The Levels of Soluble versus Insoluble Brain AÎ² Disting Normal and Pathologic Aging

Experimental Neurology 158, 328-337 DOI: 10.1006/exnr.1999.7085

Citation Report

#	Article	IF	CITATIONS
1	Anti-Aging Medicine LiteratureWatch. Rejuvenation Research, 1998, 1, 275-284.	0.2	0
2	Anti-Aging Medicine LiteratureWatch. Rejuvenation Research, 1999, 2, 295-309.	0.2	0
3	Soluble pool of A? amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Annals of Neurology, 1999, 46, 860-866.	2.8	1,721
4	Chapter 4. Secretase inhibitors as therapeutics for Alzheimer's disease. Annual Reports in Medicinal Chemistry, 2000, 35, 31-40.	0.5	12
5	Influence of lipoproteins on microglial degradation of Alzheimer's amyloid beta-protein. Microscopy Research and Technique, 2000, 50, 316-324.	1.2	42
6	Alzheimer's disease cybrids replicate ?-amyloid abnormalities through cell death pathways. Annals of Neurology, 2000, 48, 148-155.	2.8	171
8	In vivo detection of amyloid plaques in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7609-7614.	3.3	211
9	Novel Method to Quantify Neuropil Threads in Brains from Elders With or Without Cognitive Impairment. Journal of Histochemistry and Cytochemistry, 2000, 48, 1627-1637.	1.3	77
10	Alzheimer-Related Ï"-Pathology in the Perforant Path Target Zone and in the Hippocampal Stratum Oriens and Radiatum Correlates with Onset and Degree of Dementia. Experimental Neurology, 2000, 163, 98-110.	2.0	148
11	Chelation and Intercalation: Complementary Properties in a Compound for the Treatment of Alzheimer's Disease. Journal of Structural Biology, 2000, 130, 209-216.	1.3	81
12	Nicotine and amyloid formation. Biological Psychiatry, 2001, 49, 248-257.	0.7	70
13	Sublethal Concentrations of Prion Peptide PrP106–126 or the Amyloid Beta Peptide of Alzheimer's Disease Activates Expression of Proapoptotic Markers in Primary Cortical Neurons. Neurobiology of Disease, 2001, 8, 299-316.	2.1	66
14	Phenolic anti-inflammatory antioxidant reversal of Aβ-induced cognitive deficits and neuropathology. Neurobiology of Aging, 2001, 22, 993-1005.	1.5	501
15	Reduction of cortical amyloid \hat{l}^2 levels in guinea pig brain after systemic administration of physostigmine. Neuroscience Letters, 2001, 310, 21-24.	1.0	39
16	Treatment with a Copper-Zinc Chelator Markedly and Rapidly Inhibits Î ² -Amyloid Accumulation in Alzheimer's Disease Transgenic Mice. Neuron, 2001, 30, 665-676.	3.8	1,419
17	Transgenic mouse models of Alzheimer's disease. Physiology and Behavior, 2001, 73, 873-886.	1.0	164
18	The Natural History of Alzheimer's Disease: Minding the Gaps in Understanding the Mechanisms of Neurodegeneration. Research and Perspectives in Alzheimer's Disease, 2001, , 1-21.	0.1	0
19	Therapeutic targets in the biology of Alzheimer's disease. Current Opinion in Psychiatry, 2001, 14, 341-348	3.1	14

TION RE

#	Article	IF	CITATIONS
20	Conversion of brain apolipoprotein E to an insoluble form in a mouse model of Alzheimer disease. NeuroReport, 2001, 12, 1265-1270.	0.6	10
21	Neurotoxic Aβ peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. Journal of Neurochemistry, 2001, 76, 1050-1056.	2.1	187
22	Alzheimer's Disease: Physiological and Pathogenetic Role of the Amyloid Precursor Protein (APP), its Aβ-Amyloid Domain and Free Aβ-Amyloid Peptide. Research and Perspectives in Alzheimer's Disease, 2001, , 97-117.	0.1	3
23	Learning and Memory in Transgenic Mice Modeling Alzheimer's Disease. Learning and Memory, 2001, 8, 301-308.	0.5	205
24	Molecular chaperones and age-related degenerative disorders. Advances in Cell Aging and Gerontology, 2001, 7, 131-162.	0.1	23
25	Early-onset Amyloid Deposition and Cognitive Deficits in Transgenic Mice Expressing a Double Mutant Form of Amyloid Precursor Protein 695. Journal of Biological Chemistry, 2001, 276, 21562-21570.	1.6	820
26	Peripheral anti-AÂ antibody alters CNS and plasma AÂ clearance and decreases brain AÂ burden in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8850-8855.	3.3	1,269
27	Alzheimer's disease: Its diagnosis and pathogenesis. International Review of Neurobiology, 2001, 48, 167-217.	0.9	17
28	The galvanization of Â-amyloid in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7317-7319.	3.3	127
29	β-Secretase Processing in the Trans-Golgi Network Preferentially Generates Truncated Amyloid Species That Accumulate in Alzheimer's Disease Brain. Journal of Biological Chemistry, 2002, 277, 16278-16284.	1.6	157
30	Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer's disease. Neurology, 2002, 59, 398-407.	1.5	162
31	Brain to Plasma Amyloid-beta Efflux: a Measure of Brain Amyloid Burden in a Mouse Model of Alzheimer's Disease. Science, 2002, 295, 2264-2267.	6.0	544
32	Stable β-Secretase Activity and Presynaptic Cholinergic Markers During Progressive Central Nervous System Amyloidogenesis in Tg2576 Mice. American Journal of Pathology, 2002, 160, 731-738.	1.9	64
33	Localization of β-Secretase Memapsin 2 in the Brain of Alzheimer's Patients and Normal Aged Controls. Experimental Neurology, 2002, 175, 10-22.	2.0	40
34	Human and Murine ApoE Markedly Alters Aβ Metabolism before and after Plaque Formation in a Mouse Model of Alzheimer's Disease. Neurobiology of Disease, 2002, 9, 305-318.	2.1	248
35	The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics. Science, 2002, 297, 353-356.	6.0	12,113
36	Structure and location of amyloid beta peptide chains and arrays in Alzheimer's disease: new findings require reevaluation of the amyloid hypothesis and of tests of the hypothesis. Neurobiology of Aging, 2002, 23, 225-230.	1.5	22
37	Aβ as a bioflocculant: implications for the amyloid hypothesis of Alzheimer's disease. Neurobiology of Aging, 2002, 23, 1051-1072.	1.5	140

# 38	ARTICLE Metal complexing agents as therapies for Alzheimer's disease. Neurobiology of Aging, 2002, 23, 1031-1038.	IF 1.5	Citations 303
39	Stereologic assessment of the total cortical volume occupied by amyloid deposits and its relationship with cognitive status in aging and Alzheimer's disease. Neuroscience, 2002, 112, 75-91.	1.1	101
40	â€~…and C is for Clioquinol' – the AβCs of Alzheimer's disease. Trends in Neurosciences, 2002, 25, 121-12	23.2	23
41	Response: â€`…and C is for Clioquinol' – the AβCs of Alzheimer's disease. Trends in Neurosciences, 2002, 25, 123-124.	4.2	1
42	Repetitive Mild Brain Trauma Accelerates AÎ ² Deposition, Lipid Peroxidation, and Cognitive Impairment in a Transgenic Mouse Model of Alzheimer Amyloidosis. Journal of Neuroscience, 2002, 22, 446-454.	1.7	314
43	The Relationship between Aβ and Memory in the Tg2576 Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2002, 22, 1858-1867.	1.7	671
44	p35/Cdk5 pathway mediates soluble amyloid-? peptide-induced tau phosphorylation in vitro. Journal of Neuroscience Research, 2002, 69, 362-372.	1.3	91
45	Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: The emerging role of oligomeric assemblies. Journal of Neuroscience Research, 2002, 69, 567-577.	1.3	540
46	A Mathematical Model of the Impact of Novel Treatments on the AβBurden in the Alzheimer's Brain, CSF and Plasma. Bulletin of Mathematical Biology, 2002, 64, 1011-1031.	0.9	44
47	What Can Rodent Models Tell Us About Cognitive Decline in Alzheimer's Disease?. Molecular Neurobiology, 2003, 27, 249-276.	1.9	28
48	Characterization of amyloid β peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein. Journal of Neurochemistry, 2003, 84, 602-609.	2.1	44
49	Brain levels of CDK5 activator p25 are not increased in Alzheimer's or other neurodegenerative diseases with neurofibrillary tangles. Journal of Neurochemistry, 2003, 86, 572-581.	2.1	81
50	Current Status of Metals as Therapeutic Targets in Alzheimer's Disease. Journal of the American Geriatrics Society, 2003, 51, 1143-1148.	1.3	198
51	Zinc takes the center stage: its paradoxical role in Alzheimer's disease. Brain Research Reviews, 2003, 41, 44-56.	9.1	227
52	The metallobiology of Alzheimer's disease. Trends in Neurosciences, 2003, 26, 207-214.	4.2	1,191
53	Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid β peptide in APPswe transgenic mice. Neurobiology of Disease, 2003, 14, 133-145.	2.1	374
54	In Vitro Characterization of Conditions for Amyloid-β Peptide Oligomerization and Fibrillogenesis. Journal of Biological Chemistry, 2003, 278, 11612-11622.	1.6	879
55	Aβ1–42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD. Neurology, 2003, 61, 206-211.	1.5	54

