PLANT COLD ACCLIMATION: Freezing Tolerance Gene

Annual Review of Plant Biology 50, 571-599 DOI: 10.1146/annurev.arplant.50.1.571

Citation Report

#	Article	IF	CITATIONS
1	Pathophysiological Consequences of Increased Gastric Mucosal Permeability to Acid. Science, 1967, 158, 526-526.	6.0	4
2	The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15354-15361.	3.3	553
3	PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Review of Plant Biology, 1999, 50, 571-599.	14.2	3,002
4	Tansley Review No. 120. New Phytologist, 2000, 148, 357-396.	3.5	228
5	Cold comfort farm: the acclimation of plants to freezing temperatures. Plant, Cell and Environment, 2000, 23, 893-902.	2.8	532
6	Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant Journal, 2000, 23, 319-327.	2.8	791
7	The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Plant Journal, 2000, 24, 383-396.	2.8	160
8	Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 2000, 3, 217-223.	3.5	1,378
9	Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology, 2000, 3, 117-124.	3.5	582
10	cDNA cloning of cytoplasmic ribosomal protein S7 of winter rye (Secale cereale) and its expression in low-temperature-treated leaves. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1492, 276-279.	2.4	10
11	Low Night Temperature-Induced Changes in Photosynthesis and Rubber Accumulation in Guayule (Parthenium Argentatum Gray). Photosynthetica, 2000, 38, 421-427.	0.9	26
12	PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Biology, 2000, 51, 463-499.	14.2	3,766
13	Compared responses of poplar cuttings and in vitro raised shoots to short-term chilling treatments. Plant Cell Reports, 2000, 19, 954-960.	2.8	62
14	Overexpression of the Arabidopsis CBF3Transcriptional Activator Mimics Multiple Biochemical Changes Associated with Cold Acclimation. Plant Physiology, 2000, 124, 1854-1865.	2.3	975
15	Chitinase Genes Responsive to Cold Encode Antifreeze Proteins in Winter Cereals. Plant Physiology, 2000, 124, 1251-1264.	2.3	166
16	Chilling Tolerance in Arabidopsis Involves ALA1, a Member of a New Family of Putative Aminophospholipid Translocases. Plant Cell, 2000, 12, 2441-2453.	3.1	148
17	Impedance Spectroscopy in Frost Hardiness Evaluation of Rhododendron Leaves. Annals of Botany, 2000, 86, 799-805.	1.4	27
19	Spring frosts in deciduous fruit trees — morphological damage and flower hardiness. Scientia Horticulturae, 2000, 85, 155-173.	1.7	203

	Сітатіої	n Report	
#	Article	IF	CITATIONS
20	The cold dependent accumulation of COR TMC-AP3 in cereals with contrasting, frost tolerance is regulated by different mRNA expression and protein turnover. Plant Science, 2000, 156, 47-54.	1.7	8
21	Accumulation and nuclear targeting of BnC24, a Brassica napus ribosomal protein corresponding to a mRNA accumulating in response to cold treatment. Plant Science, 2000, 156, 35-46.	1.7	38
22	Rice transformation for crop improvement and functional genomics. Plant Science, 2000, 158, 1-18.	1.7	105
23	A freezing-sensitive mutant of Arabidopsis , frs1 , is a new aba3 allele. Planta, 2000, 211, 648-655.	1.6	60
24	SUGAR-INDUCEDSIGNALTRANSDUCTION INPLANTS. Annual Review of Plant Biology, 2000, 51, 49-81.	14.2	677
25	Biotechnological applications of plant freezing associated proteins. Biotechnology Annual Review, 2000, 6, 59-101.	2.1	57
26	Provenances and families show different patterns of relationship between bud set and frost hardiness in <i>Picea abies</i> . Canadian Journal of Forest Research, 2000, 30, 1858-1866.	0.8	16
27	Iron-Superoxide Dismutase Expression in Transgenic Alfalfa Increases Winter Survival without a Detectable Increase in Photosynthetic Oxidative Stress Tolerance. Plant Physiology, 2000, 122, 1427-1438.	2.3	178
28	Plant Freezing and Damage. Annals of Botany, 2001, 87, 417-424.	1.4	486
29	EsMlp, a Muscle-LIM Protein Gene, Is Up-regulated during Cold Exposure in the Freeze-Avoiding Larvae of Epiblema scudderiana. Cryobiology, 2001, 43, 11-20.	0.3	17
30	Semipurification and Ice Recrystallization Inhibition Activity of Ice-Active Substances Associated with Antarctic Photosynthetic Organisms. Cryobiology, 2001, 43, 63-70.	0.3	75
31	The transcripts of several components of the protein synthesis machinery are cold-regulated in a chloroplast-dependent manner in barley and wheat. Journal of Plant Physiology, 2001, 158, 1541-1546.	1.6	20
32	Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. Journal of Plant Physiology, 2001, 158, 1333-1339.	1.6	146
33	Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Letters, 2001, 498, 187-189.	1.3	207
34	The VERNALIZATION 2 Gene Mediates the Epigenetic Regulation of Vernalization in Arabidopsis. Cell, 2001, 107, 525-535.	13.5	550
35	Resistance to abiotic freezing stress in cereals. Advances in Botanical Research, 2001, 34, 237-261.	0.5	0
36	Luc Genetic Screen Illuminates Stress-Responsive Gene Regulation. Plant Cell, 2001, 13, 1969-1972.	3.1	6
37	Amino Acid and Protein Changes during Cold Acclimation of Greenâ€Type Annual Bluegrass (<i>Poa) Tj ETQo</i>	1 1 0.784314 0.8	4 rgBT /Over

#	Article	IF	CITATIONS
39	Heat-induced protection against death of suspension-cultured apple fruit cells exposed to low temperature. Plant, Cell and Environment, 2001, 24, 1199-1207.	2.8	36
40	Cold-activation ofBrassica napus BN115promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+influx. Plant Journal, 2001, 27, 1-12.	2.8	225
41	Arabidopsis encyclopedia using full-length cDNAs and its application. Plant Physiology and Biochemistry, 2001, 39, 211-220.	2.8	34
42	Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiologia Plantarum, 2001, 112, 152-166.	2.6	219
43	Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiologia Plantarum, 2001, 112, 171-175.	2.6	117
44	CO2 enrichment and development of freezing tolerance in Norway spruce. Physiologia Plantarum, 2001, 113, 533-540.	2.6	16
45	Tr288, a rehydrin with a dehydrin twist. Plant Molecular Biology, 2001, 45, 713-722.	2.0	62
46	Polymorphism of Thermostable Proteins in Soft Wheat Seedlings during Low-Temperature Acclimation. Russian Journal of Plant Physiology, 2001, 48, 804-810.	0.5	5
47	Effects of salinity on endogenous ABA, IAA, JA, AND SA in Iris hexagona. Journal of Chemical Ecology, 2001, 27, 327-342.	0.9	234
48	Ectopic expression of <i>ABI3 </i> gene enhances freezing tolerance in response to abscisic acid and low temperature in <i>Arabidopsis thaliana</i> . Plant Journal, 2001, 25, 1-8.	2.8	21
49	Molecular cloning and characterization of a novel low temperature-induced gene, blti2, from barley (Hordeum vulgare L.). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1522, 134-137.	2.4	9
50	Temperature sensing and cold acclimation. Current Opinion in Plant Biology, 2001, 4, 241-246.	3.5	212
51	Freezing of Barley Studied by Infrared Video Thermography. Plant Physiology, 2001, 125, 227-240.	2.3	100
52	Developmental and Stress Regulation of RCI2A andRCI2B, Two Cold-Inducible Genes of Arabidopsis Encoding Highly Conserved Hydrophobic Proteins. Plant Physiology, 2001, 125, 1655-1666.	2.3	96
53	Prehistory and History of Arabidopsis Research. Plant Physiology, 2001, 125, 15-19.	2.3	65
54	Cenes That Are Uniquely Stress Regulated in Salt Overly Sensitive (sos) Mutants. Plant Physiology, 2001, 126, 363-375.	2.3	160
55	Components of the Arabidopsis C-Repeat/Dehydration-Responsive Element Binding Factor Cold-Response Pathway Are Conserved in <i>Brassica napus</i> and Other Plant Species. Plant Physiology, 2001, 127, 910-917.	2.3	577
56	The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes and Development, 2001, 15, 912-924.	2.7	392

#	Article	IF	CITATIONS
57	So What's New in the Field of Plant Cold Acclimation? Lots!: Fig. 1 Plant Physiology, 2001, 125, 89-93.	2.3	504
58	Cold Acclimation-Induced WAP27 Localized in Endoplasmic Reticulum in Cortical Parenchyma Cells of Mulberry Tree Was Homologous to Group 3 Late-Embryogenesis Abundant Proteins. Plant Physiology, 2001, 126, 1588-1597.	2.3	51
59	Regulation of a Wheat Actin-Depolymerizing Factor during Cold Acclimation. Plant Physiology, 2001, 125, 360-368.	2.3	94
60	Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes and Development, 2001, 15, 2263-2272.	2.7	150
61	Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray. Plant Cell, 2001, 13, 61-72.	3.1	986
62	Cabbage Cryoprotectin Is a Member of the Nonspecific Plant Lipid Transfer Protein Gene Family. Plant Physiology, 2001, 125, 835-846.	2.3	44
63	The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress– and Osmotic Stress–Responsive Gene Expression. Plant Cell, 2001, 13, 2063-2083.	3.1	492
64	Heterology Expression of the ArabidopsisC-Repeat/Dehydration Response Element Binding Factor 1 Gene Confers Elevated Tolerance to Chilling and Oxidative Stresses in Transgenic Tomato. Plant Physiology, 2002, 129, 1086-1094.	2.3	428
65	Enhanced Susceptibility of Photosynthesis to Low-Temperature Photoinhibition due to Interruption of Chill-Induced Increase of S-Adenosylmethionine Decarboxylase Activity in Leaves of Spinach (Spinacia) Tj ETQq0 ()OungBT/C	Iv øø ock 10 T
66	Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis. Plant Physiology, 2002, 130, 639-648.	2.3	682
67	Characterization of SP1, a Stress-Responsive, Boiling-Soluble, Homo-Oligomeric Protein from Aspen. Plant Physiology, 2002, 130, 865-875.	2.3	85
68	Acquired Freezing Tolerance in Higher Plants: The Sensing and Molecular Responses to Low Nonfreezing Temperatures. Cell and Molecular Response To Stress, 2002, 3, 121-137.	0.4	0
69	Tomato Plants Ectopically Expressing Arabidopsis CBF1 Show Enhanced Resistance to Water Deficit Stress. Plant Physiology, 2002, 130, 618-626.	2.3	390
70	Regulation of Osmotic Stress-responsive Gene Expression by theLOS6/ABA1 Locus inArabidopsis. Journal of Biological Chemistry, 2002, 277, 8588-8596.	1.6	382
71	Molecular genetic analysis of cold–regulated gene transcription. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 877-886.	1.8	109
72	RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11507-11512.	3.3	275
73	Cold-Regulated Cereal Chloroplast Late Embryogenesis Abundant-Like Proteins. Molecular Characterization and Functional Analyses. Plant Physiology, 2002, 129, 1368-1381.	2.3	175
74	Seasonal regulation of a 24-kDa protein from red-osier dogwood (Cornus sericea) xylem. Tree Physiology, 2002, 22, 423-430.	1.4	28

#	Article	IF	CITATIONS
75	Profiling Membrane Lipids in Plant Stress Responses. Journal of Biological Chemistry, 2002, 277, 31994-32002.	1.6	946
76	Molecular and Biochemical Characterization of a Cold-Regulated PhosphoethanolamineN-Methyltransferase from Wheat. Plant Physiology, 2002, 129, 363-373.	2.3	64
77	Genome-wide gene expression profiling inArabidopsis thalianareveals new targets of abscisic acid and largely impaired gene regulation in theabi1-1mutant. Journal of Cell Science, 2002, 115, 4891-4900.	1.2	297
78	Expression Profiling of Reciprocal Maize Hybrids Divergent for Cold Germination and Desiccation Tolerance. Plant Physiology, 2002, 129, 974-992.	2.3	88
79	An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7786-7791.	3.3	144
80	A Mitochondrial Complex I Defect Impairs Cold-Regulated Nuclear Gene Expression. Plant Cell, 2002, 14, 1235-1251.	3.1	233
81	Developmentally Regulated Dual-Specificity Kinase from Peanut That Is Induced by Abiotic Stresses. Plant Physiology, 2002, 130, 380-390.	2.3	70
82	Physiological and ecological significance of biological ice nucleators. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 937-943.	1.8	67
83	Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Research, 2002, 30, 77e-77.	6.5	110
84	Barley Cbf3 Gene Identification, Expression Pattern, and Map Location. Plant Physiology, 2002, 129, 1781-1787.	2.3	207
85	Independent Activation of Cold Acclimation by Low Temperature and Short Photoperiod in Hybrid Aspen. Plant Physiology, 2002, 129, 1633-1641.	2.3	175
86	Transcriptional and Posttranscriptional Regulation of ArabidopsisTCH4 Expression by Diverse Stimuli. Roles of cis Regions and Brassinosteroids. Plant Physiology, 2002, 130, 770-783.	2.3	80
87	Plants in a cold climate. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 831-847.	1.8	142
88	DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration- and Cold-Inducible Gene Expression. Biochemical and Biophysical Research Communications, 2002, 290, 998-1009.	1.0	1,572
89	ACCLIMATIVERESPONSE TOTEMPERATURESTRESS INHIGHERPLANTS: Approaches of Gene Engineering for Temperature Tolerance. Annual Review of Plant Biology, 2002, 53, 225-245.	8.6	609
90	Abscisic Acid Biosynthesis and Response. The Arabidopsis Book, 2002, 1, e0058.	0.5	139
91	Cryoprotectin: a plant lipid–transfer protein homologue that stabilizes membranes during freezing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 909-916.	1.8	47
92	Differential destabilization of membranes by tryptophan and phenylalanine during freezing: the roles of lipid composition and membrane fusion. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1561, 109-118.	1.4	30

#	Article	IF	CITATIONS
93	Changes of DHN1 expression and subcellular distribution in A. delicisoa cells under osmotic stress. Science in China Series C: Life Sciences, 2002, 45, 1.	1.3	9
94	Cell Signaling during Cold, Drought, and Salt Stress. Plant Cell, 2002, 14, S165-S183.	3.1	1,874
95	Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway[W]. Plant Cell, 2002, 14, 1675-1690.	3.1	1,425
96	Response of protein and carbohydrate metabolism of Scots pine seedlings to low temperature. Journal of Plant Physiology, 2002, 159, 175-180.	1.6	20
97	Changes in dehydrin expression associated with cold, ABA and PEG treatments in blueberry cell cultures. Plant Science, 2002, 162, 273-282.	1.7	24
98	Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10899-10904.	3.3	137
99	Abscisic Acid and Stress Tolerance in Plants. , 2002, , 381-412.		7
100	Abscisic Acid Signal Perception and Transduction. , 2002, , 569-590.		Ο
101	Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biology, 2002, 2, 5.	1.6	102
102	Plant water uptake by hard red winter wheat (Triticum aestivum L.) genotypes at 2 degrees C and low light intensity. BMC Plant Biology, 2002, 2, 8.	1.6	4
103	An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 63-72.	2.4	64
104	A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Current Opinion in Plant Biology, 2002, 5, 199-206.	3.5	344
105	Applications of DNA and protein microarrays in comparative physiology. Biotechnology Advances, 2002, 20, 379-389.	6.0	16
106	Ribonuclease activity in roots of soybean seedlings subjected to chilling stress and recovery. Acta Physiologiae Plantarum, 2002, 24, 297-301.	1.0	0
107	Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics, 2002, 2, 282-291.	1.4	394
108	Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation. Physiologia Plantarum, 2002, 114, 65-72.	2.6	32
109	Cold signalling associated with vernalization inArabidopsis thalianadoes not involve CBF1 or abscisic acid. Physiologia Plantarum, 2002, 114, 125-134.	2.6	43
110	Cold acclimation in silver birch (Betula pendula). Development of freezing tolerance in different tissues and climatic ecotypes. Physiologia Plantarum, 2002, 116, 478-488.	2.6	142

#	Article	IF	CITATIONS
111	Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiology and Biochemistry, 2002, 40, 659-668.	2.8	170
112	Molecular genecology of temperature response in Lolium perenne: 2. association of AFLP markers with ecogeography. Molecular Ecology, 2002, 11, 1865-1876.	2.0	51
113	A COMBINED 18S rDNA AND rbcL PHYLOGENETIC ANALYSIS OF CHLOROMONAS AND CHLAMYDOMONAS (CHLOROPHYCEAE, VOLVOCALES) EMPHASIZING SNOW AND OTHER COLD-TEMPERATURE HABITATS1. Journal of Phycology, 2002, 38, 1051-1064.	1.0	114
114	Light signalling mediated by phytochrome plays an important role in coldâ€induced gene expression through the Câ€repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant Journal, 2002, 29, 693-704.	2.8	185
115	Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 2002, 31, 279-292.	2.8	1,697
116	A novel cold-inducible gene from Arabidopsis , RCI3 , encodes a peroxidase that constitutes a component for stress tolerance. Plant Journal, 2002, 32, 13-24.	2.8	121
117	Accumulation and disappearance of dehydrins and sugars depending on freezing tolerance of winter wheat plants at different developmental phases. Journal of Thermal Biology, 2002, 27, 55-60.	1.1	20
118	Acclimation and Adaptive Responses of Woody Plants to Environmental Stresses. Botanical Review, The, 2002, 68, 270-334.	1.7	710
119	Title is missing!. Russian Journal of Plant Physiology, 2002, 49, 229-234.	0.5	7
120	Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Molecular Biology, 2002, 49, 459-471.	2.0	132
121	Identification and mapping of a putative stress response regulator gene in barley. Plant Molecular Biology, 2002, 50, 141-150.	2.0	34
122	14-3-3 proteins and the response to abiotic and biotic stress. Plant Molecular Biology, 2002, 50, 1031-1039.	2.0	175
123	Out of the cold: Unveiling the elements required for low temperature induction of gene expression in plants. In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 396-403.	0.9	6
124	LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO Journal, 2002, 21, 2692-2702.	3.5	303
125	Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 2003, 55, 225-236.	2.4	933
126	Title is missing!. Russian Journal of Plant Physiology, 2003, 50, 470-481.	0.5	5
127	Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Molecular Biology, 2003, 52, 553-567.	2.0	82
128	Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. Current Genetics, 2003, 44, 231-260.	0.8	88

	CITATION	Report	
#	Article	IF	Citations
129	An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theoretical and Applied Genetics, 2003, 106, 923-930.	1.8	276
130	A snapshot of the low temperature stress transcriptome of developing rice seedlings (Oryza sativa L.) via ESTs from subtracted cDNA library. Theoretical and Applied Genetics, 2003, 107, 1071-1082.	1.8	40
131	An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theoretical and Applied Genetics, 2003, 107, 972-979.	1.8	66
132	A rice transcription factor OsbHLH1 is involved in cold stress response. Theoretical and Applied Genetics, 2003, 107, 1402-1409.	1.8	106
133	Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv Extremophiles, 2003, 7, 459-469.	0.9	27
134	Increased capacity for synthesis of the D1 protein and of catalase at low temperature in leaves of cold-hardened winter rye (Secale cereale L.). Planta, 2003, 216, 865-873.	1.6	10
135	Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta, 2003, 217, 290-298.	1.6	338
136	Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218, 1-14.	1.6	2,937
137	Gene expression profiling of plant responses to abiotic stress. Functional and Integrative Genomics, 2003, 3, 105-111.	1.4	84
138	Cold-induced ethylene biosynthesis is differentially regulated in peel and pulp tissues of â€~Granny Smith' apple fruit. Postharvest Biology and Technology, 2003, 29, 109-119.	2.9	20
139	Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 2003, 6, 410-417.	3.5	1,616
140	Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 2003, 14, 194-199.	3.3	417
141	Daily photosynthetic and C-export patterns in winter wheat leaves during cold stress and acclimation. Physiologia Plantarum, 2003, 117, 521-531.	2.6	47
142	The temperature-dependent accumulation of Mg-protoporphyrin IX and reactive oxygen species in Chlorella vulgaris. Physiologia Plantarum, 2003, 119, 126-136.	2.6	25
143	The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels. Plant, Cell and Environment, 2003, 26, 485-496.	2.8	39
144	Modification of the intracellular sugar content alters the incidence of freeze-induced membrane lesions of protoplasts isolated from Arabidopsis thaliana leaves. Plant, Cell and Environment, 2003, 26, 1083-1096.	2.8	82
145	The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant Journal, 2003, 33, 373-383.	2.8	170
146	OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal, 2003, 33, 751-763.	2.8	1,482

#	Article	IF	CITATIONS
147	Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant Journal, 2003, 34, 137-148.	2.8	664
148	The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. Plant Journal, 2003, 34, 395-406.	2.8	86
149	Monitoring expression profiles ofArabidopsisgene expression during rehydration process after dehydration usingca. 7000 full-length cDNA microarray. Plant Journal, 2003, 34, 868-887.	2.8	263
150	Mass spectrometric approach for identifying putative plasma membrane proteins ofArabidopsisleaves associated with cold acclimation. Plant Journal, 2003, 36, 141-154.	2.8	241
151	Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant Journal, 2003, 36, 652-663.	2.8	339
152	Monitoring Expression Profiles of Rice Genes under Cold, Drought, and High-Salinity Stresses and Abscisic Acid Application Using cDNA Microarray and RNA Gel-Blot Analyses Â. Plant Physiology, 2003, 133, 1755-1767.	2.3	906
153	From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Canadian Journal of Botany, 2003, 81, 1247-1266.	1.2	423
154	CBL1, a Calcium Sensor That Differentially Regulates Salt, Drought, and Cold Responses in Arabidopsis. Plant Cell, 2003, 15, 1833-1845.	3.1	395
155	The binding of Maize DHN1 to Lipid Vesicles. Gain of Structure and Lipid Specificity. Plant Physiology, 2003, 131, 309-316.	2.3	317
156	PHOTOSYNTHESIS OFOVERWINTERINGEVERGREENPLANTS. Annual Review of Plant Biology, 2003, 54, 329-355.	8.6	492
157	Cryoprotectin protects thylakoids during a freeze–thaw cycle by a mechanism involving stable membrane binding. Cryobiology, 2003, 47, 191-203.	0.3	29
158	Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Science, 2003, 165, 1221-1227.	1.7	218
159	Low-temperature sensing in olive tree: calcium signalling and cold acclimation. Plant Science, 2003, 165, 1303-1313.	1.7	20
160	Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Progress in Lipid Research, 2003, 42, 527-543.	5.3	198
161	Abscisic acid-induced freezing tolerance in the mossPhyscomitrella patens is accompanied by increased expression of stress-related genes. Journal of Plant Physiology, 2003, 160, 475-483.	1.6	90
162	Effects of a cold treatment of the root system on white clover(Trifolium repensL.) morphogenesis and nitrogen reserve accumulation. Journal of Plant Physiology, 2003, 160, 893-902.	1.6	14
163	Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 2003, 8, 343-351.	4.3	1,047
164	Diurnal changes in photosynthetic characteristics of two differently shaped leaves in the desert plant Populus euphratica. Israel Journal of Plant Sciences, 2003, 51, 251-259.	0.3	4

ARTICLE IF CITATIONS Regulation of Abscisic Acid Biosynthesis. Plant Physiology, 2003, 133, 29-36. 2.3 708 165 ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes and 2.7 1,363 Development, 2003, 17, 1043-1054. AtCHIP, a U-Box-Containing E3 Ubiquitin Ligase, Plays a Critical Role in Temperature Stress Tolerance in 167 2.3 153 Arabidopsis. Plant Physiology, 2003, 132, 861-869. Chilling and Freezing Stresses in Plants: Cellular Responses and Molecular Strategies for Adaptation. 168 , 2003, , 23<u>-51.</u> Cold Induction of Arabidopsis CBF Genes Involves Multiple ICE (Inducer of CBF Expression) Promoter 169 Elements and a Cold-Regulatory Circuit That Is Desensitized by Low Temperature. Plant Physiology, 2.3 312 2003, 133, 910-918. Patterns of Variation Within Self-Incompatibility Loci. Molecular Biology and Evolution, 2003, 20, 1778-1794. 3.5 Purification of Boiling-Soluble Antifreeze Protein from the LegumeAmmopiptanthus mongolicus. 171 1.0 10 Preparative Biochemistry and Biotechnology, 2003, 33, 67-80. Expression Profiling and Bioinformatic Analyses of a Novel Stress-Regulated Multispanning 2.3 134 Transmembrane Protein Family from Cereals and Arabidopsis,. Plant Physiology, 2003, 132, 64-74. CIPK3, a Calcium Sensor–Associated Protein Kinase That Regulates Abscisic Acid and Cold Signal 173 3.1 379 Transduction in Arabidopsis. Plant Cell, 2003, 15, 411-423. Freezing Sensitivity in the sfr4 Mutant of Arabidopsis Is Due to Low Sugar Content and Is Manifested 174 2.3 by Loss of Osmotic Responsiveness. Plant Physiology, 2003, 131, 1800-1807. Daphnetin Methylation by a Novel O-Methyltransferase Is Associated with Cold Acclimation and 175 1.6 35 Photosystem II Excitation Pressure in Rye. Journal of Biological Chemistry, 2003, 278, 6854-6861. Molecular characterization of XVSAP1, a stress-responsive gene from the resurrection plant 2.4 Xerophyta viscosa Baker1. Journal of Experimental Botany, 2003, 54, 191-201. The Leaf-Order-Dependent Enhancement of Freezing Tolerance in Cold-Acclimated Arabidopsis Rosettes is not Correlated with the Transcript Levels of the Cold-Inducible Transcription Factors of 177 1.5 38 CBF/DREB1. Plant and Cell Physiology, 2003, 44, 922-931. RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic 178 2.4 94 stress conditions. Journal of Experimental Botany, 2003, 55, 213-223. Mutations in the Ca2+/H+ Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation 179 170 3.1Response in Arabidopsis. Plant Cell, 2003, 15, 2940-2951. Identification of genes induced in emerging tillers of wild oat (Avena fatua) using Arabidopsis microarrays. Weed Science, 2003, 51, 503-508. Malate metabolism and reactions of oxidoreduction in cold-hardened winter rye (Secale cereale L.) 181 2.4 50 leaves. Journal of Experimental Botany, 2003, 54, 1075-1083. Disruption Mutations of ADA2b and GCN5 Transcriptional Adaptor Genes Dramatically Affect 3.1 288 Arabidopsis Growth, Development, and Gene Expression [W]. Plant Cell, 2003, 15, 626-638.

ARTICLE IF CITATIONS ABIOTIC STRESSES | Cold Stress., 2003, , 1-9. 1 183 The Need for Winter in the Switch to Flowering. Annual Review of Genetics, 2003, 37, 371-392. 184 3.2 100 Cold-specific and light-stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcor15 185 2.4 72 encoding a chloroplast-targeted protein. Journal of Experimental Botany, 2003, 54, 2265-2274. Signal transduction in plant cold acclimation. Topics in Current Genetics, 0, , 151-186. 186 cor Gene Expression in Barley Mutants Affected in Chloroplast Development and Photosynthetic 187 2.3 62 Electron Transport. Plant Physiology, 2003, 131, 793-802. IDENTIFICATION OF MOLECULAR MARKERS ASSOCIATED WITH COLD TOLERANCE IN BLUEBERRY. Acta 188 0.1 16 Horticulturae, 2003, , 59-69. Identification of a Chloroplast Dehydrin in Leaves of Mature Plants. International Journal of Plant 189 0.6 36 Sciences, 2003, 164, 535-542. Screening for efficient cold hardening in a breeding population of Salix using near infrared 0.8 reflectance spectroscopy. Annals of Forest Science, 2004, 61, 449-454. Fitness Costs of Mutations Affecting the Systemic Acquired Resistance Pathway in Arabidopsis 191 1.2 165 thaliana. Genetics, 2004, 168, 2197-2206. Molecular Breeding and Functional Genomics for Tolerance to Abiotic Stress. Developments in Plant 0.2 Breeding, 2004, , 61-80. Characterization of a Novel YnSKnClass of Dehydrin-Like cDNAs from Cold Acclimated Red-Osier 193 0.9 9 Dogwood (Cornus sericeaL.) Xylem. Journal of Crop Improvement, 2004, 10, 17-35. Protein Cryoprotective Activity of a Cytosolic Small Heat Shock Protein That Accumulates Constitutively in Chestnut Stems and Is Up-Regulated by Low and High Temperatures. Plant Physiology, 194 2.3 2004, 134, 1708-1717. Physiology and Molecular Biology of a Family of Pathogenesis-Related PR-10 Proteins in Conifers. 195 0.9 17 Journal of Crop Improvement, 2004, 10, 261-280. The SENSITIVE TO FREEZING2 Gene, Required for Freezing Tolerance in Arabidopsis thaliana, Encodes a β-Glucosidase. Plant Cell, 2004, 16, 2192-2203. 3.1 99 Hypobaric Biology: Arabidopsis Gene Expression at Low Atmospheric Pressure. Plant Physiology, 2004, 197 2.390 134, 215-223. From Endonucleases to Transcription Factors: Evolution of the AP2 DNA Binding Domain in Plants[W]. 3.1 Plant Cell, 2004, 16, 2265-2277 From The Cover: Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3298-3303. 199 3.3 143 A Combination of the Arabidopsis DREB1A Gene and Stress-Inducible rd29A Promoter Improved 200 Drought- and Low-Temperature Stress Tolerance in Tobacco by Gene Transfer. Plant and Cell 1.5 616 Physiology, 2004, 45, 346-350.

#	Article	IF	CITATIONS
201	Molecular Biology and Genomics of the Desiccation Tolerant Moss Tortula Ruralis. , 2004, , 71-89.		14
202	Cold Tolerance, SFR2, and the Legacy of Gary Warren. Plant Cell, 2004, 16, 1955-1957.	3.1	1
203	Short-Day Potentiation of Low Temperature-Induced Gene Expression of a C-Repeat-Binding Factor-Controlled Gene during Cold Acclimation in Silver Birch. Plant Physiology, 2004, 136, 4299-4307.	2.3	98
204	The Pepper Transcription Factor CaPF1 Confers Pathogen and Freezing Tolerance in Arabidopsis. Plant Physiology, 2004, 136, 2862-2874.	2.3	203
205	Abscisic Acid Induces CBF Gene Transcription and Subsequent Induction of Cold-Regulated Genes via the CRT Promoter Element. Plant Physiology, 2004, 135, 1710-1717.	2.3	256
206	Characterization of Full-length Enriched Expressed Sequence Tags of Stress-treated Poplar Leaves. Plant and Cell Physiology, 2004, 45, 1738-1748.	1.5	82
207	The Structural Basis of the Thermostability of SP1, a Novel Plant (Populus tremula) Boiling Stable Protein. Journal of Biological Chemistry, 2004, 279, 51516-51523.	1.6	73
208	Phylogenetic Analyses in Cornus Substantiate Ancestry of Xylem Supercooling Freezing Behavior and Reveal Lineage of Desiccation Related Proteins. Plant Physiology, 2004, 135, 1654-1665.	2.3	20
209	Chloroplast to Leaf. Ecological Studies, 2004, , 231-261.	0.4	7
210	Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6309-6314.	3.3	427
211	SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17306-17311.	3.3	312
212	Transcriptional Similarities, Dissimilarities, and Conservation of cis-Elements in Duplicated Genes of Arabidopsis. Plant Physiology, 2004, 136, 3009-3022.	2.3	158
213	Counting the cost of a cold-blooded life: Metabolomics of cold acclimation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14996-14997.	3.3	29
214	CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3985-3990.	3.3	519
215	cDNA cloning and characterization of a new stress-responsive gene BoRS1 from Brassica oleracea var. acephala. Physiologia Plantarum, 2004, 121, 578-585.	2.6	6
216	Evolution of plant resistance and tolerance to frost damage. Ecology Letters, 2004, 7, 1199-1208.	3.0	154
217	Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnology Journal, 2004, 2, 381-387.	4.1	182
218	Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnology Journal, 2004, 2, 459-466.	4.1	91

#	ARTICLE

Accumulation of pathogenesis-related (PR) 10/Bet v 1 protein homologues in mulberry (Morus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 74

220	Heterosis in the freezing tolerance of crosses between twoArabidopsis thalianaaccessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. Plant Journal, 2004, 38, 790-799.	2.8	145
221	Identification of cold-inducible downstream genes of theArabidopsisDREB1A/CBF3 transcriptional factor using two microarray systems. Plant Journal, 2004, 38, 982-993.	2.8	546
222	ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant Journal, 2004, 40, 75-87.	2.8	425
223	Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant Journal, 2004, 40, 173-187.	2.8	229
224	A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance. Plant Journal, 2004, 40, 536-545.	2.8	58
225	Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant Journal, 2004, 41, 195-211.	2.8	669
226	Costs and benefits of cold tolerance in transgenic Arabidopsis thaliana. Molecular Ecology, 2004, 13, 3609-3615.	2.0	47
227	Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiologia Plantarum, 2004, 121, 282-293.	2.6	36
228	Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiologia Plantarum, 2004, 120, 585-594.	2.6	80
229	The plasma membrane–bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnology, 2004, 22, 427-433.	9.4	310
230	A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nature Genetics, 2004, 36, 167-171.	9.4	250
231	Photosynthetic responses of Larrea tridentata to seasonal temperature extremes under elevated CO 2. New Phytologist, 2004, 162, 323-330.	3.5	29
232	Vernalization and epigenetics: how plants remember winter. Current Opinion in Plant Biology, 2004, 7, 4-10.	3.5	286
233	Overexpression of Multiple Dehydrin Genes Enhances Tolerance to Freezing Stress in Arabidopsis. Plant Molecular Biology, 2004, 54, 743-753.	2.0	339
234	CO 2 enrichment, nitrogen fertilization and development of freezing tolerance in Norway spruce. Trees - Structure and Function, 2004, 18, 10-18.	0.9	13
235	Characterization of Picg5 novel proteins associated with seasonal cold acclimation of white spruce (Picea glauca). Trees - Structure and Function, 2004, 18, 649-657.	0.9	12
236	Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth. Planta, 2004, 218, 878-885.	1.6	60

#	Article	IF	CITATIONS
237	Characterization of a cold-responsive gene,OsPTR1, isolated from the screening of β-Glucuronidase (GUS) gene-trapped rice. Journal of Plant Biology, 2004, 47, 133-141.	0.9	6
238	Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening. Journal of Biosciences, 2004, 29, 449-459.	0.5	185
239	Improved frost tolerance and winter survival in winter barley (Hordeum vulgare L.) by in vitro selection of proline overaccumulating lines. Euphytica, 2004, 139, 19-32.	0.6	21
240	Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Molecular Biology, 2004, 55, 399-416.	2.0	273
241	Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Molecular Biology, 2004, 56, 29-55.	2.0	130
242	Cryopreservation of embryogenic calli of cassava using sucrose cryoprotection and air desiccation. Plant Cell Reports, 2004, 22, 623-631.	2.8	25
243	Cold hardiness of wheat near-isogenic lines differing in vernalization alleles. Theoretical and Applied Genetics, 2004, 109, 839-846.	1.8	34
244	Environmental regulation and physiological basis of freezing tolerance in woody plants. Acta Physiologiae Plantarum, 2004, 26, 213-222.	1.0	47
245	A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics, 2004, 4, 2072-2081.	1.3	242
246	Overexpression of the riceOsmyb4gene increases chilling and freezing tolerance ofArabidopsis thalianaplants. Plant Journal, 2004, 37, 115-127.	2.8	314
247	Changes in the endoplasmic reticulum lipid properties in response to low temperature in Brassica napus. Plant Physiology and Biochemistry, 2004, 42, 811-822.	2.8	78
248	Molecular Cloning and Characterization of a CBF Gene from Capsella bursa-pastoris. DNA Sequence, 2004, 15, 180-187.	0.7	11
249	An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9873-9878.	3.3	236
250	Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis-Element in the early responsive to dehydration stress 1 Promoter[W]. Plant Cell, 2004, 16, 2481-2498.	3.1	1,329
251	Molecular Genetic and Physiological Analysis of the Cold-Responsive Dehydrins of Blueberry. Journal of Crop Improvement, 2004, 10, 53-76.	0.9	16
252	Dehydrin fromCitrus, Which Confers in Vitro Dehydration and Freezing Protection Activity, Is Constitutive and Highly Expressed in the Flavedo of Fruit but Responsive to Cold and Water Stress in Leaves. Journal of Agricultural and Food Chemistry, 2004, 52, 1950-1957.	2.4	85
253	Factors Affecting Quality and Postharvest Properties of Vegetables: Integration of Water Relations and Metabolism. Critical Reviews in Food Science and Nutrition, 2004, 44, 139-154.	5.4	52
254	Rice Functional Genomics: Large-Scale Gene Discovery and Applications to Crop Improvement. Advances in Agronomy, 2004, 82, 55-111.	2.4	19

π	Article	IF	CITATIONS
255	Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. Plant Science, 2004, 166, 69-79.	1.7	61
256	Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Science, 2004, 166, 609-616.	1.7	108
257	Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Science, 2004, 166, 863-872.	1.7	80
258	Low temperature sensing in silver birch (Betula pendula Roth) ecotypes. Plant Science, 2004, 167, 165-171.	1.7	19
259	Cryopreservation of marine microalgae and potential toxicity of cryoprotectants to the primary steps of the aquacultural food chain. Aquaculture, 2004, 230, 457-473.	1.7	46
260	Exploring the Temperature-Stress Metabolome of Arabidopsis. Plant Physiology, 2004, 136, 4159-4168.	2.3	943
261	Cloning and Functional Analysis of a Novel DREB1/CBF Transcription Factor Involved in Cold-Responsive Gene Expression in Zea mays L Plant and Cell Physiology, 2004, 45, 1042-1052.	1.5	336
262	A 27 kDaRhododendronprotein is associated with constitutive freezing tolerance and is related to the ABA / water deficit stress-inducible family of proteins. Journal of Horticultural Science and Biotechnology, 2005, 80, 171-176.	0.9	2
263	Adaptation à la sécheresse et création variétaleÂ: le cas de l'arachide en zone sahélienne. Oleagineu Corps Gras Lipides, 2005, 12, 248-260.	^{IX} 0.2	5
264	Understanding and Improving Salt Tolerance in Plants. Crop Science, 2005, 45, 437-448.	0.8	1,025
		0.0	
265	Molecular Properties of the Xanthomonas AvrRxv Effector and Global Transcriptional Changes Determined by Its Expression in Resistant Tomato Plants. Molecular Plant-Microbe Interactions, 2005, 18, 300-310.	1.4	39
265 266	Molecular Properties of the Xanthomonas AvrRxv Effector and Global Transcriptional Changes Determined by Its Expression in Resistant Tomato Plants. Molecular Plant-Microbe Interactions, 2005, 18, 300-310. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes and Genetic Systems, 2005, 80, 185-197.	1.4 0.2	39 94
265 266 267	Molecular Properties of the Xanthomonas AvrRxv Effector and Global Transcriptional Changes Determined by Its Expression in Resistant Tomato Plants. Molecular Plant-Microbe Interactions, 2005, 18, 300-310. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes and Genetic Systems, 2005, 80, 185-197. OBPC Symposium: Maize 2004 & beyondâ€"Plant regeneration, gene discovery, and genetic engineering of plants for crop improvement. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 411-423.	1.4 0.2 0.9	39 94 3
265 266 267 268	Molecular Properties of the Xanthomonas AvrRxv Effector and Global Transcriptional Changes Determined by Its Expression in Resistant Tomato Plants. Molecular Plant-Microbe Interactions, 2005, 18, 300-310. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes and Genetic Systems, 2005, 80, 185-197. OBPC Symposium: Maize 2004 & beyondâ€"Plant regeneration, gene discovery, and genetic engineering of plants for crop improvement. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 411-423. Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea. Physiologia Plantarum, 2005, 123, 452-458.	1.4 0.2 0.9 2.6	39 94 3 31
265 266 267 268 269	Molecular Properties of the Xanthomonas AvrRxv Effector and Global Transcriptional Changes Determined by Its Expression in Resistant Tomato Plants. Molecular Plant-Microbe Interactions, 2005, 18, 300-310. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes and Genetic Systems, 2005, 80, 185-197. OBPC Symposium: Maize 2004 & beyondâ€"Plant regeneration, gene discovery, and genetic engineering of plants for crop improvement. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 411-423. Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea. Physiologia Plantarum, 2005, 123, 452-458. A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiologia Plantarum, 2005, 124, 236-248.	1.4 0.2 0.9 2.6 2.6	 39 94 3 31 104
265 266 267 268 269	Molecular Properties of the Xanthomonas AvrRxv Effector and Global Transcriptional Changes Determined by Its Expression in Resistant Tomato Plants. Molecular Plant-Microbe Interactions, 2005, 18, 300-310. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes and Genetic Systems, 2005, 80, 185-197. OBPC Symposium: Maize 2004 & beyondâ€"Plant regeneration, gene discovery, and genetic engineering of plants for crop improvement. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 411-423. Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea. Physiologia Plantarum, 2005, 123, 452-458. A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiologia Plantarum, 2005, 124, 236-248. Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. Physiologia Plantarum, 2005, 125, 212-223.	1.4 0.2 0.9 2.6 2.6 2.6	 39 94 3 31 104 93
265 267 268 269 270	Molecular Properties of the Xanthomonas AvrRxv Effector and Global Transcriptional Changes Determined by Its Expression in Resistant Tomato Plants. Molecular Plant-Microbe Interactions, 2005, 18, 300-310. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes and Genetic Systems, 2005, 80, 185-197. OBPC Symposium: Maize 2004 & beyondâ€"Plant regeneration, gene discovery, and genetic engineering of plants for crop improvement. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 411-423. Isolation and characterization of a dehydrin gene from Cicer pinnatifidum, a drought-resistant wild relative of chickpea. Physiologia Plantarum, 2005, 123, 452-458. A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiologia Plantarum, 2005, 124, 236-248. Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. Physiologia Plantarum, 2005, 125, 212-223. The role of ABF family bZIP class transcription factors in stress response. Physiologia Plantarum, 2005, 126, 051129032003001-???.	1.4 0.2 0.9 2.6 2.6 2.6 2.6	 39 94 3 31 104 93 52

