with early death in multiple sclerosis. Genetics in Medicine, 2004, 6, 126-131.	2.4	53
312	Chemokines and Central Nervous System Physiology. Current Topics in Membranes, 2005, 55, 159-187.	0.9	1
313	CXCR3 Antagonists. Annual Reports in Medicinal Chemistry, 2005, , 215-225.	0.9	15
314	Immunopathogenesis and immunotherapeutic approaches in multiple sclerosis. Expert Review of Neurotherapeutics, 2005, 5, 379-390.	2.8	7
315	The Chemokine System in Experimental Autoimmune Encephalomyelitis. , 2005, , 363-377.		0
316	Chemokine-induced recruitment of genetically modified bone marrow cells into the CNS of GM1-gangliosidosis mice corrects neuronal pathology. Blood, 2005, 106, 2259-2268.	1.4	77
317	IFN-γ-inducible protein 10 and pentraxin 3 plasma levels are tools for monitoring inflammation and disease activity in Mycobacterium tuberculosis infection. Microbes and Infection, 2005, 7, 1-8.	1.9	224
318	The levels of chemokines CXCL8, CCL2 and CCL5 in multiple sclerosis patients are linked to the activity of the disease. European Journal of Neurology, 2005, 12, 49-54.	3.3	90
319	The chemokine CCL2 modulates Ca2+dynamics and electrophysiological properties of cultured cerebellar Purkinje neurons. European Journal of Neuroscience, 2005, 21, 2949-2957.	2.6	49
320	Chemokines: Integrators of Pain and Inflammation. Nature Reviews Drug Discovery, 2005, 4, 834-844.	46.4	238
321	Anti-Interferon-inducible Chemokine, CXCL10, Reduces Colitis by Impairing T Helper-1 Induction and Recruitment in Mice. Inflammatory Bowel Diseases, 2005, 11, 799-805.	1.9	81
322	Neural stem cells in inflammatory CNS diseases: mechanisms and therapy. Journal of Cellular and Molecular Medicine, 2005, 9, 303-319.	3.6	31
323	The clinical potential of chemokine receptor antagonists. , 2005, 107, 44-58.		107
324	Chemokine profile in the cerebrospinal fluid and serum of Vogt–Koyanagi–Harada disease. Journal of Neuroimmunology, 2005, 158, 240-244.	2.3	19
325	CSF-chemokines in HTLV-I-associated myelopathy: CXCL10 up-regulation and therapeutic effect of interferon- $\hat{1}$ ±. Journal of Neuroimmunology, 2005, 159, 177-182.	2.3	33
326	Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: Implications for multiple sclerosis. Journal of Neuroimmunology, 2005, 161, 113-122.	2.3	158
327	CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis—an intravital microscopy study. Journal of Neuroimmunology, 2005, 162, 122-129.	2.3	122
328	Systemic T-cell activation in acute clinically isolated optic neuritis. Journal of Neuroimmunology, 2005, 162, 165-172.	2.3	23

#	Article	IF	CITATIONS
329	Increased expression of CXCR3 and CCR5 on memory CD4+ T-cells migrating into the cerebrospinal fluid of patients with neuroborreliosis: The role of CXCL10 and CXCL11. Journal of Neuroimmunology, 2005, 163, 128-134.	2.3	34
330	CCR5Δ32 polymorphism effects on CCR5 expression, patterns of immunopathology and disease course in multiple sclerosis. Journal of Neuroimmunology, 2005, 169, 137-143.	2.3	35
331	Characterization of relapsing autoimmune encephalomyelitis and its treatment with decoy chemokine receptor genes. Journal of Neuroimmunology, 2005, 170, 49-61.	2.3	17
332	CXCR3 is required for migration to dermal inflammation by normal andin vivo activated T ,cells: differential requirements by CD4 and CD8 memory subsets. European Journal of Immunology, 2005, 35, 1702-1711.	2.9	49
333	Inhibition of the development of collagen-induced arthritis in rhesus monkeys by a small molecular weight antagonist of CCR5. Arthritis and Rheumatism, 2005, 52, 627-636.	6.7	85
334	RON-regulated innate immunity is protective in an animal model of multiple sclerosis. Annals of Neurology, 2005, 57, 883-895.	5.3	38
335	Cyclopentenone prostaglandins PGA2 and 15-deoxy-?12,14 PGJ2 suppress activation of murine microglia and astrocytes: Implications for multiple sclerosis. Journal of Neuroscience Research, 2005, 80, 66-74.	2.9	49
336	Agonists for the peroxisome proliferator-activated receptor- $\hat{l}\pm$ and the retinoid X receptor inhibit inflammatory responses of microglia. Journal of Neuroscience Research, 2005, 81, 403-411.	2.9	126
337	echemokine receptor expression in idiopathic inflammatory myopathies. Muscle and Nerve, 2005, 31, 621-627.	2.2	28
338	The production of CXCR3-agonistic chemokines by synovial fibroblasts from patients with rheumatoid arthritis. Rheumatology International, 2005, 25, 361-367.	3.0	49
339	Differences in systemic and central nervous system cellular immunity relevant to relapsing–remitting multiple sclerosis. Journal of Neurology, 2005, 252, 908-915.	3.6	25
340	Clinical implications of neuropathological findings in multiple sclerosis. Journal of Neurology, 2005, 252, iii10-iii14.	3.6	23
341	Butyrate blocks interferon-Î ³ -inducible protein-10 release in human intestinal subepithelial myofibroblasts. Journal of Gastroenterology, 2005, 40, 483-489.	5.1	33
342	Correlations between IL-4, IL-12 levels and CCL2, CCL5 levels in serum and cerebrospinal fluid of multiple sclerosis patients. Journal of Neural Transmission, 2005, 112, 797-803.	2.8	27
343	Intracellular Signal Cascade in CD4+T-Lymphocyte Migration Stimulated by Interferon-Î ³ -Inducible Protein-10. Biochemistry (Moscow), 2005, 70, 652-656.	1.5	6
344	Chemokine Signaling: The Functional Importance of Stabilizing Receptor Conformations. , 2005, , 153-170.		0
345	Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. Journal of Leukocyte Biology, 2005, 77, 229-237.	3.3	37
346	Opposing Effects of CXCR3 and CCR5 Deficiency on CD8+ T Cell-Mediated Inflammation in the Central Nervous System of Virus-Infected Mice. Journal of Immunology, 2005, 175, 1767-1775.	0.8	47

#	Article	IF	CITATIONS
347	Increase of interferon-γ inducible α chemokine CXCL10 but not β chemokine CCL2 serum levels in chronic autoimmune thyroiditis. European Journal of Endocrinology, 2005, 152, 171-177.	3.7	82
348	Immunologic Correlates of MS Pathologic Subtypes. Multiple Sclerosis Journal, 2005, 11, 101-102.	3.0	2
349	Molecular Control of Physiological and Pathological T-Cell Recruitment after Mouse Spinal Cord Injury. Journal of Neuroscience, 2005, 25, 6576-6583.	3.6	83
350	Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain, 2005, 128, 988-1002.	7.6	316
351	Overexpression of IFN-Induced Protein 10 and Its Receptor CXCR3 in Myasthenia Gravis. Journal of Immunology, 2005, 174, 5324-5331.	0.8	76
352	γδT Cells Regulate the Extent and Duration of Inflammation in the Central Nervous System by a Fas Ligand-Dependent Mechanism. Journal of Immunology, 2005, 174, 4678-4687.	0.8	116
353	CD26+CD4+T cell counts and attack risk in interferon-treated multiple sclerosis. Multiple Sclerosis Journal, 2005, 11, 641-645.	3.0	14
354	Chemokines and chemokine receptors in inflammation of the CNS. Expert Review of Clinical Immunology, 2005, 1, 293-301.	3.0	8
355	Viral Expression of CCL2 Is Sufficient To Induce Demyelination in RAG1 â^'/â^' Mice Infected with a Neurotropic Coronavirus. Journal of Virology, 2005, 79, 7113-7120.	3.4	42
356	Monokine Induced by Interferon-γ Acts as a Neurotrophic Factor on PC12 Cells and Rat Primary Sympathetic Neurons. Journal of Biological Chemistry, 2005, 280, 34268-34277.	3.4	6
357	BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. Journal of Experimental Medicine, 2005, 201, 195-200.	8.5	441
358	The pathology of multiple sclerosis. Neurologic Clinics, 2005, 23, 77-105.	1.8	134
359	Immunology of multiple sclerosis. Neurologic Clinics, 2005, 23, 149-175.	1.8	29
360	Chemokine Receptor CXCR3: An Unexpected Enigma. Current Topics in Developmental Biology, 2005, 68, 149-181.	2.2	136
361	The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11094-11099.	7.1	172
362	Overview and History of Chemokines and Their Receptors. Current Topics in Membranes, 2005, 55, 1-47.	0.9	1
363	Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives. Journal of Autoimmunity, 2005, 25, 126-132.	6.5	97
364	Multi-faceted strategies to combat disease by interference with the chemokine system. Trends in Immunology, 2005, 26, 268-274.	6.8	81

#	Article	IF	CITATIONS
365	Decreased IgG production but increased MIP-1β expression in collagen-induced arthritis in C–C chemokine receptor 5-deficient mice. Cytokine, 2005, 31, 64-71.	3.2	11
366	Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Research Reviews, 2005, 48, 16-42.	9.0	455
367	Involvement of beta-chemokines in the development of inflammatory demyelination. Journal of Neuroinflammation, 2005, 2, 7.	7.2	69
368	IMMUNOLOGY OF MULTIPLE SCLEROSIS. Annual Review of Immunology, 2005, 23, 683-747.	21.8	1,982
369	CNS chemokines, cytokines, and dendritic cells in autoimmune demyelination. Journal of the Neurological Sciences, 2005, 228, 210-214.	0.6	32
370	B-Cell Immunity in Multiple Sclerosis. , 2005, , 113-130.		0
371	Role of Microglia and Macrophages in Eae. , 2005, , 109-131.		0
372	An investigation of polymorphisms in the 4q13.3-21.1 CXC chemokine gene cluster for association with multiple sclerosis in Australians. Multiple Sclerosis Journal, 2006, 12, 710-722.	3.0	5
373	Cytokines and chemokines in cerebrospinal fluid and serum of adult patients with acute disseminated encephalomyelitis. Journal of the Neurological Sciences, 2006, 247, 202-207.	0.6	65
374	Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain, 2006, 129, 200-211.	7.6	485
375	Amelioration of autoimmune neuroinflammation by recombinant human alpha-fetoprotein. Experimental Neurology, 2006, 198, 136-144.	4.1	43
376	MS treatment: New perspectives. Clinical Neurology and Neurosurgery, 2006, 108, 339-345.	1.4	9
377	The Many Roles of Chemokines and Chemokine Receptors in Inflammation. New England Journal of Medicine, 2006, 354, 610-621.	27.0	2,207
378	Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Research, 2006, 121, 1-10.	2.2	88
379	Chemokine blockers – therapeutics in the making?. Trends in Pharmacological Sciences, 2006, 27, 41-47.	8.7	171
381	Immunology and immunopathology of African trypanosomiasis. Anais Da Academia Brasileira De Ciencias, 2006, 78, 645-665.	0.8	88
382	Role of Th1 and Th2 Cells in Autoimmunity. , 2006, , 83-101.		1
383	Biomarkers in Multiple Sclerosis. Disease Markers, 2006, 22, 183-185.	1.3	25