#	Article	IF	CITATIONS
56	Apoptotic Neuronal Cell Death Induced by the Non-fibrillar Amyloid-Î ² Peptide Proceeds through an Early Reactive Oxygen Species-dependent Cytoskeleton Perturbation. Journal of Biological Chemistry, 2003, 278, 3437-3445.	1.6	102
57	Neurofibrillary Tangles, Amyloid, and Memory in Aging and Mild Cognitive Impairment. Archives of Neurology, 2003, 60, 729.	4.9	491
58	Copper, Zinc, and the Metallobiology of Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2003, 17, 147-150.	0.6	103
59	Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of the amyloidâ€Ĥ² peptide. FASEB Journal, 2004, 18, 836-838.	0.2	82
60	Assessment of the Bioactivity of Antibodies against β-Amyloid Peptide in vitro and in vivo. Neurodegenerative Diseases, 2004, 1, 160-167.	0.8	11
61	MAPK recruitment by beta-amyloid in organotypic hippocampal slice cultures depends on physical state and exposure time. Journal of Neurochemistry, 2004, 91, 349-361.	2.1	105
62	Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. Journal of Neurochemistry, 2004, 90, 758-764.	2.1	147
63	Alzheimer's β-peptide oligomer formation at physiologic concentrations. Analytical Biochemistry, 2004, 335, 81-90.	1.1	111
64	Metal-protein attenuating compounds and Alzheimer's disease. Expert Opinion on Investigational Drugs, 2004, 13, 1585-1592.	1.9	60
65	Aberrant expressions of pathogenic phenotype in Alzheimer's diseased transgenic mice carrying NSE-controlled APPsw. Experimental Neurology, 2004, 186, 20-32.	2.0	59
66	The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human β-amyloid precursor protein transgenic mice. Neurobiology of Aging, 2004, 25, 1315-1321.	1.5	196
67	AÎ ² localization in abnormal endosomes: association with earliest AÎ ² elevations in AD and Down syndrome. Neurobiology of Aging, 2004, 25, 1263-1272.	1.5	338
68	Deciphering the Molecular Basis of Memory Failure in Alzheimer's Disease. Neuron, 2004, 44, 181-193.	3.8	1,127
69	Reduced levels of Aβ 40 and Aβ 42 in brains of smoking controls and Alzheimer's patients. Neurobiology of Disease, 2004, 15, 351-360.	2.1	67
70	Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiology of Aging, 2004, 25, 5-18.	1.5	834
71	Amyloid Î ² Degradation: A Challenging Task for Brain Peptidases. , 2005, 38, 129-145.		18
72	The Impact of Novel Treatments on Aβ Burden in Alzheimer's Disease: Insights from A Mathematical Model. , 2005, , 839-865.		2
73	Synaptic plasticity disruption by amyloid Î ² protein: modulation by potential Alzheimer's disease modifying therapies. Biochemical Society Transactions, 2005, 33, 563-567.	1.6	72

#	ARTICLE	IF	CITATIONS
74	Globular amyloid beta-peptide1-42 oligomer - a homogenous and stable neuropathological protein in Alzheimer's disease. Journal of Neurochemistry, 2005, 95, 834-847.	2.1	527
75	Subtype-specific actions of β -amyloid peptides on recombinant human neuronal nicotinic acetylcholine receptors (α 7, α 4β 2, α 3β 4) expressed in Xenopus laevis oocytes. British Journal of Pharmacology, 2005, 146 964-971.	, 2.7	41
76	Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo. Nature Medicine, 2005, 11, 556-561.	15.2	485
77	Metals and amyloid-β in Alzheimer's disease. International Journal of Experimental Pathology, 2005, 86, 147-159.	0.6	303
78	What is the dominant al 2 species in human brain tissue? A review. Neurotoxicity Research, 2005, 7, 29-41.	1.3	41
79	Early Changes in Behavior Deficits, Amyloid β-42 Deposits and MAPK Activation in Doubly Transgenic Mice Co-expressing NSE-Controlled Human Mutant PS2 and APPsw. Cellular and Molecular Neurobiology, 2005, 25, 881-898.	1.7	6
80	Decreased Neprilysin Immunoreactivity in Alzheimer Disease, but Not in Pathological Aging. Journal of Neuropathology and Experimental Neurology, 2005, 64, 378-385.	0.9	72
81	Proteomic determination of widespread detergent insolubility, including Aβ but not tau, early in the pathogenesis of Alzheimer's disease. FASEB Journal, 2005, 19, 1923-1925.	0.2	46
82	Quantitative Measurement of Changes in Amyloid-β(40) in the Rat Brain and Cerebrospinal Fluid following Treatment with the γ-Secretase Inhibitor LY-411575 [N2-[(2S)-2-(3,5-Difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin- Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 902-908.	7-yl]-l-alar	103 ninamide].
83	Imaginem oblivionis: the prospects of neuroimaging for early detection of Alzheimer's disease. Journal of Clinical Neuroscience, 2005, 12, 221-230.	0.8	51
84	Modulation of Alzheimer's pathology by cerebro-ventricular grafting of hybridoma cells expressing antibodies against Aβ in vivo. FEBS Letters, 2005, 579, 753-756.	1.3	8
85	Pathophysiology of Alzheimer's Disease. Neuroimaging Clinics of North America, 2005, 15, 727-753.	0.5	68
86	Certain Inhibitors of Synthetic Amyloid Â-Peptide (AÂ) Fibrillogenesis Block Oligomerization of Natural AÂ and Thereby Rescue Long-Term Potentiation. Journal of Neuroscience, 2005, 25, 2455-2462.	1.7	286
87	Amyloid β-Protein: Monomer Structure and Early Aggregation States of Aβ42 and Its Pro19Alloform. Journal of the American Chemical Society, 2005, 127, 2075-2084.	6.6	321
88	β-Amyloid Mediated Nitration of Manganese Superoxide Dismutase. American Journal of Pathology, 2006, 168, 1608-1618.	1.9	129
89	Metabolism of amyloid β peptide and pathogenesis of Alzheimer's disease. Neuroscience Research, 2006, 54, 235-253.	1.0	93
90	La Lunga Attesa: Towards a Molecular Approach to Neuroimaging and Therapeutics in Alzheimer's Disease. Neuroradiology Journal, 2006, 19, 453-474.	0.6	12
91	Chaperone Suppression of Aggregated Protein Toxicity. , 2006, , 137-164.		1

#	Article	IF	CITATIONS
92	Quantification of Alzheimer pathology in ageing and dementia: age-related accumulation of amyloid-beta(42) peptide in vascular dementia. Neuropathology and Applied Neurobiology, 2006, 32, 103-118.	1.8	131
93	Biotin–avidin interaction-based screening assay for Alzheimer's β-peptide oligomer inhibitors. Analytical Biochemistry, 2006, 356, 265-272.	1.1	38
94	Protein Misfolding, Functional Amyloid, and Human Disease. Annual Review of Biochemistry, 2006, 75, 333-366.	5.0	5,737
95	Ex Situ Atomic Force Microscopy Analysis of β-Amyloid Self-Assembly and Deposition on a Synthetic Template. Langmuir, 2006, 22, 6977-6985.	1.6	28
96	Amyloid beta-protein monomer structure: A computational and experimental study. Protein Science, 2006, 15, 420-428.	3.1	236
97	Separation and analysis of the soluble trimer of Aβ1–40 and its effects on the rise in intracellular calcium. Science Bulletin, 2006, 51, 830-838.	4.3	3
98	Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiology of Disease, 2006, 23, 178-189.	2.1	187
99	Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Aβ40. Human Mutation, 2006, 27, 686-695.	1.1	306
100	Differential modulation of plasma Â-amyloid by insulin in patients with Alzheimer disease. Neurology, 2006, 66, 1506-1510.	1.5	93
101	Aβ1-42 stimulates actin polymerization in hippocampal neurons through Rac1 and Cdc42 Rho GTPases. Journal of Cell Science, 2007, 120, 279-288.	1.2	95
102	SPECIFIC MECHANISM FOR BLOOD INFLOW STIMULATION IN BRAIN AREA PRONE TO ALZHEIMER'S DISEASE LESIONS. International Journal of Neuroscience, 2007, 117, 1425-1442.	0.8	4
103	Association of Increased Cortical Soluble Aβ42 Levels With Diffuse Plaques After Severe Brain Injury in Humans. Archives of Neurology, 2007, 64, 541.	4.9	131
104	Cortical biochemistry in MCI and Alzheimer disease: Lack of correlation with clinical diagnosis. Neurology, 2007, 68, 757-763.	1.5	54
105	Natural Oligomers of the Alzheimer Amyloid-Â Protein Induce Reversible Synapse Loss by Modulating an NMDA-Type Glutamate Receptor-Dependent Signaling Pathway. Journal of Neuroscience, 2007, 27, 2866-2875.	1.7	1,445
106	2-(2-[2-Dimethylaminothiazol-5-yl]Ethenyl)-6- (2-[Fluoro]Ethoxy)Benzoxazole: A Novel PET Agent for In Vivo Detection of Dense Amyloid Plaques in Alzheimer's Disease Patients. Journal of Nuclear Medicine, 2007, 48, 553-561.	2.8	214
107	The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12494-12499.	3.3	240
108	Acide docosahexaénoÃ⁻que et maladie d'Alzheimer : des raisons d'espérer ?. Oleagineux Corps Gras Lipides, 2007, 14, 16-24.	0.2	0
109	Molecular determinants of Alzheimer's disease Aβ peptide neurotoxicity. Future Neurology, 2007, 2, 397-409.	0.9	9