#	Article	IF	CITATIONS
273	Arabidopsis mutants deregulated in RCI2A expression reveal new signaling pathways in abiotic stress responses. Plant Journal, 2005, 42, 586-597.	2.8	29
274	Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant Journal, 2005, 42, 689-707.	2.8	388
275	Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant Journal, 2005, 43, 413-424.	2.8	241
276	EVOLUTION OF THE REALIZED CLIMATIC NICHE IN THE GENUS: ARABIDOPSIS (BRASSICACEAE). Evolution; International Journal of Organic Evolution, 2005, 59, 1425-1436	1.1	72
277	Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environmental and Experimental Botany, 2005, 53, 39-47.	2.0	125
278	Comparative expression of five Lea Genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1730, 56-65.	2.4	64
279	Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa. BMC Plant Biology, 2005, 5, 18.	1.6	52
280	The CBF Cold-response Pathway. , 0, , 71-99.		7
281	Integration of Abiotic Stress Signaling Pathways. , 0, , 215-247.		3
282	Genomic Analysis of Stress Respnse. , 0, , 248-265.		2
283	Expression analysis of a cold responsive transcript from trifoliate orange by real-time PCR and RT-PCR. Plant Cell Reports, 2005, 24, 612-618.	2.8	7
284	Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Reports, 2005, 24, 683-690.	2.8	158
285	Differential accumulation of dehydrin-like proteins by abiotic stresses in Deschampsia antarctica Desv Polar Biology, 2005, 28, 506-513.	0.5	18
286	Plant Cold Acclimation: The Role of Abscisic Acid. Journal of Plant Growth Regulation, 2005, 24, 308-318.	2.8	185
287	A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility?. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175, 453-461.	0.7	135
288	Analysis of expressed sequence tags from Musa acuminata ssp. burmannicoides, var. CalcuttaÂ4 (AA) leaves submitted to temperature stresses. Theoretical and Applied Genetics, 2005, 110, 1517-1522.	1.8	30
289	Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiology and Biochemistry, 2005, 43, 233-239.	2.8	35
290	Low-night temperature (LNT) induced changes of photosynthesis in grapevine (Vitis vinifera L.) plants. Plant Physiology and Biochemistry, 2005, 43, 693-699.	2.8	31

#	ARTICLE	IF	CITATIONS
291	Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta, 2005, 220, 414-423.	1.6	100
292	Changes in gene expression during dehardening of cold-hardened winter rye (Secale cereale L.) leaves and potential role of a peptide methionine sulfoxide reductase in cold-acclimation. Planta, 2005, 220, 941-950.	1.6	20
293	Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta, 2005, 221, 406-416.	1.6	81
294	Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. Planta, 2005, 221, 374-385.	1.6	38
295	Expression profiles of hot pepper (capsicum annuum) genes under cold stress conditions. Journal of Biosciences, 2005, 30, 657-667.	0.5	112
296	Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. Journal of Biosciences, 2005, 30, 761-776.	0.5	342
297	Plant antifreeze proteins and their expression regulatory mechanism. Forestry Studies in China, 2005, 7, 46-52.	0.4	2
298	Overexpression of Arabidopsis ABF3 gene enhances tolerance to droughtand cold in transgenic lettuce (Lactuca sativa). Plant Cell, Tissue and Organ Culture, 2005, 83, 41-50.	1.2	41
299	Induction of expression of the dehydrin gene TADHN and accumulation of abscisic acid in wheat plants in hypothermia. Doklady Biochemistry and Biophysics, 2005, 400, 69-71.	0.3	4
300	Response of maize inbred lines to a defoliation treatment inducing tolerance to cold at germination. Euphytica, 2005, 145, 295-303.	0.6	6
301	Molecular cloning and characterization of a novel ice gene from Capsella bursa-pastoris. Molecular Biology, 2005, 39, 18-25.	0.4	14
302	Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV. Cold-hardiness QTL verification and candidate gene mapping. Molecular Breeding, 2005, 15, 145-156.	1.0	53
303	Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia. Biologia Plantarum, 2005, 49, 65-71.	1.9	18
304	Overexpression of the Pepper Transcription Factor CaPF1 in Transgenic Virginia Pine (Pinus Virginiana) Tj ETQq1 1 59, 603-617.	0.784314 2.0	4 rgBT /Ove 135
305	Structural, Functional, and Phylogenetic Characterization of a Large CBF Gene Family in Barley. Plant Molecular Biology, 2005, 59, 533-551.	2.0	253
306	Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Molecular Biology, 2005, 58, 561-574.	2.0	125
307	Association of dehydrins with wheat mitochondria during low-temperature adaptation. Russian Journal of Plant Physiology, 2005, 52, 194-198.	0.5	8
308	The Effect of Paraquat and Hypothermia on Norflurason-Resistant Mutants of Arabidopsis thaliana and Derived Cell Cultures. Russian Journal of Plant Physiology, 2005, 52, 374-380.	0.5	1

#	ARTICLE	IF	CITATIONS
309	Improvement of Oil Rape Hardening and Frost Tolerance. Russian Journal of Plant Physiology, 2005, 52, 473-480.	0.5	10
310	A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005, 5, 3162-3172.	1.3	302
311	Cold-induced accumulation of protein in the leaves of spring and winter barley cultivars. Acta Biologica Hungarica, 2005, 56, 83-96.	0.7	9
313	Climatic Constraints Drive the Evolution of Low Temperature Resistance in Woody Plants. J Agricultural Meteorology, 2005, 61, 189-202.	0.8	55
314	Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petuniaxhybrida and Dendranthemaxgrandiflorum. Journal of Experimental Botany, 2005, 56, 1165-1175.	2.4	37
315	Starch-Related α-Glucan/Water Dikinase Is Involved in the Cold-Induced Development of Freezing Tolerance in Arabidopsis. Plant Physiology, 2005, 138, 837-846.	2.3	116
316	A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PLoS Genetics, 2005, 1, e26.	1.5	409
317	The Arabidopsis Cold-Responsive Transcriptome and Its Regulation by ICE1. Plant Cell, 2005, 17, 3155-3175.	3.1	711
318	Genetic and Molecular Analyses of Natural Variation Indicate CBF2 as a Candidate Gene for Underlying a Freezing Tolerance Quantitative Trait Locus in Arabidopsis. Plant Physiology, 2005, 139, 1304-1312.	2.3	149
319	Detection and Preliminary Analysis of Motifs in Promoters of Anaerobically Induced Genes of Different Plant Species. Annals of Botany, 2005, 96, 669-681.	1.4	102
320	LIP19, a Basic Region Leucine Zipper Protein, is a Fos-like Molecular Switch in the Cold Signaling of Rice Plants. Plant and Cell Physiology, 2005, 46, 1623-1634.	1.5	115
321	ABR1, an APETALA2-Domain Transcription Factor That Functions as a Repressor of ABA Response in Arabidopsis. Plant Physiology, 2005, 139, 1185-1193.	2.3	236
322	A DEAD Box RNA Helicase Is Essential for mRNA Export and Important for Development and Stress Responses in Arabidopsis. Plant Cell, 2005, 17, 256-267.	3.1	322
323	Mutation: Sugar Signaling Mutants in Arabidopsis. , 2005, , 50-67.		7
324	Enhancing Arabidopsis Salt and Drought Stress Tolerance by Chemical Priming for Its Abscisic Acid Responses. Plant Physiology, 2005, 139, 267-274.	2.3	387
325	Winter disruption of the circadian clock in chestnut. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7037-7042.	3.3	142
326	Molecular Characterization and Origin of Novel Bipartite Cold-regulated Ice Recrystallization Inhibition Proteins from Cereals. Plant and Cell Physiology, 2005, 46, 884-891.	1.5	59
327	Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits. Genetical Research, 2005, 85, 15-22.	0.3	90

#	Article	IF	CITATIONS
328	Low Temperature Induction of Arabidopsis CBF1, 2, and 3 Is Gated by the Circadian Clock. Plant Physiology, 2005, 137, 961-968.	2.3	385
329	HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9966-9971.	3.3	173
330	Quantitative Statistical Analysis of cis-Regulatory Sequences in ABA/VP1- and CBF/DREB1-Regulated Genes of Arabidopsis. Plant Physiology, 2005, 139, 437-447.	2.3	70
331	Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. Journal of Experimental Botany, 2005, 56, 887-895.	2.4	88
332	Nucleotide Diversity and Linkage Disequilibrium in Cold-Hardiness- and Wood Quality-Related Candidate Genes in Douglas Fir. Genetics, 2005, 171, 2029-2041.	1.2	167
333	Arabidopsis CBF3/DREB1A and ABF3 in Transgenic Rice Increased Tolerance to Abiotic Stress without Stunting Growth. Plant Physiology, 2005, 138, 341-351.	2.3	611
334	EVOLUTION OF THE REALIZED CLIMATIC NICHE IN THE GENUS ARABIDOPSIS (BRASSICACEAE). Evolution; International Journal of Organic Evolution, 2005, 59, 1425.	1.1	14
335	AREB1 Is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That Enhances Drought Stress Tolerance in Arabidopsis Â. Plant Cell, 2005, 17, 3470-3488.	3.1	826
336	Abiotic Stress Tolerance in Grasses. From Model Plants to Crop Plants. Plant Physiology, 2005, 137, 791-793.	2.3	216
337	Freezing tolerance in two Norway spruce (Picea abies [L.] Karst.) progenies is physiologically correlated with drought tolerance. Journal of Plant Physiology, 2005, 162, 549-558.	1.6	54
338	Protein, leucine aminopeptidase, esterase, acid phosphatase and photosynthetic responses of oleander (Nerium oleander L) during cold acclimation and freezing treatments. Journal of Plant Physiology, 2005, 162, 886-894.	1.6	9
339	On the induction of cold acclimation in carrots (Daucus carota L.) and its influence on storage performance. Food Research International, 2005, 38, 29-36.	2.9	15
340	The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene, 2005, 344, 171-180.	1.0	137
341	Identification and characterization of a novel water-deficit-suppressed gene OsARD encoding an aci-reductone-dioxygenase-like protein in rice. Gene, 2005, 360, 27-34.	1.0	11
342	A phenological hypothesis on the thermophilous distribution of Pistacia lentiscus L Flora: Morphology, Distribution, Functional Ecology of Plants, 2005, 200, 527-534.	0.6	12
343	Identification of Chinese cabbage genes up-regulated by prolonged cold by using microarray analysis. Plant Science, 2005, 168, 959-966.	1.7	18
344	Variation in transcript abundance among the four members of the Arabidopsis thaliana RIBOSOMAL PROTEIN S15a gene family. Plant Science, 2005, 169, 267-278.	1.7	37
345	Transcriptional regulation network of cold-responsive genes in higher plants. Plant Science, 2005, 169, 987-995.	1.7	68

ARTICLE IF CITATIONS Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. 346 4.3 1,200 Trends in Plant Science, 2005, 10, 88-94. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 2005, 444, 347 1.4 2,295 139-158. REMEMBERING WINTER: Toward a Molecular Understanding of Vernalization. Annual Review of Plant 348 8.6 219 Biology, 2005, 56, 491-508. Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold 349 54 but not by salinity and abscisic acid. DNA Sequence, 2005, 16, 130-136. Functional Genomics for Tolerance to Abiotic Stress in Cereals., 2004, , 483-514. 350 6 The physiological basis of containerised tree seedling â€~transplant shock': a review. Australian 0.3 Forestry, 2005, 68, 112-120. 352 Mechanisms Underlying Plant Tolerance to Abiotic Stresses., 2006, , 360-385. 1 A R2R3 Type MYB Transcription Factor Is Involved in the Cold Regulation of CBF Genes and in Acquired 1.6 776 Freezing Tolerance. Journal of Biological Chemistry, 2006, 281, 37636-37645. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and 354 salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of 3.3 1,371 America, 2006, 103, 12987-12992. Allelopathy and abiotic stress., 2006, , 171-209. Comparative Proteomic Analysis Provides New Insights into Chilling Stress Responses in Rice. 356 2.5 467 Molecular and Cellular Proteómics, 2006, 5, 484-496. Protein-Water and Protein-Buffer Interactions in the Aqueous Solution of an Intrinsically 357 106 Unstructured Plant Dehydrin: NMR Intensity and DSC Aspects. Biophysical Journal, 2006, 91, 2243-2249. Salt Stress Signaling and Mechanisms of Plant Salt Tolerance., 2006, 27, 141-177. 358 208 Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 2006, 19, 1062-1071. 1.4 1,241 Additional freeze hardiness in wheat acquired by exposure to â^'3 °C is associated with extensive 360 physiological, morphological, and molecular changes. Journal of Experimental Botany, 2006, 57, 2.4 115 3601-3618. Enhancement of Chilling Resistance of Inoculated Grapevine Plantlets with a Plant Growth-Promoting Rhizobacterium, Burkholderia phytofirmans Strain PsJN. Applied and 1.4 486 Environmental Microbiology, 2006, 72, 7246-7252. Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low 362 1.4 92 temperature and water deficit. Tree Physiology, 2006, 26, 575-584. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 2006, 2.3 765 97, 111-119.

#	Article	IF	CITATIONS
364	The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Letters, 2006, 580, 1303-1308.	1.3	79
365	Freezing and desiccation tolerance in the moss Physcomitrella patens: An in situ Fourier transform infrared spectroscopic study. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1226-1234.	1.1	84
366	A cotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Biochemical and Biophysical Research Communications, 2006, 343, 1023-1031.	1.0	59
367	Genome-wide comparative analyses of domain organisation of repertoires of protein kinases of Arabidopsis thaliana and Oryza sativa. Gene, 2006, 380, 1-13.	1.0	42
369	FREEZING STRESS: SYSTEMS BIOLOGY TO STUDY COLD TOLERANCE. , 2006, , 131-155.		8
370	Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat. Journal of Plant Physiology, 2006, 163, 213-219.	1.6	44
371	Suppression of phospholipase Dα1 induces freezing tolerance in Arabidopsis: Response of cold-responsive genes and osmolyte accumulation. Journal of Plant Physiology, 2006, 163, 916-926.	1.6	60
372	Seasonal changes in photosynthesis, protein composition and mineral content in Rhododendron leaves. Plant Science, 2006, 170, 314-325.	1.7	28
373	Isolation and characterization of class A4 heat shock transcription factor from alfalfa. Plant Science, 2006, 171, 332-344.	1.7	10
374	Differential Responses of the Cultivated and Wild Species of Soybean to Dehydration Stress. Crop Science, 2006, 46, 2041-2046.	0.8	52
375	Phospholipid-Derived Signaling in Plant Response to Temperature and Water Stresses. , 2006, 27, 57-66.		3
376	A Cytological Marker Associated with Winterhardiness in Oat. Crop Science, 2006, 46, 203-208.	0.8	14
377	Autumn growth and its relationship to winter survival in diverse safflower germplasm. Canadian Journal of Plant Science, 2006, 86, 701-709.	0.3	7
378	Metabolic Defense Responses of Seeded Bermudagrass during Acclimation to Freezing Stress. Crop Science, 2006, 46, 2598-2605.	0.8	60
379	Recent Molecular and Genomic Studies on Stress Tolerance of Forage and Turf Grasses. Crop Science, 2006, 46, 497-511.	0.8	61
380	Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes and Genetic Systems, 2006, 81, 77-91.	0.2	230
381	Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum, 2006, 126, 45-51.	2.6	891
382	Reciprocal substitutions analysis of freezing resistance in wheat (Triticum aestivum L.). Plant Breeding, 2006, 125, 217-220.	1.0	2

		CITATION RE	PORT	
#	Article		IF	Citations
383	Gene regulation during cold acclimation in plants. Physiologia Plantarum, 2006, 126, 5	2-61.	2.6	281
384	Histidine kinase Hik33 is an important participant in cold-signal transduction in cyanol Physiologia Plantarum, 2006, 126, 17-27.	pacteria.	2.6	54
385	Profiling lipid changes in plant response to low temperatures. Physiologia Plantarum, 2	006, 126, 90-96.	2.6	147
386	Arabidopsis transcription factors regulating cold acclimation. Physiologia Plantarum, 2 72-80.	006, 126,	2.6	173
387	Photostasis and cold acclimation: sensing low temperature through photosynthesis. P Plantarum, 2006, 126, 28-44.	ıysiologia	2.6	467
388	ASR1, a stress-induced tomato protein, protects yeast from osmotic stress. Physiologia 2006, 127, 111-118.	a Plantarum,	2.6	13
389	Molecular control of cold acclimation in trees. Physiologia Plantarum, 2006, 127, 167-	181.	2.6	229
390	Expression patterns of low temperature responsive genes in a dominant ABA-less-sension of common wheat. Physiologia Plantarum, 2006, 127, 612-623.	tive mutant line	2.6	34
391	A changing climate for grassland research. New Phytologist, 2006, 169, 9-26.		3.5	126
392	Differential responses of Arabidopsis ecotypes to cold, chilling and freezing temperatu Applied Biology, 2006, 148, 113-120.	res. Annals of	1.3	48
393	Isolation and Expression Analysis of Two Cold-Inducible Genes Encoding Putative CBF Factors from Chinese Cabbage (Brassica pekinensis Rupr.). Journal of Integrative Plant 48, 848-856.	ranscription Biology, 2006,	4.1	7
394	Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Environment, 2006, 29, 1410-1421.	Plant, Cell and	2.8	173
395	Maize DBF1-interactor protein 1 containing an R3H domain is a potential regulator of stress responses. Plant Journal, 2006, 46, 747-757.	DBF1 activity in	2.8	44
396	Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transc enhances expression of the ERD1 gene in Arabidopsis. Plant Journal, 2006, 49, 46-63.	ription factors	2.8	256
397	Isolation and characterization of a novel dehydrin gene from Capsella bursa-pastoris. N Biology, 2006, 40, 43-50.	Iolecular	0.4	5
398	Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic Cell and Environment, 2006, 29, 558-570.	, membrane c studies. Plant,	2.8	85
399	Regulons involved in osmotic stress-responsive and cold stress-responsive gene expres Physiologia Plantarum, 2006, 126, 62-71.	sion in plants.	2.6	306
400	Change in sugar, sterol and fatty acid composition in banana meristems caused by suc acclimation and its effects on cryopreservation. Physiologia Plantarum, 2006, 128, 80-	rose-induced 94.	2.6	52

#	Article	IF	CITATIONS
401	Light-dependent expression of the cold-regulated gene HvMC1 in barley (Hordeum vulgare l.). Journal of Thermal Biology, 2006, 31, 473-482.	1.1	3
402	TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 2006, 57, 781-803.	8.6	2,537
403	Effect of oryzalin on root ultrastructure and respiration in various wheat cultivars subjected to cold hardening. Russian Journal of Plant Physiology, 2006, 53, 176-185.	0.5	5
404	Recent advances in genetic transformation of forage and turf grasses. In Vitro Cellular and Developmental Biology - Plant, 2006, 42, 1-18.	0.9	96
405	Identification and expression analysis of cold-regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.) Raf Plant Molecular Biology, 2006, 62, 83-97.	2.0	34
406	DEA1, a circadian- and cold-regulated tomato gene, protects yeast cells from freezing death. Plant Molecular Biology, 2006, 62, 547-559.	2.0	18
407	Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant's response to cold stress. Plant Molecular Biology, 2006, 63, 171-184.	2.0	47
408	A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Molecular Biology, 2006, 63, 289-305.	2.0	270
409	Transgenic Agrostis mongolica Roshev. with enhanced tolerance to drought and heat stresses obtained from Agrobacterium-mediated transformation. Plant Cell, Tissue and Organ Culture, 2006, 87, 109-120.	1.2	11
410	Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L Biotechnology Letters, 2006, 29, 165-173.	1.1	25
411	Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ω-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta, 2006, 223, 1090-1100.	1.6	91
412	Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta, 2006, 224, 205-221.	1.6	77
413	Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta, 2006, 224, 878-888.	1.6	131
414	Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 2006, 225, 353-364.	1.6	446
415	Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Functional and Integrative Genomics, 2006, 6, 212-234.	1.4	137
416	Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Functional and Integrative Genomics, 2006, 7, 53-68.	1.4	143
417	Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 2006, 25, 1263-1274.	2.8	864
418	Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theoretical and Applied Genetics, 2006, 112, 445-454.	1.8	128

#	Article	IF	CITATIONS
419	Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theoretical and Applied Genetics, 2006, 112, 832-842.	1.8	112
420	A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species. Theoretical and Applied Genetics, 2006, 114, 273-283.	1.8	38
421	Cloning and functional identification of stress-resistant BeDREB genes from Bermuda grass. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2006, 1, 367-374.	0.2	6
422	From genome to wheat: Emerging opportunities for modelling wheat growth and development. European Journal of Agronomy, 2006, 25, 79-88.	1.9	27
423	Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 69-79.	2.4	98
424	Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 263-269.	2.4	49
425	Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays. Tree Physiology, 2006, 26, 1297-1313.	1.4	61
426	Identification of plant stress-responsive determinants in arabidopsis by large-scale forward genetic screens. Journal of Experimental Botany, 2006, 57, 1119-1128.	2.4	65
427	Natural Genetic Variation of Freezing Tolerance in Arabidopsis. Plant Physiology, 2006, 142, 98-112.	2.3	407
428	EARLY RESPONSIVE TO DEHYDRATION 15, a Negative Regulator of Abscisic Acid Responses in Arabidopsis. Plant Physiology, 2006, 142, 1559-1573.	2.3	144
429	Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. Plant Cell, 2006, 18, 1292-1309.	3.1	968
430	Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. Journal of Experimental Botany, 2006, 57, 2455-2469.	2.4	79
431	Characterization of the Vernalization Response in Lolium perenne by a cDNA Microarray Approach. Plant and Cell Physiology, 2006, 47, 481-492.	1.5	26
432	Pea Seed Mitochondria Are Endowed with a Remarkable Tolerance to Extreme Physiological Temperatures. Plant Physiology, 2006, 140, 326-335.	2.3	72
433	Improvement of Cold Tolerance in Horticultural Crops by Genetic Engineering. Journal of Crop Improvement, 2006, 17, 69-120.	0.9	9
434	Contribution of omega-3 fatty acid desaturase and 3-ketoacyl-ACP synthase II (KASII) genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves. Journal of Experimental Botany, 2006, 57, 897-909.	2.4	64
435	Arabidopsis thaliana avoids freezing by supercooling. Journal of Experimental Botany, 2006, 57, 3687-3696.	2.4	50
436	Activation of Zoosporogenesis-Specific Genes in Phytophthora infestans Involves a 7-Nucleotide Promoter Motif and Cold-Induced Membrane Rigidity. Eukaryotic Cell, 2006, 5, 745-752.	3.4	40

#	Article	IF	CITATIONS
437	Regulating the Drought-responsive Element (DRE)-mediated Signaling Pathway by Synergic Functions of Trans-active and Trans-inactive DRE Binding Factors in Brassica napus. Journal of Biological Chemistry, 2006, 281, 10752-10759.	1.6	111
438	The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8281-8286.	3.3	585
439	Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18822-18827.	3.3	694
440	Functional genomics of abiotic stress tolerance in cereals. Briefings in Functional Genomics & Proteomics, 2006, 4, 343-354.	3.8	113
441	Functional Analysis of Rice DREB1/CBF-type Transcription Factors Involved in Cold-responsive Gene Expression in Transgenic Rice. Plant and Cell Physiology, 2006, 47, 141-153.	1.5	853
442	<i>Arabidopsis</i> CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 21002-21007.	3.3	321
443	Role of the Methionine Sulfoxide Reductase MsrB3 in Cold Acclimation in Arabidopsis. Plant and Cell Physiology, 2007, 48, 1713-1723.	1.5	80
444	Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, Increases Tolerance to Freezing, Drought, and Salt Stress in Transgenic Arabidopsis. Plant Physiology, 2007, 143, 1739-1751.	2.3	492
445	Identification of Cold-Induced Genes in Cereal Crops and Arabidopsis Through Comparative Analysis of Multiple EST Sets. , 2007, , 48-65.		4
446	Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi). Journal of Experimental Botany, 2007, 58, 3731-3742.	2.4	16
447	MscS‣ike Proteins in Plants. Current Topics in Membranes, 2007, 58, 329-359.	0.5	62
448	Photosynthetic activity in winter needles of the evergreen tree Taxus cuspidata at low temperatures. Tree Physiology, 2007, 27, 641-648.	1.4	26
449	SIZ1-Mediated Sumoylation of ICE1 Controls CBF3/DREB1A Expression and Freezing Tolerance in Arabidopsis. Plant Cell, 2007, 19, 1403-1414.	3.1	652
450	Physiology and Metabalism of Boron in Plants. , 2007, , 31-46.		1
451	Monitoring and analysis of electrical signals in waterâ€stressed plants. New Zealand Journal of Agricultural Research, 2007, 50, 823-829.	0.9	9
452	Elevated Atmospheric CO 2 and Strain of Rhizobium Alter Freezing Tolerance and Cold-induced Molecular Changes in Alfalfa (Medicago sativa). Annals of Botany, 2007, 99, 275-284.	1.4	57
453	ABA Regulates Apoplastic Sugar Transport and is a Potential Signal for Cold-Induced Pollen Sterility in Rice. Plant and Cell Physiology, 2007, 48, 1319-1330.	1.5	271
455	Abscisic Acid and Abiotic Stress Signaling. Plant Signaling and Behavior, 2007, 2, 135-138.	1.2	715

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
456	Transgenic Rice Plants Expressing a Novel Antifreeze Glycopeptide Possess Resistance to Cold and Disease. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2007, 62, 583-591.	0.6	4
457	Annual patterns of total soluble sugars and proteins related to coldhardiness in olive (<i>Olea) Tj ETQq1 1 0.784</i>	1314.rgBT	/Oygrlock 10
458	ONGOING ADAPTATION TO MEDITERRANEAN CLIMATE EXTREMES IN A CHEMICALLY POLYMORPHIC PLANT. Ecological Monographs, 2007, 77, 421-439.	2.4	37
459	Cold stress regulation of gene expression in plants. Trends in Plant Science, 2007, 12, 444-451.	4.3	1,593
460	Molecular cloning and characterization of a cDNA for low-temperature inducible cytosolic glucose 6-phosphate dehydrogenase gene from Chlorella vulgaris and expression of the gene in Saccharomyces cerevisiae. Plant Science, 2007, 172, 649-658.	1.7	14
461	Identification of genes associated with cold acclimation in blueberry (Vaccinium corymbosum L.) using a subtractive hybridization approach. Plant Science, 2007, 173, 213-222.	1.7	40
462	Assessing antifreeze activity of AFGP 8 using domain recognition software. Biochemical and Biophysical Research Communications, 2007, 354, 340-344.	1.0	39
463	Using Arabidopsis thaliana as a model to study subzero acclimation in small grains. Cryobiology, 2007, 54, 154-163.	0.3	22
464	Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance. Journal of Plant Physiology, 2007, 164, 146-156.	1.6	61
465	Effect of low temperature on ethanolic fermentation in rice seedlings. Journal of Plant Physiology, 2007, 164, 1013-1018.	1.6	19
466	WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. Journal of Plant Physiology, 2007, 164, 1197-1207.	1.6	60
467	Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) ofBrassica napus. FEBS Letters, 2007, 581, 3044-3050.	1.3	33
468	Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20623-20628.	3.3	592
469	Freezing Tolerance Affected by Mineral Application during Coldâ€Acclimated Conditions in Some Cool Crop Seedlings. Communications in Soil Science and Plant Analysis, 2007, 38, 1047-1060.	0.6	4
470	Plant Stress Physiology: Opportunities and Challenges for the Food Industry. Critical Reviews in Food Science and Nutrition, 2007, 47, 749-763.	5.4	45
471	Transcriptome Analysis of Plant Drought and Salt Stress Response. , 2007, , 261-283.		8
472	Plant Gene Networks in Osmotic Stress Response: From Genes to Regulatory Networks. Methods in Enzymology, 2007, 428, 109-128.	0.4	114
473	The α-tubulin gene family in wheat (Triticum aestivum L.) and differential gene expression during cold acclimation. Genome, 2007, 50, 502-510.	0.9	36

#	Article	IF	CITATIONS
474	Cold Sensitivity Gradient in Tuberâ€Bearing <i>Solanum</i> Based on Physiological and Transcript Profiles. Crop Science, 2007, 47, 2027-2035.	0.8	12
475	Control of Flowering Time and Cold Response by a NAC-Domain Protein in Arabidopsis. PLoS ONE, 2007, 2, e642.	1.1	167
477	Isolation and characterization of a cDNA encoding a CBF transcription factor from E. globulus. Plant Physiology and Biochemistry, 2007, 45, 1-5.	2.8	38
478	Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant Journal, 2007, 49, 786-799.	2.8	142
479	Expression levels of barley <i>Cbf</i> genes at the <i>Frost resistance</i> â€ <i>H2</i> locus are dependent upon alleles at <i>Frâ€H1</i> and <i>Frâ€H2</i> . Plant Journal, 2007, 51, 308-321.	2.8	121
480	Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant Journal, 2007, 51, 897-909.	2.8	401
481	A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant Journal, 2008, 53, 264-274.	2.8	396
482	Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nature Genetics, 2007, 39, 1410-1413.	9.4	235
483	Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal, 2007, 5, 361-380.	4.1	223
484	Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnology Journal, 2007, 5, 591-604.	4.1	145
485	Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnology Journal, 2007, 5, 646-656.	4.1	192
486	Variation of freezing tolerance, Cor/Lea gene expression and vernalization requirement in Japanese common wheat. Plant Breeding, 2007, 126, 464-469.	1.0	10
487	Induction of enhanced tolerance to cold stress and disease by overexpression of the pepper CaPIF1 gene in tomato. Physiologia Plantarum, 2007, 129, 555-566.	2.6	19
488	Phylogenetic analysis and seasonal cold acclimation-associated expression of early light-induced protein genes of Rhododendron catawbiense. Physiologia Plantarum, 2007, 132, 071202165636003-???.	2.6	34
489	Metabolomics of temperature stress. Physiologia Plantarum, 2008, 132, 220-235.	2.6	439
490	Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Functional Ecology, 2008, 22, 8-18.	1.7	43
491	Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies. Plant, Cell and Environment, 2007, 30, 165-175.	2.8	95
492	Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures. Plant, Cell and Environment, 2007, 30, 529-538.	2.8	70

#	Article	IF	CITATIONS
493	CBF4 is a unique member of the CBF transcription factor family of <i>Vitis vinifera</i> and <i>Vitis riparia</i> . Plant, Cell and Environment, 2008, 31, 1-10.	2.8	113
494	Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant Journal, 2007, 49, 1091-1107.	2.8	380
495	Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant Journal, 2007, 50, 54-69.	2.8	447
496	Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant Journal, 2007, 50, 967-981.	2.8	419
497	Two calcineurin Bâ€like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant Journal, 2007, 52, 223-239.	2.8	434
498	Combinatorial interactions of multiple <i>cis</i> â€elements regulating the induction of the Arabidopsis <i>XERO2</i> dehydrin gene by abscisic acid and cold. Plant Journal, 2008, 54, 15-29.	2.8	30
499	High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytologist, 2007, 174, 569-579.	3.5	86
500	An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics, 2007, 8, 175.	1.2	123
501	Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors. BMC Genomics, 2007, 8, 304.	1.2	27
502	Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 295-307.	2.4	195
503	Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007, 59, 206-216.	2.0	3,403
504	Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions. Environmental and Experimental Botany, 2007, 60, 276-283.	2.0	188
505	Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Current Opinion in Plant Biology, 2007, 10, 290-295.	3.5	404
506	Differential gene expression in cucumber plants in response to brief daily cold treatments. Russian Journal of Plant Physiology, 2007, 54, 607-611.	0.5	6
507	Molecular mechanisms of stress resistance of the photosynthetic apparatus. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2007, 1, 185-205.	0.3	31
508	Molecular cloning and characterization of cold-responsive gene Cbrci35 from Capsella bursa-pastoris. Biologia (Poland), 2007, 62, 690-696.	0.8	4
509	Transgenic tobacco expressing a ring domain-containing protein ofCapsicum annuum confers improved cold tolerance. Journal of Plant Biology, 2007, 50, 44-49.	0.9	1
510	Perception, transduction, and networks in cold signaling. Journal of Plant Biology, 2007, 50, 139-147.	0.9	18

#	Article	IF	CITATIONS
511	Isolation of cold stress-responsive genes in the reproductive organs, and characterization of the OsLti6b gene from rice (Oryza sativa L.). Plant Cell Reports, 2007, 26, 1097-1110.	2.8	37
512	Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Reports, 2007, 26, 1053-1063.	2.8	151
513	Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Reports, 2007, 26, 1521-1528.	2.8	118
514	Construction and functional characteristics of tuber-specific and cold-inducible chimeric promoters in potato. Plant Cell Reports, 2007, 27, 47-55.	2.8	21
515	Identification of genes responsive to the application of ethanol on sugarcane leaves. Plant Cell Reports, 2007, 26, 2119-2128.	2.8	25
516	Cold-loving microbes, plants, and animals—fundamental and applied aspects. Die Naturwissenschaften, 2007, 94, 77-99.	0.6	202
517	Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics, 2007, 115, 35-46.	1.8	462
518	Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theoretical and Applied Genetics, 2007, 115, 1083-1091.	1.8	145
519	Transgene expression in Chinese sweetgum driven by the salt induced expressed promoter. Plant Cell, Tissue and Organ Culture, 2007, 88, 101-107.	1.2	6
520	Chilling stress and chilling tolerance of sweet potato as sensed by chlorophyll fluorescence. Photosynthetica, 2007, 45, 628-632.	0.9	24
521	Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Molecular Biology, 2007, 64, 409-423.	2.0	96
522	T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology, 2007, 65, 453-466.	2.0	230
523	Isolation and characterization of shs1, a sugar-hypersensitive and ABA-insensitive mutant with multiple stress responses. Plant Molecular Biology, 2007, 65, 295-309.	2.0	10
524	Comparative genome organization reveals a single copy of CBF in the freezing tolerant crucifer Thlaspi arvense. Plant Molecular Biology, 2007, 65, 693-705.	2.0	13
525	Androgenesis as a means of dissecting complex genetic and physiological controls: selecting useful gene combinations for breeding freezing tolerant grasses. Euphytica, 2007, 158, 337-345.	0.6	46
526	Low temperature acclimation to chilling tolerance in rice roots. Plant Growth Regulation, 2007, 51, 171-175.	1.8	9
527	Effect of low-temperature stress on abscisic acid, jasmonates, and polyamines in apples. Plant Growth Regulation, 2007, 52, 199-206.	1.8	58
528	Freezing sensitivity in the gigantea mutant of Arabidopsis is associated with sugar deficiency. Biologia Plantarum, 2007, 51, 359-362.	1.9	26

#	Article	IF	CITATIONS
529	The role of dehydrins in plant response to cold. Biologia Plantarum, 2007, 51, 601-617.	1.9	188
530	Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta, 2007, 225, 735-751.	1.6	68
531	Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta, 2007, 226, 729-740.	1.6	201
532	Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007, 226, 1007-1016.	1.6	157
533	Long- and short-term freezing induce different types of injury in Arabidopsis thaliana leaf cells. Planta, 2007, 227, 477-489.	1.6	24
534	The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Molecular Genetics and Genomics, 2007, 277, 533-554.	1.0	148
535	Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Molecular Genetics and Genomics, 2007, 277, 713-23.	1.0	134
536	Potential for introducing cold tolerance into papaya by transformation with C-repeat binding factor (CBF) genes. In Vitro Cellular and Developmental Biology - Plant, 2007, 43, 195-202.	0.9	15
537	Isolation and bioinformatics analyses of a COR413-like gene from Gossypium barbadense. Acta Physiologiae Plantarum, 2007, 29, 1-9.	1.0	10
538	Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton. Science in China Series C: Life Sciences, 2007, 50, 7-14.	1.3	30
539	Expression of stress gene networks in tomato lines susceptible and resistant to Tomato yellow leaf curl virus in response to abiotic stresses. Plant Physiology and Biochemistry, 2008, 46, 482-492.	2.8	14
540	The relationship between vernalization-and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biologia Plantarum, 2008, 52, 601-615.	1.9	55
541	Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing Atlpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Molecular Biology, 2008, 66, 329-343.	2.0	93
542	Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. Plant Molecular Biology, 2008, 67, 257-270.	2.0	103
543	Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 2008, 67, 589-602.	2.0	389
544	Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Molecular Biology, 2008, 68, 131-143.	2.0	185
545	Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Molecular Biology, 2008, 68, 533-555.	2.0	138
546	Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants. Molecular Breeding, 2008, 21, 15-26.	1.0	68

#	Article	IF	CITATIONS
547	Expression and function of two dehydrins under environmental stresses in Brassica juncea L Molecular Breeding, 2008, 21, 431-438.	1.0	26
548	Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Research, 2008, 17, 93-104.	1.3	92
549	Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Research, 2008, 17, 755-767.	1.3	69
550	Effect of hardening on frost tolerance and fatty acid composition of leaves and stems of a set of faba bean (Vicia faba L.) genotypes. Euphytica, 2008, 162, 211-219.	0.6	46
551	Quantitative trait loci of frost tolerance and physiologically related trait in faba bean (Vicia faba L.). Euphytica, 2008, 164, 93-104.	0.6	52
552	Gene expression analysis of cold treated versus cold acclimated Poncirus trifoliata. Euphytica, 2008, 164, 209-219.	0.6	18
553	Short term temperature drops do not enhance cold tolerance. Plant Growth Regulation, 2008, 55, 199-206.	1.8	9
554	Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Reports, 2008, 27, 1677-1686.	2.8	196
555	Regulation of salt and ABA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis. Science in China Series C: Life Sciences, 2008, 51, 391-401.	1.3	21
556	Variation at the transcriptional level among Chinese natural populations of Arabidopsis thaliana in response to cold stress. Science Bulletin, 2008, 53, 2989-2999.	4.3	17
557	Toward Understanding Molecular Mechanisms of Abiotic Stress Responses in Rice. Rice, 2008, 1, 36-51.	1.7	39
558	Signal transduction during cold stress in plants. Physiology and Molecular Biology of Plants, 2008, 14, 69-79.	1.4	124
559	Identification, characterization and expression analysis of transcription factor (CBF) genes in rice (Oryza sativa L.). Frontiers of Agriculture in China, 2008, 2, 253-261.	0.2	5
560	BjDHNs Confer Heavy-metal Tolerance in Plants. Molecular Biotechnology, 2008, 38, 91-98.	1.3	64
561	Indian Mustard Aquaporin Improves Drought and Heavy-metal Resistance in Tobacco. Molecular Biotechnology, 2008, 40, 280-292.	1.3	61
562	Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of Barley (Hordeum vulgare L.). Functional and Integrative Genomics, 2008, 8, 387-405.	1.4	173
563	Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum). Journal of Plant Research, 2008, 121, 215-226.	1.2	45
564	Transcript profiling demonstrates absence of dosage compensation in Arabidopsis following loss of a single RPL23a paralog. Planta, 2008, 228, 627-640.	1.6	23