		IF	CITATIONS
#	ARTICLE	IF	CITATIONS
384	adhesion and internalization in response to CXCL11. Blood, 2006, 107, 3821-3831.	1.4	43
386	An investigation of polymorphisms in the 17q11.2-12 CC chemokine gene cluster for association with multiple sclerosis in Australians. BMC Medical Genetics, 2006, 7, 64.	2.1	8
387	CCR3, CCR5, CCR8 and CXCR3 expression in memory T helper cells from allergic rhinitis patients, asymptomatically sensitized and healthy individuals. Clinical and Molecular Allergy, 2006, 4, 6.	1.8	8
388	Inflammation in the Central Nervous System: the Role for Dendritic Cells. Brain Pathology, 2003, 13, 23-33.	4.1	67
389	Differential Expression of the Chemokine Receptors CX ₃ CR1 and CCR1 by Microglia and Macrophages in Myelinâ€Oligodendrocyteâ€Glycoproteinâ€Induced Experimental Autoimmune Encephalomyelitis. Brain Pathology, 2003, 13, 617-629.	4.1	37
390	Effect of high-dose methylprednisolone treatment on CCR5 expression on blood cells in MS exacerbation. Acta Neurologica Scandinavica, 2006, 113, 163-166.	2.1	16
391	Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunological Reviews, 2006, 213, 195-212.	6.0	77
392	Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice. Clinical and Experimental Immunology, 2006, 146, 330-338.	2.6	299
393	Increase of interferonâ€Î³â€inducible CXC chemokine CXCL10 serum levels in patients with active Graves' disease, and modulation by methimazole therapy. Clinical Endocrinology, 2006, 64, 189-195.	2.4	67
394	Serum and cerebral spinal fluid levels of chemokines and Th2 cytokines in Schistosoma mansoni myeloradiculopathy. Parasite Immunology, 2006, 28, 473-478.	1.5	28
395	Dynamic Tâ€lymphocyte Chemokine Receptor Expression Induced by Interferonâ€beta Therapy in Multiple Sclerosis. Scandinavian Journal of Immunology, 2006, 64, 155-163.	2.7	26
396	The strength of the chemotactic response to a CCR5 binding chemokine is determined by the level of cell surface CCR5 density. Immunology, 2006, 119, 551-561.	4.4	29
397	MCP-1 in the cerebrospinal fluid of children with acute lymphoblastic leukemia. Leukemia Research, 2006, 30, 1259-1261.	0.8	21
398	Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathologica, 2006, 112, 195-204.	7.7	207
399	Soluble CD26 and CD30 levels in CSF and sera of patients with relapsing neuromyelitis optica. Journal of Neurology, 2006, 253, 111-113.	3.6	8
400	CCR5 expression on monocytes and T cells: Modulation by transmigration across the blood–brain barrier in vitro. Cellular Immunology, 2006, 243, 19-29.	3.0	47
401	IL-6 and CCL2 levels in CSF are associated with the clinical course of MS: Implications for their possible immunopathogenic roles. Journal of Neuroimmunology, 2006, 175, 176-182.	2.3	50
402	Peroxisome proliferator-activated receptor-α and retinoid X receptor agonists inhibit inflammatory responses of astrocytes. Journal of Neuroimmunology, 2006, 176, 95-105.	2.3	88

#	Article	IF	CITATIONS
403	Deficient Fas expression by CD4+ CCR5+ T cells in multiple sclerosis. Journal of Neuroimmunology, 2006, 180, 147-158.	2.3	15
404	CD4+ memory T cells with high CD26 surface expression are enriched for Th1 markers and correlate with clinical severity of multiple sclerosis. Journal of Neuroimmunology, 2006, 181, 157-164.	2.3	51
405	Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases. , 2006, 111, 555-566.		30
406	Microarray analysis identifies a set of CXCR3 and CCR2 ligand chemokines as early IFNÎ ² -responsive genes in peripheral blood lymphocytes in vitro: an implication for IFNÎ ² -related adverse effects in multiple sclerosis. BMC Neurology, 2006, 6, 18.	1.8	52
407	Antagonist of interferon-inducible protein 10/CXCL10 ameliorates the progression of autoimmune sialadenitis in MRL/lpr mice. Arthritis and Rheumatism, 2006, 54, 1174-1183.	6.7	55
408	Overexpression of phosphorylated STAT-1α in the labial salivary glands of patients with Sjögren's syndrome. Arthritis and Rheumatism, 2006, 54, 3476-3484.	6.7	38
409	Challenge with innate and protein antigens induces CCR7 expression by microglia in vitro and in vivo. Glia, 2006, 54, 861-872.	4.9	42
410	Childhood multiple sclerosis: A review. Mental Retardation and Developmental Disabilities Research Reviews, 2006, 12, 147-156.	3.6	12
411	Neutralization of the chemokine CXCL10 reduces apoptosis and increases axon sprouting after spinal cord injury. Journal of Neuroscience Research, 2006, 84, 724-734.	2.9	94
412	B lineage cells in the inflammatory central nervous system environment: Migration, maintenance, local antibody production, and therapeutic modulation. Annals of Neurology, 2006, 59, 880-892.	5.3	283
413	Longitudinal analysis of immune cell phenotypes in early stage multiple sclerosis: distinctive patterns characterize MRI-active patients. Brain, 2006, 129, 1993-2007.	7.6	39
414	Modulating CCR2 and CCL2 at the blood–brain barrier: relevance for multiple sclerosis pathogenesis. Brain, 2006, 129, 212-223.	7.6	188
415	Interferon-γ-Inducible α-Chemokine CXCL10 Involvement in Graves' Ophthalmopathy: Modulation by Peroxisome Proliferator-Activated Receptor-γ Agonists. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 614-620.	3.6	144
416	Polyclonal expansion of regulatory T cells interferes with effector cell migration in a model of multiple sclerosis. Brain, 2006, 129, 2635-2647.	7.6	75
417	Oligomerization of CXCL10 Is Necessary for Endothelial Cell Presentation and In Vivo Activity. Journal of Immunology, 2006, 177, 6991-6998.	0.8	95
418	Role of IP-10/CXCL10 in the progression of pancreatitis-like injury in mice after murine retroviral infection. American Journal of Physiology - Renal Physiology, 2006, 291, G345-G354.	3.4	19
419	Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for immune-related molecules by central nervous system mixed glial cell cultures. Multiple Sclerosis Journal, 2006, 12, 149-168.	3.0	30
420	WSX-1 plays a significant role for the initiation of experimental autoimmune uveitis. International Immunology, 2006, 19, 93-98.	4.0	21

#	Article	IF	CITATIONS
421	Periplocoside E Inhibits Experimental Allergic Encephalomyelitis by Suppressing Interleukin 12-Dependent CCR5 Expression and Interferon-Î ³ -Dependent CXCR3 Expression in T Lymphocytes. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1153-1162.	2.5	24
422	The CC Chemokine Receptor 5 Is Important in Control of Parasite Replication and Acute Cardiac Inflammation following Infection with <i>Trypanosoma cruzi</i> . Infection and Immunity, 2006, 74, 135-143.	2.2	72
423	Variations in chemokine receptor and cytokine expression during pregnancy in multiple sclerosis patients. Multiple Sclerosis Journal, 2006, 12, 421-427.	3.0	32
424	CXCR3 Requires Tyrosine Sulfation for Ligand Binding and a Second Extracellular Loop Arginine Residue for Ligand-Induced Chemotaxis. Molecular and Cellular Biology, 2006, 26, 5838-5849.	2.3	117
425	CXCL10 Is the Key Ligand for CXCR3 on CD8+ Effector T Cells Involved in Immune Surveillance of the Lymphocytic Choriomeningitis Virus-Infected Central Nervous System. Journal of Immunology, 2006, 176, 4235-4243.	0.8	129
426	Severe Disease, Unaltered Leukocyte Migration, and Reduced IFN-γ Production in CXCR3â°'/â^' Mice with Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 176, 4399-4409.	0.8	142
427	Expression of the chemokine receptor CCR1 in human renal allografts. Nephrology Dialysis Transplantation, 2007, 22, 1720-1729.	0.7	19
428	CCR7 expression on peripheral blood lymphocytes is up-regulated following treatment of multiple sclerosis with interferon-beta. Neurological Research, 2007, 29, 763-766.	1.3	12
429	Therapeutic neutralization of CXCL10 decreases secondary degeneration and functional deficit after spinal cord injury in mice. Regenerative Medicine, 2007, 2, 771-783.	1.7	42
430	Naive and Memory CD4+T-cells in the Cerebrospinal Fluid of Children with Aseptic Meningitis Following Measles-Mumps-Rubella Vaccination and Enteroviral Meningitis. Immunological Investigations, 2007, 36, 321-335.	2.0	2
431	CXCR3 Signaling Reduces the Severity of Experimental Autoimmune Encephalomyelitis by Controlling the Parenchymal Distribution of Effector and Regulatory T Cells in the Central Nervous System. Journal of Immunology, 2007, 179, 2774-2786.	0.8	181
432	NK Cells Stimulate Recruitment of CXCR3+ T Cells to the Brain during <i>Plasmodium berghei</i> -Mediated Cerebral Malaria. Journal of Immunology, 2007, 178, 5779-5788.	0.8	147
433	CCR5 and CXCR3 Are Dispensable for Liver Infiltration, but CCR5 Protects against Virus-Induced T-Cell-Mediated Hepatic Steatosis. Journal of Virology, 2007, 81, 10101-10112.	3.4	12
434	Interferon-β Is a Potent Inducer of Interferon Regulatory Factor-1/2-Dependent IP-10/CXCL10 Expression in Primary Human Endothelial Cells. Journal of Vascular Research, 2007, 44, 51-60.	1.4	57
435	CXCL11 (Interferon-Inducible T-Cell Alpha Chemoattractant) and Interleukin-18 in Relapsing-Remitting Multiple Sclerosis Patients Treated with Methylprednisolone. European Neurology, 2007, 58, 228-232.	1.4	12
436	Molecular targets for disrupting leukocyte trafficking during multiple sclerosis. Expert Reviews in Molecular Medicine, 2007, 9, 1-19.	3.9	14
439	Inhibition of glial cell activation ameliorates the severity of experimental autoimmune encephalomyelitis. Neuroscience Research, 2007, 59, 457-466.	1.9	56
440	Antagonists of CXCR3: a review of current progress. , 2007, , 79-88.		6

ARTICLE IF CITATIONS Relationship of immunologic abnormalities and disease stage in multiple sclerosis: Implications for 441 0.6 10 therapy. Journal of the Neurological Sciences, 2007, 259, 90-94. Cerebrospinal Fluid Analysis in Multiple Sclerosis. International Review of Neurobiology, 2007, 79, 442 341-356. The blood–brain-barrier in multiple sclerosis: Functional roles and therapeutic targeting. 443 2.6 95 Autoimmunity, 2007, 40, 148-160. Expression of Interferon-Gamma-Inducible Protein-10 and Its Receptor CXCR3 in Chronic Pancreatitis. 444 1.1 Pancreatology, 2007, 7, 479-490. CXCL10/IP-10: A missing link between inflammation and anti-angiogenesis in preeclampsia?. Journal of 445 1.5 112 Maternal-Fetal and Neonatal Medicine, 2007, 20, 777-792. Role of Chemokines in Endocrine Autoimmune Diseases. Endocrine Reviews, 2007, 28, 492-520. 20.1 224 Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the 447 central nervous system: insight into mechanisms of MOG-induced EAE. Journal of Neuroinflammation, 7.2 70 2007, 4, 14. Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological 448 3.2 2,109 Features, and Potential for Homing. Stem Cells, 2007, 25, 2739-2749. Increased Intrathecal Chemokine Receptor CCR2 Expression in Multiple Sclerosis. Biomarker Insights, 449 2.5 9 2007, 2, 117727190700200. Inflammatory progressive multifocal leukoencephalopathy in human immunodeficiency virus-negative 5.3 patients. Annals of Neurology, 2007, 62, 34-39 Current concepts of the cellular and molecular pathophysiology of multiple sclerosis. 451 3.034 Developmental Neurobiology, 2007, 67, 1248-1265. The target tissue in autoimmunity \hat{a} €" an influential niche. European Journal of Immunology, 2007, 37, 24 589-597. Induction of the genes for <i>Cxcl9</i> and <i>Cxcl10</i> is dependent on IFN \hat{a} but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia 453 4.9 113 <i>i>in vitro'</i>. Glia, 2007, 55, 1728-1739. Discovery and optimization of a series of quinazolinone-derived antagonists of CXCR3. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3339-3343. 454 2.2 Chemokines and Chemokine Receptors in Neurological Disease: Raise, Retain, or Reduce?. 455 4.4 157 Neurotherapeutics, 2007, 4, 590-601. Analysis of the pharmacokinetic/pharmacodynamic relationship of a small molecule CXCR3 antagonist, NBIâ€74330, using a murine CXCR3 internalization assay. British Journal of Pharmacology, 2007, 152, 1260-1271. Expression of Chemokine Receptors CCR7 and CCR8 in the CNS During ChREAE. Scandinavian Journal of 457 2.7 19 Immunology, 2007, 66, 383-392. CCR7, CCR8, CCR9 and CCR10 in the mouse hippocampal CA1 area and the dentate gyrus during and after 458 pilocarpine-induced status epilepticus. Journal of Neurochemistry, 2007, 100, 1072-1088.