	CITATION REF		
#	Article	IF	Citations
110	The role of intracellular amyloid β in Alzheimer's disease. Progress in Neurobiology, 2007, 83, 131-139.	2.8	112
111	Dysregulation of dynorphins in Alzheimer disease. Neurobiology of Aging, 2007, 28, 1700-1708.	1.5	60
112	The redox chemistry of the Alzheimer's disease amyloid βÂpeptide. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1976-1990.	1.4	533
113	A mechanistic link between oxidative stress and membrane mediated amyloidogenesis revealed by infrared spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1913-1922.	1.4	31
114	Metal lons and Alzheimer's Disease. , 2007, , 333-361.		0
115	Hippocampal slice cultures integrated with multiâ€electrode arrays: a model for study of longâ€term drug effects on synaptic activity. Drug Development Research, 2007, 68, 84-93.	1.4	8
116	Amelioration of early cognitive deficits by aged garlic extract in Alzheimer's transgenic mice. Phytotherapy Research, 2007, 21, 629-640.	2.8	82
117	Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Reviews Molecular Cell Biology, 2007, 8, 101-112.	16.1	4,267
118	A? Oligomers ? a decade of discovery. Journal of Neurochemistry, 2007, 101, 1172-1184.	2.1	1,795
119	Expression of APP pathway mRNAs and proteins in Alzheimer's disease. Brain Research, 2007, 1161, 116-123.	1.1	159
120	Effects of chemical chaperones on oxidative stress and detergent-insoluble species formation following conditional expression of amyloid precursor protein carboxy-terminal fragment. Neurobiology of Disease, 2007, 25, 427-437.	2.1	38
121	Aβ solubility and deposition during AD progression and in APP×PS-1 knock-in mice. Neurobiology of Disease, 2007, 27, 301-311.	2.1	75
122	Reduced CXCL12/CXCR4 results in impaired learning and is downregulated in a mouse model of Alzheimer disease. Neurobiology of Disease, 2007, 28, 143-153.	2.1	71
123	Differentiating Alzheimer disease-associated aggregates with small molecules. Neurobiology of Disease, 2007, 28, 251-260.	2.1	71
124	Fibrillar and Oligomeric beta-Amyloid as Distinct Local Biomarkers for Alzheimer's Disease. Annals of the New York Academy of Sciences, 2007, 1097, 239-258.	1.8	17
125	Alterations in presenilin 1 processing by amyloid-β peptide in the rat retina. Experimental Brain Research, 2007, 181, 69-77.	0.7	4
126	Properties of scyllo–inositol as a therapeutic treatment of AD-like pathology. Journal of Molecular Medicine, 2007, 85, 603-611.	1.7	114
127	Solid-phase extraction enhances detection of beta-amyloid peptides in plasma and enables AÎ ² quantification following passive immunization with AÎ ² antibodies. Journal of Neuroscience Methods, 2008, 169, 16-22.	1.3	26

#	Article	IF	CITATIONS
128	Therapeutics for Alzheimer's Disease Based on the Metal Hypothesis. Neurotherapeutics, 2008, 5, 421-432.	2.1	512
129	Delineating the Mechanism of Alzheimer's Disease Aβ Peptide Neurotoxicity. Neurochemical Research, 2008, 33, 526-532.	1.6	105
130	Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme. Psychopharmacology, 2008, 198, 1-27.	1.5	82
131	Acridine derivatives inhibit lysozyme aggregation. European Biophysics Journal, 2008, 37, 1261-1270.	1.2	61
133	The ART of Loss: Aβ Imaging in the Evaluation of Alzheimer's Disease and other Dementias. Molecular Neurobiology, 2008, 38, 1-15.	1.9	94
134	Reduction of Alzheimer's Disease Amyloid Plaque Load in Transgenic Mice by D3, a <scp>D</scp> â€Enantiomeric Peptide Identified by Mirror Image Phage Display. ChemMedChem, 2008, 3, 1848-1852.	1.6	115
135	Quartz crystal microbalance analysis of growth kinetics for aggregation intermediates of the amyloid-β protein. Analytical Biochemistry, 2008, 378, 15-24.	1.1	55
136	Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radical Biology and Medicine, 2008, 44, 2051-2057.	1.3	304
137	Amyloid flirting with synaptic failure: Towards a comprehensive view of Alzheimer's disease pathogenesis. European Journal of Pharmacology, 2008, 585, 109-118.	1.7	52
138	Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiology of Disease, 2008, 30, 121-129.	2.1	168
139	Aβ deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer's disease. Neuropsychologia, 2008, 46, 1688-1697.	0.7	272
140	Amyloid βâ^'Cu ²⁺ Complexes in both Monomeric and Fibrillar Forms Do Not Generate H ₂ O ₂ Catalytically but Quench Hydroxyl Radicals. Biochemistry, 2008, 47, 11653-11664.	1.2	113
141	N-truncated amyloid-β oligomers induce learning impairment and neuronal apoptosis. Neurobiology of Aging, 2008, 29, 1319-1333.	1.5	65
142	Amyloid fibrils. Prion, 2008, 2, 112-117.	0.9	392
143	Alzheimer Disease Pathology As a Host Response. Journal of Neuropathology and Experimental Neurology, 2008, 67, 523-531.	0.9	150
144	Soluble amyloid-Â peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain, 2008, 131, 2414-2424.	3.7	80
145	Introspective analysis of amyloid as the cause of Alzheimer's disease: alternative model proposed. Future Neurology, 2008, 3, 527-536.	0.9	0
146	The Seed Extract of Cassia obtusifolia Offers Neuroprotection to Mouse Hippocampal Cultures. Journal of Pharmacological Sciences, 2008, 107, 380-392.	1.1	63

#	Article	IF	CITATIONS
147	Chapter 3 Noncovalent Protein Interactions. Comprehensive Analytical Chemistry, 2008, , 63-82.	0.7	0
148	The Last Tangle of Tau. Journal of Alzheimer's Disease, 2008, 14, 441-447.	1.2	25
149	Computational insights into the development of novel therapeutic strategies for Alzheimer's disease. Future Medicinal Chemistry, 2009, 1, 119-135.	1.1	3
150	Microglia Mediate the Clearance of Soluble Aβ through Fluid Phase Macropinocytosis. Journal of Neuroscience, 2009, 29, 4252-4262.	1.7	362
151	Cortical α7 Nicotinic Acetylcholine Receptor and β-Amyloid Levels in Early Alzheimer Disease. Archives of Neurology, 2009, 66, 646-51.	4.9	59
152	Modulation and Detection of Tau Aggregation with Small-Molecule Ligands. Current Alzheimer Research, 2009, 6, 409-414.	0.7	21
153	Relevance of Transgenic Mouse Models to Human Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 6033-6037.	1.6	129
154	Soluble fibrillar oligomer levels are elevated in Alzheimer's disease brain and correlate with cognitive dysfunction. Neurobiology of Disease, 2009, 35, 352-358.	2.1	298
155	Biochemical and immunohistochemical analysis of an Alzheimer's disease mouse model reveals the presence of multiple cerebral Al² assembly forms throughout life. Neurobiology of Disease, 2009, 36, 293-302.	2.1	117
157	Betaâ€amyloid protein (25–35) disrupts hippocampal network activity: Role of Fynâ€kinase. Hippocampus, 2010, 20, 78-96.	0.9	66
158	Alzheimer's Disease: From Pathology to Therapeutic Approaches. Angewandte Chemie - International Edition, 2009, 48, 3030-3059.	7.2	544
159	Amyloid Imaging in Alzheimer's Disease and Other Dementias. Brain Imaging and Behavior, 2009, 3, 246-261.	1.1	32
160	Alzheimer's disease: synaptic dysfunction and Aβ. Molecular Neurodegeneration, 2009, 4, 48.	4.4	388
161	Clearance mechanisms of Alzheimer's amyloid-β peptide: implications for therapeutic design and diagnostic tests. Molecular Psychiatry, 2009, 14, 469-486.	4.1	208
162	Characterisation of two antibodies to oligomeric Aβ and their use in ELISAs on human brain tissue homogenates. Journal of Neuroscience Methods, 2009, 176, 206-212.	1.3	46
163	Photocontrol of β-Amyloid Peptide (1Ⱂ40) Fibril Growth in the Presence of a Photosurfactant. Journal of Physical Chemistry B, 2009, 113, 6164-6172.	1.2	19
164	Chapter 3 Small-Molecule Protein–Protein Interaction Inhibitors as Therapeutic Agents for Neurodegenerative Diseases: Recent Progress and Future Directions. Annual Reports in Medicinal Chemistry, 2009, , 51-69.	0.5	8
165	Amyloid-Î ² expression in retrosplenial cortex of triple transgenic mice: relationship to cholinergic axonal afferents from medial septum. Neuroscience, 2009, 164, 1334-1346.	1.1	16