#	Article	IF	CITATIONS
565	Increased freezing tolerance through up-regulation of downstream genes via the wheat CBF gene in transgenic tobacco. Plant Physiology and Biochemistry, 2008, 46, 205-211.	2.8	33
566	Two ABREs, two redundant root-specific and one W-box cis-acting elements are functional in the sunflower HAHB4 promoter. Plant Physiology and Biochemistry, 2008, 46, 860-867.	2.8	21
567	WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. Plant Physiology and Biochemistry, 2008, 46, 970-976.	2.8	39
568	The effect of daily exposure to low hardening temperature on plant vital activity. Russian Journal of Developmental Biology, 2008, 39, 261-268.	0.1	12
569	Comparison Analysis of Transcripts from the Halophyte <i>Thellungiella halophila</i> . Journal of Integrative Plant Biology, 2008, 50, 1327-1335.	4.1	50
570	Effect of stress factors on expression of the gene encoding a CBF transcription factor in cucumber plants. Doklady Biological Sciences, 2008, 423, 419-421.	0.2	4
571	Expression of genes encoding the WRKY transcription factor and heat shock proteins in wheat plants during cold hardening. Doklady Biological Sciences, 2008, 423, 440-442.	0.2	5
572	Clinal variation in freezing tolerance among natural accessions of <i>Arabidopsis thaliana</i> . New Phytologist, 2008, 177, 419-427.	3.5	132
573	Shade avoidance. New Phytologist, 2008, 179, 930-944.	3.5	605
574	Exogenous Application of Abscisic Acid Improves Cold Tolerance in Chickpea (<i>Cicer arietinum</i>) Tj ETQq1	1 0.784314 1.7	rgBT /Overlo
575	Positive role of a wheat <i>HvABI5 </i> ortholog in abiotic stress response of seedlings. Physiologia Plantarum, 2008, 134, 74-86.	2.6	129
576	Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in <i>Arabidopsis</i> rosettes to a progressive decrease of temperature in the nonâ€freezing range. Plant, Cell and Environment, 2008, 31, 518-547.	2.8	191
577	Characterization of growth-phase-specific responses to cold in Arabidopsis thaliana suspension-cultured cells. Plant, Cell and Environment, 2008, 31, 354-365.	2.8	14
578	Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant, Cell and Environment, 2008, 31, 393-406.	2.8	97
579	Transcriptome profiling of grapefruit flavedo following exposure to low temperature and conditioning treatments uncovers principal molecular components involved in chilling tolerance and susceptibility. Plant, Cell and Environment, 2008, 31, 752-768.	2.8	66
580	Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between <i>Arabidopsis thaliana</i> accessions of widely varying freezing tolerance. Plant, Cell and Environment, 2008, 31, 813-827.	2.8	142
581	Functional characterization of two cold shock domain proteins from <i>Oryza sativa</i> . Plant, Cell and Environment, 2008, 31, 995-1006.	2.8	89
582	<i>Rhododendron catawbiense</i> plasma membrane intrinsic proteins are aquaporins, and their overâ€expression compromises constitutive freezing tolerance and cold acclimation ability of transgenic <i> Arabidonsis</i>	2.8	57

ARTICLE IF CITATIONS # Stressâ€induced expression of an activated form of AtbZIP17 provides protection from salt stress in 583 2.8 116 <i>Arabidopsis</i>. Plant, Cell and Environment, 2008, 31, 1735-1743. A role for <i>SENSITIVE TO FREEZING2</i> in protecting chloroplasts against freezeâ€induced damage in 584 2.8 79 Arabidopsis. Plant Journal, 2008, 55, 734-745. A novel role for oleosins in freezing tolerance of oilseeds in <i>Arabidopsis thaliana</i>. Plant 585 2.8 184 Journal, 2008, 55, 798-809. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC 586 1.2 Genomics, 2008, 9, 118. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to 587 1.2 44 low temperature. BMC Genomics, 2008, 9, 434. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biology, 2008, 8, 105. 588 1.6 84 Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt 589 1.6 69 stresses based on cDNA microarray analysis. BMC Plant Biology, 2008, 8, 11. Stress regulated members of the plant organic cation transporter family are localized to the 590 0.6 29 vacuolar membrane. BMC Research Notes, 2008, 1, 43. Cis-regulatory element-based genome-wide identification of DREB1/CBF targets in Arabidopsis. 591 1.8 3 Progress in Natural Science: Materials International, 2008, 18, 579-583. High altitude plants, chemistry of acclimation and adaptation. Studies in Natural Products Chemistry, 0.8 2008, 34, 883-982. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation 593 1.9 125 responses in Arabidopsis leaves. Plant Methods, 2008, 4, 12. Molecular and Physiological Changes in Maize (<i>Zea mays</i>) Induced by Exogenous NAA, ABA and 594 0.0 38 MeJa during Cold Stress. Annales Botanici Fennici, 2008, 45, 173-185. 595 Plant Water Relations. , 2008, , 163-223. 69 Cryopreservation of Phytodiversity: A Critical Appraisal of Theory & amp; Practice. Critical Reviews in 2.7 224 Plant Sciences, 2008, 27, 141-219 Integration of Signaling in Antioxidant Defenses. Advances in Photosynthesis and Respiration, 2008, , 597 1.0 8 223-239. Cryopreservation Theory., 2008, , 15-32. 69 Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions 599 1.5475 using a Tiling Array. Plant and Cell Physiology, 2008, 49, 1135-1149. Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from 1.6 cotton (Gossypium hirsutum). Journal of Plant Physiology, 2008, 165, 214-223.

#	Article	IF	CITATIONS
601	Increased freezing tolerance in an ABA-hypersensitive mutant of common wheat. Journal of Plant Physiology, 2008, 165, 224-232.	1.6	35
602	Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat. Journal of Plant Physiology, 2008, 165, 462-467.	1.6	44
603	Effect of ABA-β-d-glucopyranosyl ester and activity of ABA-β-d-glucosidase in Arabidopsis thaliana. Journal of Plant Physiology, 2008, 165, 788-790.	1.6	11
604	Temperature tolerances for stems and roots of two cultivated cacti, Nopalea cochenillifera and Opuntia robusta: Acclimation, light, and drought. Journal of Arid Environments, 2008, 72, 633-642.	1.2	17
605	Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon. Scientia Horticulturae, 2008, 118, 200-205.	1.7	51
606	Functionality of a class I beta-1,3-glucanase from skin of table grapes berries. Plant Science, 2008, 174, 641-648.	1.7	20
607	Isolation of cDNAs for hardening-induced genes from Chlorella vulgaris by suppression subtractive hybridization. Plant Science, 2008, 175, 238-246.	1.7	22
608	Expression profiling of the genes induced by Na2CO3 and NaCl stresses in leaves and roots of Leymus chinensis. Plant Science, 2008, 175, 784-792.	1.7	53
609	ABA level, proline and phenolic concentration, and PAL activity induced during cold acclimation in androgenic Festulolium forms with contrasting resistance to frost and pink snow mould (Microdochium nivale). Physiological and Molecular Plant Pathology, 2008, 73, 126-132.	1.3	30
610	Study of faba bean (Vicia faba L.) winter-hardiness and development of screening methods. Field Crops Research, 2008, 106, 60-67.	2.3	59
611	Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochemical and Biophysical Research Communications, 2008, 368, 515-521.	1.0	209
612	Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 °C in different Arabidopsis thaliana accessions. Cryobiology, 2008, 57, 104-112.	0.3	41
613	Structure and Functional Analysis of Wheat ICE (Inducer of CBF Expression) Genes. Plant and Cell Physiology, 2008, 49, 1237-1249.	1.5	124
614	Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L) during an extended low temperature acclimation regimen. Journal of Experimental Botany, 2008, 59, 2393-2402.	2.4	79
615	Abiotic Stress. Biotechnology in Agriculture and Forestry, 2008, , 337-355.	0.2	3
616	Function of Jasmonate in Response and Tolerance of Arabidopsis to Thrip Feeding. Plant and Cell Physiology, 2008, 49, 68-80.	1.5	108
617	The 2007 Eastern US Spring Freeze: Increased Cold Damage in a Warming World?. BioScience, 2008, 58, 253-262.	2.2	506
618	Differential Degradation of Extraplastidic and Plastidic Lipids during Freezing and Post-freezing Recovery in Arabidopsis thaliana. Journal of Biological Chemistry, 2008, 283, 461-468.	1.6	139

#	Article	IF	CITATIONS
619	Physiological Response of Different Croftonweed (Eupatorium Adenophorum) Populations to Low Temperature. Weed Science, 2008, 56, 196-202.	0.8	37
620	Characterization of Cold-Responsive Extracellular Chitinase in Bromegrass Cell Cultures and Its Relationship to Antifreeze Activity. Plant Physiology, 2008, 147, 391-401.	2.3	61
621	Integration of Metabolomic and Proteomic Phenotypes. Molecular and Cellular Proteomics, 2008, 7, 1725-1736.	2.5	155
622	<i>Arabidopsis</i> DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress–Responsive Gene Expression. Plant Cell, 2008, 20, 1693-1707.	3.1	477
623	Mapping of Quantitative Trait Loci Associated with Cold Tolerance at the Post-Germination Stage in Rice. Biotechnology and Biotechnological Equipment, 2008, 22, 536-540.	0.5	4
624	Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. Journal of Experimental Botany, 2008, 60, 339-349.	2.4	191
625	Transcriptional profiles of the annual growth cycle in Populus deltoides. Tree Physiology, 2008, 28, 321-329.	1.4	49
626	Functional Identification of Arabidopsis Stress Regulatory Genes Using the Controlled cDNA Overexpression System Â. Plant Physiology, 2008, 147, 528-542.	2.3	117
627	The Development of Protein Microarrays and Their Applications in DNA–Protein and Protein–Protein Interaction Analyses of Arabidopsis Transcription Factors. Molecular Plant, 2008, 1, 27-41.	3.9	78
628	Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). Journal of Experimental Botany, 2008, 59, 4095-4107.	2.4	219
629	Transgenic <i>Arabidopsis</i> Plants Expressing the Type 1 Inositol 5-Phosphatase Exhibit Increased Drought Tolerance and Altered Abscisic Acid Signaling. Plant Cell, 2008, 20, 2876-2893.	3.1	146
630	Molecular analyses of a dehydration-related gene from the DREB family in durum, wheat and triticale. , 2008, , 287-295.		3
631	Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. Journal of Experimental Botany, 2008, 59, 891-905.	2.4	108
632	Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. Tree Physiology, 2008, 29, 87-98.	1.4	127
633	The Molecular Networks of Abiotic Stress Signaling. , 0, , 388-416.		2
634	Involvement of CBF Transcription Factors in Winter Hardiness in Birch Â. Plant Physiology, 2008, 147, 1199-1211.	2.3	103
635	Relaxed Selection on the CBF/DREB1 Regulatory Genes and Reduced Freezing Tolerance in the Southern Range of Arabidopsis thaliana. Molecular Biology and Evolution, 2008, 25, 2547-2555.	3.5	60
636	Comparative Genomic Sequence and Expression Analyses of <i>Medicago truncatula</i> and Alfalfa Subspecies <i>falcata COLD</i> - <i>ACCLIMATION-SPECIFIC</i> Genes A Â. Plant Physiology, 2008, 146, 1242-1254.	2.3	95
#	Article	IF	CITATIONS
-----	---	-------------	---------------
637	Disruption of the Arabidopsis Circadian Clock Is Responsible for Extensive Variation in the Cold-Responsive Transcriptome Â. Plant Physiology, 2008, 147, 263-279.	2.3	234
638	Overexpression of the Arabidopsis 10-Kilodalton Acyl-Coenzyme A-Binding Protein ACBP6 Enhances Freezing Tolerance. Plant Physiology, 2008, 148, 304-315.	2.3	146
639	Low temperature acclimation mediated by ethanol production is essential for chilling tolerance in rice roots. Plant Signaling and Behavior, 2008, 3, 202-203.	1.2	11
640	The Cold-Inducible CBF1 Factor–Dependent Signaling Pathway Modulates the Accumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism. Plant Cell, 2008, 20, 2117-2129.	3.1	658
641	Molecular cloning, bioinformatics, and expression profiling of a dehydration-responsive element-binding-2 (DREB2) homologue from <i>Festuca arundinacea</i> , <i>FapDREB2</i> , with high drought tolerance. Journal of Horticultural Science and Biotechnology, 2008, 83, 199-206.	0.9	1
643	Transcripts Associated with Nonâ€Acclimated Freezing Response in Two Barley Cultivars. Plant Genome, 2008, 1, .	1.6	10
644	Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnology, 2009, 26, 125-134.	0.5	86
645	Improved Cold-resistant Performance in Transgenic Grape (Vitis vinifera L.) Overexpressing Cold-inducible Transcription Factors AtDREB1b. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 35-39.	0.5	42
646	Multilocus Patterns of Nucleotide Diversity and Divergence Reveal Positive Selection at Candidate Genes Related to Cold Hardiness in Coastal Douglas Fir (<i>Pseudotsuga menziesii</i> var.) Tj ETQq0 0 0 rgBT /C)verløck 1() T∮150 417 T
647	Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Annals of Botany, 2009, 104, 345-356.	1.4	99
648	Crosstalk between Cold Response and Flowering in <i>Arabidopsis</i> Is Mediated through the Flowering-Time Gene <i>SOC1</i> and Its Upstream Negative Regulator <i>FLC</i> . Plant Cell, 2009, 21, 3185-3197.	3.1	229
649	Enhanced Tolerance to Chilling Stress in <i>OsMYB3R-2</i> Transgenic Rice Is Mediated by Alteration in Cell Cycle and Ectopic Expression of Stress Genes Â. Plant Physiology, 2009, 150, 244-256.	2.3	277
650	Shoot-Specific Down-Regulation of Protein Farnesyltransferase (α-Subunit) for Yield Protection against Drought in Canola. Molecular Plant, 2009, 2, 191-200.	3.9	116
651	Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. Journal of Experimental Botany, 2009, 60, 3595-3609.	2.4	107
652	The Short-Rooted Phenotype of the <i>brevis radix</i> Mutant Partly Reflects Root Abscisic Acid Hypersensitivity Â. Plant Physiology, 2009, 149, 1917-1928.	2.3	63
653	Temperature-regulation of plant architecture. Plant Signaling and Behavior, 2009, 4, 577-579.	1.2	99
654	Rice transcription factorAP37involved in grain yield increase under drought stress. Plant Signaling and Behavior, 2009, 4, 735-736.	1.2	20
655	Extracellular freezing-induced mechanical stress and surface area regulation on the plasma membrane in cold-acclimated plant cells. Plant Signaling and Behavior, 2009, 4, 231-233.	1.2	22

#	Article	IF	CITATIONS
656	Phenotypic Plasticity in Photosynthetic Temperature Acclimation among Crop Species with Different Cold Tolerances Â. Plant Physiology, 2009, 152, 388-399.	2.3	155
657	The Phytochrome-Interacting Factor PIF7 Negatively Regulates <i>DREB1</i> Expression under Circadian Control in Arabidopsis. Plant Physiology, 2009, 151, 2046-2057.	2.3	181
658	A Focus on Natural Variation for Abiotic Constraints Response in the Model Species Arabidopsis thaliana. International Journal of Molecular Sciences, 2009, 10, 3547-3582.	1.8	29
659	Disruption of Arabidopsis CHY1 Reveals an Important Role of Metabolic Status in Plant Cold Stress Signaling. Molecular Plant, 2009, 2, 59-72.	3.9	79
660	Cold resistance in plants: A mystery unresolved. Electronic Journal of Biotechnology, 2009, 12, .	1.2	42
661	Variation in Dehydration Tolerance, ABA Sensitivity and Related Gene Expression Patterns in D-Genome Progenitor and Synthetic Hexaploid Wheat Lines. International Journal of Molecular Sciences, 2009, 10, 2733-2751.	1.8	43
662	Association Genetics of Coastal Douglas Fir (<i>Pseudotsuga menziesii</i> var. <i>menziesii</i> ,) Tj ETQq0 0 0 r	gB <u>T</u> /Overl 1.2	ock 10 Tf 50 193
663	Roles for <i>Arabidopsis</i> CAMTA Transcription Factors in Cold-Regulated Gene Expression and Freezing Tolerance A. Plant Cell, 2009, 21, 972-984.	3.1	587
664	<i>Psychrobacter arcticus</i> 273-4 Uses Resource Efficiency and Molecular Motion Adaptations for Subzero Temperature Growth. Journal of Bacteriology, 2009, 191, 2340-2352.	1.0	104
665	Calcium-Dependent Freezing Tolerance in <i>Arabidopsis</i> Involves Membrane Resealing via Synaptotagmin SYT1. Plant Cell, 2009, 20, 3389-3404.	3.1	139
666	Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 2009, 12, 133-139.	3.5	984
667	From freezing to scorching, transcriptional responses to temperature variations in plants. Current Opinion in Plant Biology, 2009, 12, 568-573.	3.5	113
668	Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biology, 2009, 9, 121.	1.6	38
669	Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. European Journal of Agronomy, 2009, 31, 61-68.	1.9	65
670	Quantitative expression analysis of selected low temperature-induced genes in autumn-seeded wheat (Triticum aestivum L.) reflects changes in soil temperature. Environmental and Experimental Botany, 2009, 66, 46-53.	2.0	14
673	Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture, 2009, 89, 555-573.	1.7	316
674	The response of phenylalanine ammoniaâ€lyase, polyphenol oxidase and phenols to cold stress in the olive tree (<i>Olea europaea</i> L. cv. Picual). Journal of the Science of Food and Agriculture, 2009, 89, 1565-1573.	1.7	82

675Functional roles of the pepper antimicrobial protein gene, CaAMP1, in abscisic acid signaling, and salt1.635and drought tolerance in Arabidopsis. Planta, 2009, 229, 383-391.1.635

		PORT	
# 676	ARTICLE LongSAGE analysis of the early response to cold stress in Arabidopsis leaf. Planta, 2009, 229, 1181-1200.	IF 1.6	CITATIONS 27
677	Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta, 2009, 230, 135-147.	1.6	119
678	Molecular characterization of stress-inducible GmNAC genes in soybean. Molecular Genetics and Genomics, 2009, 281, 647-664.	1.0	138
679	Post-acclimation transcriptome adjustment is a major factor in freezing tolerance of winter wheat. Functional and Integrative Genomics, 2009, 9, 513-523.	1.4	29
680	Functional genomics using RIKEN Arabidopsis thaliana full-length cDNAs. Journal of Plant Research, 2009, 122, 355-366.	1.2	22
681	DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. Journal of Plant Research, 2009, 122, 633-643.	1.2	154
682	Ectopic Expression of a Cold-Responsive OsAsr1 cDNA Gives Enhanced Cold Tolerance in Transgenic Rice Plants. Molecules and Cells, 2009, 27, 449-458.	1.0	71
683	Effect of chilling on photosynthesis and antioxidant enzymes in Hevea brasiliensis Muell. Arg Trees - Structure and Function, 2009, 23, 863-874.	0.9	32
684	Superoxide dismutase: an all-purpose gene for agri-biotechnology. Molecular Breeding, 2009, 24, 103-115.	1.0	23
685	Identification and characterization of two chrysanthemum (DendronthemaÂ×Âmoriforlium) DREB genes, belonging to the AP2/EREBP family. Molecular Biology Reports, 2009, 36, 71-81.	1.0	41
686	Characterisation of two cold induced dehydrin genes from Cichorium intybus L Molecular Biology Reports, 2009, 36, 1995-2001.	1.0	13
687	A ThCAP gene from Tamarix hispida confers cold tolerance in transgenic Populus (P. davidianaÂ×ÂP.) Tj ETQq1	1	4 rgBT /Ove
688	The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars. Biologia Plantarum, 2009, 53, 257-262.	1.9	57
689	Isolation and Analysis of Cold Stress Inducible Genes in Zea mays by Suppression Subtractive Hybridization and cDNA Macroarray. Plant Molecular Biology Reporter, 2009, 27, 38-49.	1.0	12
690	UVH6, a Plant Homolog of the Human/Yeast TFIIH Transcription Factor Subunit XPD/RAD3, Regulates Cold-stress Genes in Arabidopsis thaliana. Plant Molecular Biology Reporter, 2009, 27, 217-228.	1.0	4
691	Identification of Genes Induced in Response to Low-Temperature Treatment in Tea Leaves. Plant Molecular Biology Reporter, 2009, 27, 257-265.	1.0	44
692	Characterization of a Midwinter-Expressed Dehydrin (DHN) Gene from Apple Trees (Malus domestica). Plant Molecular Biology Reporter, 2009, 27, 476-487.	1.0	24
693	Cold tolerance at the early growth stage in wild and cultivated rice. Euphytica, 2009, 165, 459-470.	0.6	78

#	Article	IF	CITATIONS
694	Role of cytokinin and salicylic acid in plant growth at low temperatures. Plant Growth Regulation, 2009, 57, 211-221.	1.8	51
695	Development and functional annotation of an 11,303-EST collection from Eucalyptus for studies of cold tolerance. Tree Genetics and Genomes, 2009, 5, 317-327.	0.6	29
696	Intraspecfic variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp. petraea. Metabolomics, 2009, 5, 138-149.	1.4	55
697	Environmental metabolomics: a critical review and future perspectives. Metabolomics, 2009, 5, 3-21.	1.4	656
698	Promotive effects of alginate-derived oligosaccharides on the inducing drought resistance of tomato. Journal of Ocean University of China, 2009, 8, 303-311.	0.6	30
699	Combinatorial Interactions of Two cis-Acting Elements, AT-Rich Regions and HSEs, in the Expression of Tomato Lehsp23.8 upon Heat and Non-Heat Stresses. Journal of Plant Biology, 2009, 52, 560-568.	0.9	13
700	CbCOR15, A Cold-Regulated Gene from Alpine Chorispora bungeana, Confers Cold Tolerance in Transgenic Tobacco. Journal of Plant Biology, 2009, 52, 593-601.	0.9	12
701	A novel major quantitative trait locus controlling seed development at low temperature in soybean (Clycine max). Theoretical and Applied Genetics, 2009, 118, 1477-1488.	1.8	39
702	Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theoretical and Applied Genetics, 2009, 118, 1561-1571.	1.8	68
703	Transcriptomic analysis of cold response in tomato fruits identifies dehydrin as a marker of cold stress. Journal of Applied Genetics, 2009, 50, 311-319.	1.0	61
704	Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports, 2009, 28, 21-30.	2.8	459
705	GMCHI, cloned from soybean [Clycine max (L.) Meer.], enhances survival in transgenic Arabidopsis under abiotic stress. Plant Cell Reports, 2009, 28, 145-153.	2.8	22
706	Arabidopsis <i>thaliana</i> as a model organism in systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 372-379.	6.6	35
707	Proteomic analysis of the cold stress response in the moss, <i>Physcomitrella patens</i> . Proteomics, 2009, 9, 4529-4538.	1.3	68
708	Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass <i>Deschampsia antarctica</i> E. Desv Plant, Cell and Environment, 2009, 32, 336-348.	2.8	69
709	DNA binding of citrus dehydrin promoted by zinc ion. Plant, Cell and Environment, 2009, 32, 532-541.	2.8	108
710	Identification of SFR6, a key component in cold acclimation acting postâ€ŧranslationally on CBF function. Plant Journal, 2009, 58, 97-108.	2.8	96
711	Stressâ€induced changes in the <i>Arabidopsis thaliana</i> transcriptome analyzed using wholeâ€genome tiling arrays. Plant Journal, 2009, 58, 1068-1082.	2.8	273

#	Article	IF	CITATIONS
712	Histone occupancyâ€dependent and â€independent removal of H3K27 trimethylation at coldâ€responsive genes in Arabidopsis. Plant Journal, 2009, 60, 112-121.	2.8	160
713	A moderate decrease in temperature induces <i>COR15a</i> expression through the CBF signaling cascade and enhances freezing tolerance. Plant Journal, 2009, 60, 340-349.	2.8	54
714	TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO Journal, 2009, 28, 3745-3757.	3.5	298
715	Differential expression of the CBF pathway and cell cycleâ€related genes in <i>Arabidopsis</i> accessions in response to chronic lowâ€temperature exposure. Plant Biology, 2009, 11, 273-283.	1.8	18
716	Overexpression of theCBF2transcriptional activator inArabidopsissuppresses the responsiveness of leaf tissue to the stress hormone ethylene. Plant Biology, 2009, 12, 630-8.	1.8	19
717	Differential Physioâ€Biochemical Responses to Cold Stress of Coldâ€Tolerant and Nonâ€Tolerant Grapes (<i>Vitis</i> L.) from China. Journal of Agronomy and Crop Science, 2010, 196, 212-219.	1.7	35
718	Changes in abscisic acid, salicylic acid and phenylpropanoid concentrations during cold acclimation of androgenic forms of Festulolium (<i>Festuca pratensis</i> â€f×â€f <i>Lolium multiflorum</i>) in relation to resistance to pink snow mould (<i>Microdochium nivale</i>). Plant Breeding, 2009, 128, 397-403.	1.0	27
719	Molecular characterization of <i>ThIPK2</i> , an inositol polyphosphate kinase gene homolog from <i>Thellungiella halophila</i> , and its heterologous expression to improve abiotic stress tolerance in <i>Brassica napus</i> . Physiologia Plantarum, 2009, 136, 407-425.	2.6	26
720	Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 2009, 47, 1-8.	2.8	754
721	Promoters and Transcription Factors in Abiotic Stress-Responsive Gene Expression. , 2009, , 199-216.		5
722	Transgenic plants tolerant to abiotic stresses. Cytology and Genetics, 2009, 43, 132-149.	0.2	19
723	Influence of temperature on fractional composition of proteins and respiration of germinating seeds of Gmelin and Siberian larch. Contemporary Problems of Ecology, 2009, 2, 611-619.	0.3	0
724	The influence of abiotic stresses on expression of zinc finger protein gene in rice. Russian Journal of Plant Physiology, 2009, 56, 695-701.	0.5	8
725	Expression of WRKY transcription factor and stress protein genes in wheat plants during cold hardening and ABA treatment. Russian Journal of Plant Physiology, 2009, 56, 702-708.	0.5	22
726	Characterization of an Antifungal and Cryoprotective Class I Chitinase from Table Grape Berries (<i>Vitis vinifera</i> Cv. Cardinal). Journal of Agricultural and Food Chemistry, 2009, 57, 8893-8900.	2.4	22
727	Overexpression of the Transcription Factor <i>AP37</i> in Rice Improves Grain Yield under Drought Conditions Â. Plant Physiology, 2009, 150, 1368-1379.	2.3	311
728	A Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat. Molecular and Cellular Proteomics, 2009, 8, 2676-2686.	2.5	241
729	Freezing tolerance of winter wheat plants frozen in saturated soil. Field Crops Research, 2009, 113, 335-341.	2.3	23

#	Article	IF	Citations
730	Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochemical and Biophysical Research Communications, 2009, 378, 483-487.	1.0	118
731	A cotton gene encodes a tonoplast aquaporin that is involved in cell tolerance to cold stress. Gene, 2009, 438, 26-32.	1.0	51
732	Class II chitinase accumulated in the bark tissue involves with the cold hardiness of shoot stems in highbush blueberry (Vaccinium corymbosum L.). Scientia Horticulturae, 2009, 120, 230-236.	1.7	21
733	The use of Group 3 LEA proteins as fusion partners in facilitating recombinant expression of recalcitrant proteins in E. coli. Protein Expression and Purification, 2009, 67, 15-22.	0.6	17
734	Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Science, 2009, 176, 352-359.	1.7	101
735	Isolation and sequence analysis of DREB2A homologues in three cereal and two legume species. Plant Science, 2009, 177, 460-467.	1.7	33
736	Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species: A comparison of photoprotective strategies in overwintering plants. Plant Science, 2009, 177, 607-617.	1.7	45
737	Identification of genes associated with cold acclimation in perennial ryegrass. Journal of Plant Physiology, 2009, 166, 1436-1445.	1.6	46
738	Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba). Journal of Plant Physiology, 2009, 166, 1544-1556.	1.6	68
739	Allopolyploidization reduces alternative splicing efficiency for transcripts of the wheat <i>DREB2</i> homolog, <i>WDREB2</i> . Genome, 2009, 52, 100-105.	0.9	34
740	Cold hardiness of olive (<i>Olea europaea</i> L.) cultivars in cold-acclimated and non-acclimated stages: seasonal alteration of soluble sugars and phospholipids. Journal of Agricultural Science, 2009, 147, 459-467.	0.6	23
741	Effects of Light and Temperature on Antioxidant Activity and Peroxidase Expression at Different Growth Stages of the Chinese Red Radish. Journal of the Korean Society for Applied Biological Chemistry, 2009, 52, 151-156.	0.9	2
742	Transgenic Expression of an Ethylene Responsive Element Binding Protein of Capsicum annuum (CaEREBP-C4) in Tobacco Confers Cold Tolerance. Journal of the Korean Society for Applied Biological Chemistry, 2009, 52, 405-411.	0.9	3
743	DREB Regulons in Abiotic-Stress-Responsive Gene Expression in Plants. , 2009, , 15-28.		18
744	Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany, 2009, 103, 609-623.	1.4	388
745	Nitric Reductase-Dependent Nitric Oxide Production Is Involved in Cold Acclimation and Freezing Tolerance in Arabidopsis Â. Plant Physiology, 2009, 151, 755-767.	2.3	464
746	Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany, 2009, 60, 3781-3796.	2.4	503
747	Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 2009, 65, 35-47.	2.0	336

#	Article	IF	CITATIONS
748	<i>ChDREB1</i> enhances abiotic stress tolerance, delays GAâ€mediated development and represses cytokinin signalling in transgenic Arabidopsis. Plant, Cell and Environment, 2009, 32, 1132-1145.	2.8	71
749	Metabolic Pathways Involved in Cold Acclimation Identified by Integrated Analysis of Metabolites and Transcripts Regulated by DREB1A and DREB2A Â Â. Plant Physiology, 2009, 150, 1972-1980.	2.3	315
750	Chapter 2 Cold Signalling and Cold Acclimation in Plants. Advances in Botanical Research, 2009, 49, 35-150.	0.5	445
751	Frost tolerance and ice formation in Pinus radiata needles: ice management by the endodermis and transfusion tissues. Functional Plant Biology, 2009, 36, 180.	1.1	29
752	Development of Droughtâ€Tolerant Canola (<i>Brassica napus</i> L.) through Genetic Modulation of ABAâ€mediated Stomatal Responses. Crop Science, 2009, 49, 1539-1554.	0.8	67
753	Effects of Acute Low-Temperature Events on Development of <i>Erysiphe necator </i> and Susceptibility of <i>Vitis vinifera </i> . Phytopathology, 2010, 100, 1240-1249.	1.1	37
754	Oil-Body-Membrane Proteins and Their Physiological Functions in Plants. Biological and Pharmaceutical Bulletin, 2010, 33, 360-363.	0.6	102
755	Profiling of mitochondrial transcriptome in germinating wheat embryos and seedlings subjected to cold, salinity and osmotic stresses. Genes and Genetic Systems, 2010, 85, 31-42.	0.2	24
756	The role of carbohydrates in the responses of chilling-sensitive plants to short- and long-term low-temperature treatments. Russian Journal of Plant Physiology, 2010, 57, 641-647.	0.5	11
757	Wintersweet accumulates apoplastic chitinase with a dual role in petals. Russian Journal of Plant Physiology, 2010, 57, 670-675.	0.5	1
758	Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development, 2010, 30, 515-527.	2.2	385
759	Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. Advances in Enzyme Regulation, 2010, 50, 324-337.	2.9	130
760	Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theoretical and Applied Genetics, 2010, 120, 985-995.	1.8	143
761	Identification of quantitative trait loci for ABA responsiveness at the seedling stage associated with ABA-regulated gene expression in common wheat. Theoretical and Applied Genetics, 2010, 121, 629-641.	1.8	37
762	Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Reports, 2010, 29, 977-986.	2.8	111
763	Effects of cold stress on alterations of physiochemical and chemical properties of rice polysaccharides. Carbohydrate Polymers, 2010, 80, 373-376.	5.1	7
764	Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. Planta, 2010, 232, 155-164.	1.6	61
765	Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics, 2010, 283, 185-196.	1.0	362

#	Article	IF	CITATIONS
766	Regulation of gene expression by chromosome 5A during cold hardening in wheat. Molecular Genetics and Genomics, 2010, 283, 351-363.	1.0	31
767	Cell physiology of plants growing in cold environments. Protoplasma, 2010, 244, 53-73.	1.0	70
768	Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury. Amino Acids, 2010, 39, 181-194.	1.2	82
769	Using Specialized cDNA Microarrays to Analyze Arabidopsis Gene Expression Under Cold Stress. Journal of Plant Biology, 2010, 53, 240-250.	0.9	4
770	Analysis of the Cold-Responsive Transcriptome in the Mature Pollen of Arabidopsis. Journal of Plant Biology, 2010, 53, 400-416.	0.9	17
771	Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat. Journal of Biosciences, 2010, 35, 379-388.	0.5	32
772	Molecular characterization and functional analysis of elite genes in wheat and its related species. Journal of Genetics, 2010, 89, 539-554.	0.4	1
773	Isolation of cold stress-responsive genes from Lepidium latifolium by suppressive subtraction hybridization. Acta Physiologiae Plantarum, 2010, 32, 205-210.	1.0	36
774	Molecular cloning, characterization and expression analysis of PtrHOS1, a novel gene of cold responses from trifoliate orange [Poncirus trifoliata (L.) Raf.]. Acta Physiologiae Plantarum, 2010, 32, 271-279.	1.0	11
775	Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biologia Plantarum, 2010, 54, 201-212.	1.9	387
776	Analysis of the role of mitochondrial and endoplasmic reticulum localized small heat shock proteins in tomato. Biologia Plantarum, 2010, 54, 715-719.	1.9	10
777	Evaluation of abiotic stress tolerance of genetically modified potatoes (Solanum tuberosum cv.) Tj ETQq1 1 0.78	4314 rgBT 1.0	-/Qyerlock 1
778	Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Molecular Breeding, 2010, 26, 455-465.	1.0	55
779	GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean (Glycine max). Molecular Biology Reports, 2010, 37, 685-693.	1.0	30
780	Characterization of a new dehydration responsive element binding factor in central arctic cowberry. Plant Cell, Tissue and Organ Culture, 2010, 101, 211-219.	1.2	23
781	Exposure to subfreezing temperature and a freeze-thaw cycle affect freezing tolerance of winter wheat in saturated soil. Plant and Soil, 2010, 332, 289-297.	1.8	18
782	Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics, 2010, 11, 435.	1.2	158
783	Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var.) Tj ETQq1 1 0.78431 stress. BMC Plant Biology, 2010, 10, 181.	4 rgBT /Ov 1.6	erlock 10 Tf 22

#	Article	IF	CITATIONS
784	Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biology, 2010, 10, 24.	1.6	90
785	The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biology, 2010, 10, 47.	1.6	135
786	Cold stress effects on reproductive development in grain crops: An overview. Environmental and Experimental Botany, 2010, 67, 429-443.	2.0	491
787	Transcriptomic analysis of chilling stress in Phaseolus spp Environmental and Experimental Botany, 2010, 69, 95-104.	2.0	3
788	How plants sense temperature. Environmental and Experimental Botany, 2010, 69, 225-232.	2.0	400
789	Metabolic response to cold and freezing of Osteospermum ecklonis overexpressing Osmyb4. Plant Physiology and Biochemistry, 2010, 48, 764-771.	2.8	40
790	Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. Journal of Integrative Plant Biology, 2010, 52, 360-376.	4.1	781
791	Nextâ€generation sequencing for comparative transcriptomics of perennial ryegrass (<i>Lolium) Tj ETQq1 1 0.78 Science, 2010, 56, 230-239.</i>	84314 rgBT 0.6	Г /Overlock 1 8
792	A mutant CHS3 protein with TIRâ€NB‣RR‣IM domains modulates growth, cell death and freezing tolerance in a temperatureâ€dependent manner in <i>Arabidopsis</i> . Plant Journal, 2010, 63, 283-296.	2.8	170
793	Gene expression in wheat leaves under local exposure of roots to a low temperature. Doklady Biological Sciences, 2010, 435, 438-440.	0.2	4
794	Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnology Journal, 2010, 8, 749-771.	4.1	251
795	Selection for freezing tolerance in St. Augustinegrass through somaclonal variation and germplasm evaluation. Plant Breeding, 2010, 129, 417.	1.0	10
796	Accumulation of WCS120 protein in wheat cultivars grown at 9°C or 17°C in relation to their winter survival. Plant Breeding, 2010, 129, 611-616.	1.0	34
797	Constitutive activation of stressâ€inducible genes in a <i>brassinosteroidâ€insensitive 1</i> (<i>bri1</i>) mutant results in higher tolerance to cold. Physiologia Plantarum, 2010, 138, 191-204.	2.6	72
798	Allelic variations at Dhn4 and Dhn7 are associated with frost tolerance in barley. Czech Journal of Genetics and Plant Breeding, 2010, 46, 149-158.	0.4	3
799	Expression Profiling and Bioinformatic Analyses of a Novel Cold Stress-Regulated and Chloroplast-Targeted Protein from Triticum aestivum and Aegilops Tauschii. International Journal of Biology, 2010, 2, .	0.1	0
800	Cold acclimation and low temperature resistance in cotton: Gossypium hirsutum phospholipase Dα isoforms are differentially regulated by temperature and light. Journal of Experimental Botany, 2010, 61, 2991-3002.	2.4	39
801	A Novel MYBS3-Dependent Pathway Confers Cold Tolerance in Rice Â. Plant Physiology, 2010, 153, 145-158.	2.3	254

#	Article	IF	CITATIONS
802	A Calcium/Calmodulin-regulated Member of the Receptor-like Kinase Family Confers Cold Tolerance in Plants. Journal of Biological Chemistry, 2010, 285, 7119-7126.	1.6	193
803	Endoplasmic reticulum-localized small heat shock protein that accumulates in mulberry tree (Morus) Tj ETQq1 1 30, 502-513.	0.784314 1.4	rgBT /Overic 6
804	Predicting Arabidopsis Freezing Tolerance and Heterosis in Freezing Tolerance from Metabolite Composition. Molecular Plant, 2010, 3, 224-235.	3.9	120
805	A Subset of Cytokinin Two-component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. Journal of Biological Chemistry, 2010, 285, 23371-23386.	1.6	315
806	Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. Journal of Experimental Botany, 2010, 61, 3901-3914.	2.4	166
807	Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. Journal of Experimental Botany, 2010, 61, 261-273.	2.4	95
808	HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. Journal of Experimental Botany, 2010, 61, 3305-3320.	2.4	30
809	Interplay between low-temperature pathways and light reduction. Plant Signaling and Behavior, 2010, 5, 820-825.	1.2	7
810	Depletion of the Membrane-Associated Acyl-Coenzyme A-Binding Protein ACBP1 Enhances the Ability of Cold Acclimation in Arabidopsis. Plant Physiology, 2010, 152, 1585-1597.	2.3	96
811	Freezing Tolerance in Plants Requires Lipid Remodeling at the Outer Chloroplast Membrane. Science, 2010, 330, 226-228.	6.0	422
812	Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Critical Reviews in Biotechnology, 2010, 30, 222-230.	5.1	114
813	Regulation of Freezing Tolerance and Flowering in Temperate Cereals: The <i>VRN-1</i> Connection Â. Plant Physiology, 2010, 153, 1846-1858.	2.3	162
814	The multifunctionality of dehydrins: An overview. Plant Signaling and Behavior, 2010, 5, 503-508.	1.2	127
815	Root-Specific Expression of <i>OsNAC10</i> Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions Â. Plant Physiology, 2010, 153, 185-197.	2.3	691
816	Saving the Bilayer. Science, 2010, 330, 185-186.	6.0	12
817	Use of a custom array to study differentially expressed genes during blood orange (Citrus sinensis L.) Tj ETQq1	1 0.784314 1.84314	rgBT /Over
818	The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas 68×Igri cross during cold acclimation. Journal of Plant Physiology, 2010, 167, 343-350.	1.6	19
819	Overexpression of Arabidopsis CBF1 gene in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. Journal of Plant Physiology, 2010, 167, 534-539.	1.6	32