#	Article	IF	CITATIONS
459	Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. Journal of Neurochemistry, 2007, 102, 667-678.	3.9	112
460	CXCL10 haplotypes and multiple sclerosis: association and correlation with clinical course. European Journal of Neurology, 2007, 14, 162-167.	3.3	19
461	Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurologica Scandinavica, 2007, 115, 137-146.	2.1	193
462	Chemokine receptor CCR5 in interferon-treated multiple sclerosis. Acta Neurologica Scandinavica, 2007, 115, 413-418.	2.1	14
463	Interleukin 10 and TNFα synergistically enhance the expression of the G protein-coupled formylpeptide receptor 2 in microglia. Neurobiology of Disease, 2007, 27, 90-98.	4.4	10
464	Increase of CD8+ T-effector memory cells in peripheral blood of patients with relapsing–remitting multiple sclerosis compared to healthy controls. Journal of Neuroimmunology, 2007, 183, 168-174.	2.3	36
465	CCL5 and CCR5 genotypes modify clinical, radiological and pathological features of multiple sclerosis. Journal of Neuroimmunology, 2007, 190, 157-164.	2.3	53
466	DNA Microarray in Search of New Drug Targets for Myasthenia Gravis. Annals of the New York Academy of Sciences, 2007, 1107, 111-117.	3.8	6
467	The production of interferon-Î ³ -inducible protein 10 by granulocytes and monocytes is associated with ulcerative colitis disease activity. Journal of Gastroenterology, 2007, 42, 947-956.	5.1	24
468	Multiple sclerosis therapy: An update on recently finished trials. Journal of Neurology, 2007, 254, 1473-1490.	3.6	11
469	Astrocytes in multiple sclerosis: A product of their environment. Cellular and Molecular Life Sciences, 2008, 65, 2702-20.	5.4	279
470	Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. Journal of Neurochemistry, 2008, 77, 132-145.	3.9	16
471	Towards Smallâ€Molecule CXCR3 Ligands with Clinical Potential. ChemMedChem, 2008, 3, 861-872.	3.2	75
472	Reciprocal cross-talk between RANKL and interferon-γ–inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis and Rheumatism, 2008, 58, 1332-1342.	6.7	105
473	Design and optimization of imidazole derivatives as potent CXCR3 antagonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 608-613.	2.2	32
474	Discovery of small molecule benzimidazole antagonists of the chemokine receptor CXCR3. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1573-1576.	2.2	40
475	Lead identification of 2-iminobenzimidazole antagonists of the chemokine receptor CXCR3. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2414-2419.	2.2	15
476	Optimization of the heterocyclic core of the quinazolinone-derived CXCR3 antagonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 688-693.	2.2	43

#	Article	IF	CITATIONS
477	Cytokines and Chemokines. , 2008, , 183-205.		1
478	The effects of methylprednisolone and mitoxantrone on CCL5-induced migration of lymphocytes in multiple sclerosis. Acta Neurologica Scandinavica, 2008, 118, 120-125.	2.1	18
479	SHP-1 deficiency and increased inflammatory gene expression in PBMCs of multiple sclerosis patients. Laboratory Investigation, 2008, 88, 243-255.	3.7	58
480	Novel therapeutic strategies for multiple sclerosis — a multifaceted adversary. Nature Reviews Drug Discovery, 2008, 7, 909-925.	46.4	147
481	Antagonism of the Chemokine Receptors CXCR3 and CXCR4 Reduces the Pathology of Experimental Autoimmune Encephalomyelitis. Brain Pathology, 2008, 18, 080415182616831-???.	4.1	77
482	Expression of CXCL4 in microglia <i>in vitro</i> and <i>in vivo</i> and its possible signaling through CXCR3. Journal of Neurochemistry, 2008, 105, 1726-1736.	3.9	70
483	Pro-inflammatory functions of astrocytes correlate with viral clearance and strain-dependent protection from TMEV-induced demyelinating disease. Virology, 2008, 375, 24-36.	2.4	26
484	Elevated level of the proinflammatory chemokine, RANTES/CCL5, in the periaqueductal grey causes hyperalgesia in rats. European Journal of Pharmacology, 2008, 592, 93-95.	3.5	36
485	Increased IL-23 secretion and altered chemokine production by dendritic cells upon CD46 activation in patients with multiple sclerosis. Journal of Neuroimmunology, 2008, 195, 140-145.	2.3	54
486	Chronic CXCL10 alters the level of activated ERK1/2 and transcriptional factors CREB and NF-ήB in hippocampal neuronal cell culture. Journal of Neuroimmunology, 2008, 195, 36-46.	2.3	17
487	The use of chemokine antagonists in EAE models. Journal of Neuroimmunology, 2008, 198, 27-30.	2.3	31
488	Chemokine signaling and integrin activation in lymphocyte migration into the inflamed brain. Journal of Neuroimmunology, 2008, 198, 20-26.	2.3	34
489	Differences in mesenchymal stem cell cytokine profiles between MS patients and healthy donors: Implication for assessment of disease activity and treatment. Journal of Neuroimmunology, 2008, 199, 142-150.	2.3	71
490	Development of a novel chemokine-mediated in vivo T cell recruitment assay. Journal of Immunological Methods, 2008, 331, 127-139.	1.4	42
491	Multiple Sclerosis and Other Demyelinating Diseases. , 2008, , 239-255.		1
492	Gender-specific influence of the chromosome 16 chemokine gene cluster on the susceptibility to Multiple Sclerosis. Journal of the Neurological Sciences, 2008, 267, 86-90.	0.6	30
493	Therapeutic targeting of chemokine signaling in Multiple Sclerosis. Journal of the Neurological Sciences, 2008, 274, 31-38.	0.6	44
494	Kinin B2receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE) in mice. Journal of Neuroinflammation, 2008, 5, 49.	7.2	45

ARTICLE IF CITATIONS Macrophages, Microglia, and Dendritic C., 2008, , 89-104. 1 495 Neural precursor cells inhibit multiple inflammatory signals. Molecular and Cellular Neurosciences, 2008, 39, 335-341. 2.2 68 Genistein down-modulates pro-inflammatory cytokines and reverses clinical signs of experimental 497 3.8 55 autoimmune encephalomyelitis. International Immunopharmacology, 2008, 8, 1291-1297. Glucocorticoids regulate innate immunity in a model of multiple sclerosis: reciprocal interactions between the A1 adenosine receptor and $\hat{I}^2 \hat{a} \in \mathbf{a}$ rrestin $\hat{a} \in \mathbf{I}$ in monocytoid cells. FASEB Journal, 2008, 22, 786-796. Distinct Cellular Patterns of Upregulated Chemokine Expression Supporting a Prominent 499 3.4 146 Inflammatory Role in Traumatic Brain Injury. Journal of Neurotrauma, 2008, 25, 959-974. Production of CCL2 by Central Nervous System Cells Regulates Development of Murine Experimental Autoimmune Encephalomyelitis through the Recruitment of TNF- and iNOS-Expressing Macrophages and Myeloid Dendritic Cells. Journal of Immunology, 2008, 180, 7376-7384. 0.8 MDC/CCL22 intrathecal levels in patients with multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 501 3.0 28 547-549. Matrix Metalloproteinase Processing of CXCL11/I-TAC Results in Loss of Chemoattractant Activity and 3.4 88 Altered Glycosaminoglycan Binding. Journal of Biological Chemistry, 2008, 283, 19389-19399. CCR5 Deficiency Aggravates Crescentic Glomerulonephritis in Mice. Journal of Immunology, 2008, 181, 503 0.8 55 6546-6556. A Complex Interplay among Virus, Dendritic Cells, T Cells, and Cytokines in Dengue Virus Infections. 504 0.8 Journal of Immunology, 2008, 181, 5865-5874. RANTES Modulates the Release of Glutamate in Human Neocortex. Journal of Neuroscience, 2008, 28, 505 3.6 57 12231-12240. Multiple sclerosis: chemokine receptor expression on circulating lymphocytes in correlation with 3.0 radiographic measures of tissue injury. Multiple Sclerosis Journal, 2008, 14, 1036-1043. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially 507 Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration. Clinical and 3.3 85 Developmental Immunology, 2008, 2008, 1-8. CXCL10 (Â) and CCL2 () chemokines in systemic sclerosis a longitudinal study. Rheumatology, 2008, 47, 508 109 45-49. The Chemokine Receptor CXCR3 Is Degraded following Internalization and Is Replenished at the Cell 509 0.8 120 Surface by De Novo Synthesis of Receptor. Journal of Immunology, 2008, 180, 6713-6724. Noncompetitive Antagonism and Inverse Agonism as Mechanism of Action of Nonpeptidergic Antagonists at Primate and Rodent CXCR3 Chemokine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 544-555. CCR5 expression on macrophages/microglia is associated with early remyelination in multiple 511 3.030 sclerosis lesions. Multiple Sclerosis Journal, 2008, 14, 728-733. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and 244 co-produce IFN- \hat{I}^3 and IL-2. Journal of Experimental Medicine, 2008, 205, 1763-1773.