#	Article	IF	CITATIONS
166	Comparison of AÎ ² levels in the brain of familial and sporadic Alzheimer's disease. Neurochemistry International, 2009, 55, 243-252.	1.9	60
167	Metallo-complex activation of neuroprotective signalling pathways as a therapeutic treatment for Alzheimer's disease. Molecular BioSystems, 2009, 5, 134-142.	2.9	30
168	Galantamine inhibits β-amyloid aggregation and cytotoxicity. Journal of the Neurological Sciences, 2009, 280, 49-58.	0.3	85
169	Comparison study of amyloid PET and voxel-based morphometry analysis in mild cognitive impairment and Alzheimer's disease. Journal of the Neurological Sciences, 2009, 285, 100-108.	0.3	53
170	Molecular Imaging in Neurology and Psychiatry. , 2009, , 255-298.		1
171	Is Alzheimer's Disease a Result of Presynaptic Failure? - Synaptic Dysfunctions Induced by Oligomeric β-Amyloid. Reviews in the Neurosciences, 2009, 20, 1-12.	1.4	125
172	The Quest for Small Molecules as Amyloid Inhibiting Therapies for Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 17, 33-47.	1.2	64
173	Hyperhomocysteinemia Increases β-Amyloid by Enhancing Expression of γ-Secretase and Phosphorylation of Amyloid Precursor Protein in Rat Brain. American Journal of Pathology, 2009, 174, 1481-1491.	1.9	137
175	Amyloid-β Peptide and Oligomers in the Brain and Cerebrospinal Fluid of Aged Canines. Journal of Alzheimer's Disease, 2010, 20, 637-646.	1.2	69
176	Alzheimer's Disease Amyloid β-Protein and Synaptic Function. NeuroMolecular Medicine, 2010, 12, 13-26.	1.8	122
177	Searching for new animal models of Alzheimer′s disease. European Journal of Pharmacology, 2010, 626, 57-63.	1.7	44
178	Design of an orally efficacious hydroxyethylamine (HEA) BACE-1 inhibitor in a preclinical animal model. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6231-6236.	1.0	44
179	Preparation and characterization of toxic AÎ ² aggregates for structural and functional studies in Alzheimer's disease research. Nature Protocols, 2010, 5, 1186-1209.	5.5	225
180	Oligomeric Aβ in Alzheimer's Disease: Relationship to Plaque and Tangle Pathology, <i>APOE</i> Genotype and Cerebral Amyloid Angiopathy. Brain Pathology, 2010, 20, 468-480.	2.1	57
181	Higher Soluble Amyloid β Concentration in Frontal Cortex of Young Adults than in Normal Elderly or Alzheimer's Disease. Brain Pathology, 2010, 20, 787-793.	2.1	41
182	Changes with Age in the Activities of βâ€Secretase and the Aβâ€Degrading Enzymes Neprilysin, Insulinâ€Degrading Enzyme and Angiotensin onverting Enzyme. Brain Pathology, 2010, 20, 794-802.	2.1	82
183	Neocortical Variation of Al ² Load in Fully Expressed, Pure Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 19, 57-68.	1.2	19
184	Cognitive Deficits Associated with Alteration of Synaptic Metaplasticity Precede Plaque Deposition in AβPP23 Transgenic Mice. Journal of Alzheimer's Disease, 2010, 21, 1367-1381.	1.2	35

#	Article	IF	CITATIONS
185	Cystatin C Protects Neuronal Cells from Amyloid-β-induced Toxicity. Journal of Alzheimer's Disease, 2010, 19, 885-894.	1.2	105
186	Amyloid β-Protein Dimers Rapidly Form Stable Synaptotoxic Protofibrils. Journal of Neuroscience, 2010, 30, 14411-14419.	1.7	232
187	Generation and Therapeutic Efficacy of Highly Oligomer-Specific β-Amyloid Antibodies. Journal of Neuroscience, 2010, 30, 10369-10379.	1.7	97
188	The presence of sodium dodecyl sulphate-stable AÎ ² dimers is strongly associated with Alzheimer-type dementia. Brain, 2010, 133, 1328-1341.	3.7	229
189	Amyloid PET Ligands for Dementia. PET Clinics, 2010, 5, 33-53.	1.5	23
190	The Cu(II)/Aβ/Human Serum Albumin Model of Control Mechanism for Copper-Related Amyloid Neurotoxicity. Chemical Research in Toxicology, 2010, 23, 298-308.	1.7	49
191	Amyloid-β production in aged guinea pigs: atropine-induced enhancement is reversed by naloxone. Neuroscience Letters, 2010, 480, 83-86.	1.0	8
192	Intensification of long-term memory deficit by chronic stress and prevention by nicotine in a rat model of Alzheimer's disease. Molecular and Cellular Neurosciences, 2010, 45, 289-296.	1.0	36
193	Neurogenesis in mouse models of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 872-880.	1.8	84
194	RS-0406 Arrests Amyloid-Î ² Oligomer-Induced Behavioural Deterioration In Vivo. Behavioural Brain Research, 2010, 210, 32-37.	1.2	17
195	Differential roles of phospholipases A2 in neuronal death and neurogenesis: Implications for Alzheimer disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 1381-1389.	2.5	29
196	The Effect of Alzheimer's Aβ Aggregation State on the Permeation of Biomimetic Lipid Vesicles. Langmuir, 2010, 26, 17260-17268.	1.6	92
197	LPYFDa Neutralizes Amyloid-β-Induced Memory Impairment and Toxicity. Journal of Alzheimer's Disease, 2010, 19, 991-1005.	1.2	29
198	Phenyldiazenyl benzothiazole derivatives as probes for in vivo imaging of neurofibrillary tangles in Alzheimer's disease brains. MedChemComm, 2011, 2, 596.	3.5	38
199	Neuronal Death Induced by Nanomolar Amyloid β Is Mediated by Primary Phagocytosis of Neurons by Microglia. Journal of Biological Chemistry, 2011, 286, 39904-39913.	1.6	185
200	Curcuminoid Binds to Amyloid-Î ² 1-42 Oligomer and Fibril. Journal of Alzheimer's Disease, 2011, 24, 33-42.	1.2	80
201	Soluble AÎ ² Seeds Are Potent Inducers of Cerebral Î ² -Amyloid Deposition. Journal of Neuroscience, 2011, 31, 14488-14495.	1.7	203
202	Endothelin receptor antagonists: Potential in Alzheimer's disease. Pharmacological Research, 2011, 63, 525-531.	3.1	40

#	Article	IF	CITATIONS
203	Submicromolar Aβ42 reduces hippocampal glutamate receptors and presynaptic markers in an aggregation-dependent manner. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1664-1674.	1.8	18
204	Soluble Aβ levels correlate with cognitive deficits in the 12-month-old APPswe/PS1dE9 mouse model of Alzheimer's disease. Behavioural Brain Research, 2011, 222, 342-350.	1.2	88
205	Protection against Aβ-mediated rapid disruption of synaptic plasticity and memory by memantine. Neurobiology of Aging, 2011, 32, 614-623.	1.5	65
206	The selective and competitive N-methyl-D-aspartate receptor antagonist, (â~')-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid, prevents synaptic toxicity induced by amyloid-β in mice. Neuroscience, 2011, 192, 631-641.	1.1	21
207	Research Towards Tau Imaging. Journal of Alzheimer's Disease, 2011, 26, 147-157.	1.2	39
208	Impact of Oxidative - Nitrosative Stress on Cholinergic Presynaptic Function. , 2011, , .		2
209	Insights into Alzheimer disease pathogenesis from studies in transgenic animal models. Clinics, 2011, 66, 45-54.	0.6	91
210	Knockdown of BACE1-AS Nonprotein-Coding Transcript Modulates Beta-Amyloid-Related Hippocampal Neurogenesis. International Journal of Alzheimer's Disease, 2011, 2011, 1-11.	1.1	112
211	Lowâ€n oligomers as therapeutic targets of Alzheimer's disease. Journal of Neurochemistry, 2011, 117, 19-28.	2.1	80
212	Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy. Gene Therapy, 2011, 18, 874-883.	2.3	128
213	Up-regulation of calsyntenin-3 by β-amyloid increases vulnerability of cortical neurons. FEBS Letters, 2011, 585, 651-656.	1.3	17
214	Alzheimer's disease: ageing-related or age-related? New hypotheses from an old debate. Neurological Sciences, 2011, 32, 1241-1247.	0.9	7
215	c-Jun N-terminal Kinase Regulates Soluble Aβ Oligomers and Cognitive Impairment in AD Mouse Model. Journal of Biological Chemistry, 2011, 286, 43871-43880.	1.6	74
216	Aβ Oligomers Induce Glutamate Release from Hippocampal Neurons. Current Alzheimer Research, 2011, 8, 552-562.	0.7	88
217	Alzheimer's Disease. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004457-a004457.	2.3	348
218	Alzheimer's Disease Brain-Derived Amyloid-β-Mediated Inhibition of LTP <i>In Vivo</i> Is Prevented by Immunotargeting Cellular Prion Protein. Journal of Neuroscience, 2011, 31, 7259-7263.	1.7	215
219	Is the Amyloid Hypothesis of Alzheimer's disease therapeutically relevant?. Biochemical Journal, 2012, 446, 165-177.	1.7	89
220	Endothelin-1 is Elevated in Alzheimer's Disease and Upregulated by Amyloid-β. Journal of Alzheimer's Disease, 2012, 29, 853-861.	1.2	95

#	Article	IF	CITATIONS
222	Aβ oligomer toxicity inhibitor protects memory in models of synaptic toxicity. British Journal of Pharmacology, 2012, 167, 383-392.	2.7	15
223	Selectivity requirements for diagnostic imaging of neurofibrillary lesions in Alzheimer's disease: A simulation study. NeuroImage, 2012, 60, 1724-1733.	2.1	20
224	Alzheimer's Disease and Amyloid: Culprit or Coincidence?. International Review of Neurobiology, 2012, 102, 277-316.	0.9	67
225	TDP-43: A new player on the AD field?. Experimental Neurology, 2012, 237, 90-95.	2.0	25
226	The levels of water-soluble and triton-soluble Aβ are increased in Alzheimer's disease brain. Brain Research, 2012, 1450, 138-147.	1.1	47
227	Resistant to amyloid-β or just waiting for disease to happen?. Alzheimer's Research and Therapy, 2012, 4, 19.	3.0	Ο
228	Animal Models of Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006320.	2.9	336
229	¹⁸ F-Labeled Phenyldiazenyl Benzothiazole for in Vivo Imaging of Neurofibrillary Tangles in Alzheimer's Disease Brains. ACS Medicinal Chemistry Letters, 2012, 3, 58-62.	1.3	33
230	Cognition, glucose metabolism and amyloid burden in Alzheimer's disease. Neurobiology of Aging, 2012, 33, 215-225.	1.5	122
231	Immunotherapy of cerebrovascular amyloidosis in a transgenic mouse model. Neurobiology of Aging, 2012, 33, 432.e1-432.e13.	1.5	24
232	The C-Terminal Repeating Units of CsgB Direct Bacterial Functional Amyloid Nucleation. Journal of Molecular Biology, 2012, 422, 376-389.	2.0	64
233	Alzheimer's disease Aβ assemblies mediating rapid disruption of synaptic plasticity and memory. Molecular Brain, 2012, 5, 25.	1.3	82
234	Alzheimer's Disease and the Amyloid β-Protein. Progress in Molecular Biology and Translational Science, 2012, 107, 101-124.	0.9	106
235	Amyloid-β Oligomers in Cerebrospinal Fluid are Associated with Cognitive Decline in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 29, 171-176.	1.2	95
236	Overlapping profiles of Abeta peptides in the Alzheimer's disease and pathological aging brains. Alzheimer's Research and Therapy, 2012, 4, 18.	3.0	92
237	The Dying of the Light: Mitochondrial Failure in Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 28, 771-781.	1.2	35
238	The Butter Flavorant, Diacetyl, Exacerbates β-Amyloid Cytotoxicity. Chemical Research in Toxicology, 2012, 25, 2083-2091.	1.7	32
239	Protein aggregation and misfolding: good or evil?. Journal of Physics Condensed Matter, 2012, 24, 244101.	0.7	16