#	Article	IF	CITATIONS
820	Potent cryoprotective activity of cold and CO2-regulated cherimoya (Annona cherimola) endochitinase. Journal of Plant Physiology, 2010, 167, 1119-1129.	1.6	11
821	Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2. Journal of Plant Physiology, 2010, 167, 1307-1315.	1.6	54
822	Acclimation to frost alters proteolytic response of wheat seedlings to drought. Journal of Plant Physiology, 2010, 167, 1321-1327.	1.6	15
823	The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene, 2010, 457, 1-12.	1.0	240
824	DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 454-462.	0.9	55
825	Interaction of two intrinsically disordered plant stress proteins (COR15A and COR15B) with lipid membranes in the dry state. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1812-1820.	1.4	95
826	A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco. Biochemical and Biophysical Research Communications, 2010, 394, 354-359.	1.0	54
827	Model legumes contribute to faba bean breeding. Field Crops Research, 2010, 115, 253-269.	2.3	64
828	Survival types of high mountain plants under extreme temperatures. Flora: Morphology, Distribution, Functional Ecology of Plants, 2010, 205, 3-18.	0.6	148
829	Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Scientia Horticulturae, 2010, 124, 29-33.	1.7	64
830	MicroRNAs with macro-effects on plant stress responses. Seminars in Cell and Developmental Biology, 2010, 21, 805-811.	2.3	240
831	Cold-responsive gene regulation during cold acclimation in plants. Plant Signaling and Behavior, 2010, 5, 948-952.	1.2	66
832	Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 2010, 61, 1959-1968.	2.4	646
833	Transgenic Plants for Abiotic Stress Resistance. , 2010, , 67-132.		90
834	Cold Acclimation Proteome Analysis Reveals Close Link between the Up-Regulation of Low-Temperature Associated Proteins and Vernalization Fulfillment. Journal of Proteome Research, 2010, 9, 5658-5667.	1.8	56
835	Molecular Basis of Plant Cold Acclimation: Insights Gained from Studying the CBF Cold Response Pathway. Plant Physiology, 2010, 154, 571-577.	2.3	638
836	Characterization and bioinformatics analysis of Dehydrin(DHN) gene in accelerating bud dormancy release during chilling treatment of tree peony (Paeonia suVruticosa). , 2011, , .		1
837	Phosphorylation of <i>Thellungiella salsuginea</i> Dehydrins TsDHN-1 and TsDHN-2 Facilitates Cation-Induced Conformational Changes and Actin Assembly. Biochemistry, 2011, 50, 9587-9604.	1.2	38

#	Article	IF	CITATIONS
838	Cloning of Cotton CBF Gene for Cold Tolerance and Its Expression in Transgenic Tobacco. Acta Agronomica Sinica, 2011, 37, 286-293.	0.3	10
839	Cold Stress Tolerance Mechanisms in Plants. , 2011, , 605-620.		18
840	Transcriptome Analysis of the Vernalization Response in Barley (Hordeum vulgare) Seedlings. PLoS ONE, 2011, 6, e17900.	1.1	49
841	Identification and Characterization of Genes Differentially Expressed in Cherimoya (<i>Annona) Tj ETQq1 1 0.784 Chemistry, 2011, 59, 13295-13299.</i>	314 rgBT 2.4	Overlock 10 11
842	CBF-dependent signaling pathway: A key responder to low temperature stress in plants. Critical Reviews in Biotechnology, 2011, 31, 186-192.	5.1	181
843	Use of Plant Growth Promoting Rhizobacteria in Horticultural Crops. , 2011, , 189-235.		16
844	CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7241-7246.	3.3	343
845	Bacteria in Agrobiology: Crop Ecosystems. , 2011, , .		35
846	Expression analysis in response to low temperature stress in blood oranges: Implication of the flavonoid biosynthetic pathway. Gene, 2011, 476, 1-9.	1.0	143
847	A poplar DRE-binding protein gene, PeDREB2L, is involved in regulation of defense response against abiotic stress. Gene, 2011, 483, 36-42.	1.0	26
848	Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid. Gene, 2011, 483, 49-53.	1.0	42
849	Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie, 2011, 93, 2048-2053.	1.3	254
850	Arabidopsis HDA6 is required for freezing tolerance. Biochemical and Biophysical Research Communications, 2011, 406, 414-419.	1.0	133
851	AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis. Biochemical and Biophysical Research Communications, 2011, 414, 135-141.	1.0	79
852	Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance. Journal of Plant Physiology, 2011, 168, 1271-1279.	1.6	48
853	The CBFs: Three arabidopsis transcription factors to cold acclimate. Plant Science, 2011, 180, 3-11.	1.7	219
854	Expression of dehydrins in wheat and barley under different temperatures. Plant Science, 2011, 180, 46-52.	1.7	33
855	Natural variation in the freezing tolerance of Arabidopsis thaliana: Effects of RNAi-induced CBF depletion and QTL localisation vary among accessions. Plant Science, 2011, 180, 12-23.	1.7	31

#	Article	IF	CITATIONS
856	Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Science, 2011, 180, 69-77.	1.7	119
857	Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling. Plant Science, 2011, 180, 78-85.	1.7	16
858	Integration of polyamines in the cold acclimation response. Plant Science, 2011, 180, 31-38.	1.7	140
859	Low temperature induced defence gene expression in winter wheat in relation to resistance to snow moulds and other wheat diseases. Plant Science, 2011, 180, 99-110.	1.7	46
860	Dormancy cycling at the shoot apical meristem: Transitioning between self-organization and self-arrest. Plant Science, 2011, 180, 120-131.	1.7	94
861	Barley DNA-binding methionine aminopeptidase, which changes the localization from the nucleus to the cytoplasm by low temperature, is involved in freezing tolerance. Plant Science, 2011, 180, 53-60.	1.7	13
862	A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.). Plant Science, 2011, 180, 86-98.	1.7	75
863	CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Science, 2011, 181, 57-64.	1.7	132
864	Abiotic stress and control of grain number in cereals. Plant Science, 2011, 181, 331-341.	1.7	293
865	Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance. Plant Science, 2011, 181, 405-411.	1.7	37
866	Galactoglycerolipid metabolism under stress: a time for remodeling. Trends in Plant Science, 2011, 16, 98-107.	4.3	172
867	Metabolic Changes During Cold Acclimation and Deacclimation in Five Bermudagrass Varieties: II. Cytokinin and Abscisic Acid Metabolism. Crop Science, 2011, 51, 847-853.	0.8	16
868	Overexpression of the CBF2 transcriptional Activator Enhances Oxidative Stress Tolerance in Arabidopsis Plants. International Journal of Biology, 2011, 3, .	0.1	0
869	Molecular and Genetic Analysis of Abiotic Stress Resistance of Forage Crops. , 0, , .		0
870	Low temperature and oxidative stress in cereals. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2011, 59, 169-189.	0.2	23
871	Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genetics and Molecular Research, 2011, 10, 3641-3656.	0.3	50
872	Differential Response of Wheat Cultivars to Components of the Freezing Process in Saturated Soil. Crop Science, 2011, 51, 69-74.	0.8	9
873	Sistemi ortofrutticoli sostenibili. Italian Journal of Agronomy, 2011, 6, 3.	0.4	0

#	Article	IF	CITATIONS
874	Trichostatin A Selectively Suppresses the Cold-Induced Transcription of the ZmDREB1 Gene in Maize. PLoS ONE, 2011, 6, e22132.	1.1	139
875	DAF-16 and Δ9 Desaturase Genes Promote Cold Tolerance in Long-Lived Caenorhabditis elegans age-1 Mutants. PLoS ONE, 2011, 6, e24550.	1.1	49
876	A Nucleotide Metabolite Controls Stress-Responsive Gene Expression and Plant Development. PLoS ONE, 2011, 6, e26661.	1.1	45
877	Regulatory role of exogenous salicylic acid in the response ofZoysia japonicaplants to freezing temperatures: a comparison with cold-acclimatisation. Journal of Horticultural Science and Biotechnology, 2011, 86, 277-283.	0.9	3
878	Engineering Cold Stress Tolerance in Crop Plants. Current Genomics, 2011, 12, 30-43.	0.7	487
879	Metabolic Changes During Cold Acclimation and Deacclimation in Five Bermudagrass Varieties. I. Proline, Total Amino Acid, Protein, and Dehydrin Expression. Crop Science, 2011, 51, 838-846.	0.8	40
881	Identification of chromosomes controlling abscisic acid responsiveness and transcript accumulation of Cor - Lea genes in common wheat seedlings. Functional Plant Biology, 2011, 38, 758.	1.1	7
882	Cloning and Expression Profile of an ERF Gene Isolated from Cold-Stressed Poplar Cells (Populus) Tj ETQq1 1 0.78	4314 rgBT 0.2	Dverlock 2
883	Overâ€expression of the <i>Arabidopsis CBF1</i> gene improves resistance of tomato leaves to low temperature under low irradiance. Plant Biology, 2011, 13, 362-367.	1.8	36
884	Cold stress contributes to aberrant cytokinesis during male meiosis I in a wheat thermosensitive genic male sterile line. Plant, Cell and Environment, 2011, 34, 389-405.	2.8	69
885	Identification of a homolog of <i>Arabidopsis</i> DSP4 (SEX4) in chestnut: its induction and accumulation in stem amyloplasts during winter or in response to the cold. Plant, Cell and Environment, 2011, 34, 1693-1704.	2.8	26
886	The low temperature response pathways for cold acclimation and vernalization are independent. Plant, Cell and Environment, 2011, 34, 1737-1748.	2.8	43
887	ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant Journal, 2011, 67, 269-279.	2.8	86
888	Highâ€density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant Journal, 2011, 67, 869-884.	2.8	251
889	Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. Molecular Ecology, 2011, 20, 1702-1716.	2.0	135
890	OsSFR6 is a functional rice orthologue of SENSITIVE TO FREEZINGâ€6 and can act as a regulator of <i>COR</i> gene expression, osmotic stress and freezing tolerance in Arabidopsis. New Phytologist, 2011, 191, 984-995.	3.5	29
891	Specific features of ABA-dependent gene expression in spring wheat during cold adaptation. Doklady Biological Sciences, 2011, 438, 165-167.	0.2	1
892	Carbon and Nitrogen Cycling in Snow-Covered Environments. Geography Compass, 2011, 5, 682-699.	1.5	177

#	Article	IF	CITATIONS
893	Identification and expression analysis of CBF/DREB1 and COR15 genes in mutants of Brassica oleracea var. botrytis with enhanced proline production and frost resistance. Plant Physiology and Biochemistry, 2011, 49, 1323-1332.	2.8	29
894	SCOF-1-expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress. Plant Physiology and Biochemistry, 2011, 49, 1436-1441.	2.8	35
895	The CBL–CIPK Network for Decoding Calcium Signals in Plants. Signaling and Communication in Plants, 2011, , 235-258.	0.5	8
896	Molecular characterization and roles of AP2 transcription factors on drought tolerance in plants. Frontiers of Agriculture in China, 2011, 5, 463-472.	0.2	3
897	Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russian Journal of Plant Physiology, 2011, 58, 157-163.	0.5	52
898	Expression patterns of ABA-dependent and ABA-independent genes during wheat cold adaptation. Russian Journal of Plant Physiology, 2011, 58, 1005-1010.	0.5	2
899	Genetic control of plant resistance to cold. Russian Journal of Genetics, 2011, 47, 646-661.	0.2	17
900	Characteristics of expression of temperature-regulated genes in winter and spring wheat plants during cold adaptation. Russian Agricultural Sciences, 2011, 37, 189-191.	0.1	1
901	Plant serine/arginineâ€rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdisciplinary Reviews RNA, 2011, 2, 875-889.	3.2	111
902	Effects of acclimation on chilling tolerance in Asian cultivated and wild rice. Euphytica, 2011, 181, 293-303.	0.6	9
903	Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regulation, 2011, 65, 109-118.	1.8	53
904	Expression profiles of PtrLOS2 encoding an enolase required for cold-responsive gene transcription from trifoliate orange. Biologia Plantarum, 2011, 55, 35-42.	1.9	7
905	An apoplastic chitinase CpCHT1 isolated from the corolla of wintersweet exhibits both antifreeze and antifungal activities. Biologia Plantarum, 2011, 55, 141-148.	1.9	22
906	Beyond osmolytes and transcription factors: drought tolerance in plants via protective proteins and aquaporins. Biologia Plantarum, 2011, 55, 401-413.	1.9	41
907	Inducible and constitutive expression of HvCBF4 in rice leads to differential gene expression and drought tolerance. Biologia Plantarum, 2011, 55, .	1.9	12
908	Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Molecular Biology, 2011, 75, 365-378.	2.0	225
909	Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance. Plant Molecular Biology, 2011, 75, 379-398.	2.0	19
910	Components of the Arabidopsis CBF Cold-Response Pathway Are Conserved in Non-heading Chinese Cabbage. Plant Molecular Biology Reporter, 2011, 29, 525-532.	1.0	40

	C	CITATION REPORT		
#	Article	1	IF	CITATIONS
911	Overexpression of a Wheat CCaMK Gene Reduces ABA Sensitivity of Arabidopsis thaliana During See Germination and Seedling Growth. Plant Molecular Biology Reporter, 2011, 29, 681-692.	d :	1.0	39
912	Spatial and Temporal Expression of Cold-responsive DEAD-box RNA Helicases Reveals their Functiona Roles During Embryogenesis in Arabidopsis thaliana. Plant Molecular Biology Reporter, 2011, 29, 761-768.	1	1.0	17

Differential expression of ferritin genes in response to abiotic stresses and hormones in pear (Pyrus) Tj ETQq0 0 0 rg BT /Overlock 10 Tf 5 $\frac{10}{13}$

914	A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell, Tissue and Organ Culture, 2011, 106, 115-125.	1.2	48
915	Identification and characterisation of candidate genes involved in chilling responses in maize (Zea) Tj ETQq0 0 C) rgBT/Ovo 1.2	erlock 10 Tf
916	Cold tolerance in cypress (Cupressus sempervirens L.): a physiological and molecular study. Tree Genetics and Genomes, 2011, 7, 79-90.	0.6	16
917	Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta, 2011, 233, 219-229.	1.6	232
918	Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta, 2011, 233, 749-762.	1.6	75
919	Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta, 2011, 234, 97-107.	1.6	266
920	Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta, 2011, 234, 331-345.	1.6	305
921	Evidence for a role of raffinose in stabilizing photosystem II during freeze–thaw cycles. Planta, 2011, 234, 477-486.	1.6	149
922	Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta, 2011, 234, 445-457.	1.6	78
923	Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Protoplasma, 2011, 248, 839-847.	1.0	52
924	Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Functional and Integrative Genomics, 2011, 11, 445-465.	1.4	96
925	A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress. Plant Cell Reports, 2011, 30, 463-471.	2.8	55
926	A thermal hysteresis-producing xylomannan glycolipid antifreeze associated with cold tolerance is found in diverse taxa. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2011, 181, 631-640.	0.7	60
927	Characterization and genetic analysis of a low-temperature-sensitive mutant, sy-2, in Capsicum chinense. Theoretical and Applied Genetics, 2011, 122, 459-470.	1.8	9
928	A stress-free walk from Arabidopsis to crops. Current Opinion in Biotechnology, 2011, 22, 281-286.	3.3	71

#	Article	IF	CITATIONS
929	Activities of photosystem II and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. Acta Physiologiae Plantarum, 2011, 33, 67-78.	1.0	65
930	Group 3 late embryogenesis abundant protein in Arabidopsis: structure, regulation, and function. Acta Physiologiae Plantarum, 2011, 33, 1063-1073.	1.0	16
931	Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnology Reports, 2011, 5, 61-69.	0.9	44
932	Feeding the extra billions: strategies to improve crops and enhance future food security. Plant Biotechnology Reports, 2011, 5, 107-120.	0.9	24
933	Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. BMC Plant Biology, 2011, 11, 146.	1.6	47
934	High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cerealeL.) genes involved in frost response. BMC Plant Biology, 2011, 11, 6.	1.6	55
936	Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis, 2011, 32, 1807-1818.	1.3	83
937	Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnology Progress, 2011, 27, 297-306.	1.3	199
938	The influence of temperature on plant development in a vernalization-requiring winter wheat: A 2-DE based proteomic investigation. Journal of Proteomics, 2011, 74, 643-659.	1.2	57
939	Plant proteome changes under abiotic stress — Contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 2011, 74, 1301-1322.	1.2	700
940	Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 2011, 72, 1219-1242.	1.4	108
941	Proteomics Analysis Reveals Post-Translational Mechanisms for Cold-Induced Metabolic Changes in Arabidopsis. Molecular Plant, 2011, 4, 361-374.	3.9	47
942	Relative effects of time for speciation and tropical niche conservatism on the latitudinal diversity gradient of phyllostomid bats. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2528-2536.	1.2	56
943	Induction of <i>BAP1</i> by a Moderate Decrease in Temperature Is Mediated by <i>ICE1</i> in Arabidopsis. Plant Physiology, 2011, 155, 580-588.	2.3	31
944	Control of Abscisic Acid Catabolism and Abscisic Acid Homeostasis Is Important for Reproductive Stage Stress Tolerance in Cereals1 Â Â. Plant Physiology, 2011, 156, 647-662.	2.3	233
946	<i>Cis</i> -regulatory code of stress-responsive transcription in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14992-14997.	3.3	186
947	Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression Â. Plant Cell, 2011, 23, 2010-2032.	3.1	624
948	Identification of chilling-responsive transcripts in peanut (Arachis hypogaea L.). Electronic Journal of Biotechnology, 2011, 14, .	1.2	11

#	Article	IF	CITATIONS
949	An Update on Biotechnological Approaches for Improving Abiotic Stress Tolerance in Tomato. Crop Science, 2011, 51, 2303-2324.	0.8	18
950	Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiological Genomics, 2012, 44, 764-777.	1.0	128
951	Overexpression of <i>poplar</i> wounding-inducible genes in <i>Arabidopsis</i> caused improved resistance against <i>Helicoverpa armigera</i> (HA¼bner) larvae. Breeding Science, 2012, 62, 288-291.	0.9	2
952	Understanding chilling responses in <i>Arabidopsis</i> seeds and their contribution to life history. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 291-297.	1.8	59
953	Metabolism and Growth in Arabidopsis Depend on the Daytime Temperature but Are Temperature-Compensated against Cool Nights. Plant Cell, 2012, 24, 2443-2469.	3.1	105
954	TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 2012, 63, 2933-2946.	2.4	310
955	Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress. Journal of Experimental Botany, 2012, 63, 293-304.	2.4	63
956	Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. Journal of Experimental Botany, 2012, 63, 4973-4982.	2.4	81
957	Water status and associated processes mark critical stages in pollen development and functioning. Annals of Botany, 2012, 109, 1201-1214.	1.4	137
958	Application of natural and synthetic polyamines as growth regulators to improve the freezing tolerance of winter wheat (Triticum aestivum L.). Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2012, 60, 1-10.	0.2	6
959	Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15054-15059.	3.3	282
960	Identification and expression analysis of cold-regulated genes inVitis amurensisRupr. cv. Zuoshan-1. Journal of Horticultural Science and Biotechnology, 2012, 87, 557-564.	0.9	1
961	The sensitive to freezing3 mutation of Arabidopsis thaliana is a cold-sensitive allele of homomeric acetyl-CoA carboxylase that results in cold-induced cuticle deficiencies. Journal of Experimental Botany, 2012, 63, 5289-5299.	2.4	29
962	Yield stability for cereals in a changing climate. Functional Plant Biology, 2012, 39, 539.	1.1	126
963	Variation in abscisic acid responsiveness of <i>Aegilops tauschii</i> and hexaploid wheat synthetics due to the D-genome diversity. Genes and Genetic Systems, 2012, 87, 9-18.	0.2	26
964	Intraspecies differences in cold hardiness, carbohydrate content and Â-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation. Tree Physiology, 2012, 32, 1533-1540.	1.4	67
965	DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. Journal of Genetics, 2012, 91, 385-395.	0.4	197
966	Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor. , 2012, , 261-315.		378

#	Article	IF	CITATIONS
967	Wheat <i>CBF</i> gene family: identification of polymorphisms in the CBF coding sequence. Genome, 2012, 55, 865-881.	0.9	16
968	Functional characterization of two almond C-repeat-binding factors involved in cold response. Tree Physiology, 2012, 32, 1113-1128.	1.4	39
969	Differential remodeling of the lipidome during cold acclimation in natural accessions of <i>Arabidopsis thaliana</i> . Plant Journal, 2012, 72, 972-982.	2.8	171
970	Photoperiod, temperature and water deficit differentially regulate the expression of four dehydrin genes from Eucalyptus globulus. Trees - Structure and Function, 2012, 26, 1483-1493.	0.9	10
971	Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Molecular Breeding, 2012, 30, 1313-1323.	1.0	28
972	Cold-induced modulation of CbICE53 gene activates endogenous genes to enhance acclimation in transgenic tobacco. Molecular Breeding, 2012, 30, 1611-1620.	1.0	15
973	Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Research, 2012, 21, 939-957.	1.3	103
974	Transgenic tobacco plants over expressing cold regulated protein CbCOR15b from Capsella bursa-pastoris exhibit enhanced cold tolerance. Journal of Plant Physiology, 2012, 169, 1408-1416.	1.6	27
975	Isolation of cold-responsive genes from garlic, Allium sativum. Genes and Genomics, 2012, 34, 93-101.	0.5	10
976	Ethylene Signaling Negatively Regulates Freezing Tolerance by Repressing Expression of <i>CBF</i> and Type-A <i>ARR</i> Genes in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2578-2595.	3.1	569
977	Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. Journal of Experimental Botany, 2012, 63, 2873-2893.	2.4	110
978	Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to systems robustness. Integrative Biology (United Kingdom), 2012, 4, 480.	0.6	65
979	Expression Profiles of Stress Responsive Genes in Rice (<i>Oryza Sativa</i> L.) Under Abiotic Stresses. Biotechnology and Biotechnological Equipment, 2012, 26, 2838-2843.	0.5	3
980	An Epigenetic Integrator: New Insights into Genome Regulation, Environmental Stress Responses and Developmental Controls by HISTONE DEACETYLASE 6. Plant and Cell Physiology, 2012, 53, 794-800.	1.5	71
981	Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean. DNA Research, 2012, 19, 37-49.	1.5	241
982	Effect of Over-Expression of V-ATPase Subunit C from Antarctic Notothenioid Fishes on Cold Tolerance in Tobacco. Biotechnology and Biotechnological Equipment, 2012, 26, 3359-3364.	0.5	0
983	Environmental and Genetic Effects on Yield and Secondary Metabolite Production in <i>Brassica rapa</i> Crops. Journal of Agricultural and Food Chemistry, 2012, 60, 5507-5514.	2.4	21
984	Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Science, 2012, 193-194, 8-17.	1.7	98

#	Article	IF	CITATIONS
985	<i>Arabidopsis</i> GROWTH-REGULATING FACTOR7 Functions as a Transcriptional Repressor of Abscisic Acid– and Osmotic Stress–Responsive Genes, Including <i>DREB2A</i> . Plant Cell, 2012, 24, 3393-3405.	3.1	184
986	The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytologist, 2012, 195, 217-230.	3.5	100
987	Lowâ€ŧemperature perception leading to gene expression and cold tolerance in higher plants. New Phytologist, 2012, 195, 737-751.	3.5	325
988	Changes of chemical composition to high altitude results in Kobresia littledalei growing in alpine meadows with high feeding values for herbivores. Animal Feed Science and Technology, 2012, 173, 186-193.	1.1	16
989	Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling. Journal of Plant Physiology, 2012, 169, 137-145.	1.6	62
990	Identification and characterization of low temperature stress responsive genes in Poncirus trifoliata by suppression subtractive hybridization. Gene, 2012, 492, 220-228.	1.0	33
991	Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. Tree Physiology, 2012, 32, 104-113.	1.4	19
992	Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints. BMC Genomics, 2012, 13, 497.	1.2	18
993	The cold-induced basic helix-loop-helix transcription factor gene MdClbHLH1encodes an ICE-like protein in apple. BMC Plant Biology, 2012, 12, 22.	1.6	162
994	Comparison of Plasma Membrane Proteomic Changes of Arabidopsis Suspension-Cultured Cells (T87) Tj ETQq1 1 Cell Physiology, 2012, 53, 543-554.	0.784314 1.5	rgBT /Overl 58
995	Abiotic Stress and Role of Salicylic Acid in Plants. , 2012, , 235-251.		74
996	Abiotic Stresses and Agricultural Sustainability. Journal of Crop Improvement, 2012, 26, 415-427.	0.9	11
997	Abiotic Stress Tolerant Crops: Genes, Pathways and Bottlenecks. , 2012, , 1-17.		0
999	Isolation and Functional Analysis of the bZIP Transcription Factor Gene TaABP1 from a Chinese Wheat Landrace. Journal of Integrative Agriculture, 2012, 11, 1580-1591.	1.7	23
1000	Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiology and Biochemistry, 2012, 60, 141-149.	2.8	145
1001	The language of calcium in postharvest life of fruits, vegetables and flowers. Scientia Horticulturae, 2012, 144, 102-115.	1.7	103
1002	Proteomic Markers for Oxidative Stress: New Tools for Reactive Oxygen Species and Photosynthesis Research. , 2012, , 181-196.		5
1003	Target deletion of the AAA ATPase PpCDC48II in Physcomitrella patens results in freezing sensitivity after cold acclimation. Science China Life Sciences, 2012, 55, 150-157.	2.3	7

#	Article	IF	CITATIONS
1004	Identification and analysis of cold stress-inducible genes in Korean rapeseed varieties. Journal of Plant Biology, 2012, 55, 498-512.	0.9	5
1005	Arabidopsis RGLG2, Functioning as a RING E3 Ligase, Interacts with AtERF53 and Negatively Regulates the Plant Drought Stress Response Â. Plant Physiology, 2012, 158, 363-375.	2.3	172
1007	Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids, 2012, 43, 2469-2480.	1.2	120
1011	OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Science, 2012, 196, 143-151.	1.7	136
1012	Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics, 2012, 13, 643.	1.2	122
1013	Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant, Chorispora bungeana. BMC Plant Biology, 2012, 12, 222.	1.6	84
1014	Development of a Model System to Identify Differences in Spring and Winter Oat. PLoS ONE, 2012, 7, e29792.	1.1	14
1015	OsLEA3-2, an Abiotic Stress Induced Gene of Rice Plays a Key Role in Salt and Drought Tolerance. PLoS ONE, 2012, 7, e45117.	1.1	189
1016	Identification of Differentially-Expressed Genes Associated with Pistil Abortion in Japanese Apricot by Genome-Wide Transcriptional Analysis. PLoS ONE, 2012, 7, e47810.	1.1	44
1017	SIICE1 encoding a MYC-type transcription factor controls cold tolerance in tomato, Solanum lycopersicum. Plant Biotechnology, 2012, 29, 253-260.	0.5	65
1018	Regulation of Gene Expression in Response to Abiotic Stress in Plants. , 2012, , .		6
1019	Environmental stress influencing plant development and flowering. Frontiers in Bioscience - Scholar, 2012, S4, 1315-1324.	0.8	20
1020	Accumulation of antioxidants and antioxidant activity in tomato, Solanum lycopersicum, are enhanced by the transcription factor SIICE1. Plant Biotechnology, 2012, 29, 261-269.	0.5	26
1021	Soluble Sugars and Sucrose-Metabolizing Enzymes Related to Cold Acclimation of Sweet Cherry Cultivars Grafted on Different Rootstocks. Scientific World Journal, The, 2012, 2012, 1-7.	0.8	24
1022	Current Issues in Plant Cryopreservation. , 0, , .		28
1023	Expression analysis in response to drought stress in soybean: shedding light on the regulation of metabolic pathway genes. Genetics and Molecular Biology, 2012, 35, 222-232.	0.6	34
1024	Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during longâ€ŧerm cold acclimation. Proteomics, 2012, 12, 68-85.	1.3	71
1025	Not All Is in the Genes. , 2012, , 213-240.		0

#	Article	IF	CITATIONS
1026	Cold Stress-Induced Acclimation in Rice is Mediated by Root-Specific Aquaporins. Plant and Cell Physiology, 2012, 53, 1445-1456.	1.5	90
1027	Isolation and characterization of cold responsive NAC gene from Lepidium latifolium. Molecular Biology Reports, 2012, 39, 9629-9638.	1.0	28
1028	Expression analysis and functional characterization of a novel cold-responsive gene CbCOR15a from Capsella bursa-pastoris. Molecular Biology Reports, 2012, 39, 5169-5179.	1.0	18
1029	Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Molecular Biology Reports, 2012, 39, 6067-6075.	1.0	68
1030	Effects of overexpression of four Populus wound-inducible genes in Arabidopsis on its resistance against Plutella xylostella L. Acta Physiologiae Plantarum, 2012, 34, 1583-1588.	1.0	1
1031	Two provenances of Quercus ilex ssp. ballota (Desf) Samp. nursery seedlings have different response to frost tolerance and autumn fertilization. European Journal of Forest Research, 2012, 131, 1091-1101.	1.1	21
1032	The <i>Vitis vinifera</i> Câ€repeat binding protein 4 (<i>VvCBF4</i>) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnology Journal, 2012, 10, 105-124.	4.1	83
1033	Genetics of winter wheat response to two freezing treatments. Plant Breeding, 2012, 131, 380-384.	1.0	4
1034	Grapevine powdery mildew (<i>Erysiphe necator</i>): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology, 2012, 13, 1-16.	2.0	202
1035	Metabolism of reactive oxygen species and reactive nitrogen species in pepper (<i>Capsicum) Tj ETQq1 1 0.7843</i>	314 rgBT / 2.8	Overlock 10 304
1035 1036	Metabolism of reactive oxygen species and reactive nitrogen species in pepper (<i>Capsicum) Tj ETQq1 1 0.7843 A novel function for a redoxâ€related LEA protein (<i>SAG21</i>/AtLEA5) in root development and biotic stress responses. Plant, Cell and Environment, 2012, 35, 418-429.</i>	2.8	Overlock 107 93
1035 1036 1037	Metabolism of reactive oxygen species and reactive nitrogen species in pepper (<i>Capsicum) Tj ETQq1 1 0.7843 A novel function for a redoxâ€related LEA protein (<i>SAG21</i>/i>/AtLEA5) in root development and biotic stress responses. Plant, Cell and Environment, 2012, 35, 418-429. Regulation of miR319 during cold stress in sugarcane. Plant, Cell and Environment, 2012, 35, 502-512.</i>	2.8 2.8 2.8	Ovgrlock 10 7 93 157
1035 1036 1037 1038	Metabolism of reactive oxygen species and reactive nitrogen species in pepper (<i>Capsicum) Tj ETQq1 1 0.7843 A novel function for a redoxâ€related LEA protein (<i>SAG21</i>/AtLEA5) in root development and biotic stress responses. Plant, Cell and Environment, 2012, 35, 418-429. Regulation of miR319 during cold stress in sugarcane. Plant, Cell and Environment, 2012, 35, 502-512. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile <i>Deschampsia antarctica</i> E. Desv Plant, Cell and Environment, 2012, 35, 829-837.</i>	2.8 2.8 2.8 2.8 2.8	Ovgrlock 10 7 93 157 30
1035 1036 1037 1038	Metabolism of reactive oxygen species and reactive nitrogen species in pepper (<i>Capsicum) Tj ETQq1 1 0.7843 A novel function for a redoxâ€related LEA protein (<i>SAG21</i>AtLEA5) in root development and biotic stress responses. Plant, Cell and Environment, 2012, 35, 418-429. Regulation of miR319 during cold stress in sugarcane. Plant, Cell and Environment, 2012, 35, 502-512. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile <i>Deschampsia antarctica</i>E. Desv Plant, Cell and Environment, 2012, 35, 829-837. The homologous HDâ€Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesisâ€related and glucanase proteins. Plant Journal, 2012, 69, 141-153.</i>	814.rgBT / 2.8 2.8 2.8 2.8 2.8	Overlock 10 93 157 30 80
1035 1036 1037 1038 1039	Metabolism of reactive oxygen species and reactive nitrogen species in pepper (<i>Capsicum) Tj ETQq1 1 0.7843 A novel function for a redoxâ€related LEA protein (<i>SAG21</i>/AtLEA5) in root development and biotic stress responses. Plant, Cell and Environment, 2012, 35, 418-429. Regulation of miR319 during cold stress in sugarcane. Plant, Cell and Environment, 2012, 35, 502-512. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile <i>Deschampsia antarctica</i> E. Desv Plant, Cell and Environment, 2012, 35, 829-837. The homologous HDâ€Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesisâ€related and glucanase proteins. Plant Journal, 2012, 69, 141-153. Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environmental and Experimental Botany, 2012, 78, 99-108.</i>	814.rgBT / 2.8 2.8 2.8 2.8 2.8 2.8 2.0	Ovgrlock 10 7 93 157 30 80 79
1035 1036 1037 1038 1039 1040	Metabolism of reactive oxygen species and reactive nitrogen species in pepper (<i>Capsicum) Tj ETQq1 1 0.7843 A novel function for a redoxâ€related LEA protein (<i>SAG21</i>/AtLEA5) in root development and biotic stress responses. Plant, Cell and Environment, 2012, 35, 418-429. Regulation of miR319 during cold stress in sugarcane. Plant, Cell and Environment, 2012, 35, 502-512. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile <i>Deschampsia antarctica</i> E. Desv Plant, Cell and Environment, 2012, 35, 829-837. The homologous HDâ€Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesisâ€related and glucanase proteins. Plant Journal, 2012, 69, 141-153. Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environmental and Experimental Botany, 2012, 78, 99-108. Effects of drought preconditioning on freezing tolerance of perennial ryegrass. Environmental and Experimental Botany, 2012, 79, 11-20.</i>	814.rgBT / 2.8 2.8 2.8 2.8 2.8 2.0 2.0	Ovgrlock 10 1 93 157 30 80 79 34
1035 1036 1037 1038 1039 1040 1041	Metabolism of reactive oxygen species and reactive nitrogen species in pepper (<i>Capsicum) Tj ETQq1 1 0.7843 A novel function for a redoxâ€related LEA protein (<i>SAG21 </i>/AtLEA5) in root development and biotic stress responses. Plant, Cell and Environment, 2012, 35, 418-429. Regulation of miR319 during cold stress in sugarcane. Plant, Cell and Environment, 2012, 35, 502-512. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile <i>Deschampsia antarctica</i> E. Desv. Plant, Cell and Environment, 2012, 35, 829-837. The homologous HDâ€Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesisâ€related and glucanase proteins. Plant Journal, 2012, 69, 141-153. Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environmental and Experimental Botany, 2012, 78, 99-108. Effects of drought preconditioning on freezing tolerance of perennial ryegrass. Environmental and Anovel Medicago truncatula HD-Zip gene, MtHB2, is involved in abiotic stress responses. Environmental and Experimental Botany, 2012, 80, 1-9.</i>	814.rgBT / 2.8 2.8 2.8 2.8 2.8 2.0 2.0 2.0	Ovgrlock 10 93 157 30 80 79 34 61

#	Article	IF	CITATIONS
1044	GhAGP31, a cotton nonâ€classical arabinogalactan protein, is involved in response to cold stress during early seedling development. Plant Biology, 2012, 14, 447-457.	1.8	53
1045	Response of transgenic rape plants bearing the Osmyb4 gene from rice encoding a trans-factor to low above-zero temperature. Russian Journal of Plant Physiology, 2012, 59, 105-114.	0.5	9
1046	Cold-induced dehydrins from Poncirus trifoliata localized in the nucleus. Journal of Plant Biochemistry and Biotechnology, 2012, 21, 134-139.	0.9	1
1047	Cold-Responsive Regulation of a Flower-Preferential Class III Peroxidase Gene, OsPOX1, in Rice (Oryza) Tj ETQq1	1 0.78431 0.9	.4 rgBT /Ove 22
1048	CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Reports, 2012, 31, 27-34.	2.8	118
1049	Isolation and characterization of three cold acclimation-responsive dehydrin genes from Eucalyptus globulus. Tree Genetics and Genomes, 2012, 8, 149-162.	0.6	21
1050	Differential gene expression in response to cold stress in Lepidium apetalum during seedling emergence. Biologia Plantarum, 2012, 56, 64-70.	1.9	6
1051	Transformation with a gene for myo-inositol O-methyltransferase enhances the cold tolerance of Arabidopsis thaliana. Biologia Plantarum, 2012, 56, 135-139.	1.9	14
1052	Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports, 2012, 39, 969-987.	1.0	719
1053	Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Molecular Biology Reports, 2012, 39, 1877-1886.	1.0	58
1054	Identification and expression analysis of CjLTI, a novel low temperature responsive gene from Caragana jubata. Molecular Biology Reports, 2012, 39, 3197-3202.	1.0	3
1055	Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta, 2012, 235, 565-578.	1.6	52
1056	Variations in the content of stress proteins in the needles of common pine (<i>Pinus sylvestris</i> L.) within an annual cycle. Journal of Forest Research, 2012, 17, 89-97.	0.7	12
1057	Auxin: a regulator of cold stress response. Physiologia Plantarum, 2013, 147, 28-35.	2.6	171
1058	Genome-wide expression profiles of contrasting inbred lines of Chinese cabbage, Chiifu and Kenshin, under temperature stress. Genes and Genomics, 2013, 35, 273-288.	0.5	20
1059	Absence of soil frost affects plant-soil interactions in temperate grasslands. Plant and Soil, 2013, 371, 559-572.	1.8	17
1060	Potential phosphorus release from catch crop shoots and roots after freezing-thawing. Plant and Soil, 2013, 371, 543-557.	1.8	59
1061	Overexpression of a ltICE1 gene from Isatis tinctoria enhances cold tolerance in rice. Molecular Breeding, 2013, 32, 617-628.	1.0	20

#	Article	IF	CITATIONS
1062	Two cold-induced family 19 glycosyl hydrolases from cherimoya (Annona cherimola) fruit: An antifungal chitinase and a cold-adapted chitinase. Phytochemistry, 2013, 95, 94-104.	1.4	11
1063	Down-regulation of OsPDCD5, a homolog of the mammalian PDCD5, increases rice tolerance to salt stress. Molecular Breeding, 2013, 31, 333-346.	1.0	10
1064	Induction of DREB2A pathway with repression of E2F, jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation-specific freeze-resistant wheat crown. Functional and Integrative Genomics, 2013, 13, 57-65.	1.4	16
1065	De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Genomics, 2013, 14, 488.	1.2	80
1066	Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics, 2013, 14, 415.	1.2	268
1067	Vinyl sulfone silica: application of an open preactivated support to the study of transnitrosylation of plant proteins by S-nitrosoglutathione. BMC Plant Biology, 2013, 13, 61.	1.6	39
1068	Identification of Traits, Genes, and Crops of the Future. , 2013, , 27-177.		1
1069	Extended leaf senescence promotes carbon gain and nutrient resorption: importance of maintaining winter photosynthesis in subtropical forests. Oecologia, 2013, 173, 721-730.	0.9	40
1070	The identification of candidate radio marker genes using a coexpression network analysis in gammaâ€irradiated rice. Physiologia Plantarum, 2013, 149, 554-570.	2.6	8
1071	Cold stress signaling networks in Arabidopsis. Journal of Plant Biology, 2013, 56, 69-76.	0.9	78
1072	Molecular characterization of cold stress-related transcription factors, CaEREBP-C1, -C2, -C3, and CaWRKY1A from Capsicum annuum L Journal of Plant Biology, 2013, 56, 106-114.	0.9	3
1073	Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. Journal of Plant Biology, 2013, 56, 115-121.	0.9	24
1074	Winter survival of winter rapeseed and winter turnip rapeseed in field trials, as explained by PPLS regression. European Journal of Agronomy, 2013, 51, 81-90.	1.9	15
1075	Gelation in protein extracts from cold acclimated and non-acclimated winter rye (Secale cereale L. cv) Tj ETQq1 1	0.784314	∔rgBT /Over
1076	Cbf14 copy number variation in the A, B, and D genomes of diploid and polyploid wheat. Theoretical and Applied Genetics, 2013, 126, 2777-2789.	1.8	17
1077	Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii. Plant Cell Reports, 2013, 32, 1407-1425.	2.8	38
1078	Differentially expressed genes induced by cold and UV-B in Deschampsia antarctica Desv Polar Biology, 2013, 36, 409-418.	0.5	5
1079	Vascular plant oneâ€zincâ€finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. Plant Journal, 2013, 73, 761-775.	2.8	78