#	Article	IF	CITATIONS
513	Anti-Selectin Therapy for the Treatment of Inflammatory Diseases. Inflammation and Allergy: Drug Targets, 2008, 7, 85-93.	1.8	54
514	CC chemokine receptor 5 gene promoter activation by the cyclic AMP response element binding transcription factor. Blood, 2008, 112, 1610-1619.	1.4	25
515	Plasmacytoid Dendritic Cells in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2008, 67, 388-401.	1.7	110
516	10 Most Commonly Asked Questions About Cerebrospinal Fluid Characteristics in Demyelinating Disorders of the Central Nervous System. Neurologist, 2008, 14, 60-65.	0.7	6
517	Cytokines and Myelination in the Central Nervous System. Scientific World Journal, The, 2008, 8, 1119-1147.	2.1	114
518	Lymphocytic Choriomeningitis Virus-Induced Central Nervous System Disease: a Model for Studying the Role of Chemokines in Regulating the Acute Antiviral CD8 ⁺ T-Cell Response in an Immune-Privileged Organ. Journal of Virology, 2009, 83, 20-28.	3.4	24
519	lg-Like Transcript 3 Regulates Expression of Proinflammatory Cytokines and Migration of Activated T Cells. Journal of Immunology, 2009, 182, 5208-5216.	0.8	46
520	Fulminant Lymphocytic Choriomeningitis Virus-Induced Inflammation of the CNS Involves a Cytokine-Chemokine-Cytokine-Chemokine Cascade. Journal of Immunology, 2009, 182, 1079-1087.	0.8	37
521	Immunopathogenesis of multiple sclerosis. Annals of Indian Academy of Neurology, 2009, 12, 215.	0.5	17
522	Enhancement of Chemokine Expression by Interferon Beta Therapy in Patients With Multiple Sclerosis. Archives of Neurology, 2009, 66, 1216.	4.5	37
523	Natalizumab treatment is associated with peripheral sequestration of proinflammatory T cells. Neurology, 2009, 72, 1922-1930.	1.1	131
524	Suppression of experimental autoimmune myasthenia gravis by inhibiting the signaling between IFN-Î ³ inducible protein 10 (IP-10) and its receptor CXCR3. Journal of Neuroimmunology, 2009, 209, 87-95.	2.3	19
525	Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neuroscience, 2009, 10, 126.	1.9	128
526	CXCL10 and autoimmune diseases. Autoimmunity Reviews, 2009, 8, 379-383.	5.8	265
527	Differential susceptibility to apoptosis of CD4+T cells expressing CCR5 and CXCR3 in patients with MS. Clinical Immunology, 2009, 133, 364-374.	3.2	16
528	Specific central nervous system recruitment of HLAâ€G ⁺ regulatory T cells in multiple sclerosis. Annals of Neurology, 2009, 66, 171-183.	5.3	67
529	CCR6 regulates EAE pathogenesis by controlling regulatory CD4 ⁺ Tâ€cell recruitment to target tissues. European Journal of Immunology, 2009, 39, 1671-1681.	2.9	114
530	Mechanisms Underlying the Process of Demyelination in Multiple Sclerosis. Neurophysiology, 2009, 41, 365-373.	0.3	4

#	Article	IF	CITATIONS
531	CCR5-Delta32 Allele is Associated with the Risk of Developing Multiple Sclerosis in the Iranian Population. Cellular and Molecular Neurobiology, 2009, 29, 1205-1209.	3.3	23
532	The CCR5 (â^'2135C/T) Polymorphism may be Associated with the Development of Kawasaki Disease in Korean Children. Journal of Clinical Immunology, 2009, 29, 22-28.	3.8	17
533	Cerebral cortical gene expression in acutely anemic rats: a microarray analysis. Canadian Journal of Anaesthesia, 2009, 56, 921-934.	1.6	3
534	Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype. Laboratory Investigation, 2009, 89, 742-759.	3.7	74
535	Sulfated tyrosines 27 and 29 in the N-terminus of human CXCR3 participate in binding native IP-10. Acta Pharmacologica Sinica, 2009, 30, 193-201.	6.1	20
536	The Chemokine CCL5 Is Essential for Leukocyte Recruitment in a Model of Severe <i>Herpes simplex</i> Encephalitis. Annals of the New York Academy of Sciences, 2009, 1153, 256-263.	3.8	46
537	Imidazo-pyrazine derivatives as potent CXCR3 antagonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5200-5204.	2.2	38
538	Optimization of a series of quinazolinone-derived antagonists of CXCR3. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5114-5118.	2.2	33
539	Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience, 2009, 158, 1112-1121.	2.3	158
540	Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Research, 2009, 144, 18-26.	2.2	81
541	CXCL10 and CCL2 serum levels in patients with mixed cryoglobulinaemia and hepatitis C. Digestive and Liver Disease, 2009, 41, 42-48.	0.9	22
542	Induction of the CXC Chemokine Interferon-Î ³ -Inducible Protein 10 Regulates the Reparative Response Following Myocardial Infarction. Circulation Research, 2009, 105, 973-983.	4.5	113
543	Kv1.3 potassium channels as a therapeutic target in multiple sclerosis. Expert Opinion on Therapeutic Targets, 2009, 13, 909-924.	3.4	79
544	T-Cells in Multiple Sclerosis. Results and Problems in Cell Differentiation, 2009, , 75-98.	0.7	28
545	Biomarkers in Multiple Sclerosis. Blue Books of Neurology, 2010, , 120-146.	0.1	0
546	Anti-chemokine small molecule drugs: a promising future?. Expert Opinion on Investigational Drugs, 2010, 19, 345-355.	4.1	94
547	Transgenic mouse models of multiple sclerosis. Cellular and Molecular Life Sciences, 2010, 67, 4011-4034.	5.4	18
548	Noradrenaline reuptake inhibitors inhibit expression of chemokines IP-10 and RANTES and cell adhesion molecules VCAM-1 and ICAM-1 in the CNS following a systemic inflammatory challenge. Journal of Neuroimmunology, 2010, 220, 34-42.	2.3	57

#	Article	IF	CITATIONS
549	Myelin ingestion by macrophages promotes their motility and capacity to recruit myeloid cells. Journal of Neuroimmunology, 2010, 225, 112-117.	2.3	11
550	The emerging role for chemokines in epilepsy. Journal of Neuroimmunology, 2010, 224, 22-27.	2.3	137
551	Plasmacytoid dendritic cells in multiple sclerosis: Chemokine and chemokine receptor modulation by interferon-beta. Journal of Neuroimmunology, 2010, 226, 158-164.	2.3	33
552	Expression of chemokine receptors on peripheral blood lymphocytes in multiple sclerosis and neuromyelitis optica. BMC Neurology, 2010, 10, 113.	1.8	30
553	Perivascular expression of CXCL9 and CXCL12 in primary central nervous system lymphoma: Tâ€cell infiltration and positioning of malignant B cells. International Journal of Cancer, 2010, 127, 2300-2312.	5.1	86
554	CXCR3 blockade inhibits Tâ€cell migration into the CNS during EAE and prevents development of adoptively transferred, but not actively induced, disease. European Journal of Immunology, 2010, 40, 2751-2761.	2.9	68
555	Discovery of a novel series of CXCR3 antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3614-3617.	2.2	18
556	Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity - a tale of conflict and conundrum. Neuropathology and Applied Neurobiology, 2010, 36, 368-387.	3.2	228
557	Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis. Genes and Immunity, 2010, 11, 142-154.	4.1	23
558	Platelet Chemokines and Chemokine Receptors: Linking Hemostasis, Inflammation, and Host Defense. Microcirculation, 2003, 10, 335-350.	1.8	172
559	Appearance of <i>Cxcl10</i> â€expressing cell clusters is common for traumatic brain injury and neurodegenerative disorders. European Journal of Neuroscience, 2010, 31, 852-863.	2.6	36
560	Lessons from the Past and Future Approaches for Immunologic Therapies in Multiple Sclerosis. Blue Books of Neurology, 2010, , 388-426.	0.1	0
561	The multiple faces of CXCL12 (SDF-1α) in the regulation of immunity during health and disease. Journal of Leukocyte Biology, 2010, 88, 463-473.	3.3	187
562	CCR1 Antagonists: What Have We Learned From Clinical Trials. Current Topics in Medicinal Chemistry, 2010, 10, 1268-1277.	2.1	89
563	Natalizumab treatment in multiple sclerosis: marked decline of chemokines and cytokines in cerebrospinal fluid. Multiple Sclerosis Journal, 2010, 16, 208-217.	3.0	139
564	TNFR1 plays a critical role in the control of severe HSV-1 encephalitis. Neuroscience Letters, 2010, 479, 58-62.	2.1	22
565	Th1 (CXCL10) and Th2 (CCL2) chemokine expression in patients with immune thrombocytopenia. Human Immunology, 2010, 71, 586-591.	2.4	30
566	Therapeutic Approaches to Multiple Sclerosis. BioDrugs, 2010, 24, 249-274.	4.6	22

#	Article	IF	CITATIONS
567	Evaluation of Serum Levels of Chemokines during Interferon-β Treatment in Multiple Sclerosis Patients. CNS Drugs, 2011, 25, 971-981.	5.9	14
568	Genetics for understanding and predicting clinical progression in multiple sclerosis. Revue Neurologique, 2011, 167, 791-801.	1.5	3
569	Potential role and mechanism of IFN-gamma inducible protein-10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rheumatoid arthritis. Arthritis Research and Therapy, 2011, 13, R104.	3.5	34
570	Angiotensin II Type 1 receptor (AT1) signaling in astrocytes regulates synaptic degeneration-induced leukocyte entry to the central nervous system. Brain, Behavior, and Immunity, 2011, 25, 897-904.	4.1	48
571	Interactions between chemokine and mu-opioid receptors: Anatomical findings and electrophysiological studies in the rat periaqueductal greyâ~†. Brain, Behavior, and Immunity, 2011, 25, 360-372.	4.1	59
572	Altered hippocampal synaptic transmission in transgenic mice with astrocyte-targeted enhanced CCL2 expression. Brain, Behavior, and Immunity, 2011, 25, S106-S119.	4.1	39
573	The chemokine receptor CCR5 in the central nervous system. Progress in Neurobiology, 2011, 93, 297-311.	5.7	86
574	Biomarker-based dissection of neurodegenerative diseases. Progress in Neurobiology, 2011, 95, 520-534.	5.7	82
575	Potential Application of Tregitopes as Immunomodulating Agents in Multiple Sclerosis. Neurology Research International, 2011, 2011, 1-6.	1.3	23
576	Expression and agonist responsiveness of CXCR3 variants in human T lymphocytes. Immunology, 2011, 132, 503-515.	4.4	75
577	CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunology and Cell Biology, 2011, 89, 207-215.	2.3	766
578	CXCR3 in T cell function. Experimental Cell Research, 2011, 317, 620-631.	2.6	763
579	Chemokines as targets for therapy. Experimental Cell Research, 2011, 317, 602-612.	2.6	41
580	Suppression of human CD4+ T cell activation by 3,4-dimethoxycinnamonyl-anthranilic acid (tranilast) is mediated by CXCL9 and CXCL10. Biochemical Pharmacology, 2011, 82, 632-641.	4.4	41
581	CCL5 induces a pro-inflammatory profile in microglia in vitro. Cellular Immunology, 2011, 270, 164-171.	3.0	92
582	A broad upregulation of cerebral chemokine genes by peripherally-generated inflammatory mediators. Metabolic Brain Disease, 2011, 26, 49-59.	2.9	25
583	CXCL10/CXCR3 signaling in glia cells differentially affects NMDAâ€induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus, 2011, 21, 220-232.	1.9	49
584	Autoimmune disease and subsequent risk of developing alimentary tract cancers among 4.5 million US male veterans. Cancer, 2011, 117, 1163-1171.	4.1	116

