Spatial and Temporal Changes in Myosin Heavy Chain C Development

Developmental Biology 216, 312-326 DOI: 10.1006/dbio.1999.9488

Citation Report

#	Article	IF	CITATIONS
1	Postnatal Myosin Heavy Chain Isoform Expression in Normal Mice and Mice Null for IIb or IId Myosin Heavy Chains. Developmental Biology, 2001, 229, 383-395.	0.9	72
2	Pro- and Anti-apoptotic Members of the Bcl-2 Family in Skeletal Muscle: A Distinct Role for Bcl-2 in Later Stages of Myogenesis. Developmental Dynamics, 2001, 220, 18-26.	0.8	34
3	Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis. International Review of Cytology, 2002, 216, 175-232.	6.2	95
4	Spatial Distribution of Myosin Heavy-chain Isoforms in Mouse Masseter. Journal of Dental Research, 2002, 81, 33-38.	2.5	12
5	Cellular and Molecular Mechanisms Regulating Skeletal Muscle Development. , 2002, , 253-278.		4
6	Spatial Distribution of Myosin Heavy-chain Isoforms in Mouse Masseter. Journal of Dental Research, 2002, 81, 33-38.	2.5	28
7	The myosin converter domain modulates muscle performance. Nature Cell Biology, 2002, 4, 312-317.	4.6	71
8	Myosin heavy chain isoforms in postnatal muscle development of mice. Biology of the Cell, 2003, 95, 399-406.	0.7	220
9	Postnatal myosin heavy chain isoforms in prenatal porcine skeletal muscles: Insights into temporal regulation. The Anatomical Record, 2003, 273A, 731-740.	2.3	18
10	Temperature and the expression of seven muscle-specific protein genes during embryogenesis in the Atlantic cod Gadus morhua L Journal of Experimental Biology, 2003, 206, 3187-3200.	0.8	46
11	The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes and Development, 2004, 18, 2627-2638.	2.7	534
12	Expression of GHR and PGC-lα in association with changes of MyHC isof orm types in longissimus muscle of Erhualian and Large White pigs (Sus scrofa) during postnatal growth. Animal Science, 2004, 79, 203-211.	1.3	17
13	Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant,p100H. Developmental Dynamics, 2005, 234, 301-311.	0.8	72
14	Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle. Muscle and Nerve, 2005, 31, 34-40.	1.0	191
15	Insulin-like growth factor-I downregulates embryonic myosin heavy chain (eMyHC) in myoblast nuclei. Growth Hormone and IGF Research, 2005, 15, 377-383.	0.5	18
16	Myosin heavy chain fibre type composition in foals: analyses at the mRNA and protein level. Equine Veterinary Journal, 2006, 38, 316-321.	0.9	1
17	MusTRD can regulate postnatal fiber-specific expression. Developmental Biology, 2006, 293, 104-115.	0.9	20
18	MyoD, Myf5, and the calcineurin pathway activate the developmental myosin heavy chain genes. Developmental Biology, 2006, 294, 541-553.	0.9	43

#	Article	IF	CITATIONS
19	Mechanisms underlying myosin heavy chain expression during development of the rat diaphragm muscle. Journal of Applied Physiology, 2006, 101, 1546-1555.	1.2	34
20	Distinctive morphological and gene/protein expression signatures during myogenesis in novel cell lines from extraocular and hindlimb muscle. Physiological Genomics, 2006, 24, 264-275.	1.0	41
21	Diversity in transcriptional start site selection and alternative splicing affects the 5′-UTR of mouse striated muscle myosin transcripts. Journal of Muscle Research and Cell Motility, 2006, 27, 559-575.	0.9	9
22	Morphometric analysis of neuromuscular topography in the serratus anterior muscle. Muscle and Nerve, 2006, 33, 398-408.	1.0	2
23	Differential Expression of Calcineurin and SR Ca2+ Handling Proteins in Equine Muscle Fibers During Early Postnatal Growth. Journal of Histochemistry and Cytochemistry, 2007, 55, 247-254.	1.3	10
24	Developmental and functional considerations of masseter muscle partitioning. Archives of Oral Biology, 2007, 52, 305-308.	0.8	65
25	Regulation of skeletal muscle differentiation in fibroblasts by exogenous MyoD gene inÂvitro and inÂvivo. Molecular and Cellular Biochemistry, 2007, 302, 233-239.	1.4	8
26	Selective breeding as a tool to probe skeletal response to high voluntary locomotor activity in mice. Integrative and Comparative Biology, 2008, 48, 394-410.	0.9	37
27	Myofibrillar protein and gene expression in acute quadriplegic myopathy. Journal of the Neurological Sciences, 2009, 285, 28-38.	0.3	27
28	Origin of Vertebrate Limb Muscle. Current Topics in Developmental Biology, 2011, 96, 1-32.	1.0	93
29	Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC Developmental Biology, 2011, 11, 59.	2.1	46
30	Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development (Cambridge), 2011, 138, 371-384.	1.2	266
31	MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms. Experimental Cell Research, 2012, 318, 2324-2334.	1.2	73
32	Association between the lack of teeth and the expression of myosins in masticatory muscles of microphthalmic mouse. Cell Biochemistry and Function, 2012, 30, 82-88.	1.4	6
33	ZEB1 Imposes a Temporary Stage-Dependent Inhibition of Muscle Gene Expression and Differentiation via CtBP-Mediated Transcriptional Repression. Molecular and Cellular Biology, 2013, 33, 1368-1382.	1.1	44
34	A simplified immunohistochemical classification of skeletal muscle fibres in mouse. European Journal of Histochemistry, 2014, 58, 2254.	0.6	83
35	A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance. Cell, 2015, 160, 595-606.	13.5	980
36	Developmental myosins: expression patterns and functional significance. Skeletal Muscle, 2015, 5, 22.	1.9	352

CITATION REPORT

#	Article	IF	Citations
37	Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion. International Journal of Molecular Sciences, 2016, 17, 686.	1.8	3
38	Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Scientific Reports, 2017, 7, 7168.	1.6	42
39	Comparison of the expression of neurotransmitter and muscular genesis markers in the postnatal male mouse masseter and trigeminal ganglion during development. Journal of Neuroscience Research, 2018, 96, 1043-1055.	1.3	1
40	Deficiency of Vgll2 Gene Alters the Gene Expression Profiling of Skeletal Muscle Subjected to Mechanical Overload. Frontiers in Sports and Active Living, 2019, 1, 41.	0.9	1
41	Differential Expression of IGF1, IGFBP5, MSTN, and MYH1 Across Different Age Classes in American Quarter Horses. Journal of Equine Veterinary Science, 2020, 94, 103226.	0.4	0
43	Asynchronous activation of 10 muscle-specific protein (MSP) genes during zebrafish somitogenesis. , 2000, 219, 201.		29
45	Changes in the Expression of Myosins During Postnatal Development of Masseter Muscle in the Microphthalmic Mouse. Open Dentistry Journal, 2010, 4, 1-7.	0.2	6
46	Mouse gastrocnemius muscle regeneration after mechanical or cardiotoxin injury. Folia Histochemica Et Cytobiologica, 2012, 50, 144-153.	0.6	38
47	Expression of myosin heavy chain isoforms in the postnatal mouse masseter muscle. Okajimas Folia Anatomica Japonica, 2009, 86, 105-110.	1.2	2
48	A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes. Nature Communications, 2022, 13, 1039.	5.8	26