#	Article	IF	CITATIONS
1080	A novel tomato MYC-type ICE1-like transcription factor, SIICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco. Plant Physiology and Biochemistry, 2013, 73, 309-320.	2.8	116
1082	The effect of salt stress on <i>Arabidopsis thaliana</i> and <i>Phelipanche ramosa</i> interaction. Weed Research, 2013, 53, 452-460.	0.8	3
1083	Arabidopsis LOS5 Gene Enhances Chilling and Salt Stress Tolerance in Cucumber. Journal of Integrative Agriculture, 2013, 12, 825-834.	1.7	8
1084	Strength comparison between cold-inducible promoters of Arabidopsis cor15a and cor15b genes in potato and tobacco. Plant Physiology and Biochemistry, 2013, 71, 77-86.	2.8	16
1085	Proteome Analysis of Cold Response in Spring and Winter Wheat (<i>Triticum aestivum</i>) Crowns Reveals Similarities in Stress Adaptation and Differences in Regulatory Processes between the Growth Habits. Journal of Proteome Research, 2013, 12, 4830-4845.	1.8	102
1086	Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1484-1497.	1.9	67
1087	The Arabidopsis NAC Transcription Factor ANAC096 Cooperates with bZIP-Type Transcription Factors in Dehydration and Osmotic Stress Responses. Plant Cell, 2013, 25, 4708-4724.	3.1	240
1088	The Function and Evolution of Closely Related COR/LEA (Cold-Regulated/Late Embryogenesis Abundant) Proteins in Arabidopsis thaliana. , 2013, , 89-105.		5
1089	Cold Signaling and Cold Response in Plants. International Journal of Molecular Sciences, 2013, 14, 5312-5337.	1.8	376
1090	A DEAD Box RNA Helicase Is Critical for Pre-mRNA Splicing, Cold-Responsive Gene Regulation, and Cold Tolerance in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 342-356.	3.1	141
1093	Changes of Detergent-Resistant Plasma Membrane Proteins in Oat and Rye during Cold Acclimation: Association with Differential Freezing Tolerance. Journal of Proteome Research, 2013, 12, 4998-5011.	1.8	43
1097	Comparison of long-term up-regulated genes during induction of freezing tolerance by cold and ABA in bromegrass cell cultures revealed by microarray analyses. Plant Growth Regulation, 2013, 71, 113-136.	1.8	7
1098	Abscisic acid induced freezing tolerance in chilling-sensitive suspension cultures and seedlings of rice. BMC Research Notes, 2013, 6, 351.	0.6	21
1099	Over-expression of BcFLC1 from non-heading Chinese cabbage enhances cold tolerance in Arabidopsis. Biologia Plantarum, 2013, 57, 262-266.	1.9	10
1100	Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biology, 2013, 13, 229.	1.6	233
1101	De novo characterization of the Anthuriumtranscriptome and analysis of its digital gene expression under cold stress. BMC Genomics, 2013, 14, 827.	1.2	78
1102	A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6. BMC Genomics, 2013, 14, 814.	1.2	32
1103	Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana. International Journal of Molecular Sciences, 2013, 14, 9979-9998.	1.8	45

#	Article	IF	CITATIONS
1104	Natural variation of <i>Câ€repeatâ€binding factor</i> (<i><scp>CBF</scp></i> s) genes is a major cause of divergence in freezing tolerance among a group of <i>Arabidopsis thaliana</i> populations along the Yangtze River in China. New Phytologist, 2013, 199, 1069-1080.	3.5	60
1105	Protein Kinase LTRPK1 Influences Cold Adaptation and Microtubule Stability in Rice. Journal of Plant Growth Regulation, 2013, 32, 483-490.	2.8	30
1106	Effects of dormancy progression and low-temperature response on changes in the sorbitol concentration in xylem sap of Japanese pear during winter season. Tree Physiology, 2013, 33, 398-408.	1.4	35
1107	New Insights into Desiccation-Associated Gene Regulation by Lilium longiflorum ASR during Pollen Maturation and in Transgenic Arabidopsis. International Review of Cell and Molecular Biology, 2013, 301, 37-94.	1.6	12
1108	Hydrogen peroxide and nitric oxide mediated cold―and dehydrationâ€induced <i>myo</i> â€inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant, Cell and Environment, 2013, 36, 288-299.	2.8	106
1109	Snow cover manipulations alter survival of early life stages of coldâ€ŧemperate tree species. Oikos, 2013, 122, 541-554.	1.2	51
1110	Cold Response of Dedifferentiated Barley Cells at the Gene Expression, Hormone Composition, and Freezing Tolerance Levels: Studies on Callus Cultures. Molecular Biotechnology, 2013, 54, 337-349.	1.3	20
1111	AtMYB14 Regulates Cold Tolerance in Arabidopsis. Plant Molecular Biology Reporter, 2013, 31, 87-97.	1.0	102
1112	Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environmental and Experimental Botany, 2013, 94, 3-8.	2.0	283
1113	Differential Regulatory Mechanisms of CBF Regulon Between Nipponbare (Japonica) and 93-11 (Indica) During Cold Acclimation. Rice Science, 2013, 20, 165-172.	1.7	9
1114	Alterations of Alternative Splicing Patterns of Ser/Arg-Rich (SR) Genes in Response to Hormones and Stresses Treatments in Different Ecotypes of Rice (Oryza sativa). Journal of Integrative Agriculture, 2013, 12, 737-748.	1.7	25
1115	Cryopreservation of insulin-secreting INS832/13 cells using a wheat protein formulation. Cryobiology, 2013, 66, 136-143.	0.3	7
1116	Exogenous application of molybdenum affects the expression of CBF14 and the development of frost tolerance in wheat. Plant Physiology and Biochemistry, 2013, 63, 77-81.	2.8	18
1117	Transgenerational changes in Arabidopsis thaliana in response to UV-C, heat and cold. Biocatalysis and Agricultural Biotechnology, 2013, 2, 226-233.	1.5	5
1118	Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes. Journal of Plant Physiology, 2013, 170, 1600-1608.	1.6	22
1119	Stress responses mediated by the CBL calcium sensors in plants. Plant Biotechnology Reports, 2013, 7, 1-8.	0.9	27
1120	Molecular Mechanisms of Stress Resistance of Photosynthetic Machinery. , 2013, , 21-51.		17
1121	Harden the chloroplast to protect the plant. Physiologia Plantarum, 2013, 147, 55-63.	2.6	99

#	Article	IF	CITATIONS
1122	Facing the Cold Stress by Plants in the Changing Environment: Sensing, Signaling, and Defending Mechanisms. , 2013, , 29-69.		49
1123	Overexpression of a western white pine PR10 protein enhances cold tolerance in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture, 2013, 114, 217-223.	1.2	10
1124	The Physiology of Reproductive-Stage Abiotic Stress Tolerance in Cereals. , 2013, , 193-216.		20
1125	Post-translational regulation of cold acclimation response. Plant Science, 2013, 205-206, 48-54.	1.7	72
1126	Nitric oxide-cold stress signalling cross-talk, evolution of a novel regulatory mechanism. Proteomics, 2013, 13, 1816-1835.	1.3	46
1127	Cloning and characterization of cold, salt and drought inducible C-repeat binding factor gene from a highly cold adapted ecotype of Lepidium latifolium L Physiology and Molecular Biology of Plants, 2013, 19, 221-230.	1.4	7
1128	Role of DREB-Like Proteins in Improving Stress Tolerance of Transgenic Crops. , 2013, , 147-161.		3
1129	Characterisation of two wheat enolase <scp>cDNA</scp> showing distinct patterns of expression in leaf and crown tissues of plants exposed to low temperature. Annals of Applied Biology, 2013, 162, 271-283.	1.3	6
1130	Potassium and stress alleviation: Physiological functions and management of cotton. Journal of Plant Nutrition and Soil Science, 2013, 176, 331-343.	1.1	101
1131	Physiological Role of Nitric Oxide in Plants Grown Under Adverse Environmental Conditions. , 2013, , 269-322.		54
1132	Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale. Biologia Plantarum, 2013, 57, 105-112.	1.9	31
1133	Overexpression of micro <scp>RNA</scp> 319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (<scp><i>O</i></scp> <i>ryza sativa</i> â€ <scp>L</scp> .). Plant, Cell and Environment, 2013, 36, 2207-2218.	2.8	337
1134	The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. Gene, 2013, 521, 32-37.	1.0	27
1135	VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance. Acta Physiologiae Plantarum, 2013, 35, 2975-2984.	1.0	8
1136	The root of ABA action in environmental stress response. Plant Cell Reports, 2013, 32, 971-983.	2.8	90
1137	Antagonism between elevated CO2, nighttime warming, and summer drought reduces the robustness of PSII performance to freezing events. Environmental and Experimental Botany, 2013, 93, 1-12.	2.0	5
1138	Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Molecular Biology Reports, 2013, 40, 1743-1752.	1.0	36
1139	Transcription factor profile analysis of the Antarctic vascular plant Deschampsia antarctica Desv. (Poaceae). Genes and Genomics, 2013, 35, 575-586.	0.5	8

#	Article	IF	Citations
1140	Isolation and characterization of rice (Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. Plant Molecular Biology, 2013, 83, 351-363.	2.0	36
1141	CBF-Dependent Cold Stress Signaling Relevant Post Translational Modifications. , 2013, , 105-122.		1
1142	Cold-responsive COR/LEA genes participate in the response of wheat plants to heavy metals stress. Doklady Biological Sciences, 2013, 448, 28-31.	0.2	8
1143	The glutamate carboxypeptidase AMP 1 mediates abscisic acid and abiotic stress responses in A rabidopsis. New Phytologist, 2013, 199, 135-150.	3.5	35
1144	Molecular switch for cold acclimation — anatomy of the cold-inducible promoter in plants. Biochemistry (Moscow), 2013, 78, 342-354.	0.7	13
1145	Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Reports, 2013, 32, 985-1006.	2.8	317
1146	Cloning of galactinol synthase gene from Ammopiptanthus mongolicus and its expression in transgenic Photinia serrulata plants. Gene, 2013, 513, 118-127.	1.0	21
1147	Transcript profiling combined with functional annotation of 2,662 ESTs provides a molecular picture of Eucalyptus gunnii cold acclimation. Trees - Structure and Function, 2013, 27, 1713-1735.	0.9	17
1148	Effect of auxin physiological analogues on rapeseed (Brassica napus) cold hardening, seed yield and quality. Journal of Plant Research, 2013, 126, 283-292.	1.2	19
1149	Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. Journal of Experimental Botany, 2013, 64, 1849-1862.	2.4	108
1150	Similarities and Differences in Leaf Proteome Response to Cold Acclimation Between Festuca pratensis and Lolium perenne. , 2013, , 189-195.		0
1151	Acetyl salicylic acid induces stress tolerance in tomato plants grown at a low night-time temperature. Journal of Horticultural Science and Biotechnology, 2013, 88, 490-496.	0.9	5
1152	Characterization of chilling-shock responses in four genotypes of Miscanthus reveals the superior tolerance of M. × giganteus compared with M. sinensis and M. sacchariflorus. Annals of Botany, 2013, 111, 999-1013.	1.4	40
1153	Calcium signaling mediates cold sensing in insect tissues. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9154-9159.	3.3	85
1154	Adaptation to seasonality and the winter freeze. Frontiers in Plant Science, 2013, 4, 167.	1.7	120
1155	A major quantitative trait locus for cold-responsive gene expression is linked to frost-resistance gene <i>Fr-A2</i> in common wheat. Breeding Science, 2013, 63, 58-67.	0.9	29
1156	Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation. International Journal of Molecular Sciences, 2013, 14, 12729-12763.	1.8	132
1157	The Influence of Light Quality, Circadian Rhythm, and Photoperiod on the CBF-Mediated Freezing Tolerance. International Journal of Molecular Sciences, 2013, 14, 11527-11543.	1.8	54

	CITATION RE	PORT	
# 1158	ARTICLE Proteins Involved in Distinct Phases of Cold Hardening Process in Frost Resistant Winter Barley (Hordeum vulgare L.) cv Luxor, International Journal of Molecular Sciences, 2013, 14, 8000-8024.	IF 1.8	Citations
1159	Deficiency of phytochrome B alleviates chillingâ€induced photoinhibition in rice. American Journal of Botany, 2013, 100, 1860-1870.	0.8	42
1160	Jasmonate Regulates the INDUCER OF CBF EXPRESSION–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 Cascade and Freezing Tolerance in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 2907-2924.	3.1	600
1162	Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone. Tree Physiology, 2013, 33, 311-319.	1.4	17
1163	Hormones, NO, Antioxidants and Metabolites as Key Players in Plant Cold Acclimation. , 2013, , 73-87.		6
1164	Integration of Genome-Scale Modeling and Transcript Profiling Reveals Metabolic Pathways Underlying Light and Temperature Acclimation in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 1197-1211.	3.1	61
1165	Field Response of Sugarcane Genotypes to Freeze Stress with Genotype x Environment Effects on Quality Traits. Journal of Crop Improvement, 2013, 27, 1-30.	0.9	22
1166	A Basic Helix-Loop-Helix Transcription Factor, <i>PtrbHLH</i> , of <i>Poncirus trifoliata</i> Confers Cold Tolerance and Modulates Peroxidase-Mediated Scavenging of Hydrogen Peroxide Â. Plant Physiology, 2013, 162, 1178-1194.	2.3	230
1167	Permafrostâ€driven differences in habitat quality determine plant response to gallâ€inducing mite herbivory. Journal of Ecology, 2013, 101, 1042-1052.	1.9	10
1168	Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of <i><scp>A</scp>rabidopsis thaliana</i> accessions Tenela and <scp>C24</scp> reveals <scp>REVEILLE1</scp> as negative regulator of cold acclimation. Plant, Cell and Environment, 2013, 36, 1256-1267.	2.8	48
1169	A proteomic study of spike development inhibition in bread wheat. Proteomics, 2013, 13, 2622-2637.	1.3	10
1170	Physiological mechanisms of seasonal and rapid coldâ€hardening in insects. Physiological Entomology, 2013, 38, 105-116.	0.6	288
1171	Abscisic Acid Synthesis and Response. The Arabidopsis Book, 2013, 11, e0166.	0.5	815
1172	The Arabidopsis ETHYLENE RESPONSE FACTOR1 Regulates Abiotic Stress-Responsive Gene Expression by Binding to Different cis-Acting Elements in Response to Different Stress Signals. Plant Physiology, 2013, 162, 1566-1582.	2.3	498
1173	Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. Journal of Experimental Botany, 2013, 64, 1755-1767.	2.4	243
1174	Possible function of VIPP1 in thylakoids. Plant Signaling and Behavior, 2013, 8, e22860.	1.2	36
1175	Genome-scale cold stress response regulatory networks in ten Arabidopsis thalianaecotypes. BMC Genomics, 2013, 14, 722.	1.2	73
1176	Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Frontiers in Plant Science, 2013, 4, 1.	1.7	879

#	Article	IF	CITATIONS
1177	Extreme Temperature Responses, Oxidative Stress and Antioxidant Defense in Plants. , 0, , .		112
1178	PHYSIOLOGICAL RESPONSE OF ZOYSIAGRASS IN URBAN LANDSCAPES TO LOW TEMPERATURE STRESS. Acta Horticulturae, 2013, , 253-261.	0.1	1
1179	A genome-wide analysis of the ERF gene family in sorghum. Genetics and Molecular Research, 2013, 12, 2038-2055.	0.3	58
1180	Analysis of mRNA Levels of Ten Genes Under Water Stress in Triticum turgidum subsp. durum. Journal of Plant Studies, 2013, 3, .	0.3	2
1181	BIOPRESERVATION: HEAT/MASS TRANSFER CHALLENGES AND BIOCHEMICAL/GENETIC ADAPTATIONS IN BIOLOGICAL SYSTEMS. Heat Transfer Research, 2013, 44, 245-272.	0.9	5
1182	AaERF1 Positively Regulates the Resistance to Botrytis cinerea in Artemisia annua. PLoS ONE, 2013, 8, e57657.	1.1	38
1183	Complex Regulation by Apetala2 Domain-Containing Transcription Factors Revealed through Analysis of the Stress-Responsive TdCor410b Promoter from Durum Wheat. PLoS ONE, 2013, 8, e58713.	1.1	34
1184	Ectopic Overexpression of SsCBF1, a CRT/DRE-Binding Factor from the Nightshade Plant Solanum lycopersicoides, Confers Freezing and Salt Tolerance in Transgenic Arabidopsis. PLoS ONE, 2013, 8, e61810.	1.1	29
1185	Phylogenomic Analyses of Nuclear Genes Reveal the Evolutionary Relationships within the BEP Clade and the Evidence of Positive Selection in Poaceae. PLoS ONE, 2013, 8, e64642.	1.1	37
1186	GhCAX3 Gene, a Novel Ca2+/H+ Exchanger from Cotton, Confers Regulation of Cold Response and ABA Induced Signal Transduction. PLoS ONE, 2013, 8, e66303.	1.1	19
1187	CDPK1 from Ginger Promotes Salinity and Drought Stress Tolerance without Yield Penalty by Improving Growth and Photosynthesis in Nicotiana tabacum. PLoS ONE, 2013, 8, e76392.	1.1	61
1188	Global Expression Profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi. PLoS ONE, 2013, 8, e81729.	1.1	53
1189	Drought Tolerance in Wheat. Scientific World Journal, The, 2013, 2013, 1-12.	0.8	248
1191	Functional Diversity of Early Responsive to Dehydration (ERD) Genes in Soybean. , 2013, , .		4
1192	Characterizations of Functions of Biological Materials Having Controlling-Ability Against Ice Crystal Growth. , 2013, , .		3
1193	Freezing Toleranceâ€Associated Quantitative Trait Loci in the Brundage × Coda Wheat Recombinant Inbred Line Population. Crop Science, 2014, 54, 982-992.	0.8	37
1194	Time and Temperature Interactions in Freezing Tolerance of Winter Wheat. Crop Science, 2014, 54, 1523-1529.	0.8	5
1195	Involvement of Multiple Types of Dehydrins in the Freezing Response in Loquat (Eriobotrya japonica). PLoS ONE, 2014, 9, e87575.	1.1	30

	CITATION RE	PORT	
#	Article	IF	CITATIONS
1196	Chinese Wild-Growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH Transcription Activators that Regulate Cold Tolerance in Arabidopsis. PLoS ONE, 2014, 9, e102303.	1.1	73
1197	RNA-Seq Analysis of Oil Palm under Cold Stress Reveals a Different C-Repeat Binding Factor (CBF) Mediated Gene Expression Pattern in Elaeis guineensis Compared to Other Species. PLoS ONE, 2014, 9, e114482.	1.1	31
1198	Carbohydrate and Lipid Dynamics in Wheat Crown Tissue in Response to Mild Freeze–Thaw Treatments. Crop Science, 2014, 54, 1721-1728.	0.8	5
1199	Characterization of Medicago populations under cold acclimation by morphological traits and microsatellite (SSR) markers. African Journal of Biotechnology, 2014, 13, 2704-2714.	0.3	1
1201	Effect of Piriformospora indica Inoculation on some Physiological Traits of Barley (Hordeum) Tj ETQq0 0 0 rgBT /	Dverlock 1	0 Tf 50 582 1
1202	A putative cold shock protein-encoding gene isolated from Arthrobacter sp. A2-5 confers cold stress tolerance in yeast and plants. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57, 775-782.	0.9	4
1203	AtHAP5A modulates freezing stress resistance in <i>Arabidopsis</i> independent of the CBF pathway. Plant Signaling and Behavior, 2014, 9, e29109.	1.2	12
1204	Transgenerational phenotypic and epigenetic changes in response to heat stress in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2014, 9, e27971.	1.2	66
1206	Olive (Olea europaea L.) freezing tolerance related to antioxidant enzymes activity during cold acclimation and non acclimation. Acta Physiologiae Plantarum, 2014, 36, 3231-3241.	1.0	34
1207	The expression of <i>CBF</i> genes at <i>Fr-2</i> locus is associated with the level of frost tolerance in Bulgarian winter wheat cultivars. Biotechnology and Biotechnological Equipment, 2014, 28, 392-401.	0.5	12
1208	Antifreeze proteins enable plants to survive in freezing conditions. Journal of Biosciences, 2014, 39, 931-944.	0.5	62
1209	iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics, 2014, 15, 1029.	1.2	84
1210	Deciphering the Role of various cis-acting regulatory elements in controlling SamDC gene expression in Rice. Plant Signaling and Behavior, 2014, 9, e28391.	1.2	17

1211	Physiology, 2014, 55, 136-147.	1.5	85
1212	The <i>Arabidopsis</i> Mediator Complex Subunits MED16, MED14, and MED2 Regulate Mediator and RNA Polymerase II Recruitment to CBF-Responsive Cold-Regulated Genes. Plant Cell, 2014, 26, 465-484.	3.1	101
1213	Snow cover manipulations and passive warming affect post-winter seed germination: a case study of three cold-temperate tree species. Climate Research, 2014, 60, 175-186.	0.4	7
1214	Nonsense-mediated decay of sucrose synthase 1 mRNA with induced premature chain termination codon during cold acclimation in winter wheat. Turkish Journal of Botany, 2014, 38, 1147-1156.	0.5	2
1215	Frost resistance in alpine woody plants. Frontiers in Plant Science, 2014, 5, 654.	1.7	91

#	Article	IF	CITATIONS
1216	Disordered Cold Regulated15 Proteins Protect Chloroplast Membranes during Freezing through Binding and Folding, But Do Not Stabilize Chloroplast Enzymes in Vivo. Plant Physiology, 2014, 166, 190-201.	2.3	108
1217	Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium. BMC Genomics, 2014, 15, 203.	1.2	80
1218	Adaptations between Ecotypes and along Environmental Gradients in <i>Panicum virgatum</i> . American Naturalist, 2014, 183, 682-692.	1.0	99
1219	Improved salt tolerance of Populus davidiana × P. bolleana overexpressed LEA from Tamarix androssowii. Journal of Forestry Research, 2014, 25, 813-818.	1.7	9
1220	<scp>QTL</scp> mapping of freezing tolerance: links to fitness and adaptive tradeâ€offs. Molecular Ecology, 2014, 23, 4304-4315.	2.0	96
1221	Farinose flavonoids are associated with high freezing tolerance in fairy primrose (<i>Primula) Tj ETQq1 1 0.78431</i>	.4 rgBT /O	verlock 10 Tf
1222	Chill out with rockcress: quantitative genetics of frost tolerance in the <scp>N</scp> orth <scp>A</scp> merican wild perennial <scp><i>B</i></scp> <i>oechera stricta</i> . Plant, Cell and Environment, 2014, 37, 2453-2455.	2.8	1
1223	Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Journal of Plant Biology, 2014, 57, 383-393.	0.9	131
1994	The Role of Carbohydrates in Plant Resistance to Abiotic Stresses. , 2014, , 229-270.		15
122 1			
1225	Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (<i>Oryza) Tj ETQq1 1 0.784</i>	314 rgBT / 0.5	Oyerlock 10
1225 1226	Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (<i>Oryza) Tj ETQq1 1 0.784 Local adaptations to frost in marginal and central populations of the dominant forest tree <i><scp>F</scp>agus sylvatica </i><scp>L</scp>. as affected by temperature and extreme drought in common garden experiments. Ecology and Evolution, 2014, 4, 594-605.</i>	314 rgBT , 0.5	Oyerlock 10 97
1225 1226 1227	Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (<i>Oryza) Tj ETQq1 1 0.784 Local adaptations to frost in marginal and central populations of the dominant forest tree <i><scp>F</scp>agus sylvatica </i><scp>L</scp>. as affected by temperature and extreme drought in common garden experiments. Ecology and Evolution, 2014, 4, 594-605. Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348.</i>	314 rgBT , 0.8 0.9	0yerlock 10 97 74
1225 1226 1227 1228	Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (<i>Oryza) Tj ETQq1 1 0.784 Local adaptations to frost in marginal and central populations of the dominant forest tree <i><i><cp>Fagus sylvatica </cp></i><cp>L. as affected by temperature and extreme drought in common garden experiments. Ecology and Evolution, 2014, 4, 594-605. Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348. <i>Arabidopsis</i>DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits. Plant Cell, 2014, 26, 4954-4973.</cp></i></i>	314 rgBT , 0.8 0.9 3.1	Oyerlock 10 97 74 143
1225 1226 1227 1228 1229	Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (<i>Oryza) Tj ETQq1 1 0.784 Local adaptations to frost in marginal and central populations of the dominant forest tree <i><i><i><cp>Fagus sylvatica </cp></i>L. as affected by temperature and extreme drought in common garden experiments. Ecology and Evolution, 2014, 4, 594-605. Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348. <i><a href="https://www.scp.edu/cold-tolerant-and-cold-sensitive-rice-expression-by-Forming-a-Heat Stress-Specific Transcriptional Complex with NF-Y Subunits. Plant Cell,
2014, 26, 4954-4973.
Gene expression and phenotypic analyses of transgenic Chinese cabbage over-expressing the cold
tolerance gene, BrCSR. Horticulture Environment and Biotechnology, 2014, 55, 415-422.</td><td>314.rgBT
0.8
0.9
3.1
0.7</td><td>Ogerlock 10
97
74
143
4</td></tr><tr><td>1225
1226
1227
1228
1229
1230</td><td>Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (<i>Oryza) Tj ETQq1 1 0.784
Local adaptations to frost in marginal and central populations of the dominant forest tree
<i><i><i><i><cp>F</scp>agus sylvatica </i><iscp>L</scp>. as affected by temperature and extreme drought in
common garden experiments. Ecology and Evolution, 2014, 4, 594-605.Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice
genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348.<i><i>Arabidopsis</i>> DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene
Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits. Plant Cell,
2014, 26, 4954-4973.Gene expression and phenotypic analyses of transgenic Chinese cabbage over-expressing the cold
tolerance gene, BrCSR. Horticulture Environment and Biotechnology, 2014, 55, 415-422.Genomics of Low-Temperature Tolerance for an Increased Sustainability of Wheat and Barley
Production., 2014, 149-183.</td><td>314.rgBT
0.8
0.9
3.1
0.7</td><td>Ogerlock 10
97
74
143
4
6</td></tr><tr><td>1225
1226
1227
1228
1229
1230</td><td> Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (<i>Oryza) Tj ETQq1 1 0.784 Local adaptations to frost in marginal and central populations of the dominant forest tree <i><i><i><i><scp>F</scp>agus sylvatica </i></i> Local adaptations to frost in marginal and central populations of the dominant forest tree <i><i><i><i><scp>F</scp>agus sylvatica </i> Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348. https://www.scp.action.com Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348. https://www.scp.action.com Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348. https://www.scp.action.com Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348. https://www.scp.action.com Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348. https://www.scp.action.com Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348. https://www.scp.action.com Common garden experiments. Ecology and Ecolution. Comparative with NF-Y Subunits. Plant Cell, 2014, 26</i></i></i></i>	314.rgBT 0.8 0.9 3.1 0.7 3.5	Ogerlock 10 97 74 143 4 6 86
1225 1226 1227 1228 1229 1230 1231	Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (<i>Oryza) TJ ETQq1 10.784 Local adaptations to frost in marginal and central populations of the dominant forest tree <i><i><i><i><csp>F</csp>agus sylvatica <csp>L.as affected by temperature and extreme drought in common garden experiments. Ecology and Evolution, 2014, 4, 594-605.Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. Journal of Plant Biology, 2014, 57, 337-348.<i>Arabidopsis</i>><i>Arabidopsis</i>><i><i>2014, 26, 4954-4973.Gene expression and phenotypic analyses of transgenic Chinese cabbage over-expressing the cold tolerance gene, BrCSR. Horticulture Environment and Biotechnology, 2014, 55, 415-422.Genomics of Low-Temperature Tolerance for an Increased Sustainability of Wheat and Barley Production., 2014, , 149-183.At<<scp>HAPAt<<scp>MAPAt<<scp>MAP<td>314.rgBT 0.8 0.9 3.1 0.7 3.5 1.9</td><td>Ogerlock 10 97 74 143 4 6 86 0</td></scp></scp></scp></i></i></csp></i></i></i></i></i>	314.rgBT 0.8 0.9 3.1 0.7 3.5 1.9	Ogerlock 10 97 74 143 4 6 86 0

#	Article	IF	CITATIONS
1234	An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. Journal of Experimental Botany, 2014, 65, 5415-5427.	2.4	112
1235	ABA Conjugates and Their Physiological Roles in Plant Cells. , 2014, , 77-87.		8
1236	Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid <i>Arabidopsis</i> . Nucleic Acids Research, 2014, 42, e46-e46.	6.5	108
1237	ABA Regulation of the Cold Stress Response in Plants. , 2014, , 337-363.		34
1238	Proteomics of stress responses in wheat and barleyââ,¬â€search for potential protein markers of stress tolerance. Frontiers in Plant Science, 2014, 5, 711.	1.7	95
1239	Identification of Conserved and Novel Cold-Responsive MicroRNAs in Trifoliate Orange (Poncirus) Tj ETQq1 1 0.78 328-341.	4314 rgB1 1.0	7 /Overlock 68
1240	Confocal cryomicroscopic analysis and cryodynamics of endoplasmic reticulum in herbaceous plant cells. Environmental and Experimental Botany, 2014, 106, 44-51.	2.0	2
1241	Molecular and functional characterization of cold-responsive C-repeat binding factors from Brachypodium distachyon. BMC Plant Biology, 2014, 14, 15.	1.6	48
1242	Postharvest Heat Treatment for Mitigation of Chilling Injury in Fruits and Vegetables. Food and Bioprocess Technology, 2014, 7, 37-53.	2.6	99
1243	Dehydrins associated with the development of frost resistance of Asian white birch. Russian Journal of Plant Physiology, 2014, 61, 105-111.	0.5	5
1244	Functional characterization and expression profiling of a DREB2-type gene from lettuce (Lactuca) Tj ETQq0 0 0 rgl	3T <i> </i> Overlo 1.2	ck 10 Tf 50
1245	Comparative transcriptome profiling of freezing stress responsiveness in two contrasting Chinese cabbage genotypes, Chiifu and Kenshin. Genes and Genomics, 2014, 36, 215-227.	0.5	10
1246	Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Molecular Biology, 2014, 84, 67-82.	2.0	57
1247	Characterisation of an SKn-type Dehydrin Promoter from Wheat and Its Responsiveness to Various Abiotic and Biotic Stresses. Plant Molecular Biology Reporter, 2014, 32, 664-678.	1.0	27
1248	Functional characterization of <i><scp>A</scp>rabidopsis</i> â€ <scp>HsfA6a</scp> as a heatâ€shock transcription factor under high salinity and dehydration conditions. Plant, Cell and Environment, 2014, 37, 1202-1222.	2.8	108
1249	Interaction of light and temperature signalling. Journal of Experimental Botany, 2014, 65, 2859-2871.	2.4	102
1250	A MORN-domain protein regulates growth and seed production and enhances freezing tolerance in Arabidopsis. Plant Biotechnology Reports, 2014, 8, 229-241.	0.9	6
1251	Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress. Biologia Plantarum, 2014, 58, 283-295.	1.9	26

#	Article	IF	CITATIONS
1252	The SCF E3 Ligase AtPP2-B11 Plays a Negative Role in Response to Drought Stress in Arabidopsis. Plant Molecular Biology Reporter, 2014, 32, 943-956.	1.0	29
1253	A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu) Tj ETQq1	1 0.7 <u>8</u> 4314	rgBT /Overlo
1254	CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. Plant Molecular Biology, 2014, 85, 259-275.	2.0	33
1255	Structural and expression analyses of three PmCBFs from Prunus mume. Biologia Plantarum, 2014, 58, 247-255.	1.9	8
1256	Sucrose metabolism in grape (Vitis vinifera L.) branches under low temperature during overwintering covered with soil. Plant Growth Regulation, 2014, 72, 229-238.	1.8	31
1257	Interaction of Temperature and Light in the Development of Freezing Tolerance in Plants. Journal of Plant Growth Regulation, 2014, 33, 460-469.	2.8	49
1258	Enhanced cold stress tolerance of transgenic Dendrocalamus latiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 385-391.	0.9	23
1259	Cold acclimation, de-acclimation and re-acclimation of spring canola, winter canola and winter wheat: The role of carbohydrates, cold-induced stress proteins and vernalization. Environmental and Experimental Botany, 2014, 106, 156-163.	2.0	70
1260	Transgenic Arabidopsis Flowers Overexpressing Acyl-CoA-Binding Protein ACBP6 are Freezing Tolerant. Plant and Cell Physiology, 2014, 55, 1055-1071.	1.5	59
1261	Related to <scp>ABA</scp> â€Insensitive3(<scp>ABI</scp> 3)/Viviparous1 and At <scp>ABI</scp> 5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnology Journal, 2014, 12, 578-589.	4.1	97
1262	Transcription Factors and Environmental Stresses in Plants. , 2014, , 57-78.		4
1263	Plant Resistance under Cold Stress. , 2014, , 79-98.		2
1264	Arabidopsis HRE1α, a splicing variant of AtERF73/HRE1, functions as a nuclear transcription activator in hypoxia response and root development. Plant Cell Reports, 2014, 33, 1255-1262.	2.8	20
1265	Transgenic barley expressing the Arabidopsis AKR4C9 aldo-keto reductase enzyme exhibits enhanced freezing tolerance and regenerative capacity. South African Journal of Botany, 2014, 93, 179-184.	1.2	19
1266	The Physiology of Potassium in Crop Production. Advances in Agronomy, 2014, 126, 203-233.	2.4	158
1268	Characterization of two VvICE1 genes isolated from â€~Muscat Hamburg' grapevine and their effect on the tolerance to abiotic stresses. Scientia Horticulturae, 2014, 165, 266-273.	1.7	25
1269	Temperature threshold of isoprene emission from tropical trees, Ficus virgata and Ficus septica. Chemosphere, 2014, 95, 268-273.	4.2	25
1270	Banana fruit <scp>NAC</scp> transcription factor <scp>MaNAC</scp> 1 is a direct target of <scp>MaICE</scp> 1 and involved in cold stress through interacting with <scp>MaCBF</scp> 1. Plant, Cell and Environment, 2014, 37, 2116-2127.	2.8	125

#	Article	IF	CITATIONS
1271	<scp><i>P</i></scp> <i>tr</i> <scp><i>BAM</i></scp> <i>1</i> , a <i>β</i> â€amylaseâ€coding gene of <scp><i>P</i></scp> <i>oncirus trifoliata</i> , is a <scp>CBF</scp> regulon member with function in cold tolerance by modulating soluble sugar levels. Plant, Cell and Environment, 2014, 37, 2754-2767.	2.8	98
1272	The tumor necrosis factor receptorâ€associated factor (TRAF)â€like family protein SEVEN IN ABSENTIA 2 (SINA2) promotes drought tolerance in an <scp>ABA</scp> â€dependent manner in <scp>A</scp> rabidopsis. New Phytologist, 2014, 202, 174-187.	3.5	64
1273	Cold acclimation-induced freezing tolerance of <i>Medicago truncatula</i> seedlings is negatively regulated by ethylene. Physiologia Plantarum, 2014, 152, 115-129.	2.6	117
1274	Genetic Control of Reproductive Development in Temperate Cereals. Advances in Botanical Research, 2014, 72, 131-158.	0.5	28
1275	A laboratory examination of the effectiveness of a winter seasonal lake drawdown to control invasive Eurasian watermilfoil (Myriophyllum spicatum). Lake and Reservoir Management, 2014, 30, 381-392.	0.4	2
1276	Physiological and biochemical responses of six herbaceous peony cultivars to cold stress. South African Journal of Botany, 2014, 94, 140-148.	1.2	15
1277	Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology, 2014, 34, 1181-1198.	1.4	144
1278	A Novel Zinc-Finger HIT Protein with an Additional PAPA-1-like Region from Suaeda liaotungensis K. Enhanced Transgenic Arabidopsis Drought and Salt Stresses Tolerance. Molecular Biotechnology, 2014, 56, 1089-1099.	1.3	4
1279	Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Molecular Biology, 2014, 86, 303-317.	2.0	126
1280	Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants. Journal of Experimental Botany, 2014, 65, 4931-4942.	2.4	36
1281	Winter warming pulses differently affect plant performance in temperate heathland and grassland communities. Ecological Research, 2014, 29, 561-570.	0.7	21
1282	Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana. Journal of Plant Biology, 2014, 57, 209-217.	0.9	88
1283	De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics, 2014, 15, 453.	1.2	117
1284	Target metabolite and gene transcription profiling during the development of superficial scald in apple (Malus x domestica Borkh). BMC Plant Biology, 2014, 14, 193.	1.6	69
1285	Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in Cassava. BMC Plant Biology, 2014, 14, 207.	1.6	47
1286	A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance. Plant Cell Reports, 2014, 33, 767-778.	2.8	55
1287	Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery. Trees - Structure and Function, 2014, 28, 923-933.	0.9	27
1288	The up-regulation of elongation factors in the barley leaf and the down-regulation of nucleosome assembly genes in the crown are both associated with the expression of frost tolerance. Functional and Integrative Genomics, 2014, 14, 493-506.	1.4	6

.