ARTICLE IF CITATIONS # Small-molecule BACE1 inhibitors: a patent literature review (2006 – 2011). Expert Opinion on 240 2.4 77 Therapeutic Patents, 2012, 22, 511-540. 241 Al² Toxicity in Alzheimer's Disease. Molecular Neurobiology, 2012, 45, 366-378. 134 Early memory deficits precede plaque deposition in APPswe/PS1dE9 mice: Involvement of oxidative 242 1.3 75 stress and cholinergic dysfunction. Free Radical Biology and Medicine, 2012, 52, 1443-1452. Huperzine a alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways 243 in APPswe/PS1dE9 transgenic mice. Journal of Neuroscience Research, 2012, 90, 508-517. Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta 244 3.9 76 Neuropathologica, 2013, 126, 671-682. Apolipoprotein <scp>A</scp>â€<scp>I</scp>: Insights from redox proteomics for its role in neurodegeneration. Proteomics - Clinical Applications, 2013, 7, 109-122. 0.8 Green tea catechin leads to global improvement among Alzheimer's disease-related phenotypes in 246 1.9 60 NSE/hAPP-C105 Tg mice. Journal of Nutritional Biochemistry, 2013, 24, 1302-1313. Oligomers, fact or artefact? SDS-PAGE induces dimerization of Î²-amyloid in human brain samples. Acta 3.9 74 Neuropathologica, 2013, 125, 549-564. From Soluble <scp>A</scp>Î² to Progressive <scp>A</scp>Î² Aggregation: Could Prionâ€Like Templated Misfolding Play a Role?. Brain Pathology, 2013, 23, 333-341. 248 2.1 32 Polymorph-Specific Kinetics and Thermodynamics of Î²-Amyloid Fibril Growth. Journal of the American 249 6.6 141 Chemical Society, 2013, 135, 6860-6871. Neurodegeneration, βâ€amyloid and mood disorders: state of the art and future perspectives. 250 12 1.3 International Journal of Geriatric Psychiatry, 2013, 28, 661-671. Immunotherapy for the treatment of Alzheimer's disease: amyloid-β or tau, which is 2.7 the right target?. ImmunoTargets and Therapy, 2014, 3, 19. Metabolism of amyloid l² peptide and pathogenesis of Alzheimer's disease. Proceedings of the Japan 252 1.6 39 Academy Series B: Physical and Biological Sciences, 2013, 89, 321-339. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms <i>In Vitro</i>. International Journal of Peptides, 2013, 2013, 1-11. Clinical correlates in an experimental model of repetitive mild brain injury. Annals of Neurology, 2013, 254 2.8 141 74, 65-75. CB2 Receptor Deficiency Increases Amyloid Pathology and Alters Tau Processing in a Transgenic Mouse Model of Alzheimer's Disease. Molécular Medicine, 2013, 19, 29-36. Accumulation of Intraneuronal Î²-Amyloid 42 Peptides Is Associated with Early Changes in 256 1.1 48 Microtubule-Associated Protein 2 in Neurites and Synapses. PLoS ONE, 2013, 8, e51965. Synergistic Interactions between Alzheimer's Aβ40 and Aβ42 on the Surface of Primary Neurons Revealed 1.1 by Single Molecule Microscopy. PLoS ONE, 2013, 8, e82139.

	CITATION	LPORT	
#	Article	IF	CITATIONS
258	Chronochemistry in neurodegeneration. Frontiers in Molecular Neuroscience, 2014, 7, 20.	1.4	7
259	CB2 Receptor Deficiency Increases Amyloid Pathology and Alters Tau Processing in a Transgenic Mouse Model of Alzheimer's Disease. Molecular Medicine, 2014, 20, 29-36.	1.9	55
260	Neurodegenerative disorders: Dysregulation of a carefully maintained balance?. Experimental Gerontology, 2014, 58, 279-291.	1.2	17
261	Amyloidâ€Î² efflux from the central nervous system into the plasma. Annals of Neurology, 2014, 76, 837-844.	2.8	199
262	Failure of Perivascular Drainage of βâ€amyloid in Cerebral Amyloid Angiopathy. Brain Pathology, 2014, 24, 396-403.	2.1	132
263	Amyloidâ€ÃŸâ€directed immunotherapy for Alzheimer's disease. Journal of Internal Medicine, 2014, 275, 284-295.	2.7	129
264	Intracerebroventricular Streptozotocin Exacerbates Alzheimer-Like Changes of 3xTg-AD Mice. Molecular Neurobiology, 2014, 49, 547-562.	1.9	85
265	Soluble apoE/AÎ ² complex: mechanism and therapeutic target for APOE4-induced AD risk. Molecular Neurodegeneration, 2014, 9, 2.	4.4	98
266	Intraneuronal accumulation of Aβ42 induces age-dependent slowing of neuronal transmission in Drosophila. Neuroscience Bulletin, 2014, 30, 185-190.	1.5	12
267	Amyloid-β Pathology and APOE Genotype Modulate Retinoid X Receptor Agonist Activity in Vivo. Journal of Biological Chemistry, 2014, 289, 30538-30555.	1.6	82
268	Age-dependent metabolic dysregulation in cancer and Alzheimer's disease. Biogerontology, 2014, 15, 559-577.	2.0	64
269	Insights into the role of the beta-2 microglobulin D-strand in amyloid propensity revealed by mass spectrometry. Molecular BioSystems, 2014, 10, 412-420.	2.9	22
270	Decreasing oxidative stress and neuroinflammation with a multifunctional peptide rescues memory deficits in mice with Alzheimer disease. Free Radical Biology and Medicine, 2014, 74, 50-63.	1.3	50
271	Mixed oligomers and monomeric amyloid-l̂² disrupts endothelial cells integrity and reduces monomeric amyloid-l² transport across hCMEC/D3 cell line as an in vitro blood–brain barrier model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1806-1815.	1.8	46
272	Development of a novel cellular model of Alzheimer's disease utilizing neurosphere cultures derived from B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J embryonic mouse brain. SpringerPlus, 2014, 3, 161.	1.2	12
273	Is pathological aging a successful resistance against amyloid-beta or preclinical Alzheimer's disease?. Alzheimer's Research and Therapy, 2014, 6, 24.	3.0	35
274	Soluble amyloid beta levels are elevated in the white matter of Alzheimer's patients, independent of cortical plaque severity. Acta Neuropathologica Communications, 2014, 2, 83.	2.4	39
275	Axonally Synthesized ATF4 Transmits a Neurodegenerative Signal across Brain Regions. Cell, 2014, 158, 1159-1172.	13.5	266

#	Article	IF	CITATIONS
276	Imaging of amyloid deposition in human brain using positron emission tomography and [18F]FACT: comparison with [11C]PIB. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 745-754.	3.3	19
277	Therapeutic Molecules and Endogenous Ligands Regulate the Interaction between Brain Cellular Prion Protein (PrPC) and Metabotropic Glutamate Receptor 5 (mGluR5). Journal of Biological Chemistry, 2014, 289, 28460-28477.	1.6	70
278	Elucidating the role of DEPTOR in Alzheimer's disease. International Journal of Molecular Medicine, 2014, 34, 1195-1200.	1.8	17
279	Recommendations for Development of New Standardized Forms of Cocoa Breeds and Cocoa Extract Processing for the Prevention of Alzheimer's Disease: Role of Cocoa in Promotion of Cognitive Resilience and Healthy Brain Aging. Journal of Alzheimer's Disease, 2015, 48, 879-889.	1.2	18
280	Re-engineering a neuroprotective, clinical drug as a procognitive agent with high in vivo potency and with GABAA potentiating activity for use in dementia. BMC Neuroscience, 2015, 16, 67.	0.8	12
281	Direct reprogramming of induced neural progenitors: a new promising strategy for AD treatment. Translational Neurodegeneration, 2015, 4, 7.	3.6	10
282	Alzheimer's in 3D culture: Challenges and perspectives. BioEssays, 2015, 37, 1139-1148.	1.2	83
283	Effects of Low Amyloid-β (Aβ) Concentration on Aβ1–42 Oligomers Binding and GluN2B Membrane Expression. Journal of Alzheimer's Disease, 2015, 47, 453-466.	1.2	20
284	Tau Oligomers: The Toxic Player at Synapses in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2015, 9, 464.	1.8	127
285	Blood-Based Proteomic Biomarkers of Alzheimer's Disease Pathology. Frontiers in Neurology, 2015, 6, 236.	1.1	102
286	Amyloid-β oligomers unveil a novel primate model of sporadic Alzheimer's disease. Frontiers in Neuroscience, 2015, 9, 47.	1.4	2
287	Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases. Mediators of Inflammation, 2015, 2015, 1-27.	1.4	154
288	Vitamin D and Alzheimer's Disease: Neurocognition to Therapeutics. International Journal of Alzheimer's Disease, 2015, 2015, 1-11.	1.1	63
289	A molecular chaperone breaks the catalytic cycle that generates toxic AÎ ² oligomers. Nature Structural and Molecular Biology, 2015, 22, 207-213.	3.6	373
290	<i><scp>APOE</scp></i> â€modulated Aβâ€induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. Journal of Neurochemistry, 2015, 133, 465-488.	2.1	123
291	Localization and Trafficking of Amyloid-β Protein Precursor and Secretases: Impact on Alzheimer's Disease, 2015, 45, 329-347.	1.2	64
292	Cu2+ accentuates distinct misfolding of Aβ(1–40) and Aβ(1–42) peptides, and potentiates membrane disruption. Biochemical Journal, 2015, 466, 233-242.	1.7	56
293	Icariin decreases both APP and AÎ ² levels and increases neurogenesis in the brain of Tg2576 mice. Neuroscience, 2015, 304, 29-35.	1.1	46