#	Article	IF	CITATIONS
585	CCL5, CXCL10 and CXCL11 Chemokines in Patients with Active and Stable Relapsing-Remitting Multiple Sclerosis. NeuroImmunoModulation, 2011, 18, 67-72.	1.8	30
586	Racial Differences in Chronic Immune Stimulatory Conditions and Risk of Non-Hodgkin's Lymphoma in Veterans From the United States. Journal of Clinical Oncology, 2011, 29, 378-385.	1.6	45
587	Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte–endothelial interactions. Journal of Leukocyte Biology, 2010, 89, 539-556.	3.3	136
588	Functional Duality of Astrocytes in Myelination. Journal of Neuroscience, 2011, 31, 13028-13038.	3.6	112
591	Fractalkine Gene Receptor Polymorphism in Patients With Multiple Sclerosis. International Journal of Neuroscience, 2012, 123, 31-37.	1.6	22
592	Differential Regulation of CD4+ T Cell Adhesion to Cerebral Microvascular Endothelium by the β-Chemokines CCL2 and CCL3. International Journal of Molecular Sciences, 2012, 13, 16119-16140.	4.1	17
593	Interferon- \hat{I}^2 1b Increases Th2 Response in Neuromyelitis Optica. International Journal of Molecular Sciences, 2012, 13, 12213-12223.	4.1	5
594	Chemokine receptor CXCR3 agonist prevents human T-cell migration in a humanized model of arthritic inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4598-4603.	7.1	61
595	CCR2+CCR5+ T Cells Produce Matrix Metalloproteinase-9 and Osteopontin in the Pathogenesis of Multiple Sclerosis. Journal of Immunology, 2012, 189, 5057-5065.	0.8	70
596	Neuroschistosomiasis mansoni. Neurologist, 2012, 18, 333-342.	0.7	30
597	CXCL12-Induced Monocyte-Endothelial Interactions Promote Lymphocyte Transmigration Across an in Vitro Blood-Brain Barrier. Science Translational Medicine, 2012, 4, 119ra14.	12.4	65
598	Accelerated and enhanced effect of CCR5-transduced bone marrow neural stem cells on autoimmune encephalomyelitis. Acta Neuropathologica, 2012, 124, 491-503.	7.7	34
599	CCR5 deficiency does not reduce hypertensive end-organ damage in mice. American Journal of Hypertension, 2012, 25, 479-486.	2.0	20
600	Rosiglitazone attenuates the age-related changes in astrocytosis and the deficit in LTP. Neurobiology of Aging, 2012, 33, 162-175.	3.1	51
601	Pharmacological characterization of a smallâ€nolecule agonist for the chemokine receptor CXCR3. British Journal of Pharmacology, 2012, 166, 898-911.	5.4	44
602	Current status of chemokine receptor inhibitors in development. Immunology Letters, 2012, 145, 68-78.	2.5	55
603	Dissection of inflammatory processes using chemokine biology: Lessons from clinical models. Immunology Letters, 2012, 145, 55-61.	2.5	4
604	Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines. Journal of Neuroinflammation, 2012, 9, 207.	7.2	61

ARTICLE IF CITATIONS # RANTESâ€mediated control of excitatory amino acid release in mouse spinal cord. Journal of 605 3.9 42 Neurochemistry, 2012, 121, 428-437. Role of CCR2 in immunobiology and neurobiology. Clinical and Experimental Neuroimmunology, 2012, 606 1.0 3, 16-29. 607 Immunological Mechanisms., 2012, , 165-189. 0 IFN-Î-3-induced apoptosis of human embryonic stem cell derived oligodendrocyte progenitor cells is 608 restricted by CX[']CR[']2 signaling. Stem Cell['] Research, 2012, 9, 208-217. INF-Î²1b therapy modulates l-arginine and nitric oxide metabolism in patients with relapse remittent 609 0.6 17 multiple sclerosis. Journal of the Neurological Sciences, 2012, 323, 187-192. Initiation and Regulation of CNS Autoimmunity: Balancing Immune Surveillance and Inflammation in 0.2 the CNS. Neuroscience and Medicine, 2012, 03, 203-224. An Autoimmune Phenotype in Vulvar Lichen Sclerosus and Lichen Planus: A Th1 Response and High 611 0.7 123 Levels of MicroRNA-155. Journal of Investigative Dermatology, 2012, 132, 658-666. A Novel Highly Potent Therapeutic Antibody Neutralizes Multiple Human Chemokines and Mimics Viral 2.5 Immune Modulation. PLoS ONE, 2012, 7, e43332. Immunomodulatory Effects of Liriope Platyphylla Water Extract on Lipopolysaccharide-Activated 613 4.1 17 Mouse Macrophage. Nutrients, 2012, 4, 1887-1897. Allelic combinations of immune-response genes associated with glatiramer acetate treatment 614 1.3 response in Russian multiple sclerosis patients. Pharmacogenomics, 2012, 13, 43-53. Chemokines in CNS injury and repair. Cell and Tissue Research, 2012, 349, 229-248. 615 132 2.9 Discovery of potent and specific CXCR3 antagonists. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 357-362. 2.2 616 CCR5 blockade is well tolerated and induces changes in the tissue distribution of CCR5+ and CD25+ T 617 0.6 7 cells in healthy, SIVâ€uninfected rhesus macaques. Journal of Medical Primatology, 2012, 41, 24-42. Targeting chemokine receptors in chronic inflammatory diseases: An extensive review. , 2012, 133, 1-18. Characterization of Th1- and Th2-associated Chemokine Receptor Expression in Spleens of Patients 619 3.8 7 with Immune Thrombocytopenia. Journal of Clinical Immunology, 2013, 33, 938-946. <scp>T</scp>h1â€mediated experimental autoimmune encephalomyelitis is <scp>CXCR</scp>3 24 independent. European Journal of Immunology, 2013, 43, 2866-2874. Matrine suppresses expression of adhesion molecules and chemokines as a mechanism underlying its 621 2.9 42 therapeutic effect in CNS autoimmunity. Immunologic Research, 2013, 56, 189-196. CCL5-glutamate interaction in central nervous system: Early and acute presynaptic defects in EAE mice. 4.1 Neuropharmacology, 2013, 75, 337-346.

#	Article	IF	CITATIONS
624	Decreased pain responses of C–C chemokine receptor 5 knockout mice to chemical or inflammatory stimuli. Neuropharmacology, 2013, 67, 57-65.	4.1	36
625	Differential expression profile of Th1/Th17/Th2-related chemokines and their receptors in patients with acquired bone marrow failure syndromes. Human Immunology, 2013, 74, 176-180.	2.4	12
626	Expression of CXCR3 and its ligands CXCL9, -10 and -11 in paediatric opsoclonus–myoclonus syndrome. Clinical and Experimental Immunology, 2013, 172, 427-436.	2.6	21
627	Concise Review: Immunological Properties of Ocular Surface and Importance of Limbal Stem Cells for Transplantation. Stem Cells Translational Medicine, 2013, 2, 614-624.	3.3	14
628	Neutralizing Nanobodies Targeting Diverse Chemokines Effectively Inhibit Chemokine Function. Journal of Biological Chemistry, 2013, 288, 25173-25182.	3.4	40
629	Vitamin D Receptor Agonists Target CXCL10: New Therapeutic Tools for Resolution of Inflammation. Mediators of Inflammation, 2013, 2013, 1-11.	3.0	55
630	Oligoclonal bands and cerebrospinal fluid markers in multiple sclerosis: associations with disease course and progression. Multiple Sclerosis Journal, 2013, 19, 577-584.	3.0	41
631	Multiple Sclerosis, Relapses, and the Mechanism of Action of Adrenocorticotropic Hormone. Frontiers in Neurology, 2013, 4, 21.	2.4	39
632	Design and Synthesis of Tri-substituted Chiral Pyrrolidin-2-one Derivatives as CCR4 Antagonists. Chinese Journal of Chemistry, 2013, 31, n/a-n/a.	4.9	3
633	Increase of Interferon-Î ³ Inducible CXCL9 and CXCL11 Serum Levels in Patients with Active Graves' Disease and Modulation by Methimazole Therapy. Thyroid, 2013, 23, 1461-1469.	4.5	18
634	Role of CXCL10 in central nervous system inflammation. International Journal of Interferon, Cytokine and Mediator Research, 0, , 1.	1.1	24
636	The cerebrospinal fluid cytokine signature of multiple sclerosis: A homogenous response that does not conform to the Th1/Th2/Th17 convention. Journal of Neuroimmunology, 2014, 277, 153-159.	2.3	26
637	The chemokine receptorCCR5 Δ32allele in natalizumab-treated multiple sclerosis. Acta Neurologica Scandinavica, 2014, 129, 27-31.	2.1	9
638	Chemokine receptors on <scp>T</scp> cells in multiple sclerosis. Clinical and Experimental Neuroimmunology, 2014, 5, 162-174.	1.0	4
639	Circulating dendritic cells of multiple sclerosis patients are proinflammatory and their frequency is correlated with MS-associated genetic risk factors. Multiple Sclerosis Journal, 2014, 20, 548-557.	3.0	31
640	Immunophenotyping of Cerebrospinal Fluid Cells in Multiple Sclerosis. JAMA Neurology, 2014, 71, 905.	9.0	54
641	The Transcription Factor IRF8 Activates Integrin-Mediated TGF-β Signaling and Promotes Neuroinflammation. Immunity, 2014, 40, 187-198.	14.3	111
642	Low DPP4 expression and activity in multiple sclerosis. Clinical Immunology, 2014, 150, 170-183.	3.2	34

#	Articif	IF	CITATIONS
643	Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology, 2014, 22, 1-22.	3.9	98
644	GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. Trends in Pharmacological Sciences, 2014, 35, 247-255.	8.7	79
646	Advances in understanding the pathogenesis of autoimmune disorders: focus on chemokines and lymphocyte trafficking. British Journal of Haematology, 2014, 164, 329-341.	2.5	27
647	DARC shuttles inflammatory chemokines across the blood–brain barrier during autoimmune central nervous system inflammation. Brain, 2014, 137, 1454-1469.	7.6	59
648	Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 122, 15-58.	1.8	231
649	Exploring the CXCR3 Chemokine Receptor with Small-Molecule Antagonists and Agonists. Topics in Medicinal Chemistry, 2014, , 119-185.	0.8	6
650	Acute desipramine restores presynaptic cortical defects in murine experimental autoimmune encephalomyelitis by suppressing central <scp>CCL</scp> 5 overproduction. British Journal of Pharmacology, 2014, 171, 2457-2467.	5.4	19
651	Characterization and expression analysis of an interferon-Î ³ 2 induced chemokine receptor CXCR3 in common carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 2014, 47, 68-76.	2.3	21
652	Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. Journal of Neuroinflammation, 2014, 11, 105.	7.2	65
653	CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system. Journal of Neuroinflammation, 2014, 11, 109.	7.2	43
654	Therapeutic effect of anti-C-X-C motif chemokine 10 (CXCL10) antibody on C protein-induced myositis mouse. Arthritis Research and Therapy, 2014, 16, R126.	3.5	27
655	Discrepancy in CCL2 and CCR2 expression in white versus grey matter hippocampal lesions of Multiple Sclerosis patients. Acta Neuropathologica Communications, 2014, 2, 98.	5.2	32
656	Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathologica, 2014, 128, 215-229.	7.7	73
657	Cladribine exerts an immunomodulatory effect on human and murine dendritic cells. International Immunopharmacology, 2014, 18, 347-357.	3.8	28
658	Pleural fluid mononuclear cells (PFMCs) from tuberculous pleurisy canÂmigrate inÂvitro in response to CXCL10. Tuberculosis, 2014, 94, 123-130.	1.9	3
659	Genetics of primary progressive multiple sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 122, 211-230.	1.8	17
660	MOG extracellular domain (p1–125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE. Multiple Sclerosis Journal, 2014, 20, 1312-1321.	3.0	11
661	Chemokines and chemokine receptors: Update on utility and challenges for the clinician. Surgery, 2014, 155, 961-973.	1.9	55