#	Article	IF	CITATIONS
1289	Transcription factor MdCBF1 gene increases freezing stress tolerance in transgenic Arabidopsis thaliana. Biologia Plantarum, 2014, 58, 499-506.	1.9	7
1290	Ectopic AtCBF3 expression improves freezing tolerance and promotes compact growth habit in petunia. Molecular Breeding, 2014, 33, 731-741.	1.0	9
1291	The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Molecular Biology Reports, 2014, 41, 5329-5342.	1.0	62
1292	Molecular characterization, heterologous expression and resistance analysis of OsLEA3-1 from Oryza sativa. Biologia (Poland), 2014, 69, 625-634.	0.8	6
1293	Chilling to zero degrees disrupts pollen formation but not meiotic microtubule arrays in <scp><i>T</i></scp> <i>riticum aestivum</i> â€ <scp>L.</scp> . Plant, Cell and Environment, 2014, 37, 2781-2794.	2.8	53
1294	The effect of molybdenum on the molecular control of cold tolerance in cauliflower (Brassica) Tj ETQq1 1 0.7843	14 rgBT /C 1.2	Verlock 10 T
1295	Cold-induced changes affect survival after exposure to vitrification solution during cryopreservation in the south-west Australian Mediterranean climate species Lomandra sonderi (Asparagaceae). Plant Cell, Tissue and Organ Culture, 2014, 119, 347-358.	1.2	10
1296	Timing for success: expression phenotype and local adaptation related to latitude in the boreal forest tree, Populus balsamifera. Tree Genetics and Genomes, 2014, 10, 911-922.	0.6	7
1297	Proteomics dissection of cold responsive proteins based on PEG fractionation in Arabidopsis. Chemical Research in Chinese Universities, 2014, 30, 272-278.	1.3	4
1298	Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics, 2014, 15, 179.	1.2	118
1299	Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica. BMC Genomics, 2014, 15, 326.	1.2	54
1300	Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana. BMC Plant Biology, 2014, 14, 141.	1.6	106
1301	Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Molecular Biology, 2014, 86, 527-541.	2.0	84
1302	Arabidopsis thaliana ICE 2 gene: Phylogeny, structural evolution and functional diversification from ICE1. Plant Science, 2014, 229, 10-22.	1.7	43
1303	An Overview of Cold Resistance in Plants. Journal of Agronomy and Crop Science, 2014, 200, 237-245.	1.7	60
1304	Identification of quantitative trait loci for abscisic acid responsiveness in the D-genome of hexaploid wheat. Journal of Plant Physiology, 2014, 171, 830-841.	1.6	16
1305	Allelic variation at Fr-H1/Vrn-H1 and Fr-H2 loci is the main determinant of frost tolerance in spring barley. Environmental and Experimental Botany, 2014, 106, 148-155.	2.0	21
1306	OsAlba1, a dehydration-responsive nuclear protein of rice (Oryza sativa L. ssp. indica), participates in stress adaptation. Phytochemistry, 2014, 100, 16-25.	1.4	29
#	Article	IF	CITATIONS
------	---	--------------------	-----------------------------
1307	Identification of trans-acting factors regulating SamDC expression in Oryza sativa. Biochemical and Biophysical Research Communications, 2014, 445, 398-403.	1.0	21
1308	Identification of quantitative trait locus for abscisic acid responsiveness on chromosome 5A and association with dehydration tolerance in common wheat seedlings. Journal of Plant Physiology, 2014, 171, 25-34.	1.6	24
1309	Isolation and functional characterization of the ShCBF1 gene encoding a CRT/DRE-binding factor from the wild tomato species Solanum habrochaites. Plant Physiology and Biochemistry, 2014, 74, 294-303.	2.8	9
1310	Regulation of Flowering by Vernalisation in Arabidopsis. Advances in Botanical Research, 2014, , 29-61.	0.5	5
1311	Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Functional and Integrative Genomics, 2014, 14, 467-477.	1.4	53
1312	Transcriptomic, Proteomic, Metabolomic and Functional Genomic Approaches for the Study of Abiotic Stress in Vegetable Crops. Critical Reviews in Plant Sciences, 2014, 33, 225-237.	2.7	76
1313	Water stress is a component of cold acclimation process essential for inducing full freezing tolerance in strawberry. Scientia Horticulturae, 2014, 174, 54-59.	1.7	28
1314	The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant, Cell and Environment, 2014, 37, 1-18.	2.8	367
1315	Basic Studies on the Quality and Safety of Foods Stored and Distributed at Low temperature. Journal of the Japanese Society for Food Science and Technology, 2014, 61, 101-107.	0.1	0
1317	Changes In The Expression Of Three Cold-Regulated Genes In â€ ⁻ Elsanta' And â€ ⁻ Selvik' Strawberry (Frag	aria) Tj ET 0.4	Qg1 1 0.78 <mark>4</mark> 3
1318	The effect of simulated winter warming spells on Canada fleabane [<i>Conyza canadensis</i> (L.) Cronq. var. <i>canadensis</i>] seeds and plants. Canadian Journal of Plant Science, 2014, 94, 963-969.	0.3	6
1320	Giving drought the cold shoulder: a relationship between drought tolerance and fall dormancy in an agriculturally important crop. AoB PLANTS, 2014, 6, .	1.2	15
1322	ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. Scientific Reports, 2015, 5, 17620.	1.6	94
1323	PLANT ABIOTIC STRESS TOLERANCE ANALYSIS IN CAULIFLOWER USING A CURD MICROPROPAGATION SYSTEM. Acta Horticulturae, 2015, , 43-52.	0.1	3
1324	Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.). Scientific Reports, 2015, 5, 13819.	1.6	45
1325	Temperature stress and redox homeostasis in agricultural crops. Frontiers in Environmental Science, 2015, 3, .	1.5	183
1326	OsbZIP33 is an ABAâ€Dependent Enhancer of Drought Tolerance in Rice. Crop Science, 2015, 55, 1673-1685.	0.8	9
1327	Influences of growth cessation and photoacclimation on winter survival of non-native Lolium–Festuca grasses in high-latitude regions. Environmental and Experimental Botany, 2015, 111, 21-31	2.0	22

#	Article	IF	CITATIONS
1328	Irreversible diameter change of wood segments correlates with other methods for estimating frost tolerance of living cells in freeze-thaw experiment: a case study with seven urban tree species in Helsinki. Annals of Forest Science, 2015, 72, 1089-1098.	0.8	16
1329	De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genomics, 2015, 16, 818.	1.2	48
1330	A transcriptomic analysis of bermudagrass (Cynodon dactylon) provides novel insights into the basis of low temperature tolerance. BMC Plant Biology, 2015, 15, 216.	1.6	45
1331	Impact of climate change on cold hardiness of Douglasâ€fir (<i>PseudotsugaÂmenziesii</i>): environmental and genetic considerations. Global Change Biology, 2015, 21, 3814-3826.	4.2	39
1332	Natural variation in the Câ€repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant Journal, 2015, 84, 682-693.	2.8	104
1333	Relevance of Osmotic and Frost Protecting Compounds for the Winter Hardiness of Autumn Sown Sugar Beet. Journal of Agronomy and Crop Science, 2015, 201, 301-311.	1.7	11
1334	Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in <i>Prunus persica</i> . Physiologia Plantarum, 2015, 154, 485-499.	2.6	39
1335	Pattern of CsICE1 expression under cold or drought treatment and functional verification through analysis of transgenic Arabidopsis. Genetics and Molecular Research, 2015, 14, 11259-11270.	0.3	13
1336	Functional Roles of Plant Protein Kinases in Signal Transduction Pathways during Abiotic and Biotic Stress. Journal of Biodiversity Bioprospecting and Development, 2015, 02, .	0.4	6
1337	Cloning and transformation of INDUCER of CBF EXPRESSION1 (ICE1) in tomato. Genetics and Molecular Research, 2015, 14, 13131-13143.	0.3	7
1338	Application of data analysis in cold stress: a case study of Nicotiana benthamiana. Turkish Journal of Botany, 2015, 39, 1021-1032.	0.5	7
1339	A Combined Field/Laboratory Method for Assessment of Frost Tolerance with Freezing Tests and Chlorophyll Fluorescence. Agronomy, 2015, 5, 71-88.	1.3	14
1340	CpLEA5, the Late Embryogenesis Abundant Protein Gene from Chimonanthus praecox, Possesses Low Temperature and Osmotic Resistances in Prokaryote and Eukaryotes. International Journal of Molecular Sciences, 2015, 16, 26978-26990.	1.8	28
1341	ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis. PLoS ONE, 2015, 10, e0125168.	1.1	150
1342	The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis. PLoS Genetics, 2015, 11, e1005471.	1.5	92
1343	Global Transcriptome Profiles of 'Meyer' Zoysiagrass in Response to Cold Stress. PLoS ONE, 2015, 10, e0131153.	1.1	30
1344	Physiological and Molecular Mechanism of Nitric Oxide (NO) Involved in Bermudagrass Response to Cold Stress. PLoS ONE, 2015, 10, e0132991.	1.1	42
1345	Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch. PLoS ONE, 2015, 10, e0135315.	1.1	11

#	Article	IF	CITATIONS
1346	Comparative conventional- and quantum dot-labeling strategies for LPS binding site detection in Arabidopsis thaliana mesophyll protoplasts. Frontiers in Plant Science, 2015, 6, 335.	1.7	11
1347	Characterization and expression profile of CaNAC2 pepper gene. Frontiers in Plant Science, 2015, 6, 755.	1.7	46
1348	Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 810.	1.7	99
1349	Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses. Frontiers in Plant Science, 2015, 6, 865.	1.7	53
1350	Extreme low temperature tolerance in woody plants. Frontiers in Plant Science, 2015, 6, 884.	1.7	110
1351	Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science, 2015, 6, 895.	1.7	316
1352	Low-Temperature Stress., 2015,, 279-318.		6
1353	Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene. Genetics and Molecular Research, 2015, 14, 597-608.	0.3	6
1355	Proteomic and metabolomic profiling of Valencia orange fruit after natural frost exposure. Physiologia Plantarum, 2015, 153, 337-354.	2.6	26
1356	Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breeding Science, 2015, 65, 85-102.	0.9	49
1357	Decreased competitive interactions drive a reverse species richness latitudinal gradient in subarctic forests. Ecology, 2015, 96, 461-470.	1.5	16
1358	Cold responsive gene transcription becomes more complex. Trends in Plant Science, 2015, 20, 466-468.	4.3	119
1359	Identification of ICE1 as a negative regulator of ABA-dependent pathways in seeds and seedlings of Arabidopsis. Plant Molecular Biology, 2015, 88, 459-470.	2.0	21
1360	Low temperature tolerance in plants: Changes at the protein level. Phytochemistry, 2015, 117, 76-89.	1.4	139
1361	The Omics of Cold Stress Responses in Plants. , 2015, , 143-194.		14
1363	Frost, Portulacaria afra Jacq., and the boundary between the Albany Subtropical Thicket and Nama-Karoo biomes. South African Journal of Botany, 2015, 101, 112-119.	1.2	22
1364	Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance. Journal of Applied Genetics, 2015, 56, 439-449.	1.0	38
1365	Construction of efficient, tuber-specific, and cold-inducible promoters in potato. Plant Science, 2015, 235, 14-24.	1.7	7

ARTICLE

IF CITATIONS

A novel CBF that regulates abiotic stress response and the ripening process in oil palm (Elaeis) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742

1367	The cold response of CBF genes in barley is regulated by distinct signaling mechanisms. Journal of Plant Physiology, 2015, 181, 42-49.	1.6	14
1368	Natural cold acclimatisation and de-acclimatisation ofMagnolia wufengensisin response to alternative methods of application of abscisic acid. Journal of Horticultural Science and Biotechnology, 2015, 90, 704-710.	0.9	8
1369	Responses of two barley cultivars differing in their salt tolerance to moderate and high salinities and subsequent recovery. Biologia Plantarum, 2015, 59, 106-114.	1.9	6
1370	Direct links between the vernalization response and other key traits of cereal crops. Nature Communications, 2015, 6, 5882.	5.8	177
1371	Low Temperature Inhibits Root Growth by Reducing Auxin Accumulation via ARR1/12. Plant and Cell Physiology, 2015, 56, 727-736.	1.5	96
1372	Effects of low temperature and low irradiance on the physiological characteristics and related gene expression of different pepper species. Photosynthetica, 2015, 53, 85-94.	0.9	39
1373	Epoxycarotenoidâ€mediated synthesis of abscisic acid in Physcomitrella patens implicating conserved mechanisms for acclimation to hyperosmosis in embryophytes. New Phytologist, 2015, 206, 209-219.	3.5	35
1374	Extracellular trafficking of a wheat cold-responsive protein, WLT10. Journal of Plant Physiology, 2015, 174, 71-74.	1.6	3
1375	OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Arabidopsis. Developmental Cell, 2015, 32, 278-289.	3.1	491
1376	Increasing Freezing Tolerance: Kinase Regulation of ICE1. Developmental Cell, 2015, 32, 257-258.	3.1	17
1377	Transcriptome Profile in Response to Frost Tolerance in Eucalyptus globulus. Plant Molecular Biology Reporter, 2015, 33, 1472-1485.	1.0	10
1378	Transcription factors and anthocyanin genes related to low-temperature tolerance in rd29A:RdreB1BI transgenic strawberry. Plant Physiology and Biochemistry, 2015, 89, 31-43.	2.8	21
1379	Stress-Tolerant Feedstocks for Sustainable Bioenergy Production on Marginal Land. Bioenergy Research, 2015, 8, 1081-1100.	2.2	75
1380	Characterization of cucumber violaxanthin de-epoxidase gene promoter in Arabidopsis. Journal of Bioscience and Bioengineering, 2015, 119, 470-477.	1.1	3
1381	Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids. Journal of Plant Physiology, 2015, 176, 78-88.	1.6	19
1382	Identification of Low Temperature Stress Regulated Transcript Sequences and Gene Families in Italian Cypress. Molecular Biotechnology, 2015, 57, 407-418.	1.3	5
1383	Effects of acclimation and pretreatment with abscisic acid or salicylic acid on tolerance of Trigonobalanus doichangensis to extreme temperatures. Biologia Plantarum, 2015, 59, 382-388.	1.9	10

#	ARTICLE	IF	CITATIONS
1384	<pre><i>Arabidopsis thaliana</i> accessions. Plant, Cell and Environment, 2015, 38, 1658-1672.</pre>	2.8	126
1385	Overexpression of tomato mitogen-activated protein kinase SIMPK3 in tobacco increases tolerance to low temperature stress. Plant Cell, Tissue and Organ Culture, 2015, 121, 21-34.	1.2	30
1386	The contribution of biotechnology to improving post-harvest chilling tolerance in fruits and vegetables using heat-shock proteins. Journal of Agricultural Science, 2015, 153, 7-24.	0.6	25
1387	Nitric oxide modulates Lycopersicon esculentum C-repeat binding factor 1 (LeCBF1) transcriptionally as well as post-translationally by nitrosylation. Plant Physiology and Biochemistry, 2015, 96, 115-123.	2.8	11
1388	Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Scientific Reports, 2015, 5, 12199.	1.6	69
1389	Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Molecular Biology, 2015, 88, 591-608.	2.0	136
1390	Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene, 2015, 573, 261-272.	1.0	141
1391	Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance. Molecular Plant, 2015, 8, 1536-1549.	3.9	55
1392	Tree Responses to Environmental Cues. Advances in Botanical Research, 2015, 74, 229-263.	0.5	9
1393	Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta, 2015, 242, 1187-1194.	1.6	80
1394	CBL-Mediated Calcium Signaling Pathways in Higher Plants. , 2015, , 175-190.		0
1395	Structural basis and functions of abscisic acid receptors PYLs. Frontiers in Plant Science, 2015, 6, 88.	1.7	47
1396	De Novo Transcriptome Sequencing of Low Temperature-Treated Phlox subulata and Analysis of the Genes Involved in Cold Stress. International Journal of Molecular Sciences, 2015, 16, 9732-9748.	1.8	17
1397	Isolation and Characterization of Six AP2/ERF Transcription Factor Genes in Chrysanthemum nankingense. International Journal of Molecular Sciences, 2015, 16, 2052-2065.	1.8	20
1398	Early transcriptional changes in Beta vulgaris in response to low temperature. Planta, 2015, 242, 187-201.	1.6	31
1399	Freeze-Tolerance of Cacti (Cactaceae) In Ottawa, Ontario, Canada. Madroño, 2015, 62, 33-45.	0.3	10
1400	Expression of the moss PpLEA4-20 gene in rice enhances membrane protection and client proteins stability. Biochemical and Biophysical Research Communications, 2015, 460, 386-391.	1.0	3
1401	Isolation and characterization of StERF transcription factor genes from potato (Solanum tuberosum) Tj ETQq1 1	0.784314	rgBT /Overlo

		ITATION REP	ORT	
#	Article		IF	CITATIONS
1402	Isolation and functional characterization of salt-stress induced RCI2-like genes from Medicago sativa and Medicago truncatula. Journal of Plant Research, 2015, 128, 697-707.	ì	1.2	24
1403	Identification of a putative stearoyl acyl-carrier-protein desaturase gene from Saussurea involucrata. Biologia Plantarum, 2015, 59, 316-324.		1.9	10
1404	ICE genes in Arabidopsis thaliana: clinal variation in DNA polymorphism and sequence diversification Biologia Plantarum, 2015, 59, 245-252.		1.9	8
1405	Genetic variation in morpho-physiological traits associated with frost tolerance in faba bean (Vicia) 1	ij ETQq1 1 0.78	34314 rgl 0.6	3Ţ ĮOverlo <mark>c</mark> ł
1406	Generating Marker-Free Transgenic Wheat Using Minimal Gene Cassette and Cold-Inducible Cre/Lox System. Plant Molecular Biology Reporter, 2015, 33, 1221-1231.		1.0	24
1407	A Buckwheat (Fagopyrum esculentum) DRE-Binding Transcription Factor Gene, FeDREB1, Enhances Freezing and Drought Tolerance of Transgenic Arabidopsis. Plant Molecular Biology Reporter, 2015, 33, 1510-1525.		1.0	52
1408	Seasonal changes in the content of dehydrins in mesophyll cells of common pine needles. Photosynthesis Research, 2015, 124, 159-169.		1.6	9
1409	The role of ABA in the freezing injury avoidance in two Hypericum species differing in frost tolerance and potential to synthesize hypericins. Plant Cell, Tissue and Organ Culture, 2015, 122, 45-56.		1.2	18
1411	Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining. Rice, 2015, 8, 14.		1.7	12
1412	Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon. BMC Genomics, 2015, 16, 227.		1.2	96
1413	Role of the Circadian Clock in Cold Acclimation and Winter Dormancy in Perennial Plants. , 2015, , 51-74.			11
1415	A Novel U-Box Protein Gene from "Zuoshanyi―Grapevine (Vitis amurensis Rupr. cv.) Involved in Responsive Gene Expression in Arabidopsis thanliana. Plant Molecular Biology Reporter, 2015, 33, 557-568.	Cold	1.0	9
1416	Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolo resulted in improved cold tolerance in transgenic rice plants. Plant Science, 2015, 236, 61-74.	g,	1.7	87
1417	Cold tolerance in <i>Arabidopsis kamchatica</i> . American Journal of Botany, 2015, 102, 439-448.		0.8	21
1418	Regulation of the Arabidopsis CBF regulon by a complex lowâ€ŧemperature regulatory network. Plar Journal, 2015, 82, 193-207.	ıt	2.8	413
1419	Population genetics of freeze tolerance among natural populations of P opulus balsamifera across the growing season. New Phytologist, 2015, 207, 710-722.		3.5	22
1420	Does age matter under winter photoinhibitory conditions? A case study in stems and leaves of European mistletoe (Viscum album). Functional Plant Biology, 2015, 42, 175.		1.1	6
1421	Gene Expression Profiles Involved in Development of Freezing Tolerance in Common Wheat. , 2015, 247-252.			0

#	Article	IF	CITATIONS
1422	Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L Plant Cell Reports, 2015, 34, 2189-2200.	2.8	32
1423	Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Molecular Biology, 2015, 88, 369-385.	2.0	110
1424	Gene regulatory network in almond (Prunus dulcis Mill.) in response to frost stress. Tree Genetics and Genomes, 2015, 11, 1.	0.6	20
1425	Deep sequencing-based characterization of transcriptome of trifoliate orange (Poncirus trifoliata (L.)) Tj ETQq1 1	0.784314 1.2	rgBT /Overla
1426	Freeze tolerance and physiological changes during cold acclimation of giant reed [<i><scp>A</scp>rundo donax</i> (<scp>L</scp> .)]. Grass and Forage Science, 2015, 70, 168-175.	1.2	25
1427	Differences in light-harvesting, acclimation to growth-light environment, and leaf structural development between Swedish and Italian ecotypes of Arabidopsis thaliana. Planta, 2015, 242, 1277-1290.	1.6	27
1428	RICE RESEARCH TO BREAK YIELD BARRIERS. Cosmos, 2015, 11, 37-54.	0.4	3
1429	Ubiquitination pathway as a target to develop abiotic stress tolerance in rice. Plant Signaling and Behavior, 2015, 10, e1057369.	1.2	49
1430	Cold hardiness estimation of Pinus densiflora var. zhangwuensis based on changes in ionic leakage, chlorophyll fluorescence and other physiological activities under cold stress. Journal of Forestry Research, 2015, 26, 641-649.	1.7	11
1431	Assessment of miRNA expression profile and differential expression pattern of target genes in cold-tolerant and cold-sensitive tomato cultivars. Biotechnology and Biotechnological Equipment, 2015, 29, 851-860.	0.5	32
1432	Winter cold-tolerance thresholds in field-grown <i>Miscanthus</i> hybrid rhizomes. Journal of Experimental Botany, 2015, 66, 4415-4425.	2.4	38
1433	Potential role of salicylic acid in modulating diacylglycerol homeostasis in response to freezing temperatures in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2015, 10, e1082698.	1.2	2
1434	Integrating circadian dynamics with physiological processes in plants. Nature Reviews Genetics, 2015, 16, 598-610.	7.7	402
1435	Ecophysiological constraints of Aster tripolium under extreme thermal events impacts: Merging biophysical, biochemical and genetic insights. Plant Physiology and Biochemistry, 2015, 97, 217-228.	2.8	51
1436	Cryo-injury in algae and the implications this has to the conservation of micro-algae. Microalgae Biotechnology, 2015, 1, .	1.0	18
1437	Cold acclimation induces distinctive changes in the chromatin state and transcript levels of <i><scp>COR</scp></i> genes in <i>Cannabis sativa</i> varieties with contrasting cold acclimation capacities. Physiologia Plantarum, 2015, 155, 281-295.	2.6	33
1438	The pepper late embryogenesis abundant protein <scp>CaLEA1</scp> acts in regulating abscisic acid signaling, drought and salt stress response. Physiologia Plantarum, 2015, 154, 526-542.	2.6	33
1439	Communityâ€level assessment of freezing tolerance: frost dictates the biome boundary between Albany subtropical thicket and Namaâ€Karoo in South Africa. Journal of Biogeography, 2015, 42, 167-178.	1.4	31

# 1440	ARTICLE Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy, 2015, 64, 98-113.	lF 1.9	Citations 227
1441	Soybean <scp>DREB</scp> 1/ <scp>CBF</scp> â€ŧype transcription factors function in heat and drought a well as cold stressâ€ŧesponsive gene expression. Plant Journal, 2015, 81, 505-518.	as 2.8	255
1442	Cold tolerance of tree species is related to the climate of their native ranges. Journal of Biogeography, 2015, 42, 156-166.	1.4	62
1443	Largeâ€scale adaptive differentiation in the alpine perennial herb <i><scp>A</scp>rabis alpina</i> . New Phytologist, 2015, 206, 459-470.	3.5	36
1444	Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation. Plant Molecular Biology, 2015, 87, 1-15.	2.0	53
1445	Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea. Gene, 2015, 554, 215-223.	1.0	16
1446	Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Reports, 2015, 34, 223-231.	2.8	55
1447	Insights from the cold transcriptome of <i><scp>P</scp>hyscomitrella patens</i> : global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. New Phytologist, 2015, 205, 869-881.	3.5	84
1448	Cold Signal Transduction and its Interplay with Phytohormones During Cold Acclimation. Plant and Cell Physiology, 2015, 56, 7-15.	1.5	274
1449	Polyamine metabolism and biosynthetic genes expression in tomato (Lycopersicon esculentum Mill.) seedlings during cold acclimation. Plant Growth Regulation, 2015, 75, 21-32.	1.8	31
1450	Biostimulant usage for preserving strawberries to climate damages. Zahradnictvi (Prague, Czech) Tj ETQc	10 0 0 rgBT /Qverlo	$\operatorname{pck}_{15}^{10}$ Tf 50
1452	The OsCYP19-4 Gene Is Expressed as Multiple Alternatively Spliced Transcripts Encoding Isoforms with Distinct Cellular Localizations and PPIase Activities under Cold Stress. International Journal of Molecular Sciences, 2016, 17, 1154.	1.8	20
1453	Histone Methylation - A Cornerstone for Plant Responses to Environmental Stresses?. , 2016, , .		14
1454	Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea. International Journal of Molecular Sciences, 2016, 17, 1211.	1.8	47
1455	Agro-Morphological Evaluation of Rice (Oryza sativa L.) for Seasonal Adaptation in the Sahelian Environment. Agronomy, 2016, 6, 8.	1.3	5
1456	The Indeterminate Domain Protein ROC1 Regulates Chilling Tolerance via Activation of DREB1B/CBF1 in Rice. International Journal of Molecular Sciences, 2016, 17, 233.	1.8	21
1457	De Novo Sequencing and Transcriptome Analysis of Pleurotus eryngii subsp. tuoliensis (Bailinggu) Mycelia in Response to Cold Stimulation. Molecules, 2016, 21, 560.	1.7	48
1458	Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis) Cultivars Differing in Chilling Tolerance under Cold Stress. PLoS ONE, 2016, 11, e0151105.	1.1	26

#	Article	IF	Citations
1459	De Novo Assembly and Transcriptome Analysis of Bulb Onion (Allium cepa L.) during Cold Acclimation Using Contrasting Genotypes. PLoS ONE, 2016, 11, e0161987.	1.1	28
1460	Seedling Establishment of Tall Fescue Exposed to Long-Term Starvation Stress. PLoS ONE, 2016, 11, e0166131.	1.1	4
1461	Jasmonates: Emerging Players in Controlling Temperature Stress Tolerance. Frontiers in Plant Science, 2015, 6, 1129.	1.7	135
1462	Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions. Frontiers in Plant Science, 2016, 7, 305.	1.7	51
1463	Transcriptome Response Mediated by Cold Stress in Lotus japonicus. Frontiers in Plant Science, 2016, 7, 374.	1.7	61
1464	Conservation Strategies in the Genus Hypericum via Cryogenic Treatment. Frontiers in Plant Science, 2016, 7, 558.	1.7	12
1465	Quantification of Carbohydrates in Grape Tissues Using Capillary Zone Electrophoresis. Frontiers in Plant Science, 2016, 7, 818.	1.7	17
1466	Differential Metabolic Rearrangements after Cold Storage Are Correlated with Chilling Injury Resistance of Peach Fruits. Frontiers in Plant Science, 2016, 7, 1478.	1.7	58
1467	Sterility Caused by Floral Organ Degeneration and Abiotic Stresses in Arabidopsis and Cereal Grains. Frontiers in Plant Science, 2016, 7, 1503.	1.7	46
1468	Transcriptome Dynamics in Mango Fruit Peel Reveals Mechanisms of Chilling Stress. Frontiers in Plant Science, 2016, 7, 1579.	1.7	69
1469	CbRCI35, a Cold Responsive Peroxidase from Capsella bursa-pastoris Regulates Reactive Oxygen Species Homeostasis and Enhances Cold Tolerance in Tobacco. Frontiers in Plant Science, 2016, 7, 1599.	1.7	9
1470	Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Frontiers in Plant Science, 2016, 7, 1620.	1.7	160
1471	Insights from the Cold Transcriptome and Metabolome of Dendrobium officinale: Global Reprogramming of Metabolic and Gene Regulation Networks during Cold Acclimation. Frontiers in Plant Science, 2016, 7, 1653.	1.7	75
1472	Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis. Frontiers in Plant Science, 2016, 7, 1703.	1.7	19
1473	Divergent Regulation of CBF Regulon on Cold Tolerance and Plant Phenotype in Cassava Overexpressing Arabidopsis CBF3 Gene. Frontiers in Plant Science, 2016, 7, 1866.	1.7	32
1474	Analysis of Leaf Heat Balance Affected by Operation of a Frost Protective Fan in Tea Fields. Environmental Control in Biology, 2016, 54, 125-131.	0.3	1
1475	Functional Analysis of Potato <i>CPD</i> Gene: A Rateâ€Limiting Enzyme in Brassinosteroid Biosynthesis under Polyethylene Glycolâ€Induced Osmotic Stress. Crop Science, 2016, 56, 2675-2687.	0.8	16
1476	Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Progress in Lipid Research, 2016, 63, 165-181.	5.3	67

#	Article	IF	CITATIONS
1477	Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 2016, 91, 1118-1133.	4.7	388
1478	Physiological responses to low temperature in spring and winter wheat varieties. Journal of the Science of Food and Agriculture, 2016, 96, 1967-1973.	1.7	17
1479	Convergent elevation trends in canopy chemical traits of tropical forests. Global Change Biology, 2016, 22, 2216-2227.	4.2	73
1480	Temperature Before Cold Acclimation Affects Cold Tolerance and Photoacclimation in Timothy (<i>Phleum pratense</i> L.), Perennial Ryegrass (<i>Lolium perenne</i> L.) and Red Clover (<i>Trifolium) Tj ETQq1</i>	1.0 .7843	1144rgBT /C
1481	A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (<i>Oryza sativa</i> L.). Plant Biology, 2016, 18, 471-483.	1.8	81
1482	<i><scp>RDM</scp>4</i> modulates cold stress resistance in <i>Arabidopsis</i> partially through the <i><scp>CBF</scp></i> â€mediated pathway. New Phytologist, 2016, 209, 1527-1539.	3.5	54
1483	The homeodomain transcription factor Ta HDZ iplâ $\in 2$ from wheat regulates frost tolerance, flowering time and spike development in transgenic barley. New Phytologist, 2016, 211, 671-687.	3.5	26
1484	<i>Arabidopsis thaliana</i> G2‣IKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are lowâ€temperature regulators of flavonoid accumulation. New Phytologist, 2016, 211, 912-925.	3.5	75
1485	New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genomeâ€wide association analysis. Plant, Cell and Environment, 2016, 39, 556-570.	2.8	141
1486	Identification of vernalization responsive genes in the winter wheat cultivar Jing841 by transcriptome sequencing. Journal of Genetics, 2016, 95, 957-964.	0.4	7
1487	Cross-talk between freezing response and signaling for regulatory transcriptions of MIR475b and its targets by miR475b promoter in Populus suaveolens. Scientific Reports, 2016, 6, 20648.	1.6	19
1488	Physiological and molecular characterisation of lucerne (Medicago sativa L.) germplasm with improved seedling freezing tolerance. Crop and Pasture Science, 2016, 67, 655.	0.7	10
1489	Gene expression and metabolism preceding soft scald, a chilling injury of â€~Honeycrisp' apple fruit. BMC Genomics, 2016, 17, 798.	1.2	28
1490	Xylem diameter changes during osmotic stress, desiccation and freezing inPinus sylvestrisandPopulus tremula. Tree Physiology, 2016, 37, 491-500.	1.4	11
1491	Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli "chilling―or "insect eggs― exhibits different transcriptomic responses to herbivory. Scientific Reports, 2016, 6, 28544.	1.6	22
1492	Genomics of Temperature Stress. , 2016, , 137-147.		1
1493	Molecular Breeding to Improve Plant Resistance to Abiotic Stresses. , 2016, , 283-326.		8
1494	Photosynthetic acclimation, vernalization, crop productivity and â€~the grand design of photosynthesis'. Journal of Plant Physiology, 2016, 203, 29-43.	1.6	54

#	Article	IF	CITATIONS
1495	Genome of Plant Maca (Lepidium meyenii) Illuminates Genomic Basis for High-Altitude Adaptation in the Central Andes. Molecular Plant, 2016, 9, 1066-1077.	3.9	69
1496	Low Temperature Tolerance in the Perennial Sunflower Helianthus maximiliani. American Midland Naturalist, 2016, 175, 91-102.	0.2	19
1497	Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.). Plant Cell Reports, 2016, 35, 1671-1686.	2.8	21
1498	Maternal salinity environment affects salt tolerance during germination in Anabasis setifera: A facultative desert halophyte. Journal of Arid Land, 2016, 8, 254-263.	0.9	47
1499	On the language and physiology of dormancy and quiescence in plants. Journal of Experimental Botany, 2016, 67, 3189-3203.	2.4	112
1500	Fast acclimation of freezing resistance suggests no influence of winter minimum temperature on the range limit of European beech. Tree Physiology, 2016, 36, 490-501.	1.4	31
1501	Transcriptome analysis of grapevine shoots exposed to chilling temperature for four weeks. Horticulture Environment and Biotechnology, 2016, 57, 161-172.	0.7	12
1502	Molecular foundations of chilling-tolerance of modern maize. BMC Genomics, 2016, 17, 125.	1.2	57
1503	The differences between two tea varieties in their response to natural cold conditions. Journal of Horticultural Science and Biotechnology, 2016, 91, 506-513.	0.9	8
1506	Opposing control by transcription factors MYB61 and MYB3 Increases Freezing Tolerance by relieving C-repeat Binding Factor suppression. Plant Physiology, 2016, 172, pp.00051.2016.	2.3	32
1508	Defining roles of tandemly arrayed <i>CBF</i> genes in freezing tolerance with new genome editing tools. New Phytologist, 2016, 212, 301-302.	3.5	7
1509	Transgenic potato plants expressing the coldâ€inducible transcription factor <i><scp>SCOF</scp>â€1</i> display enhanced tolerance to freezing stress. Plant Breeding, 2016, 135, 513-518.	1.0	17
1510	Some key physiological and molecular processes of cold acclimation. Biologia Plantarum, 2016, 60, 603-618.	1.9	57
1511	Freezing behaviours in wintering <i>Cornus florida</i> flower bud tissues revisited using MRI. Plant, Cell and Environment, 2016, 39, 2663-2675.	2.8	16
1512	Cold stress affects H + -ATPase and phospholipase D activity in Arabidopsis. Plant Physiology and Biochemistry, 2016, 108, 328-336.	2.8	61
1513	A Raf-like MAPKKK gene, GhRaf19, negatively regulates tolerance to drought and salt and positively regulates resistance to cold stress by modulating reactive oxygen species in cotton. Plant Science, 2016, 252, 267-281.	1.7	63
1514	The broad roles of <i>CBF</i> genes: From development to abiotic stress. Plant Signaling and Behavior, 2016, 11, e1215794.	1.2	35
1515	Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. Ecotoxicology, 2016, 25, 1445-1457.	1.1	38

#	Article	IF	Citations
1516	Technological Platforms to Study Plant Lipidomics. , 2016, , 477-492.		0
1517	Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC Plant Biology, 2016, 16, 163.	1.6	58
1518	Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid <i>Arabidopsis kamchatica</i> . Molecular Biology and Evolution, 2016, 33, 2781-2800.	3.5	40
1519	Poplar CBF1 functions specifically in an integrated cold regulatory network. Tree Physiology, 2016, 37, 98-115.	1.4	9
1521	Altitude variation in chilling tolerance among natural populations of Elymus nutans in the Tibetan Plateau. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	1
1522	The HSP70 chaperone machines of Chlamydomonas are induced by cold stress. Journal of Plant Physiology, 2016, 204, 85-91.	1.6	31
1523	Proteomic Analysis of Crop Plants Under Low Temperature: A Review of Cold Responsive Proteins. , 2016, , 97-127.		5
1524	Exogenous application of abscisic acid regulates endogenous gibberellins homeostasis and enhances resistance of oriental melon (Cucumis melo var. L.) against low temperature. Scientia Horticulturae, 2016, 207, 41-47.	1.7	41
1527	The <i>cbfs</i> triple mutants reveal the essential functions of <i><scp>CBF</scp>s</i> in cold acclimation and allow the definition of <scp>CBF</scp> regulons in <i>Arabidopsis</i> . New Phytologist, 2016, 212, 345-353.	3.5	360
1528	De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress. BMC Genomics, 2016, 17, 870.	1.2	49
1529	Blue Light- and Low Temperature-Regulated COR27 and COR28 Play Roles in the Arabidopsis Circadian Clock. Plant Cell, 2016, 28, 2755-2769.	3.1	56
1530	Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016, 109, 387-396.	2.8	41
1531	Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057. Scientific Reports, 2016, 6, 24066.	1.6	105
1532	Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports, 2016, 6, 34027.	1.6	209
1533	Effect of diurnal irradiance on night-chilling tolerance of six rubber cultivars. Photosynthetica, 2016, 54, 374-380.	0.9	13
1534	Overexpression of an SKn-dehydrin gene from Eucalyptus globulus and Eucalyptus nitens enhances to freezing stress in Arabidopsis. Trees - Structure and Function, 2016, 30, 1785-1797.	0.9	13
1535	Involvement of Plant Hormones in Cold Stress Tolerance. , 2016, , 23-49.		6
1536	iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. Journal of Proteomics, 2016, 146, 14-24.	1.2	87

#	Article	IF	Citations
1537	Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell, Tissue and Organ Culture, 2016, 126, 373-385.	1.2	18
1538	The AtDREB1A transcription factor up-regulates expression of a vernalization pathway gene, GmVRN1-like, delaying flowering in soybean. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	13
1539	Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis. Plant Physiology, 2016, 171, 2744-2759.	2.3	453
1540	Chloroplast Membrane Remodeling during Freezing Stress Is Accompanied by Cytoplasmic Acidification Activating SENSITIVE TO FREEZING2. Plant Physiology, 2016, 171, 2140-2149.	2.3	57
1541	Antioxidant Signaling and Redox Regulation in Drought- and Salinity-Stressed Plants. , 2016, , 465-498.		10
1542	Cloning and characterization of an ABA-independent DREB transcription factor gene, HcDREB2, in Hemarthria compressa. Hereditas, 2016, 153, 3.	0.5	14
1543	Oxidative Stress and Antioxidative Defense Systems in Plants Growing under Abiotic Stresses. , 2016, , 119-168.		17
1544	Chilling temperature stimulates growth, gene over-expression and podophyllotoxin biosynthesis in Podophyllum hexandrum Royle. Plant Physiology and Biochemistry, 2016, 107, 197-203.	2.8	25
1546	Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress. Functional and Integrative Genomics, 2016, 16, 495-511.	1.4	28
1547	Ectopic expression of the Vigna eylindrica ferritin gene enhanced heat tolerance in transgenic wheat (Triticum aestivum L.). Euphytica, 2016, 209, 23-30.	0.6	3
1548	Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regulation, 2016, 80, 335-343.	1.8	49
1549	Mass spectrometryâ€based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrometry Reviews, 2016, 35, 620-649.	2.8	254
1550	Overexpression of the Medicago falcata NAC transcription factor MfNAC3 enhances cold tolerance in Medicago truncatula. Environmental and Experimental Botany, 2016, 129, 67-76.	2.0	34
1551	Advances in papaya biotechnology. Biocatalysis and Agricultural Biotechnology, 2016, 5, 133-142.	1.5	20
1552	Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiology and Biochemistry, 2016, 100, 94-104.	2.8	104
1553	Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environmental and Experimental Botany, 2016, 123, 68-77.	2.0	64
1554	Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance. Plant Cell Reports, 2016, 35, 573-584.	2.8	65
1555	CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Reports, 2016, 35, 613-627.	2.8	91

ARTICLE IF CITATIONS Molybdenum application enhances antioxidant enzyme activity and COR15a protein expression under 1556 1.0 16 cold stress in wheat. Journal of Plant Interactions, 2016, 11, 5-10. Comparative analysis of gene expression in response to cold stress in diverse rice genotypes. 1.0 Biochemical and Biophysical Research Communications, 2016, 471, 253-259. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in 1558 1.6 33 Arabidopsis. Journal of Plant Physiology, 2016, 193, 12-21. MpMYBS3 as a crucial transcription factor of cold signaling confers the cold tolerance of banana. 1.2 Plant Cell, Tissue and Organ Culture, 2016, 125, 93-106. Development of a protocol for frost-tolerance evaluation in rapeseed/canola (Brassica napus L.). Crop 1560 2.3 29 Journal, 2016, 4, 147-152. Freezing tolerance in hydrated lettuce (Lactuca sativa) seeds is dependent on cooling rate but not 1.0 imbibition temperature. Acta Physiologiae Plantarum, 2016, 38, 1. Habitat-Associated Life History and Stress-Tolerance Variation in <i>Arabidopsis arenosa </i>). Plant 1562 2.3 35 Physiology, 2016, 171, 437-451. Overexpression of <i>OsCYP19-4</i>i>increases tolerance to cold stress and enhances grain yield in rice 2.4 (<i>Oryza sativa</i>). Journal of Experimental Botany, 2016, 67, 69-82. Comparative Study of Early Cold-Regulated Proteins by Two-Dimensional Difference Gel 1564 Electrophoresis Reveals a Key Role for Phospholipase $Dl \pm 1$ in Mediating Cold Acclimation Signaling 2.5 50 Pathway in Rice. Molecular and Cellular Proteomics, 2016, 15, 1397-1411. Light-quality and temperature-dependent<i>CBF14</i>gene expression modulates freezing tolerance in 2.4 cereals. Journal of Experimental Botany, 2016, 67, 1285-1295. Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon) Tj ETQq0 0.0 rgBT /Qyerlock 1 1566 Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 1567 1.0 56 grapevine cultivars. Acta Physiologiae Plantarum, 2016, 38, 1. Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in 1568 1.0 58 rapeseed (Brassica napusÂL.). Molecular Genetics and Genomics, 2016, 291, 1053-1067. Changes in carbohydrates triggered by low temperature waterlogging modify photosynthetic acclimation to cold in Festuca pratensis. Environmental and Experimental Botany, 2016, 122, 60-67. Relationship Between Endodormancy and Cold Hardiness in Grapevine Buds. Journal of Plant Growth 1570 2.8 31 Regulation, 2016, 35, 266-275. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low 1571 temperature. Photosynthesis Research, 2016, 128, 59-72. Proteomic responses associated with freezing tolerance in the callus of the Tibetan alpine plant 1572 1.2 12 Saussurea laniceps during cold acclimation. Plant Cell, Tissue and Organ Culture, 2016, 124, 81-95. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants. Protoplasma,

CITATION REPORT

2016, 253, 753-764.