	CITATION RE	CITATION REPORT	
#	Article	lF	CITATIONS
294	Dementia of the eye: the role of amyloid beta in retinal degeneration. Eye, 2015, 29, 1013-1026.	1.1	133
295	Amyloid-beta neuroprotection mediated by a targeted antioxidant. Scientific Reports, 2015, 4, 4983.	1.6	32
296	Alzheimer's disease clinical trials: past failures and future opportunities. Clinical Investigation, 2015, 5, 297-309.	0.0	15
297	The aqueous phase of Alzheimer's disease brain contains assemblies built from â^1⁄44 and â^1⁄47 kDa Aβ species. Alzheimer's and Dementia, 2015, 11, 1286-1305.	0.4	54
298	Signal loss due to oligomerization in ELISA analysis of amyloid-beta can be recovered by a novel sample pre-treatment method. MethodsX, 2015, 2, 112-123.	0.7	19
299	APOE4 enhances age-dependent decline in cognitive function by down-regulating an NMDA receptor pathway in EFAD-Tg mice. Molecular Neurodegeneration, 2015, 10, 7.	4.4	79
300	The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease. Future Science OA, 2015, 1, FSO11.	0.9	75
301	Role of amyloid-Î ² CSF levels in cognitive deficit in MS. Clinica Chimica Acta, 2015, 449, 23-30.	0.5	27
302	Alzheimer's Disease and Mechanism-Based Attempts to Enhance Cognition. , 2015, , 193-231.		0
303	Protein structures in Alzheimer's disease: The basis for rationale therapeutic design. Archives of Biochemistry and Biophysics, 2015, 588, 1-14.	1.4	20
304	Accumulation of amyloid-β in the cerebellar cortex of essential tremor patients. Neurobiology of Disease, 2015, 82, 397-408.	2.1	16
305	Extra-virgin olive oil attenuates amyloid-β and tau pathologies in the brains of TgSwDI mice. Journal of Nutritional Biochemistry, 2015, 26, 1479-1490.	1.9	80
306	Cortical pyroglutamate amyloid-Î ² levels and cognitive decline in Alzheimer's disease. Neurobiology of Aging, 2015, 36, 12-19.	1.5	29
307	Decreased Myelinated Fibers in the Hippocampal Dentate Gyrus of the Tg2576 Mouse Model of Alzheimer's Disease. Current Alzheimer Research, 2016, 13, 1040-1047.	0.7	9
308	Soluble Amyloid-β42 Stimulates Glutamate Release through Activation of the α7 Nicotinic Acetylcholine Receptor. Journal of Alzheimer's Disease, 2016, 53, 337-347.	1.2	40
309	Curcumin against amyloid pathology in mental health and brain composition. , 2016, , 487-505.		0
310	Human whole genome genotype and transcriptome data for Alzheimer's and other neurodegenerative diseases. Scientific Data, 2016, 3, 160089.	2.4	361
311	A <i>Ĵ²</i> -Immunotherapeutic strategies: a wide range of approaches for Alzheimer's disease treatment. Expert Reviews in Molecular Medicine, 2016, 18, e13.	1.6	34

#	Article	IF	CITATIONS
312	3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish― Molecular Neurodegeneration, 2016, 11, 75.	4.4	109
313	Improved Neuroprotection Provided by Drug Combination in Neurons Exposed to Cell-Derived Soluble Amyloid-β Peptide. Journal of Alzheimer's Disease, 2016, 52, 975-987.	1.2	8
314	Immunization with Small Amyloid-β-derived Cyclopeptide Conjugates Diminishes Amyloid-β-Induced Neurodegeneration in Mice. Journal of Alzheimer's Disease, 2016, 52, 1111-1123.	1.2	5
315	Late age increase in soluble amyloid-beta levels in the APP23 mouse model despite steady-state levels of amyloid-beta-producing proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 105-112.	1.8	11
316	What amyloid ligands can tell us about molecular polymorphism and disease. Neurobiology of Aging, 2016, 42, 205-212.	1.5	11
317	Mathematical model on Alzheimer's disease. BMC Systems Biology, 2016, 10, 108.	3.0	86
318	Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nature Communications, 2016, 7, 13441.	5.8	105
319	Targeting Al̂² Receptors to Modify Alzheimer's Disease Progression. , 2016, , 227-250.		0
320	Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease. Journal of Biological Chemistry, 2016, 291, 17112-17121.	1.6	65
321	β-Amyloid induces nuclear protease-mediated lamin fragmentation independent of caspase activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1189-1199.	1.9	10
322	βâ€Amyloid pathogenesis: Chemical properties versus cellular levels. Alzheimer's and Dementia, 2016, 12, 184-194.	0.4	28
323	Glimepiride protects neurons against amyloid-β-induced synapse damage. Neuropharmacology, 2016, 101, 225-236.	2.0	37
324	Antibody Therapeutics Targeting $\hat{A^{l2}}$ and Tau. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024331.	2.9	39
325	Do anti-amyloid beta protein antibody cross reactivities confound Alzheimer disease research?. Journal of Negative Results in BioMedicine, 2017, 16, 1.	1.4	51
326	Flexible Nâ€Termini of Amyloid βâ€Protein Oligomers: A Link between Structure and Activity?. Israel Journal of Chemistry, 2017, 57, 651-664.	1.0	8
327	Pharmacogenomics of angiotensin receptor/neprilysin inhibitor and its longâ€ŧerm side effects. Cardiovascular Therapeutics, 2017, 35, e12272.	1.1	20
328	A Translational Systems Pharmacology Model for AÎ ² Kinetics in Mouse, Monkey, and Human. CPT: Pharmacometrics and Systems Pharmacology, 2017, 6, 666-675.	1.3	11
329	Neurofibrillary Tangles of Al̂²x-40 in Alzheimer's Disease Brains. Journal of Alzheimer's Disease, 2017, 58, 661-667.	1.2	22

#	Article	IF	CITATIONS
330	Biochemically-defined pools of amyloid-β in sporadic Alzheimer's disease: correlation with amyloid PET. Brain, 2017, 140, 1486-1498.	3.7	123
331	Long-term neprilysin inhibition — implications for ARNIs. Nature Reviews Cardiology, 2017, 14, 171-186.	6.1	111
332	Overexpression of Kinesin Superfamily Motor Proteins in Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, 1511-1524.	1.2	29
333	Perturbation of the F19-L34 Contact in Amyloid \hat{l}^2 (1-40) Fibrils Induces Only Local Structural Changes but Abolishes Cytotoxicity. Journal of Physical Chemistry Letters, 2017, 8, 4740-4745.	2.1	14
334	Tuning the stereo-hindrance of a curcumin scaffold for the selective imaging of the soluble forms of amyloid beta species. Chemical Science, 2017, 8, 7710-7717.	3.7	69
335	SEN1500, a novel oral amyloid-β aggregation inhibitor, attenuates brain pathology in a mouse model of Alzheimer's disease. Neuroscience Letters, 2017, 660, 96-102.	1.0	3
336	Studying the Progression of Amyloid Pathology and Its Therapy Using Translational Longitudinal Model of Accumulation and Distribution of Amyloid Beta. CPT: Pharmacometrics and Systems Pharmacology, 2017, 6, 676-685.	1.3	11
337	CART modulates beta-amyloid metabolism-associated enzymes and attenuates memory deficits in APP/PS1 mice. Neurological Research, 2017, 39, 885-894.	0.6	22
338	A modified formulation of Huanglian-Jie-Du-Tang reduces memory impairments and β-amyloid plaques in a triple transgenic mouse model of Alzheimer's disease. Scientific Reports, 2017, 7, 6238.	1.6	35
339	Towards the improvement in stability of an anti-AÎ ² single-chain variable fragment, scFv-h3D6, as a way to enhance its therapeutic potential. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 167-175.	1.4	8
340	Neurovascular Alterations in Alzheimer's Disease: Transporter Expression Profiles and CNS Drug Access. AAPS Journal, 2017, 19, 940-956.	2.2	16
341	Local cholinergic-GABAergic circuitry within the basal forebrain is modulated by galanin. Brain Structure and Function, 2017, 222, 1385-1400.	1.2	5
342	Overexpression of serum amyloid a 1 induces depressive-like behavior in mice. Brain Research, 2017, 1654, 55-65.	1.1	22
343	Distinct spatiotemporal accumulation of N-truncated and full-length amyloid-β42 in Alzheimer's disease. Brain, 2017, 140, 3301-3316.	3.7	14
344	Perspective, Summary, and Directions for Future Research on Alzheimer's Disease. , 2017, , 361-386.		0
345	Numerical Simulations Reveal Randomness of Cu(II) Induced AÎ ² Peptide Dimerization under Conditions Present in Glutamatergic Synapses. PLoS ONE, 2017, 12, e0170749.	1.1	19
346	Production of an anti-AÎ ² antibody fragment in Pichia pastoris and in vitro and in vivo validation of its therapeutic effect. PLoS ONE, 2017, 12, e0181480.	1.1	25
347	Oligomeric amyloid-beta induces MAPK-mediated activation of brain cytosolic and calcium-independent phospholipase A2 in a spatial-specific manner. Acta Neuropathologica Communications, 2017, 5, 56.	2.4	38