#	Article	IF	CITATIONS
662	â€~Neuroinflammation' differs categorically from inflammation: transcriptomes of Alzheimer's disease, Parkinson's disease, schizophrenia and inflammatory diseases compared. Neurogenetics, 2014, 15, 201-212.	1.4	55
663	The Biological Functions, Structure and Sources of CXCL10 and Its Outstanding Part in the Pathophysiology of Multiple Sclerosis. NeuroImmunoModulation, 2014, 21, 322-330.	1.8	115
664	Biomarkers for Multiple Sclerosis. Internal Medicine, 2014, 53, 361-365.	0.7	36
665	A destructive feedback loop mediated by CXCL 10 in central nervous system inflammatory disease. Annals of Neurology, 2015, 78, 619-629.	5.3	26
666	18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination. Scientific Reports, 2015, 5, 13713.	3.3	43
667	Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation. Stem Cell Research and Therapy, 2015, 6, 245.	5.5	21
668	The Ins and Outs of B Cells in Multiple Sclerosis. Frontiers in Immunology, 2015, 6, 565.	4.8	54
669	Computational Modelling Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic Analysis. Journal of Immunology Research, 2015, 2015, 1-10.	2.2	11
670	Plasma Biomarkers Discriminate Clinical Forms of Multiple Sclerosis. PLoS ONE, 2015, 10, e0128952.	2.5	40
671	Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway. International Journal of Molecular Sciences, 2015, 16, 13885-13907.	4.1	107
672	Sex-specific association of RANTES gene â^'403 variant in Meniere's disease. European Archives of Oto-Rhino-Laryngology, 2015, 272, 2221-2225.	1.6	6
673	Fingolimod induces neuroprotective factors in human astrocytes. Journal of Neuroinflammation, 2015, 12, 184.	7.2	70
674	Ligandâ€Biased and Probeâ€Dependent Modulation of Chemokine Receptor CXCR3 Signaling by Negative Allosteric Modulators. ChemMedChem, 2015, 10, 566-574.	3.2	17
675	Dynamic Changes of Microglia/Macrophage <scp>M</scp> 1 and <scp>M</scp> 2 Polarization in <scp>T</scp> heiler's Murine Encephalomyelitis. Brain Pathology, 2015, 25, 712-723.	4.1	41
676	CXCL10 Triggers Early Microglial Activation in the Cuprizone Model. Journal of Immunology, 2015, 194, 3400-3413.	0.8	115
677	Common variants of chemokine receptor gene CXCR3 and its ligands CXCL10 and CXCL11 associated with vascular permeability of dengue infection in peninsular Malaysia. Human Immunology, 2015, 76, 421-426.	2.4	6
678	Control of autoimmune CNS inflammation by astrocytes. Seminars in Immunopathology, 2015, 37, 625-638.	6.1	152
679	Chemokine biomarkers in central nervous system tissue and cerebrospinal fluid in the Theiler's virus model mirror those in multiple sclerosis. Cytokine, 2015, 76, 577-580.	3.2	10

#	Article	IF	CITATIONS
680	Matrine ameliorates experimental autoimmune encephalomyelitis by modulating chemokines and their receptors. Experimental and Molecular Pathology, 2015, 99, 212-219.	2.1	17
681	Bioenergetics profile of CD4 + T cells in relapsing remitting multiple sclerosis subjects. Journal of Biotechnology, 2015, 202, 31-39.	3.8	41
682	The role of chemokines in adjusting the balance between CD4+ effector T cell subsets and FOXp3-negative regulatory T cells. International Immunopharmacology, 2015, 28, 829-835.	3.8	19
683	Brain endothelial dysfunction in cerebral adrenoleukodystrophy. Brain, 2015, 138, 3206-3220.	7.6	61
684	Identifying Modulators of CXC Receptors 3 and 4 with Tailored Selectivity Using Multi-Target Docking. ACS Chemical Biology, 2015, 10, 715-724.	3.4	36
685	Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. Journal of Neuroinflammation, 2016, 13, 207.	7.2	127
686	Impact of Exercise on Innate Immunity in Multiple Sclerosis Progression and Symptomatology. Frontiers in Physiology, 2016, 7, 194.	2.8	25
687	EphrinB1 and EphrinB2 regulate T cell chemotaxis and migration in experimental autoimmune encephalomyelitis and multiple sclerosis. Neurobiology of Disease, 2016, 91, 292-306.	4.4	24
688	Immune Activation and HIV-Specific CD8+ T Cells in Cerebrospinal Fluid of HIV Controllers and Noncontrollers. AIDS Research and Human Retroviruses, 2016, 32, 791-800.	1.1	11
689	Neuropilin-1 modulates interferon-γ-stimulated signaling in brain microvascular endothelial cells. Journal of Cell Science, 2016, 129, 3911-3921.	2.0	32
690	Dynamic Response Genes in CD4+ T Cells Reveal a Network of Interactive Proteins that Classifies Disease Activity in Multiple Sclerosis. Cell Reports, 2016, 16, 2928-2939.	6.4	38
691	Gatekeeper role of brain antigenâ€presenting CD11c ⁺ cells in neuroinflammation. EMBO Journal, 2016, 35, 89-101.	7.8	59
692	The impact of multiple sclerosis relapse treatment on migration of effector T cells – Preliminary study. Neurologia I Neurochirurgia Polska, 2016, 50, 155-162.	1.2	3
693	The expression of the chemokine receptor CCR5 in tick-borne encephalitis. Journal of Neuroinflammation, 2016, 13, 45.	7.2	29
694	CXCR4 and NMDA Receptors Are Functionally Coupled in Rat Hippocampal Noradrenergic and Glutamatergic Nerve Endings. Journal of NeuroImmune Pharmacology, 2016, 11, 645-656.	4.1	21
695	CCR5 blockade for neuroinflammatory diseases — beyond control of HIV. Nature Reviews Neurology, 2016, 12, 95-105.	10.1	109
696	RANTES correlates with inflammatory activity and synaptic excitability in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1405-1412.	3.0	46
697	Sphingosine 1-phosphate signaling in astrocytes: Implications for progressive multiple sclerosis. Journal of the Neurological Sciences, 2016, 361, 60-65.	0.6	25

#	Article	IF	CITATIONS
698	CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review. Cytokine, 2016, 77, 227-237.	3.2	209
699	T-bet promotes the accumulation of encephalitogenic Th17 cells in the CNS. Journal of Neuroimmunology, 2017, 304, 35-39.	2.3	5
700	Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. Advances in Experimental Medicine and Biology, 2017, 958, 91-127.	1.6	88
701	Influenza virus infection exacerbates experimental autoimmune encephalomyelitis disease by promoting type I T cells infiltration into central nervous system. Journal of Autoimmunity, 2017, 77, 1-10.	6.5	28
702	Cytokines and Chemokines. , 2017, , 261-283.		1
703	Altered expression of CXCR3 and CCR6 and their ligands in HTLVâ€l carriers and HAM/TSP patients. Journal of Medical Virology, 2017, 89, 1461-1468.	5.0	11
704	Neurophysiology of synaptic functioning in multiple sclerosis. Clinical Neurophysiology, 2017, 128, 1148-1157.	1.5	50
705	LRCH1 interferes with DOCK8-Cdc42–induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. Journal of Experimental Medicine, 2017, 214, 209-226.	8.5	40
706	Designing small molecule CXCR3 antagonists. Expert Opinion on Drug Discovery, 2017, 12, 159-168.	5.0	21
707	Natural and induced immunization against CCL20 ameliorate experimental autoimmune encephalitis and may confer protection against multiple sclerosis. Clinical Immunology, 2017, 183, 316-324.	3.2	6
708	Protein Tyrosine Phosphatase Inhibition Prevents Experimental Cerebral Malaria by Precluding CXCR3 Expression on T Cells. Scientific Reports, 2017, 7, 5478.	3.3	3
709	Pharmacologic characterizations of a P2X7 receptor-specific radioligand, [11C]CSK1482160 for neuroinflammatory response. Nuclear Medicine Communications, 2017, 38, 372-382.	1.1	57
710	Abnormalities in chemokine levels in schizophrenia and their clinical correlates. Schizophrenia Research, 2017, 181, 63-69.	2.0	71
711	Chemokine-Driven CD4 + T Cell Homing: New Concepts and Recent Advances. Advances in Immunology, 2017, 135, 119-181.	2.2	18
712	CCL5–Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis. Frontiers in Immunology, 2017, 8, 1079.	4.8	56
713	The Role of the Central Nervous System Microenvironment in Pediatric Acute Lymphoblastic Leukemia. Frontiers in Pediatrics, 2017, 5, 90.	1.9	21
714	Docking Studies for Multi-Target Drugs. Current Drug Targets, 2017, 18, 592-604.	2.1	39
715	Chemokines in homeostasis and diseases. Cellular and Molecular Immunology, 2018, 15, 324-334.	10.5	126

#	Article	IF	CITATIONS
716	Sphingosine 1â€phosphate receptors regulate <scp>TLR</scp> 4â€induced <scp>CXCL</scp> 5 release from astrocytes and microglia. Journal of Neurochemistry, 2018, 144, 736-747.	3.9	64
717	To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2018, 77, 178-192.	1.7	42
718	Molecular Mechanisms of Biased and Probe-Dependent Signaling at CXC-Motif Chemokine Receptor CXCR3 Induced by Negative Allosteric Modulators. Molecular Pharmacology, 2018, 93, 309-322.	2.3	8
719	Disruption of CXCR3 function impedes the development of Sjögren's syndrome-like xerostomia in non-obese diabetic mice. Laboratory Investigation, 2018, 98, 620-628.	3.7	18
720	CCR7 on CD4+ T Cells Plays a Crucial Role in the Induction of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2018, 200, 2554-2562.	0.8	30
721	Palm Fruit Bioactives modulate human astrocyte activity in vitro altering the cytokine secretome reducing levels of TNFα, RANTES and IP-10. Scientific Reports, 2018, 8, 16423.	3.3	17
722	Innate Immunity Cells and the Neurovascular Unit. International Journal of Molecular Sciences, 2018, 19, 3856.	4.1	38
723	Differences in Intercellular Communication During Clinical Relapse and Gadolinium-Enhanced MRI in Patients With Relapsing Remitting Multiple Sclerosis: A Study of the Composition of Extracellular Vesicles in Cerebrospinal Fluid. Frontiers in Cellular Neuroscience, 2018, 12, 418.	3.7	35
724	Metabotropic Glutamate Receptors in Glial Cells: A New Potential Target for Neuroprotection?. Frontiers in Molecular Neuroscience, 2018, 11, 414.	2.9	79
725	B cells from patients with multiple sclerosis have a pathogenic phenotype and increased LTα and TGFβ1 response. Journal of Neuroimmunology, 2018, 324, 157-164.	2.3	18
726	The Use of Human Mesenchymal Stem Cells as Therapeutic Agents for the in vivo Treatment of Immune-Related Diseases: A Systematic Review. Frontiers in Immunology, 2018, 9, 2056.	4.8	67
727	Shuttling Tolerogenic Dendritic Cells across the Blood–Brain Barrier In Vitro via the Introduction of De Novo C–C Chemokine Receptor 5 Expression Using Messenger RNA Electroporation. Frontiers in Immunology, 2018, 8, 1964.	4.8	8
728	The Expanding Therapeutic Perspective of CCR5 Blockade. Frontiers in Immunology, 2017, 8, 1981.	4.8	83
729	The Role of Astrocytes in Multiple Sclerosis. Frontiers in Immunology, 2018, 9, 217.	4.8	242
730	Adenosine A 2A receptor blockade attenuates spatial memory deficit and extent of demyelination areas in lyolecithin-induced demyelination model. Life Sciences, 2018, 205, 63-72.	4.3	14
731	Animal Models of Multiple Sclerosis. , 2018, , 37-72.		6
732	Roles of Macrophages and Astrocytes in Pathogenesis of Multiple Sclerosis. , 2018, , 517-528.		1
733	Chemokine CXCL10 and Coronavirus-Induced Neurologic Disease. Viral Immunology, 2019, 32, 25-37.	1.3	42