#	Article	IF	CITATIONS
1574	Cold acclimation in warmer extended autumns impairs freezing tolerance of perennial ryegrass (<i>Lolium perenne</i>) and timothy (<i>Phleum pratense</i>). Physiologia Plantarum, 2017, 160, 266-281.	2.6	33
1575	Use of artificially-induced freezing temperatures to identify freeze tolerance in above-ground buds of Saccharum and Erianthus accessions. Euphytica, 2017, 213, 1.	0.6	3
1576	BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis. Molecular Plant, 2017, 10, 545-559.	3.9	262
1577	Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Scientific Reports, 2017, 7, 39865.	1.6	92
1578	Urban heat islands as agricultural opportunities: An innovative approach. Landscape and Urban Planning, 2017, 161, 103-114.	3.4	22
1579	Lipid signalling mediated by PLD/PA modulates proline and H2O2 levels in barley seedlings exposed to short- and long-term chilling stress. Plant Physiology and Biochemistry, 2017, 113, 149-160.	2.8	41
1580	The effect of cold priming on the fitness of Arabidopsis thaliana accessions under natural and controlled conditions. Scientific Reports, 2017, 7, 44055.	1.6	31
1581	<scp>TSV</scp> , a putative plastidic oxidoreductase, protects rice chloroplasts from cold stress during development by interacting with plastidic thioredoxin Z. New Phytologist, 2017, 215, 240-255.	3.5	58
1582	Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S -adenosylmethionine decarboxylase gene from Leymus chinensis. Journal of Plant Physiology, 2017, 211, 90-99.	1.6	29
1583	Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia) Tj ETQq1	1 0.784314	rgBT /Overlo
1584	Overexpression of three novel CBF transcription factors from Eucalyptus globulus improves cold tolerance on transgenic Arabidopsis thaliana. Trees - Structure and Function, 2017, 31, 1041-1055.	0.9	6
1584 1585	Overexpression of three novel CBF transcription factors from Eucalyptus globulus improves cold tolerance on transgenic Arabidopsis thaliana. Trees - Structure and Function, 2017, 31, 1041-1055. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. Plant Molecular Biology, 2017, 94, 109-124.	0.9	6 34
1584 1585 1586	Overexpression of three novel CBF transcription factors from Eucalyptus globulus improves cold tolerance on transgenic Arabidopsis thaliana. Trees - Structure and Function, 2017, 31, 1041-1055. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. Plant Molecular Biology, 2017, 94, 109-124. Transcriptome profiling of Eucalyptus nitens reveals deeper insight into the molecular mechanism of cold acclimation and deacclimation process. Tree Genetics and Genomes, 2017, 13, 1.	0.9 2.0 0.6	6 34 17
1584 1585 1586 1587	Overexpression of three novel CBF transcription factors from Eucalyptus globulus improves cold tolerance on transgenic Arabidopsis thaliana. Trees - Structure and Function, 2017, 31, 1041-1055. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. Plant Molecular Biology, 2017, 94, 109-124. Transcriptome profiling of Eucalyptus nitens reveals deeper insight into the molecular mechanism of cold acclimation and deacclimation process. Tree Genetics and Genomes, 2017, 13, 1. iTRAQâ€based quantitative proteomic analysis of wheat roots in response to salt stress. Proteomics, 2017, 17, 1600265.	0.9 2.0 0.6 1.3	6 34 17 36
1584 1585 1586 1587 1588	Overexpression of three novel CBF transcription factors from Eucalyptus globulus improves cold tolerance on transgenic Arabidopsis thaliana. Trees - Structure and Function, 2017, 31, 1041-1055. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. Plant Molecular Biology, 2017, 94, 109-124. Transcriptome profiling of Eucalyptus nitens reveals deeper insight into the molecular mechanism of cold acclimation and deacclimation process. Tree Genetics and Genomes, 2017, 13, 1. ITRAQâ€based quantitative proteomic analysis of wheat roots in response to salt stress. Proteomics, 2017, 17, 1600265. Folding of intrinsically disordered plant LEA proteins is driven by glycerolâ€induced crowding and the presence of membranes. FEBS Journal, 2017, 284, 919-936.	0.9 2.0 0.6 1.3 2,2	6 34 17 36
1584 1585 1586 1587 1588	Overexpression of three novel CBF transcription factors from Eucalyptus globulus improves cold tolerance on transgenic Arabidopsis thaliana. Trees - Structure and Function, 2017, 31, 1041-1055. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. Plant Molecular Biology, 2017, 94, 109-124. Transcriptome profiling of Eucalyptus nitens reveals deeper insight into the molecular mechanism of cold acclimation and deacclimation process. Tree Genetics and Genomes, 2017, 13, 1. ITRAQacbased quantitative proteomic analysis of wheat roots in response to salt stress. Proteomics, 2017, 17, 1600265. Folding of intrinsically disordered plant LEA proteins is driven by glycerola€induced crowding and the presence of membranes. FEBS Journal, 2017, 284, 919-936. Long-chain base kinase1 affects freezing tolerance in Arabidopsis thaliana. Plant Science, 2017, 259, 94-103.	0.9 2.0 0.6 1.3 2.2 1.7	6 34 17 36 69 17
1584 1585 1586 1587 1588 1589	Overexpression of three novel CBF transcription factors from Eucalyptus globulus improves cold tolerance on transgenic Arabidopsis thaliana. Trees - Structure and Function, 2017, 31, 1041-1055. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. Plant Molecular Biology, 2017, 94, 109-124. Transcriptome profiling of Eucalyptus nitens reveals deeper insight into the molecular mechanism of cold acclimation and deacclimation process. Tree Genetics and Genomes, 2017, 13, 1. ITRAQa€based quantitative proteomic analysis of wheat roots in response to salt stress. Proteomics, 2017, 17, 1600265. Folding of intrinsically disordered plant LEA proteins is driven by glycerolâ€induced crowding and the presence of membranes. FEBS Journal, 2017, 284, 919-936. Long-chain base kinase1 affects freezing tolerance in Arabidopsis thaliana. Plant Science, 2017, 259, 94-103. Enhancement of abiotic stress tolerance in poplar by overexpression of key Arabidopsis stress response genes, AtSRK2C and AtGolS2. Molecular Breeding, 2017, 37, 1.	0.9 2.0 0.6 1.3 2.2 1.7 1.0	 6 34 17 36 69 17 14

#	Article	IF	CITATIONS
1592	Identification of differentially expressed proteins in bermudagrass response to cold stress in the presence of ethylene. Environmental and Experimental Botany, 2017, 139, 67-78.	2.0	24
1593	Advances in physiological and molecular aspects of plant cold tolerance. Journal of Plant Interactions, 2017, 12, 143-157.	1.0	93
1594	SICOR413IM1: A novel cold-regulation gene from tomato, enhances drought stress tolerance in tobacco. Journal of Plant Physiology, 2017, 216, 88-99.	1.6	21
1595	The rice transcription factors <i>OsICE</i> confer enhanced cold tolerance in transgenic <i>Arabidopsis</i> . Plant Signaling and Behavior, 2017, 12, e1316442.	1.2	41
1596	Modulation of anthraquinones and phloroglucinols biosynthesis in Hypericum spp. by cryogenic treatment. Journal of Biotechnology, 2017, 251, 59-67.	1.9	10
1597	Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets. Journal of Plant Research, 2017, 130, 893-907.	1.2	17
1598	Signal transduction and biotechnology in response to environmental stresses. Biologia Plantarum, 2017, 61, 401-416.	1.9	17
1599	Characterization of BdCBF genes and genome-wide transcriptome profiling of BdCBF3 -dependent and -independent cold stress responses in Brachypodium distachyon. Plant Science, 2017, 262, 52-61.	1.7	15
1600	Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Research, 2017, 45, 6613-6627.	6.5	137
1601	A Sacrifice-for-Survival Mechanism Protects Root Stem Cell Niche from Chilling Stress. Cell, 2017, 170, 102-113.e14.	13.5	139
1602	Overexpression of Lsi1 in cold-sensitive rice mediates transcriptional regulatory networks and enhances resistance to chilling stress. Plant Science, 2017, 262, 115-126.	1.7	41
1603	Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nature Communications, 2017, 8, 15911.	5.8	266
1604	An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds. Plant Physiology and Biochemistry, 2017, 116, 91-105.	2.8	3
1605	Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. Journal of Experimental Botany, 2017, 68, 1361-1369.	2.4	349
1606	Topological features of a gene co-expression network predict patterns of natural diversity in environmental response. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170914.	1.2	24
1607	Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis. Annals of Botany, 2017, 119, 1195-1209.	1.4	54
1608	Construction of a genetic linkage map of rootstock-used pumpkin using SSR markers and QTL analysis for cold tolerance. Scientia Horticulturae, 2017, 220, 107-113.	1.7	11
1609	Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response. Molecular Cell, 2017, 66, 117-128.e5.	4.5	281

#	Article	IF	CITATIONS
1611	Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature. Plant Cell, 2017, 29, 760-774.	3.1	158
1612	Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants. Plant Biotechnology Reports, 2017, 11, 53-62.	0.9	26
1613	â€~Bartlett' pear fruit (Pyrus communis L.) ripening regulation by low temperatures involves genes associated with jasmonic acid, cold response, and transcription factors. Plant Science, 2017, 260, 8-18.	1.7	34
1614	Plant Stress Signaling Through Corresponding Nanobiotechnology. , 2017, , 381-391.		1
1615	Bioinformatics identification of new targets for improving low temperature stress tolerance in spring and winter wheat. BMC Bioinformatics, 2017, 18, 174.	1.2	8
1616	Acclimation of Pistacia integerrima trees to frost in semi-arid environments depends on autumn's drought. Planta, 2017, 245, 671-679.	1.6	12
1617	The multifaceted roles of NUCLEAR FACTOR-Y in Arabidopsis thaliana development and stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 636-644.	0.9	51
1618	Chemical inhibition of the histone acetyltransferase activity in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2017, 483, 664-668.	1.0	18
1619	Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis. Plant Cell, 2017, 29, 2817-2830.	3.1	64
1620	MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple. Journal of Plant Physiology, 2017, 218, 275-281.	1.6	56
1621	The effect of cold acclimation on the low molecular weight carbohydrate composition of safflower. Heliyon, 2017, 3, e00402.	1.4	11
1622	Rapid responses of plants to temperature changes. Temperature, 2017, 4, 371-405.	1.7	203
1623	MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability. Developmental Cell, 2017, 43, 618-629.e5.	3.1	359
1624	MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis. Developmental Cell, 2017, 43, 630-642.e4.	3.1	322
1625	Low-temperature stress: is phytohormones application a remedy?. Environmental Science and Pollution Research, 2017, 24, 21574-21590.	2.7	56
1626	Exploring priming responses involved in peach fruit acclimation to cold stress. Scientific Reports, 2017, 7, 11358.	1.6	83
1627	iTRAQ and virus-induced gene silencing revealed three proteins involved in cold response in bread wheat. Scientific Reports, 2017, 7, 7524.	1.6	29
1628	Exploring new alleles for frost tolerance in winter rye. Theoretical and Applied Genetics, 2017, 130, 2151-2164.	1.8	20

#	ARTICLE	IF	Citations
1629	Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6695-E6702.	3.3	215
1630	Lipid remodelling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Science, 2017, 263, 194-200.	1.7	133
1631	Actions of Biological Trace Elements in Plant Abiotic Stress Tolerance. , 2017, , 213-274.		17
1632	Intrinsically Disordered Stress Protein COR15A Resides at the Membrane Surface during Dehydration. Biophysical Journal, 2017, 113, 572-579.	0.2	51
1633	Bipolar distributions in vascular plants: A review. American Journal of Botany, 2017, 104, 1680-1694.	0.8	26
1634	Amelioration of Environmental Stress for Sustainable Crop Productivity. , 2017, , 327-348.		3
1636	The Effects of Transcription Directions of Transgenes and the gypsy Insulators on the Transcript Levels of Transgenes in Transgenic Arabidopsis. Scientific Reports, 2017, 7, 14757.	1.6	6
1637	Plant responses to environmental stresses—from gene to biotechnology. AoB PLANTS, 2017, 9, plx025.	1.2	112
1638	Adaptation to iron deficiency and high pH in evergreen azaleas (Rhododendron spp.): potential resources for breeding. Euphytica, 2017, 213, 1.	0.6	19
1639	Molecular characterization and functional analysis of the OsPsbR gene family in rice. Molecular Genetics and Genomics, 2017, 292, 271-281.	1.0	15
1640	Plant responses to abiotic stress: The chromatin context of transcriptional regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 106-122.	0.9	185
1641	Scale dependence of canopy trait distributions along a tropical forest elevation gradient. New Phytologist, 2017, 214, 973-988.	3.5	57
1642	Tomato SIDREB1 gene conferred the transcriptional activation of drought-induced gene and an enhanced tolerance of the transgenic Arabidopsis to drought stress. Plant Growth Regulation, 2017, 81, 131-145.	1.8	16
1643	<i>ERF105</i> is a transcription factor gene of <i>Arabidopsis thaliana</i> required for freezing tolerance and cold acclimation. Plant, Cell and Environment, 2017, 40, 108-120.	2.8	102
1644	Transcriptome analysis of peach [Prunus persica (L.) Batsch] stigma in response to low-temperature stress with digital gene expression profiling. Journal of Plant Biochemistry and Biotechnology, 2017, 26, 141-148.	0.9	17
1645	Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Reports, 2017, 36, 1-35.	2.8	110
1646	Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environmental and Experimental Botany, 2017, 134, 33-44.	2.0	90
1647	The cost of avoiding freezing in stems: trade-off between xylem resistance to cavitation and supercooling capacity in woody plants. Tree Physiology, 2017, 37, 1251-1262.	1.4	24

#	Article	IF	CITATIONS
1648	Transcriptome profiles reveal cold acclimation and freezing tolerance of susceptible and tolerant hulless barley genotypes. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	16
1649	OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance. Developmental Cell, 2017, 43, 731-743.e5.	3.1	218
1650	Cold acclimation alters DNA methylation patterns and confers tolerance to heat and increases growth rate in Brassica rapa. Journal of Experimental Botany, 2017, 68, 1213-1224.	2.4	81
1651	Identification and validation of cold responsive microRNAs of Hevea brasiliensis using high throughput sequencing. Journal of Crop Science and Biotechnology, 2017, 20, 369-377.	0.7	13
1652	Priming: A promising strategy for crop production in response to future climate. Journal of Integrative Agriculture, 2017, 16, 2709-2716.	1.7	82
1653	Assessing freeze tolerance in St. Augustinegrass: II. acclimation treatment effects. Euphytica, 2017, 213, 1.	0.6	5
1654	Metabolite Profiling of adh1 Mutant Response to Cold Stress in Arabidopsis. Frontiers in Plant Science, 2016, 7, 2072.	1.7	42
1655	A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean. Frontiers in Plant Science, 2017, 8, 299.	1.7	48
1656	Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants. Frontiers in Plant Science, 2017, 8, 364.	1.7	10
1657	Transcriptomic Response of Chinese Yew (Taxus chinensis) to Cold Stress. Frontiers in Plant Science, 2017, 8, 468.	1.7	29
1658	Transcriptome Analysis of a Female-sterile Mutant (fsm) in Chinese Cabbage (Brassica campestris ssp.) Tj ETQq0	0	Overlock 10
1659	Genome-Wide Analysis of Gene Expression Provides New Insights into Cold Responses in Thellungiella salsuginea. Frontiers in Plant Science, 2017, 8, 713.	1.7	59
1660	BdVRN1 Expression Confers Flowering Competency and Is Negatively Correlated with Freezing Tolerance in Brachypodium distachyon. Frontiers in Plant Science, 2017, 8, 1107.	1.7	12
1661	Unraveling the Photoprotective Response of Lichenized and Free-Living Green Algae (Trebouxiophyceae, Chlorophyta) to Photochilling Stress. Frontiers in Plant Science, 2017, 8, 1144.	1.7	10
1662	Perspective Research Progress in Cold Responses of Capsella bursa-pastoris. Frontiers in Plant Science, 2017, 8, 1388.	1.7	7
1663	Overexpression of Hevea brasiliensis HbICE1 Enhances Cold Tolerance in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1462.	1.7	31
1664	ABSCISIC ACID INSENSITIVE3 Is Involved in Cold Response and Freezing Tolerance Regulation in Physcomitrella patens. Frontiers in Plant Science, 2017, 8, 1599.	1.7	24
1665	ABA Is Involved in Regulation of Cold Stress Response in Bermudagrass. Frontiers in Plant Science, 2017, 8, 1613.	1.7	115

#	Article	IF	CITATIONS
1666	Organic Molecules from Biochar Leacheates Have a Positive Effect on Rice Seedling Cold Tolerance. Frontiers in Plant Science, 2017, 8, 1624.	1.7	33
1667	Potassium in the Grape (Vitis vinifera L.) Berry: Transport and Function. Frontiers in Plant Science, 2017, 8, 1629.	1.7	107
1668	Ice-Binding Proteins in Plants. Frontiers in Plant Science, 2017, 8, 2153.	1.7	72
1669	Hormone and Dehydrin Expression Responses to Cold Acclimation in Two Zoysiagrass Cultivars with Contrasting Freezing Tolerance. Itsrj, 2017, 13, 547.	0.1	4
1670	Circadian and Light Regulated Expression of CBFs and their Upstream Signalling Genes in Barley. International Journal of Molecular Sciences, 2017, 18, 1828.	1.8	27
1671	Perspectives on the Future of Ice Nucleation Research: Research Needs and Unanswered Questions Identified from Two International Workshops. Atmosphere, 2017, 8, 138.	1.0	56
1672	De Novo Transcriptome Sequencing in Passiflora edulis Sims to Identify Genes and Signaling Pathways Involved in Cold Tolerance. Forests, 2017, 8, 435.	0.9	28
1673	De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. International Journal of Molecular Sciences, 2017, 18, 1155.	1.8	20
1674	miRNA alteration is an important mechanism in sugarcane response to low-temperature environment. BMC Genomics, 2017, 18, 833.	1.2	61
1675	Transcriptome Changes in Response to Cold Acclimation in Perennial Ryegrass as Revealed by a Crossâ€Species Microarray Analysis. Crop Science, 2017, 57, S-179.	0.8	2
1676	AsA/DHA Redox Pair Influencing Plant Growth and Stress Tolerance. , 2017, , 297-319.		11
1677	The <i>CBFâ€Like</i> Gene Family in Alfalfa: Expression Analyses and Identification of Potential Functional Homologs of <i>Arabidopsis CBF3</i> . Crop Science, 2017, 57, 2051-2063.	0.8	7
1678	Transcriptome sequencing analysis of alfalfa reveals CBF genes potentially playing important roles in response to freezing stress. Genetics and Molecular Biology, 2017, 40, 824-833.	0.6	27
1679	Abiotic Stress Response in Plants: A Cis-Regulatory Perspective. , 2018, , 183-205.		1
1680	Enhancing Cold Tolerance in Horticultural Plants Using In Vitro Approaches. , 2018, , 225-241.		1
1681	Omics-Based Strategies for Improving Salt Tolerance in Maize (Zea mays L.). , 2018, , 243-266.		5
1682	<scp>OST</scp> 1â€mediated <scp>BTF</scp> 3L phosphorylation positively regulates <scp>CBF</scp> s during plant cold responses. EMBO Journal, 2018, 37, .	3.5	134
1683	Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response. Genes and Genomics, 2018, 40, 1181-1197.	0.5	34

#	Article	IF	CITATIONS
1684	Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs. Plant Physiology, 2018, 176, 2251-2276.	2.3	39
1685	Divergence in the transcriptional landscape between low temperature and freeze shock in cultivated grapevine (Vitis vinifera). Horticulture Research, 2018, 5, 10.	2.9	60
1686	Comparative transcriptome analysis reveals an early gene expression profile that contributes to cold resistance in Hevea brasiliensis (the Para rubber tree). Tree Physiology, 2018, 38, 1409-1423.	1.4	26
1687	Mechanism of freeze-thaw injury and recovery: A cool retrospective and warming up to new ideas. Plant Science, 2018, 270, 301-313.	1.7	86
1688	Evaluation of Diversity Based on Morphological Variabilities and ISSR Molecular Markers in Iranian Cynodon dactylon (L.) Pers. Accessions to Select and Introduce Cold-Tolerant Genotypes. Molecular Biotechnology, 2018, 60, 259-270.	1.3	9
1689	Water relations in olive trees under cold conditions. Scientia Horticulturae, 2018, 235, 1-8.	1.7	8
1690	Identification of an ice recrystallisation inhibition gene family in winterâ€hardy wheat and its evolutionary relationship to other members of the <i>Triticeae</i> . Journal of Agronomy and Crop Science, 2018, 204, 400-413.	1.7	1
1691	Insights into the regulation of Câ€repeat binding factors in plant cold signaling. Journal of Integrative Plant Biology, 2018, 60, 780-795.	4.1	140
1692	Hypoxia enhances lignification and affects the anatomical structure in hydroponic cultivation of carrot taproot. Plant Cell Reports, 2018, 37, 1021-1032.	2.8	19
1693	Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus. Biochemical and Biophysical Research Communications, 2018, 500, 405-410.	1.0	45
1694	Effects of lowâ€ŧemperature conditioning and cold storage on development of chilling injuries and the transcriptome of â€Wonderful' pomegranate fruit. International Journal of Food Science and Technology, 2018, 53, 2064-2076.	1.3	14
1695	Genome and evolution of the shadeâ€requiring medicinal herb <i>Panax ginseng</i> . Plant Biotechnology Journal, 2018, 16, 1904-1917.	4.1	136
1696	Insight into cellular proteome of Lolium multiflorum/Festuca arundinacea introgression forms to decipher crucial mechanisms of cold acclimation in forage grasses. Plant Science, 2018, 272, 22-31.	1.7	17
1698	Frost tolerance and metabolite changes of rye (Secale cereale) during the cold hardening and overwintering. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	8
1699	A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis. Journal of Plant Physiology, 2018, 222, 67-78.	1.6	37
1700	Transcriptome Analysis of Cucumber Roots Reveals Key Cold-Resistance Genes Induced by AM Fungi. Plant Molecular Biology Reporter, 2018, 36, 135-148.	1.0	18
1701	Ectopic expression of StCBF1and ScCBF1 have different functions in response to freezing and drought stresses in Arabidopsis. Plant Science, 2018, 270, 221-233.	1.7	25
1702	Comparative phenology of dormant Japanese pear (Pyrus pyrifolia) flower buds: a possible cause of â€~flowering disorder'. Tree Physiology, 2018, 38, 825-839.	1.4	13

#	Article	IF	CITATIONS
1703	Overexpression of transcription factor SINAC35 enhances the chilling tolerance of transgenic tomato. Biologia Plantarum, 2018, 62, 479-488.	1.9	14
1704	Ectopic expression of the LoERF017 transcription factor from Larix olgensis Henry enhances salt and osmotic-stress tolerance in Arabidopsis thaliana. Plant Biotechnology Reports, 2018, 12, 93-104.	0.9	13
1705	Os <scp>MADS</scp> 57 together with Os <scp>TB</scp> 1 coordinates transcription of its target <i>Os<scp>WRKY</scp>94</i> and <i>D14</i> to switch its organogenesis to defense for cold adaptation in rice. New Phytologist, 2018, 218, 219-231.	3.5	113
1706	Identification of genes from the ICE–CBF–COR pathway under cold stress in Aegilops–Triticum composite group and the evolution analysis with those from Triticeae. Physiology and Molecular Biology of Plants, 2018, 24, 211-229.	1.4	27
1707	Comparative proteomic analysis reveals differential protein and energy metabolisms from two tobacco cultivars in response to cold stress. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	9
1708	An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway. Journal of Plant Physiology, 2018, 221, 74-80.	1.6	93
1709	Transcriptomic Insights into Phenological Development and Cold Tolerance of Wheat Grown in the Field. Plant Physiology, 2018, 176, 2376-2394.	2.3	55
1710	An atypical R2R3 <scp>MYB</scp> transcription factor increases cold hardiness by <scp>CBF</scp> â€dependent and <scp>CBF</scp> â€independent pathways in apple. New Phytologist, 2018, 218, 201-218.	3.5	217
1711	Cold-regulated protein (SICOR413IM1) confers chilling stress tolerance in tomato plants. Plant Physiology and Biochemistry, 2018, 124, 29-39.	2.8	42
1712	Structural characterization of a novel full-length transcript promoter from Horseradish Latent Virus (HRLV) and its transcriptional regulation by multiple stress responsive transcription factors. Plant Molecular Biology, 2018, 96, 179-196.	2.0	12
1713	Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs. Plant Physiology and Biochemistry, 2018, 124, 100-111.	2.8	43
1714	Ectopic expression of <italic>BdClPK31</italic> confers enhanced low-temperature tolerance in transgenic tobacco plants. Acta Biochimica Et Biophysica Sinica, 2018, 50, 199-208.	0.9	21
1715	Genetic basis of photosynthetic responses to cold in two locally adapted populations of Arabidopsis thaliana. Journal of Experimental Botany, 2018, 69, 699-709.	2.4	56
1716	Molecular Regulation of CBF Signaling in Cold Acclimation. Trends in Plant Science, 2018, 23, 623-637.	4.3	508
1717	Overexpression of the transcription factor MdbHLH33 increases cold tolerance of transgenic apple callus. Plant Cell, Tissue and Organ Culture, 2018, 134, 131-140.	1.2	22
1718	Bioinspired Adaptive Gel Materials with Synergistic Heterostructures. Chinese Journal of Polymer Science (English Edition), 2018, 36, 683-696.	2.0	25
1719	Bioengineering of DREB and NAC Transcriptional Factors for Enhanced Plant Tolerance Against Abiotic Stresses. , 2018, , 173-211.		0
1720	Co-regulation analysis of co-expressed modules under cold and pathogen stress conditions in tomato. Molecular Biology Reports, 2018, 45, 335-345.	1.0	4

#	Article	IF	CITATIONS
1721	Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation. 3 Biotech, 2018, 8, 195.	1.1	67
1722	S-Methylmethionine-Salicylate Pretreatment Reduces Low Temperature Stress in Maize. Russian Journal of Plant Physiology, 2018, 65, 63-68.	0.5	6
1723	Global spatial analysis of Arabidopsis natural variants implicates 5′UTR splicing of <i>LATE ELONGATED HYPOCOTYL</i> in responses to temperature. Plant, Cell and Environment, 2018, 41, 1524-1538.	2.8	13
1724	Changes in thermic limits and acclimation assessment for an alpine plant by chlorophyll fluorescence analysis: F _v /F _m vs. R _{fd} . Photosynthetica, 2018, 56, 527-536.	0.9	20
1725	Regulation of low temperature stress in plants by microRNAs. Plant, Cell and Environment, 2018, 41, 1-15.	2.8	130
1726	Freezing tolerance of chickpea: biochemical and molecular changes at vegetative stage. Biologia Plantarum, 2018, 62, 140-148.	1.9	16
1727	Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions. New Phytologist, 2018, 217, 925-938.	3.5	27
1728	Contrasting survival and physiological responses of sub-Arctic plant types to extreme winter warming and nitrogen. Planta, 2018, 247, 635-648.	1.6	17
1729	The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum) Tj ETQq0 0 0 rg	BT /Qverlo	ck 10 Tf 50 4
1730	Dissection of resistance to Microdochium nivale in Lolium multiflorum/Festuca arundinacea introgression forms. Plant Physiology and Biochemistry, 2018, 123, 43-53.	2.8	7
1730 1731	Dissection of resistance to Microdochium nivale in Lolium multiflorum/Festuca arundinacea introgression forms. Plant Physiology and Biochemistry, 2018, 123, 43-53. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats. Journal of Proteomics, 2018, 178, 123-127.	2.8 1.2	7
1730 1731 1732	Dissection of resistance to Microdochium nivale in Lolium multiflorum/Festuca arundinacea introgression forms. Plant Physiology and Biochemistry, 2018, 123, 43-53. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats. Journal of Proteomics, 2018, 178, 123-127. Thermal acclimation in <i>Arabidopsis lyrata</i> genotypic costs and transcriptional changes. Journal of Evolutionary Biology, 2018, 31, 123-135.	2.8 1.2 0.8	7 16 12
1730 1731 1732 1733	Dissection of resistance to Microdochium nivale in Lolium multiflorum/Festuca arundinacea introgression forms. Plant Physiology and Biochemistry, 2018, 123, 43-53. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats. Journal of Proteomics, 2018, 178, 123-127. Thermal acclimation in <i>Arabidopsis lyrata</i> genotypic costs and transcriptional changes. Journal of Evolutionary Biology, 2018, 31, 123-135. Apple fruit superficial scald resistance mediated by ethylene inhibition is associated with diverse metabolic processes. Plant Journal, 2018, 93, 270-285.	2.8 1.2 0.8 2.8	7 16 12 76
1730 1731 1732 1733	Dissection of resistance to Microdochium nivale in Lolium multiflorum/Festuca arundinacea introgression forms. Plant Physiology and Biochemistry, 2018, 123, 43-53. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats. Journal of Proteomics, 2018, 178, 123-127. Thermal acclimation in <i>Arabidopsis lyrata</i> genotypic costs and transcriptional changes. Journal of Evolutionary Biology, 2018, 31, 123-135. Apple fruit superficial scald resistance mediated by ethylene inhibition is associated with diverse metabolic processes. Plant Journal, 2018, 93, 270-285. GmLEA2-1, a late embryogenesis abundant protein gene isolated from soybean (Clycine max (L.) Merr.), confers tolerance to abiotic stress. Acta Biologica Hungarica, 2018, 69, 270-282.	2.8 1.2 0.8 2.8 0.7	7 16 12 76
1730 1731 1732 1733 1734	Dissection of resistance to Microdochium nivale in Lolium multiflorum/Festuca arundinacea introgression forms. Plant Physiology and Biochemistry, 2018, 123, 43-53. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats. Journal of Proteomics, 2018, 178, 123-127. Thermal acclimation in <i>Arabidopsis lyrata</i> genotypic costs and transcriptional changes. Journal of Evolutionary Biology, 2018, 31, 123-135. Apple fruit superficial scald resistance mediated by ethylene inhibition is associated with diverse metabolic processes. Plant Journal, 2018, 93, 270-285. CmLEA2-1, a late embryogenesis abundant protein gene isolated from soybean (Clycine max (L.) Merr.), confers tolerance to abiotic stress. Acta Biologica Hungarica, 2018, 69, 270-282. Adaptive Alterations in the Ultrastructure of Chloroplasts and the Contents of Pigments and Sugars under Low Temperature Hardening of Potato Plants: Role of 1°12 Acyl-Lipid Desaturase. Biology Bulletin, 2018, 45, 549-556.	2.8 1.2 0.8 2.8 0.7 0.1	7 16 12 76 6 3
1730 1731 1732 1733 1734 1735	Dissection of resistance to Microdochium nivale in Lolium multiflorum/Festuca arundinacea introgression forms. Plant Physiology and Biochemistry, 2018, 123, 43-53. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats. Journal of Proteomics, 2018, 178, 123-127. Thermal acclimation in <i>Arabidopsis lyrata </i> genotypic costs and transcriptional changes. Journal of Evolutionary Biology, 2018, 31, 123-135. Apple fruit superficial scald resistance mediated by ethylene inhibition is associated with diverse metabolic processes. Plant Journal, 2018, 93, 270-285. GmLEA2-1, a late embryogenesis abundant protein gene isolated from soybean (Clycine max (L.) Merr.), confers tolerance to abiotic stress. Acta Biologica Hungarica, 2018, 69, 270-282. Adaptive Alterations in the Ultrastructure of Chloroplasts and the Contents of Pigments and Sugars under Low Temperature Hardening of Potato Plants: Role of Pi 12 Acyl-Lipid Desaturase. Biology Bulletin, 2018, 45, 549-556. Adaptation of Asparagus to overwinter in cold climates. Acta Horticulturae, 2018, 135-144.	2.8 1.2 0.8 2.8 0.7 0.1	7 16 12 76 6 3
1730 1731 1732 1733 1734 1735 1736	Dissection of resistance to Microdochium nivale in Lolium multiflorum/Festuca arundinacea introgression forms. Plant Physiology and Biochemistry, 2018, 123, 43-53. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats. Journal of Proteomics, 2018, 178, 123-127. Thermal acclimation in <i>>Arabidopsis lyrata </i> >; genotypic costs and transcriptional changes. Journal of Evolutionary Biology, 2018, 31, 123-135. Apple fruit superficial scald resistance mediated by ethylene inhibition is associated with diverse metabolic processes. Plant Journal, 2018, 93, 270-285. CmLEA2-1, a late embryogenesis abundant protein gene isolated from soybean (Clycine max (L.) Merr.), confers tolerance to abiotic stress. Acta Biologica Hungarica, 2018, 69, 270-282. Adaptive Alterations in the Ultrastructure of Chloroplasts and the Contents of Pigments and Sugars under Low Temperature Hardening of Potato Plants: Role of Pi12 Acyl-Lipid Desaturase. Biology Bulletin, 2018, 45, 549-556. Adaptation of Asparagus to overwinter in cold climates. Acta Horticulturae, 2018, 135-144. Mining Late Embryogenesis Abundant (LEA) Family Genes in Cleistogenes songorica, a Xerophyte Perennial Desert Plant. International Journal of Molecular Sciences, 2018, 19, 3430.	2.8 1.2 0.8 2.8 0.7 0.1 0.1 1.8	7 16 12 76 6 3 3

#	Article	IF	CITATIONS
1740	CBF-Dependent and CBF-Independent Transcriptional Regulation of Cold Stress Responses in Plants. , 2018, , 89-102.		1
1741	Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants, 2018, 7, 169.	2.2	82
1742	Hormonal Regulation of Cold Stress Response. , 2018, , 65-88.		6
1743	The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2018, 506, 895-900.	1.0	45
1744	Calcium Signaling-Mediated Plant Response to Cold Stress. International Journal of Molecular Sciences, 2018, 19, 3896.	1.8	141
1745	iTRAQ-Based Comparative Proteomic Analysis of the Roots of TWO Winter Turnip Rapes (Brassica rapa) Tj ETQq1	1_0,78431 1.8	l4rgBT /Ove
1746	Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Frontiers in Plant Science, 2018, 9, 1771.	1.7	369
1747	CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy. PLoS ONE, 2018, 13, e0207723.	1.1	56
1748	Cold-Induced Injuries and Signaling Responses in Plants. , 2018, , 1-35.		7
1749	Freezing Tolerance of Plant Cells: From the Aspect of Plasma Membrane and Microdomain. Advances in Experimental Medicine and Biology, 2018, 1081, 61-79.	0.8	18
1750	Ice Nucleation Activity in Plants: The Distribution, Characterization, and Their Roles in Cold Hardiness Mechanisms. Advances in Experimental Medicine and Biology, 2018, 1081, 99-115.	0.8	9
1751	Modulation of Dormancy and Growth Responses in Reproductive Buds of Temperate Trees. Frontiers in Plant Science, 2018, 9, 1368.	1.7	62
1752	Stress-induced expression of the sweetpotato gene lbLEA14 in poplar confers enhanced tolerance to multiple abiotic stresses. Environmental and Experimental Botany, 2018, 156, 261-270.	2.0	5
1753	Overexpression of Brassica campestris BclCE1 gene increases abiotic stress tolerance in tobacco. Plant Physiology and Biochemistry, 2018, 132, 515-523.	2.8	24
1754	Mutations and functional analysis of 14-3-3 stress response protein from Triticum aestivum: An evolutionary analysis through in silico structural biochemistry approach. Computational Biology and Chemistry, 2018, 77, 343-353.	1.1	3
1755	Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes. ELife, 2018, 7, .	2.8	32
1756	Mechanism of Overwintering in Trees. Advances in Experimental Medicine and Biology, 2018, 1081, 129-147.	0.8	6
1757	Morph-physiological responses of cotton interspecific chromosome substitution lines to low temperature and drought stresses. Euphytica, 2018, 214, 1.	0.6	6

#	Article	IF	CITATIONS
1758	The arginine decarboxylase gene <i><scp>ADC</scp>1</i> , associated to the putrescine pathway, plays an important role in potato coldâ€acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. Plant Journal, 2018, 96, 1283-1298.	2.8	80
1759	Selection Mapping Identifies Loci Underpinning Autumn Dormancy in Alfalfa (<i>Medicago sativa</i>). G3: Genes, Genomes, Genetics, 2018, 8, 461-468.	0.8	12
1760	CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biology, 2018, 18, 228.	1.6	45
1761	Investigating Freezing Patterns in Plants Using Infrared Thermography. Advances in Experimental Medicine and Biology, 2018, 1081, 117-127.	0.8	3
1762	Genome-Wide Analysis of the NAC Transcription Factor Gene Family Reveals Differential Expression Patterns and Cold-Stress Responses in the Woody Plant Prunus mume. Genes, 2018, 9, 494.	1.0	47
1763	Chitooligosaccharides enhance cold tolerance by repairing photodamaged PS II in rice. Journal of Agricultural Science, 2018, 156, 888-899.	0.6	15
1764	Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biology, 2018, 18, 236.	1.6	43
1765	Folding and Lipid Composition Determine Membrane Interaction of the Disordered Protein COR15A. Biophysical Journal, 2018, 115, 968-980.	0.2	21
1766	Salicylic acid-induced freezing tolerance in spinach (Spinacia oleracea L.) leaves explored through metabolite profiling. Environmental and Experimental Botany, 2018, 156, 214-227.	2.0	24
1767	Crosstalk of the Brassinosteroid Signalosome with Phytohormonal and Stress Signaling Components Maintains a Balance between the Processes of Growth and Stress Tolerance. International Journal of Molecular Sciences, 2018, 19, 2675.	1.8	32
1768	Critical Evaluation of the Benefits and Risks of Genetically Modified Horticultural Crops. , 2018, , 315-351.		0
1769	Overexpression of Rosea1 From Snapdragon Enhances Anthocyanin Accumulation and Abiotic Stress Tolerance in Transgenic Tobacco. Frontiers in Plant Science, 2018, 9, 1070.	1.7	53
1770	Proteomic Analysis of the Function of a Novel Cold-Regulated Multispanning Transmembrane Protein COR413-PM1 in Arabidopsis. International Journal of Molecular Sciences, 2018, 19, 2572.	1.8	22
1771	Baby, It's Cold Inside: Maintaining Membrane Integrity during Freezing. Plant Physiology, 2018, 177, 1350-1351.	2.3	6
1772	Plant circadian networks and responses to the environment. Functional Plant Biology, 2018, 45, 393.	1.1	2
1773	The LmSAP gene isolated from the halotolerant Lobularia maritima improves salt and ionic tolerance in transgenic tobacco lines. Functional Plant Biology, 2018, 45, 378.	1.1	15
1774	Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proceedings of the United States of America, 2018, 115, E5400-E5409.	3.3	157
1775	DIACYLGLYCEROL ACYLTRANSFERASE and DIACYLGLYCEROL KINASE Modulate Triacylglycerol and Phosphatidic Acid Production in the Plant Response to Freezing Stress. Plant Physiology, 2018, 177, 1303-1318.	2.3	108