#	Article	IF	CITATIONS
348	Diffusible, highly bioactive oligomers represent a critical minority of soluble Aβ in Alzheimer's disease brain. Acta Neuropathologica, 2018, 136, 19-40.	3.9	100
349	Aβ-oligomer uptake and the resulting inflammatory response in adult human astrocytes are precluded by an anti-Aβ single chain variable fragment in combination with an apoE mimetic peptide. Molecular and Cellular Neurosciences, 2018, 89, 49-59.	1.0	21
350	Increased Vulnerability of the Hippocampus in Transgenic Mice Overexpressing APP and Triple Repeat Tau. Journal of Alzheimer's Disease, 2018, 61, 1201-1219.	1.2	4
351	Novel targets in Alzheimer's disease: A special focus on microglia. Pharmacological Research, 2018, 130, 402-413.	3.1	46
352	Depletion of amyloidâ€Î² peptides from solution by sequestration within fibrilâ€seeded hydrogels. Protein Science, 2018, 27, 1218-1230.	3.1	6
353	Prion-like seeding and nucleation of intracellular amyloid- \hat{l}^2 . Neurobiology of Disease, 2018, 113, 1-10.	2.1	60
354	Immunotherapy for neurodegenerative diseases: the Alzheimer's disease paradigm. Current Opinion in Chemical Engineering, 2018, 19, 59-67.	3.8	8
355	Interactions of amyloid-β peptides on lipid bilayer studied by single molecule imaging and tracking. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1616-1624.	1.4	26
356	The Effects of N-terminal Mutations on β-amyloid Peptide Aggregation and Toxicity. Neuroscience, 2018, 379, 177-188.	1.1	20
357	Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation. Human and Experimental Toxicology, 2018, 37, 399-411.	1.1	28
358	Hippocampal Proteomic Analysis Reveals Distinct Pathway Deregulation Profiles at Early and Late Stages in a Rat Model of Alzheimer's-Like Amyloid Pathology. Molecular Neurobiology, 2018, 55, 3451-3476.	1.9	21
359	Increased Insoluble Amyloid-β Induces Negligible Cognitive Deficits in Old AppNL/NL Knock-In Mice. Journal of Alzheimer's Disease, 2018, 66, 801-809.	1.2	8
360	Past and Future of Drug Treatments for Alzheimer's Disease. Journal of Korean Neuropsychiatric Association, 2018, 57, 30.	0.2	6
361	NMDA receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid Beta (Aβ) overexpressing mice. Acta Neuropathologica Communications, 2018, 6, 110.	2.4	26
362	Immunotherapy to improve cognition and reduce pathological species in an Alzheimer's disease mouse model. Alzheimer's Research and Therapy, 2018, 10, 54.	3.0	24
363	Metabolic Abnormalities of Erythrocytes as a Risk Factor for Alzheimer's Disease. Frontiers in Neuroscience, 2017, 11, 728.	1.4	23
364	Safety, tolerability and immunogenicity of an active anti-Aβ40 vaccine (ABvac40) in patients with Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase I trial. Alzheimer's Research and Therapy, 2018, 10, 12.	3.0	72
365	Distinctive temporal profiles of detergent-soluble and -insoluble tau and Aβ species in human Alzheimer's disease. Brain Research, 2018, 1699, 121-134.	1.1	19

#	Article	IF	CITATIONS
366	Doxycycline counteracts neuroinflammation restoring memory in Alzheimer's disease mouse models. Neurobiology of Aging, 2018, 70, 128-139.	1.5	52
367	Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer's disease patient brain samples. Acta Neuropathologica, 2019, 138, 613-630.	3.9	68
368	In Vivo Assessment of Retinal Biomarkers by Hyperspectral Imaging: Early Detection of Alzheimer's Disease. ACS Chemical Neuroscience, 2019, 10, 4492-4501.	1.7	37
369	History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduction and Targeted Therapy, 2019, 4, 29.	7.1	370
370	Dietary supplementation of a high-temperature-processed green tea extract attenuates cognitive impairment in PS2 and Tg2576 mice. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2364-2371.	0.6	11
371	Differential activation of the mTOR/autophagy pathway predicts cognitive performance in APP/PS1 mice. Neurobiology of Aging, 2019, 83, 105-113.	1.5	25
372	Brains of rhesus monkeys display Aβ deposits and glial pathology while lacking Aβ dimers and other Alzheimer's pathologies. Aging Cell, 2019, 18, e12978.	3.0	17
373	X-ray Absorption Spectroscopy Investigations of Copper(II) Coordination in the Human Amyloid β Peptide. Inorganic Chemistry, 2019, 58, 6294-6311.	1.9	30
374	Fluorescence Chemicals To Detect Insoluble and Soluble Amyloid-Î ² Aggregates. ACS Chemical Neuroscience, 2019, 10, 2647-2657.	1.7	39
375	α-Sheet secondary structure in amyloid β-peptide drives aggregation and toxicity in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8895-8900.	3.3	118
376	Association of Cortical β-Amyloid Protein in the Absence of Insoluble Deposits With Alzheimer Disease. JAMA Neurology, 2019, 76, 818.	4.5	25
377	Clatiramer acetate reduces infarct volume in diabetic mice with cerebral ischemia and prevents long-term memory loss. Brain, Behavior, and Immunity, 2019, 80, 315-327.	2.0	18
378	In vivo localization of human acetylcholinesterase-derived species in a Î ² -sheet conformation at the core of senile plaques in Alzheimer's disease. Journal of Biological Chemistry, 2019, 294, 6253-6272.	1.6	19
379	Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1–40 deposition underlies plaque polymorphism in progressing Alzheimer's disease pathology. Journal of Biological Chemistry, 2019, 294, 6719-6732.	1.6	49
380	Different aspects of Alzheimer's disease-related amyloid β-peptide pathology and their relationship to amyloid positron emission tomography imaging and dementia. Acta Neuropathologica Communications, 2019, 7, 178.	2.4	29
381	Voluntary Wheel Running Reduces Amyloid-l²42 and Rescues Behavior in Aged Tg2576 Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 73, 359-374.	1.2	6
382	A Pilot Study Comparing Effects of Bifrontal Versus Bitemporal Transcranial Direct Current Stimulation in Mild Cognitive Impairment and Mild Alzheimer Disease. Journal of ECT, 2020, 36, 211-215.	0.3	15
383	Passive immunotherapies targeting AÎ ² and tau in Alzheimer's disease. Neurobiology of Disease, 2020, 144, 105010.	2.1	81

#	Article	IF	CITATIONS
385	Inhibition of Aquaporin 4 Decreases Amyloid Aβ40 Drainage Around Cerebral Vessels. Molecular Neurobiology, 2020, 57, 4720-4734.	1.9	32
386	A microfiber scaffold-based 3D <i>in vitro</i> human neuronal culture model of Alzheimer's disease. Biomaterials Science, 2020, 8, 4861-4874.	2.6	16
387	Therapeutic Targeting Strategies for Early- to Late-Staged Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 9591.	1.8	24
388	Amyloid-β42/40 ratio drives tau pathology in 3D human neural cell culture models of Alzheimer's disease. Nature Communications, 2020, 11, 1377.	5.8	88
389	The Hypothesis That Refuses to Die. , 2020, , 95-104.		0
391	The Shaky Six and the "Second Reality― , 2020, , 1-10.		0
392	Pieces of a Puzzle?. , 2020, , 11-24.		0
393	Disease "Redefinition†A Tough Pill to Swallow. , 2020, , 25-32.		0
394	Disease Subtypes: The Promise and the Fallacy. , 2020, , 33-40.		2
395	Protein Paradox. , 2020, , 41-56.		0
396	The Fault in Our Models. , 2020, , 57-70.		0
397	Biomarkers: The Promise and the Fallacy. , 2020, , 71-80.		0
398	Lessons from Oncology. , 2020, , 81-86.		0
399	Symptomatic vs. Disease-Modifying Therapies. , 2020, , 87-94.		3
400	Our Living Dissonance. , 2020, , 105-110.		0
401	The Scientific and Lay Narratives. , 2020, , 111-124.		0
402	Challenges Viewed from Afar. , 2020, , 125-132.		0
403	The Moonshot: Population-Based Studies of Aging. , 2020, , 133-138.		0