#	Article	IF	CITATIONS
734	Theiler's murine encephalomyelitis virus infection of astrocytes induces the expression of chemokines which attract activated but not resting T lymphocytes. Journal of NeuroVirology, 2019, 25, 844-852.	2.1	0
735	Entanglement of CCR5 and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 209.	3.4	21
736	Human immunodeficiency virus and multiple sclerosis: a review of the literature. Neurological Research and Practice, 2019, 1, 24.	2.0	9
737	IP-10 and MCP-1 gene polymorphisms in Chinese patients with chronic immune thrombocytopenia. Autoimmunity, 2019, 52, 235-241.	2.6	0
738	Human CCR5high effector memory cells perform CNS parenchymal immune surveillance via GZMK-mediated transendothelial diapedesis. Brain, 2019, 142, 3411-3427.	7.6	39
739	IP-10 contributes to the inhibition of mycobacterial growth in an ex vivo whole blood assay. International Journal of Medical Microbiology, 2019, 309, 299-306.	3.6	14
740	RIP1 kinase inhibitor halts the progression of an immune-induced demyelination disease at the stage of monocyte elevation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5675-5680.	7.1	32
741	The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathologica, 2019, 137, 757-783.	7.7	160
742	Influence of different rehabilitative aerobic exercise programs on (anti-) inflammatory immune signalling, cognitive and functional capacity in persons with MS – study protocol of a randomized controlled trial. BMC Neurology, 2019, 19, 37.	1.8	19
743	CSF Cytokines in Aging, Multiple Sclerosis, and Dementia. Frontiers in Immunology, 2019, 10, 480.	4.8	91
744	γδT lymphocytes in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2019, 330, 67-73.	2.3	11
745	Designing an improved T-cell mobilising CXCL10 mutant through enhanced GAG binding affinity. Protein Engineering, Design and Selection, 2019, 32, 367-373.	2.1	2
746	CCR5-Positive Inflammatory Monocytes are Crucial for Control of Sepsis. Shock, 2019, 52, e100-e106.	2.1	12
747	Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. Journal of Neuroinflammation, 2019, 16, 219.	7.2	96
749	CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiome. Journal of Translational Autoimmunity, 2020, 3, 100032.	4.0	32
750	CNS Macrophages and Infant Infections. Frontiers in Immunology, 2020, 11, 2123.	4.8	7
751	The combination of C C chemokine receptor type 5(CCR5) and Treg cells predicts prognosis in patients with ischemic stroke. Journal of Neuroimmunology, 2020, 349, 577404.	2.3	10
752	Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Molecular Neurobiology, 2020, 57, 4692-4703.	4.0	24

#	Article	IF	CITATIONS
753	CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals, 2020, 13, 230.	3.8	39
754	Perivascular tissue resident memory T cells as therapeutic target in multiple sclerosis. Expert Review of Neurotherapeutics, 2020, 20, 835-848.	2.8	13
755	Soluble PD1 levels are increased with disease activity in paediatric onset autoimmune hepatitis and inflammatory bowel disease. Autoimmunity, 2020, 53, 253-260.	2.6	9
756	Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain, 2020, 143, 1714-1730.	7.6	131
757	Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12952-12960.	7.1	102
758	The role of chemokines and chemokine receptors in multiple sclerosis. International Immunopharmacology, 2020, 83, 106314.	3.8	69
759	Clozapine reduces infiltration into the CNS by targeting migration in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2020, 17, 53.	7.2	21
760	Environmental Influencers, MicroRNA, and Multiple Sclerosis. Journal of Central Nervous System Disease, 2020, 12, 117957351989495.	1.9	22
761	Maraviroc attenuates the pathogenesis of experimental autoimmune encephalitis. International Immunopharmacology, 2020, 80, 106138.	3.8	23
762	HIV and opiates dysregulate K+- Clâ^ cotransporter 2 (KCC2) to cause GABAergic dysfunction in primary human neurons and Tat-transgenic mice. Neurobiology of Disease, 2020, 141, 104878.	4.4	18
763	Association of <i>VEGFA, TIMP-3</i> , and <i>IL-6</i> gene polymorphisms with predisposition to optic neuritis and optic neuritis with multiple sclerosis. Ophthalmic Genetics, 2021, 42, 35-44.	1.2	1
764	Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia, 2021, 69, 1341-1368.	4.9	24
765	Attenuated immune control of Epstein–Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLAâ€DR15. European Journal of Immunology, 2021, 51, 64-75.	2.9	53
766	Cytokines and Chemokines in SARS-CoV-2 Infections—Therapeutic Strategies Targeting Cytokine Storm. Biomolecules, 2021, 11, 91.	4.0	67
767	A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metabolic Brain Disease, 2021, 36, 375-406.	2.9	17
768	Astrocyte-specific expression of interleukin 23 leads to an aggravated phenotype and enhanced inflammatory response with B cell accumulation in the EAE model. Journal of Neuroinflammation, 2021, 18, 101.	7.2	19
769	Rg1 exerts protective effect in CPZ-induced demyelination mouse model via inhibiting CXCL10-mediated glial response. Acta Pharmacologica Sinica, 2022, 43, 563-576.	6.1	6
770	TNFR2 Signaling Regulates the Immunomodulatory Function of Oligodendrocyte Precursor Cells. Cells, 2021, 10, 1785.	4.1	17

#	Article	IF	CITATIONS
771	RANTES/CCL5 Signaling from Jawbone Cavitations to Epistemology of Multiple Sclerosis – Research and Case Studies. Degenerative Neurological and Neuromuscular Disease, 2021, Volume 11, 41-50.	1.3	6
772	PET Imaging Radiotracers of Chemokine Receptors. Molecules, 2021, 26, 5174.	3.8	8
773	Neuroinflammatory astrocyte subtypes in the mouse brain. Nature Neuroscience, 2021, 24, 1475-1487.	14.8	285
774	Multiple Sclerosis Is an Inflammatory T-Cell–Mediated Autoimmune Disease. Archives of Neurology, 2004, 61, 1613.	4.5	238
776	Mesenchymal stem cells instruct a beneficial phenotype in reactive astrocytes. Glia, 2021, 69, 1204-1215.	4.9	9
777	T-Cells in Multiple Sclerosis. Results and Problems in Cell Differentiation, 2009, 51, 75-98.	0.7	21
778	Multiple Sclerosis and Autoimmune Encephalomyelitis. , 2007, , 373-404.		1
780	Alcohol–Chemokine Interaction and Neurotransmission. , 2013, , 387-424.		2
781	Cytokine and Cytokine Receptor Genes in the Susceptibility and Resistance to Organ-Specific Autoimmune Diseases. Advances in Experimental Medicine and Biology, 2003, 520, 33-65.	1.6	4
782	Chemokines in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Advances in Experimental Medicine and Biology, 2003, 520, 120-132.	1.6	21
783	Analysis of CXCR3 and Atypical Variant Expression and Signalling in Human T Lymphocytes. Methods in Molecular Biology, 2010, 616, 125-147.	0.9	2
784	Inflammatory Macrophage Migration in Experimental Autoimmune Encephalomyelitis. Methods in Molecular Biology, 2013, 1013, 161-169.	0.9	3
785	Phage Interaction with the Mammalian Immune System. , 2019, , 91-122.		6
786	Inflammation and Immunity. , 2017, , 161-195.		2
787	Functional Diversity of Chemokines and Chemokine Receptors in Response to Viral Infection of the Central Nervous System. Current Topics in Microbiology and Immunology, 2006, 303, 1-27.	1.1	20
788	HIV Neuropathogenesis. , 2000, , 3-10.		3
789	Chemokine Receptors on Mononuclear Phagocytes in the Central Nervous System of Patients with Multiple Sclerosis. , 2002, , 193-211.		3
790	Neuronal SLC (CCL21) Expression: Implications for the Neuron-Microglial Signaling System. , 2002, , 45-60.		4

#	Article	IF	CITATIONS
791	Markers of Central Nervous System Glia and Neurons In Vivo During Normal and Pathological Conditions. Current Topics in Microbiology and Immunology, 2002, 265, 119-140.	1.1	15
792	Current status of CCR1 antagonists in clinical trials. , 2007, , 103-113.		2
793	Dendritic cells in the central nervous system. , 2001, , 371-cp1.		2
794	Chemokines. , 2002, , 65-85.		3
795	Chemokine Receptor Signal Transduction. , 2002, , 99-117.		1
796	Chemokine Responses in Virus-Induced Neurologic Disease. , 2002, , 191-202.		2
797	Insights from Transgenic and Knockout Mice. , 2002, , 225-233.		1
798	Chemokines and Chemokine Receptors in Multiple Sclerosis. , 2002, , 317-332.		2
800	Expression of the interferonâ€Î³â€inducible chemokines IPâ€10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathology and Applied Neurobiology, 2000, 26, 133-142.	3.2	195
801	Adenovirus-Mediated Expression of CXCL10 in the Central Nervous System Results in T-Cell Recruitment and Limited Neuropathology. Journal of NeuroVirology, 2003, 9, 315-324.	2.1	1
802	DIFFERENTIAL EXPRESSION OF CHEMOKINES AND CHEMOKINE RECEPTORS SHAPES THE INFLAMMATORY RESPONSE IN REJECTING HUMAN LIVER TRANSPLANTS1. Transplantation, 2001, 72, 1957-1967.	1.0	122
803	Effector pathways in immune mediated central nervous system demyelination. Current Opinion in Neurology, 1999, 12, 323-336.	3.6	52
804	Expression of chemokines in the CSF and correlation with clinical disease activity in patients with multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 498-502.	1.9	110
805	Antigenicity and immunogenicity of allogeneic retinal transplants. Journal of Clinical Investigation, 2001, 108, 1175-1183.	8.2	10
806	Regulation of pulmonary fibrosis by chemokine receptor CXCR3. Journal of Clinical Investigation, 2004, 114, 291-299.	8.2	276
807	Trafficking of immune cells in the central nervous system. Journal of Clinical Investigation, 2010, 120, 1368-1379.	8.2	426
808	CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. Journal of Clinical Investigation, 2014, 124, 2009-2022.	8.2	145
809	CXC chemokine receptor 3 expression on CD34+hematopoietic progenitors from human cord blood induced by granulocyte-macrophage colony-stimulating factor: chemotaxis and adhesion induced by its ligands, interferon γ–inducible protein 10 and monokine induced by interferon γ. Blood, 2000, 96, 1230-1238.	1.4	4

0			n	
	ΙΤΔΤ	10N	RE	DUBT
<u> </u>	/			

#	Article	IF	CITATIONS
810	A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection. BMC Immunology, 2012, 13, 2.	2.2	70
811	Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. Journal of Leukocyte Biology, 2002, 72, 183-191.	3.3	75
812	Function of multiple sclerosis-protective HLA class I alleles revealed by genome-wide protein-quantitative trait loci mapping of interferon signalling. PLoS Genetics, 2020, 16, e1009199.	3.5	12
813	A Combined CXCL10, CXCL8 and H-FABP Panel for the Staging of Human African Trypanosomiasis Patients. PLoS Neglected Tropical Diseases, 2009, 3, e459.	3.0	62
814	Human Astrocytes: Secretome Profiles of Cytokines and Chemokines. PLoS ONE, 2014, 9, e92325.	2.5	303
815	Chemokines in the cerebrospinal fluid of patients with active and stable relapsing-remitting multiple sclerosis. Brazilian Journal of Medical and Biological Research, 2006, 39, 441-445.	1.5	17
816	Obstructive Nephropathy in the Mouse. Journal of the American Society of Nephrology: JASN, 2001, 12, 1173-1187.	6.1	157
817	CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice. Oncotarget, 2016, 7, 15382-15393.	1.8	51
818	CXCL13 CSF level inversely correlates with duration of disease in primary progressive multiple sclerosis. Journal of Medical Science, 2016, 85, 302-304.	0.7	2
819	CXCR3, CXCR5, CXCR6, and CXCR7 in Diabetes. Current Drug Targets, 2016, 17, 515-519.	2.1	18
820	Chemokines and Chemokine Receptors Critical to Host Resistance Following Genital Herpes Simplex Virus Type 2 (HSV-2) Infection. The Open Immunology Journal, 2008, 1, 33-41.	1.5	20
821	Role of microglia in the process of inflammation in the hypoxic developing brain. Frontiers in Bioscience - Scholar, 2011, S3, 884.	2.1	36
822	Chemokines in systemic lupus erythematosus involving the central nervous system. Frontiers in Bioscience - Landmark, 2008, 13, 2527.	3.0	11
823	The contribution of oligodendrocytes and oligodendrocyte progenitor cells to central nervous system repair in multiple sclerosis: perspectives for remyelination therapeutic strategies. Neural Regeneration Research, 2017, 12, 1939.	3.0	35
824	CHEMOKINE RECEPTORS. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2000, 144, 9-18.	0.6	2
825	The Th1 chemokine IP-10 in Systemic sclerosis. Clinica Terapeutica, 2014, 165, e436-41.	0.3	4
826	Immunotherapeutic Strategies for Multiple Sclerosis. , 2001, , 37-68.		0
827	Differential Patterns of T Cell Chemokine Receptor Expression in Human Th1- and Th2-Associated Diseases. , 2001, , 23-33.		3