ARTICLE IF CITATIONS Predictions for the 2020s and Beyond., 2020, , 139-147. 0 404 Note Added at Press Time – Reviving LOF. , 2020, , 150-150. ApoE mimetic improves pathology and memory in a model of Alzheimer's disease. Brain Research, 2020, 408 1.1 22 1733, 146685. Development of the clinical candidate PBD-C06, a humanized pGlu3-AÎ²-specific antibody against 409 Alzheimer's disease with reduced complement activation. Scientific Reports, 2020, 10, 3294. Nrf2 Suppresses Oxidative Stress and Inflammation in <i>App</i> Knock-In Alzheimer's Disease Model 410 1.1 98 Mice. Molecular and Cellular Biology, 2020, 40, . The Erythrocytic Hypothesis of Brain Energy Crisis in Sporadic Alzheimer Disease: Possible Consequences and Supporting Evidence. Journal of Clinical Medicine, 2020, 9, 206. 1.0 Overexpression of protein kinase Mζ in the hippocampus mitigates Alzheimer's disease-related cognitive 412 1.4 5 deficit in rats. Brain Research Bulletin, 2021, 166, 64-72. Characterization of Homogeneous and Heterogeneous Amyloid-Î²42 Oligomer Preparations with Biochemical Methods and Infrared Spectroscopy Reveals a Correlation between Infrared Spectrum 1.7 and Oligomer Size. ACS Chemical Neuroscience, 2021, 12, 473-488. 414 Mitochondrial abnormalities in neurological disorders., 2021, , 193-245. 0 Neuroinflammation in Alzheimer's disease and beneficial action of luteolin. BioFactors, 2021, 47, 2.6 207-217. Mural Cells: Potential Therapeutic Targets to Bridge Cardiovascular Disease and Neurodegeneration. 416 1.8 8 Cells, 2021, 10, 593. Generation of a humanized Al2 expressing mouse demonstrating aspects of Alzheimer's disease-like 5.8 pathology. Nature Communications, 2021, 12, 2421. Neuroprotective Effects of Asparagus officinalis Stem Extract in Transgenic Mice Overexpressing 419 0.9 5 Amyloid Precursor Protein. Journal of Immunology Research, 2021, 2021, 1-10. Alzheimer's Disease Animal Models: Elucidation of Biomarkers and Therapeutic Approaches for 420 1.8 Cognitive Impairment. International Journal of Molecular Sciences, 2021, 22, 5549. Hippocampal Somatostatin Interneurons, Long-Term Synaptic Plasticity and Memory. Frontiers in 421 32 1.4 Neural Circuits, 2021, 15, 687558. Refining the amyloid l̃² peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass 422 spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. Journal of Neurochemistry, 2021, 159, 234-257. Development of grape polyphenols as multi-targeting strategies for Alzheimer's disease. 423 1.9 16 Neurochemistry International, 2021, 147, 105046. IntelliCage Automated Behavioral Phenotyping Reveals Behavior Deficits in the 3xTg-AD Mouse Model 424 1.7

of Alzheimer's Disease Associated With Brain Weight. Frontiers in Aging Neuroscience, 2021, 13, 720214.

	CITATION	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
425	Quantitative Approaches to Amyloid Imaging. Methods in Molecular Biology, 2011, 680, 201-225.	0.4	4
426	Rapid Generation of Dityrosine Cross-linked AÎ ² Oligomers via Cu-Redox Cycling. Methods in Molecular Biology, 2012, 849, 3-10.	0.4	6
427	The Role of Aβ and Tau Oligomers in the Pathogenesis of Alzheimer's Disease. , 2012, , 135-188.		5
428	Neuronal Protein Trafficking in Alzheimer's Disease and Niemann-Pick Type C Disease. , 2007, , 391-411.		2
430	Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nature Communications, 2013, 4, 2030.	5.8	162
432	Anti-AÂ42- and anti-AÂ40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. Journal of Clinical Investigation, 2005, 116, 193-201.	3.9	172
433	Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-AÂ antibody. Journal of Clinical Investigation, 2006, 116, 825-832.	3.9	111
434	Soluble amyloid beta levels are elevated in the white matter of Alzheimer¿s patients, independent of cortical plaque severity. Acta Neuropathologica Communications, 2014, 2, 83.	2.4	33
436	Zinc Overload Enhances APP Cleavage and AÎ ² Deposition in the Alzheimer Mouse Brain. PLoS ONE, 2010, 5, e15349.	1.1	79
437	A Reliable Way to Detect Endogenous Murine \hat{I}^2 -Amyloid. PLoS ONE, 2013, 8, e55647.	1.1	32
438	Effects of NR1H3 Genetic Variation on the Expression of Liver X Receptor \hat{I}_{\pm} and the Progression of Alzheimer's Disease. PLoS ONE, 2013, 8, e80700.	1.1	16
439	Functional Amyloids and their Possible Influence on Alzheimer Disease. Discoveries, 2017, 5, e79.	1.5	9
440	Recapitulating Amyloid ß and Tau Pathology in Human Neural Cell Culture Models—Clinical Implications. US Neurology, 2015, 11, 102.	0.2	19
441	Early and progressive deficit of neuronal activity patterns in a model of local amyloid pathology in mouse prefrontal cortex. Aging, 2016, 8, 3430-3449.	1.4	10
442	Phytoconstituents and their Possible Mechanistic Profile for Alzheimer's Disease – A Literature Review. Current Drug Targets, 2019, 20, 263-291.	1.0	3
443	Protein Misfolding and Aggregation in Alzheimer's Disease and Type 2 Diabetes Mellitus. CNS and Neurological Disorders - Drug Targets, 2014, 13, 1280-1293.	0.8	138
444	Amyloid Beta Annular Protofibrils in Cell Processes and Synapses Accumulate with Aging and Alzheimer-Associated Genetic Modification. International Journal of Alzheimer's Disease, 2009, 2009, 1-7.	1.1	18
445	Synaptic dysfunction in Alzheimer's disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention. Neural Regeneration Research, 2018, 13, 616.	1.6	106

	CHATION	REPORT	
#	Article	IF	CITATIONS
447	Methionine Sulfoxide Reductase System. Oxidative Stress and Disease, 2005, , 199-212.	0.3	0
449	The Impact of HAART on Advanced Brain Aging: Implications for Mitochondrial Dysfunction and APP Processing. Journal of Antivirals & Antiretrovirals, 2013, 05, .	0.1	1
450	Protein Misfolding and Amyloid Formation in Alzheimer's Disease. , 2015, , 119-135.		0
453	Plaque-Associated Oligomeric Amyloid-Beta Drives Early Synaptotoxicity in APP/PS1 Mice Hippocampus: Ultrastructural Pathology Analysis. Frontiers in Neuroscience, 2021, 15, 752594.	1.4	15
454	Mouse Model for Alzheimer's Disease. , 2008, , 191-199.		0
455	Physiologic and Neurotoxic Properties of Al 2 Peptides. , 2007, , 179-197.		Ο
458	Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores. Yale Journal of Biology and Medicine, 2016, 89, 5-21.	0.2	71
460	Importance of CSF-based Aβ clearance with age in humans increases with declining efficacy of blood-brain barrier/proteolytic pathways. Communications Biology, 2022, 5, 98.	2.0	22
461	New Perspectives for Treatment in Alzheimer's Disease. , 2022, , 199-225.		0
462	Chronic PPARÎ ³ Stimulation Shifts Amyloidosis to Higher Fibrillarity but Improves Cognition. Frontiers in Aging Neuroscience, 2022, 14, 854031.	1.7	5
463	Amyloid-Related Imaging Abnormalities With Anti-amyloid Antibodies for the Treatment of Dementia Due to Alzheimer's Disease. Frontiers in Neurology, 2022, 13, 862369.	1.1	43
464	Elevated amyloid beta disrupts the nanoscale organization and function of synaptic vesicle pools in hippocampal neurons. Cerebral Cortex, 2023, 33, 1263-1276.	1.6	5
465	MUTYH Actively Contributes to Microglial Activation and Impaired Neurogenesis in the Pathogenesis of Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-30.	1.9	17
466	Amyloid-β Oligomers: Multiple Moving Targets. Biophysica, 2022, 2, 91-110.	0.6	17
467	Artesunate restores mitochondrial fusionâ€fission dynamics and alleviates neuronal injury in Alzheimer ' s disease models. Journal of Neurochemistry, 2022, 162, 290-304.	2.1	12
468	Molecular determinants for amyloid fibril formation: lessons from lung surfactant protein C. Swiss Medical Weekly, 0, , .	0.8	5
469	Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacological Reviews, 2023, 75, 263-308.	7.1	4
470	Aβ42 oligomer-specific antibody ALZ-201 reduces the neurotoxicity of Alzheimer's disease brain extracts. Alzheimer's Research and Therapy, 2022, 14, .	3.0	3

#	Article	IF	CITATIONS
471	A Function of Amyloid-Î ² in Mediating Activity-Dependent Axon/Synapse Competition May Unify Its Roles in Brain Physiology and Pathology. Journal of Alzheimer's Disease, 2023, , 1-29.	1.2	2
472	Genetic removal of synaptic Zn2+ impairs cognition, alters neurotrophic signaling and induces neuronal hyperactivity. Frontiers in Neurology, 0, 13, .	1.1	0
473	Apicidin attenuates memory deficits by reducing the Aβ load in <scp>APP</scp> / <scp>PS1</scp> mice. CNS Neuroscience and Therapeutics, 2023, 29, 1300-1311.	1.9	2
475	Extracellular Vesicle Treatment Alleviates Neurodevelopmental and Neurodegenerative Pathology in Cortical Spheroid Model of Down Syndrome. International Journal of Molecular Sciences, 2023, 24, 3477.	1.8	1
476	Protein Self-Assembly at the Liquid–Surface Interface. Surface-Mediated Aggregation Catalysis. Journal of Physical Chemistry B, 2023, 127, 1880-1889.	1.2	0
477	Dityrosine cross-linking and its potential roles in Alzheimer's disease. Frontiers in Neuroscience, 0, 17,	1.4	2
478	Effects of Current Psychotropic Drugs on Inflammation and Immune System. Advances in Experimental Medicine and Biology, 2023, , 407-434.	0.8	0
479	Molecular Imaging in Neurology. , 2023, , 375-423.		0
480	Rapid, scalable assay of amylin-β amyloid co-aggregation in brain tissue and blood. Journal of Biological Chemistry, 2023, 299, 104682.	1.6	3