#	Article	IF	CITATIONS
829	Chemokines in the Central Nervous System and Alzheimer's Disease. , 2002, , 333-344.		0
830	Targeting the Chemokine System. Handbook of Experimental Pharmacology, 2003, , 269-294.	1.8	Ο
831	Preliminary Observations on CC Chemokine Receptor Expression by Mononuclear Phagocytes in Multiple Sclerosis Lesions: Effect of Lesion Heterogeneity. , 2004, , 59-68.		1
832	Chemokines in Coronavirus-Induced Demyelination. , 2005, , 805-820.		0
833	Cytokines and Multiple Sclerosis. , 2005, , 269-298.		0
834	Immunpathogenese. , 2006, , 43-51.		0
836	Polymorphism of chemokine receptor gene CCR5 in multiple sclerosis patients and in healthy subjects in the Siberian region. Bulletin of Siberian Medicine, 2006, 5, 98-104.	0.3	1
837	Review of Novel Immunotherapeutic Strategies for MS. , 2007, , 289-338.		0
840	Estudo dos polimorfismos do gene DUFFY em pacientes com hipertensão maligna e doadores de sangue. Revista Brasileira De Hematologia E Hemoterapia, 2008, 30, .	0.7	0
841	HIV Coreceptors and Their Roles in Leukocyte Trafficking During Neuroinflammatory Diseases. , 2010, , 119-146.		0
842	Screening for simulation peptide specifically binding to the first and the second extracellular domain of CCR5 and its therapeutic effect on mice with autoimmune encephalomyelitis. Academic Journal of Second Military Medical University, 2009, 29, 892-897.	0.0	0
843	Vascular Smooth Muscle Cells Secrete CXCL10 in Response to Heat Shock Protein 90. Journal of Life Science, 2011, 21, 664-670.	0.2	0
844	Lack of Correlation between CCL5 -28C/G Functional Polymorphism and Multiple Sclerosis in Tunisian Patients. Journal of Clinical & Cellular Immunology, 2012, 03, .	1.5	0
846	Immunpathogenese. , 2015, , 39-52.		0
847	CXCR3 and Its Ligands. , 2015, , 1-14.		2
848	CXCR3 and Its Ligands. , 2016, , 404-416.		0
849	CXCL13 CSF level inversely correlates with duration of disease in primary progressive multiple sclerosis. Journal of Medical Science, 2016, 85, 302.	0.7	0
851	Astrocytes in Pathogenesis of Multiple Sclerosis and Potential Translation into Clinic. , 0, , .		1

#	Article	IF	CITATIONS
854	CXC and CC chemokine receptors on coronary and brain endothelia. Molecular Medicine, 1999, 5, 795-805.	4.4	30
855	Increased Intrathecal Chemokine Receptor CCR2 Expression in Multiple Sclerosis. Biomarker Insights, 2007, 2, 463-8.	2.5	5
857	Ccr2-64i and Ccr5 Δ32 Polymorphisms in Patients with Late-Onset Alzheimer's disease; A Study from Iran (Ccr2-64i And Ccr5 Δ32 Polymorphisms in Alzheimer's disease). Iranian Journal of Basic Medical Sciences, 2012, 15, 937-44.	1.0	15
858	RGMa regulates CCL5 expression via the BMP receptor in experimental autoimmune encephalomyelitis mice and endothelial cells. Molecular Medicine Reports, 2022, 25, .	2.4	1
859	Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Frontiers in Immunology, 2022, 13, 824411.	4.8	14
860	Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. Journal of Neuroinflammation, 2022, 19, 45.	7.2	51
861	Chemokine-Driven Migration of Pro-Inflammatory CD4+ T Cells in CNS Autoimmune Disease. Frontiers in Immunology, 2022, 13, 817473.	4.8	21
862	Effect of Multiple Sclerosis Cerebrospinal Fluid and Oligodendroglia Cell Line Environment on Human Wharton's Jelly Mesenchymal Stem Cells Secretome. International Journal of Molecular Sciences, 2022, 23, 2177.	4.1	1
863	Botanically-Derived Δ9-Tetrahydrocannabinol and Cannabidiol, and Their 1:1 Combination, Modulate Toll-like Receptor 3 and 4 Signalling in Immune Cells from People with Multiple Sclerosis. Molecules, 2022, 27, 1763.	3.8	5
864	Artemisinin derivative TPN10466 suppresses immune cell migration and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis. Cellular Immunology, 2022, 373, 104500.	3.0	7
865	T-cell surveillance of the human brain in health and multiple sclerosis. Seminars in Immunopathology, 2022, 44, 855-867.	6.1	12
866	Targeted blockade of immune mechanisms inhibit B precursor acute lymphoblastic leukemia cell invasion of the central nervous system. Cell Reports Medicine, 2021, 2, 100470.	6.5	3
868	Chemokines and Spinal Cord Injury. , 2008, , 221-233.		0
875	Proteomic Alterations and Novel Markers of Neurotoxic Reactive Astrocytes in Human Induced Pluripotent Stem Cell Models. Frontiers in Molecular Neuroscience, 2022, 15, 870085.	2.9	15
876	Assessing Theoretical Risk and Benefit suggested by Genetic Association Studies of CCR5: Experience in a Drug Development Programme for Maraviroc. Antiviral Therapy, 2007, 12, 233-246.	1.0	35
880	Expression of CCR2, CCR5, and CXCR3 by CD4+ T Cells is Stable During a 2-Year Longitudinal Study but Varies Widely Between Individuals. Journal of NeuroVirology, 2003, 9, 291-299.	2.1	Ο
881	A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection. BMC Immunology, 2012, 13, 2.	2.2	27
882	Discrepancy in CCL2 and CCR2 expression in white versus grey matter hippocampal lesions of Multiple Sclerosis patients. Acta Neuropathologica Communications, 2014, 2, 98.	5.2	0

ARTICLE IF CITATIONS Eotaxin-1 (CCL11) in neuroinflammatory disorders and possible role in COVID-19 neurologic 883 24 1.1 complications. Acta Neurologica Belgica, 2022, 122, 865-869. Evolution, Expression and Functional Analysis of CXCR3 in Neuronal and Cardiovascular Diseases: A 884 3.7 Narrative Review. Frontiers in Cell and Developmental Biology, 0, 10, . Increased Intrathecal Activity of Follicular Helper T Cells in Patients With Relapsing-Remitting 885 6.0 11 Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, . Human Primary Astrocytes Differently Respond to Pro- and Anti-Inflammatory Stimuli. Biomedicines, 886 2022, 10, 1769. The CCR5 antagonist maraviroc exerts limited neuroprotection without improving neurofunctional 887 3.3 1 outcome in experimental pneumococcal meningitis. Scientific Reports, 2022, 12, . Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Research Bulletin, 888 3.0 2022, 189, 80-101. Development of an Electrochemical CCL5 Chemokine Immunoplatform for Rapid Diagnosis of Multiple 889 4.7 3 Sclerosis. Biosensors, 2022, 12, 610. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each 6.5 other. Molecular Metabolism, 2022, 64, 101565. Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible 892 for increased susceptibility to infection and complications and helps to develop fast-track 7.0 2 repositioning of drugs against COVID-19. Computers in Biology and Medicine, 2022, 149, 106029. Inhibition of Th1 activation and differentiation by dietary guar gum ameliorates experimental 893 6.4 autoimmune encephalomyelitis. Cell Reports, 2022, 40, 111328. The Immunomodulatory Potential Role of Mesenchymal Stem Cells in Diseases of the Central Nervous 894 1.4 6 System. Neurodegenerative Diseases, 2022, 22, 68-82. Differential transcriptomic changes in the central nervous system and urinary bladders of mice 2.5 infected with a coronavirus. PLoS ONE, 2022, 17, e0278918. 896 Autoimmune diseases. , 2023, , 123-244. 2 Cerebrospinal fluid cytokines after autologous haematopoietic stem cell transplantation and 3.3 intrathecal rituximab treatment for multiple sclerosis. Brain Communications, 2022, 5, . Immune Profiling Reveals the T-Cell Effect of Ocrelizumab in Early Relapsing-Remitting Multiple 898 6.0 5 Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2023, 10, . Transforming the understanding of brain immunity. Science, 2023, 380, . 899 900 Inflammatory diseases of the CNS., 2023, 533-561. 0 Dendritic Cells as a Nexus for the Development of Multiple Sclerosis and Models of Disease. Advanced Biology, O, , .

#	Article	IF	CITATIONS
902	Using molecular dynamics simulations to show differences of movement over time in the CCR5 variants of genetically edited children. Bios, 2023, 94, .	0.0	0
903	Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nature Reviews Neurology, 2023, 19, 395-409.	10.1	54
904	Immune profiling in multiple sclerosis: a single-center study of 65 cytokines, chemokines, and related molecules in cerebrospinal fluid and serum. Frontiers in Immunology, 0, 14, .	4.8	2
905	Introduction to the neuroimmunology of multiple sclerosis. , 2023, , 1-9.		ο
906	TNF-α/STAT1/CXCL10 mutual inflammatory axis that contributes to the pathogenesis of experimental models of multiple sclerosis: A promising signaling pathway for targeted therapies. Cytokine, 2023, 168, 156235.	3.2	0
907	Application of Proteomics in the Study of Molecular Markers in Epilepsy. , 2023, , 309-333.		0
908	Natalizumab Treatment of Relapsing Remitting Multiple Sclerosis Has No Long-Term Effects on the Proportion of Circulating Regulatory T Cells. Neurology and Therapy, 0, , .	3.2	1
909	Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	15
911	Learning CNS immunopathology from therapeutic interventions. Science Translational Medicine, 2023, 15, .	12.4	0
912	Proteomic profiling of interferonâ€responsive reactive astrocytes in rodent and human. Glia, 2024, 72, 625-642.	4.9	0
913	Microglial Inflammatory Responses to SARS oVâ€2 Infection: A Comprehensive Review. Cellular and Molecular Neurobiology, 2024, 44, .	3.3	0
914	Astrocytes in Neuroinflammatory and Neurodegenerative Diseases. , 2023, , .		Ο
915	The Immune Signature of CSF in Multiple Sclerosis with and without Oligoclonal Bands: A Machine Learning Approach to Proximity Extension Assay Analysis. International Journal of Molecular Sciences, 2024, 25, 139.	4.1	0
916	Unveiling cytokine charge disparity as a potential mechanism for immune regulation. Cytokine and Growth Factor Reviews, 2023, , .	7.2	1
917	TAK1 Mediates Lipopolysaccharide-induced RANTES Promoter Activation in BV-2 Microglial Cells. Molecules and Cells, 2002, 14, 35-42.	2.6	1
918	Ocrelizumab associates with reduced cerebrospinal fluid B and CD20dim CD4+ T cells in primary progressive multiple sclerosis. Brain Communications, 2023, 6, .	3.3	0
919	Interactions between CNS and immune cells in tuberculous meningitis. Frontiers in Immunology, 0, 15, .	4.8	0