#	Article	IF	CITATIONS
1776	Transcriptomic profiling and identification of candidate genes in two Phoebe bournei ecotypes with contrasting cold stress responses. Trees - Structure and Function, 2018, 32, 1315-1333.	0.9	15
1777	Heterologous expression of Lolium perenne antifreeze protein confers chilling tolerance in tomato. Journal of Integrative Agriculture, 2018, 17, 1128-1136.	1.7	18
1778	Developing Stress-Tolerant Plants Through In Vitro Tissue Culture: Family Brassicaceae. , 2018, , 327-372.		15
1779	Improved direct transformation via particle bombardment of split-immature embryo explants in soybean (Glycine max). Plant Cell, Tissue and Organ Culture, 2018, 135, 23-35.	1.2	3
1780	Roles of C-Repeat Binding Factors-Dependent Signaling Pathway in Jasmonates-Mediated Improvement of Chilling Tolerance of Postharvest Horticultural Commodities. Journal of Food Quality, 2018, 2018, 1-15.	1.4	7
1781	African Orphan Crops under Abiotic Stresses: Challenges and Opportunities. Scientifica, 2018, 2018, 1-19.	0.6	40
1782	Susceptibility and Expression of Chilling Injury. , 2018, , .		1
1784	Functional characterization of two myo-inositol-1-phosphate synthase (MIPS) gene promoters from the halophytic wild rice (Porteresia coarctata). Planta, 2018, 248, 1121-1141.	1.6	7
1785	Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation. Frontiers in Plant Science, 2018, 8, 2167.	1.7	27
1786	The Role of Hydrogen Peroxide in Mediating the Mechanical Wounding-Induced Freezing Tolerance in Wheat. Frontiers in Plant Science, 2018, 9, 327.	1.7	24
1787	Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Frontiers in Plant Science, 2018, 9, 393.	1.7	463
1788	A Glycine-Rich RNA-Binding Protein, CsGR-RBP3, Is Involved in Defense Responses Against Cold Stress in Harvested Cucumber (Cucumis sativus L.) Fruit. Frontiers in Plant Science, 2018, 9, 540.	1.7	30
1789	Meta-Analysis of the Effect of Overexpression of Dehydration-Responsive Element Binding Family Genes on Temperature Stress Tolerance and Related Responses. Frontiers in Plant Science, 2018, 9, 713.	1.7	9
1790	VvBAP1 Is Involved in Cold Tolerance in Vitis vinifera L Frontiers in Plant Science, 2018, 9, 726.	1.7	24
1791	Cis-Effects Condition the Induction of a Major Unfolded Protein Response Factor, ZmbZIP60, in Response to Heat Stress in Maize. Frontiers in Plant Science, 2018, 9, 833.	1.7	23
1792	Janus-Faced Nature of Light in the Cold Acclimation Processes of Maize. Frontiers in Plant Science, 2018, 9, 850.	1.7	37
1793	Comparative transcriptome analysis of field- and chamber-grown samples of Colobanthus quitensis (Kunth) Bartl, an Antarctic flowering plant. Scientific Reports, 2018, 8, 11049.	1.6	27
1794	Transcriptomic analyses reveal genotype- and organ-specific molecular responses to cold stress in Elymus nutans. Biologia Plantarum, 2018, 62, 671-683.	1.9	13

#	Article	IF	CITATIONS
1795	Genetic Diversity of Clinal Freezing Tolerance Variation in Winter Wheat Landraces. Agronomy, 2018, 8, 95.	1.3	5
1796	Genome-Wide Identification, Characterization, and Expression Profiling of Glutathione S-Transferase (GST) Family in Pumpkin Reveals Likely Role in Cold-Stress Tolerance. Genes, 2018, 9, 84.	1.0	56
1797	Universal Plant Phosphoproteomics Workflow and Its Application to Tomato Signaling in Response to Cold Stress*. Molecular and Cellular Proteomics, 2018, 17, 2068-2080.	2.5	57
1798	<i>Brachypodium</i> : A Monocot Grass Model Genus for Plant Biology. Plant Cell, 2018, 30, 1673-1694.	3.1	99
1799	Tobacco Transcription Factor NtbHLH123 Confers Tolerance to Cold Stress by Regulating the NtCBF Pathway and Reactive Oxygen Species Homeostasis. Frontiers in Plant Science, 2018, 9, 381.	1.7	75
1800	Isolation and functional characterization of the SpCBF1 gene from Solanum pinnatisectum. Physiology and Molecular Biology of Plants, 2018, 24, 605-616.	1.4	3
1801	Allelic variation in Brassica oleracea CIRCADIAN CLOCK ASSOCIATED 1 (BoCCA1) is associated with freezing tolerance. Horticulture Environment and Biotechnology, 2018, 59, 423-434.	0.7	14
1802	Identification and expression profiling of all Hsp family member genes under salinity stress in different poplar clones. Gene, 2018, 678, 324-336.	1.0	31
1803	AtCaM4 interacts with a Sec14-like protein, PATL1, to regulate freezing tolerance in Arabidopsis in a CBF-independent manner. Journal of Experimental Botany, 2018, 69, 5241-5253.	2.4	36
1804	Singleâ€step purification and characterization of antifreeze proteins from leaf and berry of a freezeâ€tolerant shrub seabuckthorn (<i>Hippophae rhamnoides</i>). Journal of Separation Science, 2018, 41, 3938-3945.	1.3	16
1805	Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	30
1806	Low-temperature tolerance in land plants: Are transcript and membrane responses conserved?. Plant Science, 2018, 276, 73-86.	1.7	70
1807	Role of Mineral Nutrients in Plant Growth Under Extreme Temperatures. , 2018, , 499-524.		6
1808	DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. Plant Physiology, 2018, 177, 1410-1424.	2.3	77
1810	CBF/DREB transcription factor genes play role in cadmium tolerance and phytoaccumulation in Ricinus communis under molybdenum treatments. Chemosphere, 2018, 208, 425-432.	4.2	27
1811	Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude. PLoS ONE, 2018, 13, e0198885.	1.1	55
1812	Cold Tolerance in Plants: Molecular Machinery Deciphered. , 2018, , 57-71.		8
1813	Transcriptome profiling of yellow leafy head development during the heading stage in Chinese cabbage (Brassica rapasubsp.pekinensis). Physiologia Plantarum, 2019, 165, 800-8 <u>13.</u>	2.6	15

#	Article	IF	CITATIONS
1814	Chromatinâ€based mechanisms of temperature memory in plants. Plant, Cell and Environment, 2019, 42, 762-770.	2.8	125
1815	<i>LcFIN2</i> , a novel chloroplast protein gene from sheepgrass, enhances tolerance to low temperature in Arabidopsis and rice. Physiologia Plantarum, 2019, 166, 628-645.	2.6	12
1816	<i>PbrmiR397a</i> regulates lignification during stone cell development in pear fruit. Plant Biotechnology Journal, 2019, 17, 103-117.	4.1	114
1817	Preparing plants for improved cold tolerance by priming. Plant, Cell and Environment, 2019, 42, 782-800.	2.8	85
1818	Managing plant-environment-symbiont interactions to promote plant performance under low temperature stress. Journal of Plant Nutrition, 2019, 42, 2010-2027.	0.9	11
1819	DIICE1, a stress-responsive gene from Dimocarpus longan, enhances cold tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2019, 142, 490-499.	2.8	31
1820	Genome-wide analysis of the cotton G-coupled receptor proteins (GPCR) and functional analysis of GTOM1, a novel cotton GPCR gene under drought and cold stress. BMC Genomics, 2019, 20, 651.	1.2	21
1821	BRASSINOSTEROID-INSENSITIVE2 Negatively Regulates the Stability of Transcription Factor ICE1 in Response to Cold Stress in Arabidopsis. Plant Cell, 2019, 31, tpc.00058.2019.	3.1	110
1822	An Arabidopsis protoplast isolation method reduces cytosolic acidification and activation of the chloroplast stress sensor SENSITIVE TO FREEZING 2. Plant Signaling and Behavior, 2019, 14, 1629270.	1.2	13
1823	Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics, 2019, 20, 624.	1.2	82
1824	De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC Plant Biology, 2019, 19, 321.	1.6	42
1825	Presence of a basic secretory protein in xylem sap and shoots of poplar in winter and its physicochemical activities against winter environmental conditions. Journal of Plant Research, 2019, 132, 655-665.	1.2	1
1826	TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana. Journal of Plant Physiology, 2019, 240, 153004.	1.6	35
1827	Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity – an X-ray and light scattering study. Physical Chemistry Chemical Physics, 2019, 21, 18727-18740.	1.3	10
1828	A tomato transcription factor, SIDREB3 enhances the tolerance to chilling in transgenic tomato. Plant Physiology and Biochemistry, 2019, 142, 254-262.	2.8	24
1829	Tomato <i>GLR3.3</i> and <i>GLR3.5</i> mediate cold acclimationâ€induced chilling tolerance by regulating apoplastic H ₂ O ₂ production and redox homeostasis. Plant, Cell and Environment, 2019, 42, 3326-3339.	2.8	56
1830	Fibroin Delays Chilling Injury of Postharvest Banana Fruit via Enhanced Antioxidant Capability during Cold Storage. Metabolites, 2019, 9, 152.	1.3	23
1831	A Role for PICKLE in the Regulation of Cold and Salt Stress Tolerance in Arabidopsis. Frontiers in Plant Science, 2019, 10, 900.	1.7	58

#	Article	IF	Citations
1832	Brassinosteroids enhance cold tolerance in Elymus nutans via mediating redox homeostasis and proline biosynthesis. Environmental and Experimental Botany, 2019, 167, 103831.	2.0	35
1833	Dissecting the Role of a Basic Helix-Loop-Helix Transcription Factor, SlbHLH22, Under Salt and Drought Stresses in Transgenic Solanum lycopersicum L Frontiers in Plant Science, 2019, 10, 734.	1.7	62
1834	Phytohormones Regulating the Master Regulators of CBF Dependent Cold Stress Signaling Pathway. Sustainable Development and Biodiversity, 2019, , 249-264.	1.4	1
1835	High-Temperature Stress and Metabolism of Secondary Metabolites in Plants. , 2019, , 391-484.		14
1836	Molecular Responses to Cold Stress in Temperate Fruit Crops with Focus on Rosaceae Family. Sustainable Development and Biodiversity, 2019, , 105-130.	1.4	6
1837	Phenomics reveals a novel putative chloroplast fatty acid transporter in the marine diatom Skeletonema marinoi involved in temperature acclimation. Scientific Reports, 2019, 9, 15143.	1.6	5
1839	The Methylation Patterns and Transcriptional Responses to Chilling Stress at the Seedling Stage in Rice. International Journal of Molecular Sciences, 2019, 20, 5089.	1.8	40
1840	Identification of CBF Transcription Factors in Tea Plants and a Survey of Potential CBF Target Genes under Low Temperature. International Journal of Molecular Sciences, 2019, 20, 5137.	1.8	34
1841	Chemical and Transcriptomic Analysis of Cuticle Lipids under Cold Stress in Thellungiella salsuginea. International Journal of Molecular Sciences, 2019, 20, 4519.	1.8	19
1842	Arbuscular Mycorrhizal Fungi in Alleviation of Cold Stress in Plants. , 2019, , 435-455.		8
1843	Foxtail millet (Setaria italica (L.) P. Beauv) CIPKs are responsive to ABA and abiotic stresses. PLoS ONE, 2019, 14, e0225091.	1.1	14
1844	Fall Ethephon Application Enhances the Freezing Tolerance of Magnolia wufengensis During Overwintering. Forests, 2019, 10, 868.	0.9	7
1845	Zoysia japonica MYC type transcription factor ZjICE1 regulates cold tolerance in transgenic Arabidopsis. Plant Science, 2019, 289, 110254.	1.7	37
1846	MUR1â€mediated cellâ€wall fucosylation is required for freezing tolerance in <i>Arabidopsis thaliana</i> . New Phytologist, 2019, 224, 1518-1531.	3.5	32
1847	Phenotyping reproductive stage chilling and frost tolerance in wheat using targeted metabolome and lipidome profiling. Metabolomics, 2019, 15, 144.	1.4	31
1848	Identification of Genes Differentially Expressed in Response to Cold in Pisum sativum Using RNA Sequencing Analyses. Plants, 2019, 8, 288.	1.6	17
1849	Identification and Temporal Expression Analysis of Conserved and Novel MicroRNAs in the Leaves of Winter Wheat Grown in the Field. Frontiers in Genetics, 2019, 10, 779.	1.1	10
1850	De Novo Transcriptome Assembly of Eucalyptus nitens and the Expression of R2R3-MYB Genes in Response to Cold Acclimation in Eucalyptus Spp Plant Molecular Biology Reporter, 2019, 37, 376-388.	1.0	3

#	Article	IF	CITATIONS
1851	Overexpression of Two Upstream Phospholipid Signaling Genes Improves Cold Stress Response and Hypoxia Tolerance, but Leads to Developmental Abnormalities in Barley. Plant Molecular Biology Reporter, 2019, 37, 314-326.	1.0	5
1852	Cell ultrastructure and physiological changes of potato during cold acclimation. Canadian Journal of Plant Science, 2019, 99, 873-884.	0.3	5
1853	A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum). Plant Science, 2019, 289, 110246.	1.7	20
1854	Ecophysiological Plasticity and Cold Stress Adaptation in Himalayan Alpine Herbs: Bistorta affinis and Sibbaldia procumbens. Plants, 2019, 8, 378.	1.6	6
1855	Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist, 2019, 222, 1690-1704.	3.5	512
1856	Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS ONE, 2019, 14, e0210672.	1.1	34
1857	A calcium sensor calcineurin B-like 9 negatively regulates cold tolerance via calcium signaling in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2019, 14, e1573099.	1.2	21
1858	Tissue Distribution and Specific Contribution of Arabidopsis FAD7 and FAD8 Plastid Desaturases to the JA- and ABA-Mediated Cold Stress or Defense Responses. Plant and Cell Physiology, 2019, 60, 1025-1040.	1.5	22
1859	Thermal acclimation of flies from three populations of Drosophila melanogaster fails to support the seasonality hypothesis. Journal of Thermal Biology, 2019, 81, 25-32.	1.1	10
1860	BYPASS1-LIKE, A DUF793 Family Protein, Participates in Freezing Tolerance via the CBF Pathway in Arabidopsis. Frontiers in Plant Science, 2019, 10, 807.	1.7	18
1861	Comparative Transcriptome Analyses Revealed Conserved and Novel Responses to Cold and Freezing Stress in <i>Brassica napus</i> L. G3: Genes, Genomes, Genetics, 2019, 9, 2723-2737.	0.8	35
1862	Preferential accumulation of glycosylated cyanidins in winter-hardy rye (Secale cereale L.) genotypes during cold acclimation. Environmental and Experimental Botany, 2019, 164, 203-212.	2.0	12
1863	Lipid peroxidation-derived reactive carbonyl species (RCS): Their interaction with ROS and cellular redox during environmental stresses. Environmental and Experimental Botany, 2019, 165, 139-149.	2.0	92
1864	Common Bean Genetics, Breeding, and Genomics for Adaptation to Changing to New Agri-environmental Conditions. , 2019, , 1-106.		4
1865	Protein Modification in Plants in Response to Abiotic Stress. , 2019, , 171-201.		9
1866	Abiotic stress responsive microRNome and proteome: How correlated are they?. Environmental and Experimental Botany, 2019, 165, 150-160.	2.0	4
1867	Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria Avoid Processing Tomato Leaf Damage during Chilling Stress. Agronomy, 2019, 9, 299.	1.3	32
1868	Mother corm origin and planting depth affect physiological responses in saffron (Crocus sativus L.) under controlled freezing conditions. Industrial Crops and Products, 2019, 138, 111468.	2.5	13

#	Article	IF	CITATIONS
1869	Transcriptome Profile Analysis of Winter Rapeseed (Brassica napus L.) in Response to Freezing Stress, Reveal Potentially Connected Events to Freezing Stress. International Journal of Molecular Sciences, 2019, 20, 2771.	1.8	51
1870	Physiological Responses and Expression Changes of Fatty Acid Metabolism–Related Genes in Wheat (Triticum aestivum) Under Cold Stress. Plant Molecular Biology Reporter, 2019, 37, 224-236.	1.0	16
1871	The ethylene response factor Va <scp>ERF</scp> 092 from Amur grape regulates the transcription factor Va <scp>WRKY</scp> 33, improving cold tolerance. Plant Journal, 2019, 99, 988-1002.	2.8	77
1872	Molecular and Biotechnological Tools in Developing Abiotic Stress Tolerance in Wheat. , 2019, , 283-341.		1
1873	Identification of the LEA family members from Caragana korshinskii (Fabaceae) and functional characterization of CkLEA2-3 in response to abiotic stress in Arabidopsis. Revista Brasileira De Botanica, 2019, 42, 227-238.	0.5	9
1874	Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. Plant Molecular Biology, 2019, 100, 95-110.	2.0	45
1875	Current issues in plant cryopreservation and importance for ex situ conservation of threatened Australian native species. Australian Journal of Botany, 2019, 67, 1.	0.3	44
1876	The effects of cold stress on cypress pollen intine permeability. Aerobiologia, 2019, 35, 567-570.	0.7	0
1877	Quantitative Trait Loci for Freezing Tolerance in a Lowland x Upland Switchgrass Population. Frontiers in Plant Science, 2019, 10, 372.	1.7	19
1878	Transcriptome profiling of Populus tomentosa under cold stress. Industrial Crops and Products, 2019, 135, 283-293.	2.5	53
1879	Crop Improvement Through Temperature Resilience. Annual Review of Plant Biology, 2019, 70, 753-780.	8.6	138
1880	Epigenetic Mechanisms of Abiotic Stress Response and Memory in Plants. , 2019, , 1-64.		24
1881	Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Scientific Reports, 2019, 9, 4814.	1.6	62
1882	An update to database TraVA: organ-specific cold stress response in Arabidopsis thaliana. BMC Plant Biology, 2019, 19, 49.	1.6	14
1883	The ICE-like transcription factor HbICE2 is involved in jasmonate-regulated cold tolerance in the rubber tree (Hevea brasiliensis). Plant Cell Reports, 2019, 38, 699-714.	2.8	32
1884	De novo transcriptome sequencing and gene expression profiling of sweet potato leaves during low temperature stress and recovery. Gene, 2019, 700, 23-30.	1.0	18
1885	Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana. Scientific Reports, 2019, 9, 2289.	1.6	51
1886	Decoupling a novel Trichormus variabilis-Synechocystis sp. interaction to boost phycoremediation. Scientific Reports, 2019, 9, 2511.	1.6	10

#	Article	IF	CITATIONS
1887	Evolution of Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily Pooideae. Plant Physiology, 2019, 180, 404-419.	2.3	45
1888	Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation. Journal of Experimental Botany, 2019, 70, 3283-3296.	2.4	15
1889	Deconstructing cold hardiness: variation in supercooling ability and chilling requirements in the wild grapevine <i>Vitis riparia</i> . Australian Journal of Grape and Wine Research, 2019, 25, 276-285.	1.0	20
1890	Double benefits of mechanical wounding in enhancing chilling tolerance and lodging resistance in wheat plants. Plant Biology, 2019, 21, 813-824.	1.8	7
1891	Frost tolerance of six seed orchards of <i>Acacia mearnsii</i> (black wattle) and the effect of developmental stage and tree size on frost hardiness. Australian Forestry, 2019, 82, 35-47.	0.3	4
1892	Low-temperature tolerance of maize and sorghum seedlings grown under the same environmental conditions. Journal of Crop Improvement, 2019, 33, 287-305.	0.9	2
1893	The tomato 2-oxoglutarate-dependent dioxygenase gene SIF3HL is critical for chilling stress tolerance. Horticulture Research, 2019, 6, 45.	2.9	45
1894	Transcriptomic response of durum wheat to cold stress at reproductive stage. Molecular Biology Reports, 2019, 46, 2427-2445.	1.0	29
1895	Two ICE isoforms showing differential transcriptional regulation by cold and hormones participate in Brassica juncea cold stress signaling. Gene, 2019, 695, 32-41.	1.0	18
1896	Evidence for inÂvivo interactions between dehydrins and the aquaporin AtPIP2B. Biochemical and Biophysical Research Communications, 2019, 510, 545-550.	1.0	24
1897	Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information?. Frontiers in Plant Science, 2019, 10, 106.	1.7	63
1898	Relationship Between Dehydrin Accumulation and Winter Survival in Winter Wheat and Barley Grown in the Field. Frontiers in Plant Science, 2019, 10, 7.	1.7	21
1899	NaCl- and cold-induced stress activate different Ca2+-permeable channels in Arabidopsis thaliana. Plant Growth Regulation, 2019, 87, 217-225.	1.8	9
1900	Physiological and transcriptional responses to low-temperature stress in rice genotypes at the reproductive stage. Plant Signaling and Behavior, 2019, 14, e1581557.	1.2	14
1901	The Ethylene Signaling Pathway Negatively Impacts CBF/DREB-Regulated Cold Response in Soybean (Glycine max). Frontiers in Plant Science, 2019, 10, 121.	1.7	43
1902	Cold-priming of chloroplast ROS signalling is developmentally regulated and is locally controlled at the thylakoid membrane. Scientific Reports, 2019, 9, 3022.	1.6	29
1903	Stress priming, memory, and signalling in plants. Plant, Cell and Environment, 2019, 42, 753-761.	2.8	187
1904	A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. Annual Review of Plant Biology, 2019, 70, 559-583.	8.6	95

#	Article	IF	CITATIONS
1905	Analysis of Cold-Developed vs. Cold-Acclimated Leaves Reveals Various Strategies of Cold Acclimation of Field Pea Cultivars. Remote Sensing, 2019, 11, 2964.	1.8	3
1906	Microclimate predicts frost hardiness of alpine <i>Arabidopsis thaliana</i> populations better than elevation. Ecology and Evolution, 2019, 9, 13017-13029.	0.8	11
1907	Correlation analysis of cold-related gene expression with physiological and biochemical indicators under cold stress in oil palm. PLoS ONE, 2019, 14, e0225768.	1.1	15
1908	Genetic Diversity of Lowbush Blueberry throughout the United States in Managed and Non-Managed Populations. Agriculture (Switzerland), 2019, 9, 113.	1.4	9
1909	Glucosyltransferase CsUGT78A14 Regulates Flavonols Accumulation and Reactive Oxygen Species Scavenging in Response to Cold Stress in Camellia sinensis. Frontiers in Plant Science, 2019, 10, 1675.	1.7	61
1910	Response of rhizosphere bacterial community of Taxus chinensis var. mairei to temperature changes. PLoS ONE, 2019, 14, e0226500.	1.1	7
1911	Arabidopsis <i><scp>UBC</scp>13</i> differentially regulates two programmed cell death pathways in responses to pathogen and lowâ€ŧemperature stress. New Phytologist, 2019, 221, 919-934.	3.5	56
1912	Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis. Scientia Horticulturae, 2019, 243, 320-326.	1.7	33
1913	A wheat GTP-binding protein like gene reduces tolerance to low temperature in Arabidopsis. Biochemical and Biophysical Research Communications, 2019, 509, 148-153.	1.0	3
1914	Maize <scp>Sep15</scp> â€like functions in endoplasmic reticulum and reactive oxygen species homeostasis to promote salt and osmotic stress resistance. Plant, Cell and Environment, 2019, 42, 1486-1502.	2.8	8
1915	Molecular cloning, characterization and expression analysis of <i>BcHHP3</i> under abiotic stress in Pak - choi (<i>Brassica rapa</i> ssp. <i>Chinensis</i>). Journal of Plant Interactions, 2019, 14, 1-9.	1.0	5
1916	Analysis of Brassica napus dehydrins and their Co-Expression regulatory networks in relation to cold stress. Gene Expression Patterns, 2019, 31, 7-17.	0.3	19
1917	Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. Journal of Biological Chemistry, 2019, 294, 902-917.	1.6	62
1918	Plant lipids: Key players of plasma membrane organization and function. Progress in Lipid Research, 2019, 73, 1-27.	5.3	167
1919	<scp>EGR</scp> 2 phosphatase regulates <scp>OST</scp> 1 kinase activity and freezing tolerance in <i>Arabidopsis</i> . EMBO Journal, 2019, 38, .	3.5	100
1920	Climate Change and Abiotic Stress-Induced Oxidative Burst in Rice. , 2019, , 505-535.		16
1921	Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. Journal of Proteomics, 2019, 197, 71-81.	1.2	45
1922	Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Jatropha Curcas Seedling under Chilling Stress. International Journal of Molecular Sciences, 2019, 20, 208.	1.8	10

#	Article	IF	CITATIONS
1923	Cold acclimation by theÂCBF–COR pathway in a changing climate: Lessons from Arabidopsis thaliana. Plant Cell Reports, 2019, 38, 511-519.	2.8	137
1924	Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation. Horticulture Research, 2019, 6, 8.	2.9	50
1925	Identification and Functional Characterization of a Cold-Related Protein, BcHHP5, in Pak-Choi (Brassica rapa ssp. chinensis). International Journal of Molecular Sciences, 2019, 20, 93.	1.8	6
1926	Natural cold acclimation of Ligustrum lucidum in response to exogenous application of paclobutrazol in Beijing. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	5
1927	Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant. Environmental and Experimental Botany, 2019, 160, 45-58.	2.0	49
1928	Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of Plant Physiology, 2019, 234-235, 80-93.	1.6	199
1929	Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies. Gene, 2019, 684, 82-94.	1.0	21
1930	Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice. Gene, 2019, 685, 96-105.	1.0	57
1931	Multiple simultaneous treatments change plant response from adaptive parental effects to withinâ€generation plasticity, in <i>Arabidopsis thaliana</i> . Oikos, 2019, 128, 368-379.	1.2	14
1932	Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. Functional Plant Biology, 2019, 46, 30.	1.1	47
1933	Potential role of root membrane phosphatidic acid in superior agronomic performance of silage orn cultivated in cool climate cropping systems. Physiologia Plantarum, 2019, 167, 585-596.	2.6	10
1934	O/W Pickering Emulsion Templated Organo-hydrogels with Enhanced Mechanical Strength and Energy Storage Capacity. ACS Applied Bio Materials, 2019, 2, 480-487.	2.3	26
1935	Lipid profiling shows tissue-specific differences in barley for glycerolipid composition in response to chilling. Environmental and Experimental Botany, 2019, 158, 150-160.	2.0	21
1936	Seasonal changes in cold hardiness and carbohydrate metabolism in four garden rose cultivars. Journal of Plant Physiology, 2019, 232, 188-199.	1.6	25
1937	Variation in <i>ICE1</i> Methylation Primarily Determines Phenotypic Variation in Freezing Tolerance in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2019, 60, 152-165.	1.5	29
1938	Tubulin acetylation accompanies autophagy development induced by different abiotic stimuli in <i>Arabidopsis thaliana</i> . Cell Biology International, 2019, 43, 1056-1064.	1.4	18
1939	Upstream of gene expression: what is the role of microtubules in cold signalling?. Journal of Experimental Botany, 2020, 71, 36-48.	2.4	24
1940	Transcriptomic Profiling of Acute Cold Stress-Induced Disease Resistance (SIDR) Genes and Pathways in the Grapevine Powdery Mildew Pathosystem. Molecular Plant-Microbe Interactions, 2020, 33, 284-295.	1.4	7

#	ARTICLE	IF	CITATIONS
1941	Seasonal movement of chloroplasts in mesophyll cells of two Picea species. Protoplasma, 2020, 257, 183-195.	1.0	2
1942	Cold Hardiness Evaluation of 20 Commercial Table Grape (<i>vitis Vinifera</i> L.) Cultivars. International Journal of Fruit Science, 2020, 20, 433-450.	1.2	7
1943	An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1â€mediated degradation. Plant Biotechnology Journal, 2020, 18, 337-353.	4.1	198
1944	Effects of early cold stress on gene expression in Chlamydomonas reinhardtii. Genomics, 2020, 112, 1128-1138.	1.3	27
1945	Chrysanthemum (Chrysanthemum morifolium) CmICE2 conferred freezing tolerance in Arabidopsis. Plant Physiology and Biochemistry, 2020, 146, 31-41.	2.8	19
1946	Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. Plant Biotechnology Journal, 2020, 18, 1041-1055.	4.1	65
1947	A Comparative Study between Evergreen and Deciduous Daylily Species Reveals the Potential Contributions of Winter Shoot Growth and Leaf Freezing Tolerance to Foliar Habits. Journal of Plant Growth Regulation, 2020, 39, 1030-1045.	2.8	6
1948	Climateâ€dependent variation in cold tolerance of weedy rice and rice mediated by <i>OsICE1</i> promoter methylation. Molecular Ecology, 2020, 29, 121-137.	2.0	21
1949	Historical contingency, niche conservatism and the tendency for some taxa to be more diverse towards the poles. Journal of Biogeography, 2020, 47, 783-794.	1.4	11
1950	A Cytosolic Protein Kinase STY46 in Arabidopsis thaliana Is Involved in Plant Growth and Abiotic Stress Response. Plants, 2020, 9, 57.	1.6	10
1951	Rice SnRK protein kinase OsSAPK8 acts as a positive regulator in abiotic stress responses. Plant Science, 2020, 292, 110373.	1.7	22
1952	Metabolomic analyses reveal substances that contribute to the increased freezing tolerance of alfalfa (Medicago sativa L.) after continuous water deficit. BMC Plant Biology, 2020, 20, 15.	1.6	35
1953	Freeze tolerance of polewardâ€spreading mangrove species weakened by soil properties of resident salt marsh competitor. Journal of Ecology, 2020, 108, 1725-1737.	1.9	16
1954	Genetic and physiological mechanisms of freezing tolerance in locally adapted populations of a winter annual. American Journal of Botany, 2020, 107, 250-261.	0.8	15
1955	Native elongation transcript sequencing reveals temperature dependent dynamics of nascent RNAPII transcription in Arabidopsis. Nucleic Acids Research, 2020, 48, 2332-2347.	6.5	80
1957	Studies on expression of CBF1 and CBF2 genes and anti-oxidant enzyme activities in papaya genotypes exposed to low temperature stress. Scientia Horticulturae, 2020, 261, 108914.	1.7	13
1958	Cyclophilin OsCYP20â€2 with a novel variant integrates defense and cell elongation for chilling response in rice. New Phytologist, 2020, 225, 2453-2467.	3.5	19
1959	A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging. Plant Molecular Biology, 2020, 102, 447-462.	2.0	19

#	Article	IF	CITATIONS
1960	Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress. Planta, 2020, 251, 38.	1.6	35
1961	Proteomic variation in Vitis amurensis and V. vinifera buds during cold acclimation. Scientia Horticulturae, 2020, 263, 109143.	1.7	11
1963	Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. Plant Science, 2020, 292, 110375.	1.7	62
1964	Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist, 2020, 226, 362-372.	3.5	131
1965	The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers. Plant Science, 2020, 291, 110346.	1.7	62
1966	Expression analysis of aquaporin genes in Saussurea involucrata rosette leaves and functional analysis of upregulated SiPIP1;5A under low-temperature stress. Environmental and Experimental Botany, 2020, 171, 103958.	2.0	6
1967	Cold-inducible expression of an Arabidopsis thaliana AP2 transcription factor gene, AtCRAP2, promotes flowering under unsuitable low-temperatures in chrysanthemum. Plant Physiology and Biochemistry, 2020, 146, 220-230.	2.8	10
1968	Applications of metabolomics in the research of soybean plant under abiotic stress. Food Chemistry, 2020, 310, 125914.	4.2	70
1969	The Emerging Roles of Diacylglycerol Kinase (DGK) in Plant Stress Tolerance, Growth, and Development. Agronomy, 2020, 10, 1375.	1.3	20
1970	Changes in Photochemical Efficiency and Differential Induction of Superoxide Dismutase in Response to Combined Stresses of Chilling Temperature and Relatively High Irradiation in Two <i>Chlorella</i> Strains. , 0, , .		1
1971	Gigantea: Uncovering New Functions in Flower Development. Genes, 2020, 11, 1142.	1.0	15
1972	Varying Atmospheric CO2 Mediates the Cold-Induced CBF-Dependent Signaling Pathway and Freezing Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 7616.	1.8	2
1973	Overexpression of ICE1 gene in mungbean (Vigna radiata L.) for cold tolerance. Plant Cell, Tissue and Organ Culture, 2020, 143, 593-608.	1.2	9
1974	Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages. Plant Journal, 2020, 104, 1535-1550.	2.8	23
1975	The Use of Chitooligosaccharides in Cryopreservation: Discussion of Concept and First Answers from DSC Thermal Analysis. , 2020, , .		2
1976	The role of sterols in plant response to abiotic stress. Phytochemistry Reviews, 2020, 19, 1525-1538.	3.1	100
1977	The Wild Rice Locus CTS-12 Mediates ABA-Dependent Stomatal Opening Modulation to Limit Water Loss Under Severe Chilling Stress. Frontiers in Plant Science, 2020, 11, 575699.	1.7	7
1978	Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. International Journal of Molecular Sciences, 2020, 21, 8631.	1.8	19
#	Article	lF	CITATIONS
------	---	-----	-----------
1979	Abscisic acid enhances tolerance to spring freeze stress and regulates the expression of ascorbate–glutathione biosynthesis-related genes and stress-responsive genes in common wheat. Molecular Breeding, 2020, 40, 1.	1.0	4
1980	Fusion of Mitochondria to 3-D Networks, Autophagy and Increased Organelle Contacts are Important Subcellular Hallmarks during Cold Stress in Plants. International Journal of Molecular Sciences, 2020, 21, 8753.	1.8	14
1981	A Computational Model for the Cold Response Pathway in Plants. Frontiers in Physiology, 2020, 11, 591073.	1.3	9
1982	QTL mapping of winter dormancy and associated traits in two switchgrass pseudo-F1 populations: lowland x lowland and lowland x upland. BMC Plant Biology, 2020, 20, 537.	1.6	2
1983	Genome-Wide Association Studies and Transcriptome Changes during Acclimation and Deacclimation in Divergent Brassica napus Varieties. International Journal of Molecular Sciences, 2020, 21, 9148.	1.8	13
1984	Spring Freeze Damage of Pecan Bloom: A Review. Horticulturae, 2020, 6, 82.	1.2	5
1985	Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells, 2020, 9, 2576.	1.8	22
1986	Modes of Brassinosteroid Activity in Cold Stress Tolerance. Frontiers in Plant Science, 2020, 11, 583666.	1.7	23
1987	Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress. BMC Plant Biology, 2020, 20, 362.	1.6	28
1988	Three Novel C-Repeat Binding Factor Genes of Dimocarpus longan Regulate Cold Stress Response in Arabidopsis. Frontiers in Plant Science, 2020, 11, 1026.	1.7	11
1989	Metabolomic Changes in Mango Fruit Peel Associated with Chilling Injury Tolerance Induced by Quarantine Hot Water Treatment. Postharvest Biology and Technology, 2020, 169, 111299.	2.9	27
1990	Polyamines and Their Biosynthesis/Catabolism Genes Are Differentially Modulated in Response to Heat Versus Cold Stress in Tomato Leaves (Solanum lycopersicum L.). Cells, 2020, 9, 1749.	1.8	29
1991	Genome-wide association study identifies favorable SNP alleles and candidate genes for frost tolerance in pea. BMC Genomics, 2020, 21, 536.	1.2	28
1992	Comparative transcriptome analysis reveals ecological adaption of cold tolerance in northward invasion of Alternanthera philoxeroides. BMC Genomics, 2020, 21, 532.	1.2	10
1993	Identification of novel microRNAs for cold deacclimation in barley. Plant Growth Regulation, 2020, 92, 389-400.	1.8	5
1994	The <scp>HY5</scp> and <scp>MYB15</scp> transcription factors positively regulate cold tolerance in tomato via the <scp>CBF</scp> pathway. Plant, Cell and Environment, 2020, 43, 2712-2726.	2.8	56
1995	ABA-Dependent and ABA-Independent Functions of RCAR5/PYL11 in Response to Cold Stress. Frontiers in Plant Science, 2020, 11, 587620.	1.7	14
1996	Natural variation in glycine-rich region of Brassica oleracea cold shock domain protein 5 (BoCSDP5) is associated with low temperature tolerance. Genes and Genomics, 2020, 42, 1407-1417.	0.5	4

ARTICLE

1997 F-Box Family Genes, LTSF1 and LTSF2, Regulate Low-Temperature Stress Tolerance in Pepper (Capsicum) Tj ETQq0 9.8 rgBT / Overlock 10

1998	ABA-regulated ploidy-related genes and non-structural carbon accumulation may underlie cold tolerance in tetraploid Fragaria moupinensis. Environmental and Experimental Botany, 2020, 179, 104232.	2.0	12
1999	Angiosperms at the edge: Extremity, diversity, and phylogeny. Plant, Cell and Environment, 2020, 43, 2871-2893.	2.8	32
2000	Freezing Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms is Associated with the High Activity of Antioxidant System and Adjustment of Photosynthetic Activity under Cold Acclimation. International Journal of Molecular Sciences, 2020, 21, 5899.	1.8	7
2001	Overexpression of Arabidopsis <i>ICE1</i> enhances yield and multiple abiotic stress tolerance in indica rice. Plant Signaling and Behavior, 2020, 15, 1814547.	1.2	21
2002	Genomic Markers Associated with Cold-Hardiness in Brassica rapa L Molecular Biology, 2020, 54, 541-552.	0.4	2
2003	Identification of Differentially Expressed Drought-Responsive Genes in Guar [Cyamopsis tetragonoloba (L.) Taub]. International Journal of Genomics, 2020, 2020, 1-16.	0.8	3
2004	The Effect of Low Temperature on Physiological, Biochemical and Flowering Functions of Olive Tree in Relation to Genotype. Sustainability, 2020, 12, 10065.	1.6	7
2005	Deacclimation of Winter Oilseed Rape—Insight into Physiological Changes. Agronomy, 2020, 10, 1565.	1.3	10
2006	Transcriptome Sequencing Analysis of Birch (Betula platyphylla Sukaczev) under Low-Temperature Stress. Forests, 2020, 11, 970.	0.9	7
2007	Genome-Wide Identification of Circular RNAs in Response to Low-Temperature Stress in Tomato Leaves. Frontiers in Genetics, 2020, 11, 591806.	1.1	13
2008	Phylogenetic and selection pressure analyses of cold stress-associated PAL-Like and Lec-RLK genes in antarctic mosses. Current Plant Biology, 2020, 24, 100178.	2.3	4
2009	Comparative Leaf Proteomics of Brassica napus Genotypes with Distinctive Levels of Early Cold Acclimation. Plant Molecular Biology Reporter, 2020, 39, 317.	1.0	3
2010	Treatment Analogous to Seasonal Change Demonstrates the Integration of Cold Responses in <i>Brachypodium distachyon</i> . Plant Physiology, 2020, 182, 1022-1038.	2.3	7
2011	Effect of low temperature stress on field performance of highland sorghum (Sorghum bicolor (L.)) Tj ETQq0 0 0 rg	gBT /Overlo 0.8	ocg 10 Tf 5
2013	Regulation of temperature stress in plants. , 2020, , 25-45.		7
2014	Transcriptome profiles identify the common responsive genes to drought stress in two Elymus species. Journal of Plant Physiology, 2020, 250, 153183.	1.6	8
2015	The unknown soldier in citrus plants: polyamines-based defensive mechanisms against biotic and abiotic stresses and their relationship with other stress-associated metabolites. Plant Signaling and	1.2	12

Behavior, 2020, 15, 1761080.

#	Article	IF	Citations
2016	Cold acclimation and freezing tolerance in three Eucalyptus species: A metabolomic and proteomic approach. Plant Physiology and Biochemistry, 2020, 154, 316-327.	2.8	23
2017	The cold response regulator CBF1 promotes <i>Arabidopsis</i> hypocotyl growth at ambient temperatures. EMBO Journal, 2020, 39, e103630.	3.5	49
2018	LcMYB4, an unknown function transcription factor gene from sheepgrass, as a positive regulator of chilling and freezing tolerance in transgenic Arabidopsis. BMC Plant Biology, 2020, 20, 238.	1.6	12
2019	Comparative transcriptome profiling reveals cold stress responsiveness in two contrasting Chinese jujube cultivars. BMC Plant Biology, 2020, 20, 240.	1.6	23
2020	Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology, 2020, 40, 750-776.	5.1	245
2021	metaRE R Package for Meta-Analysis of Transcriptome Data to Identify the cis-Regulatory Code behind the Transcriptional Reprogramming. Genes, 2020, 11, 634.	1.0	8
2022	Freezing tolerance of photosynthetic apparatus in the homoiochlorophyllous resurrection plant Haberlea rhodopensis. Environmental and Experimental Botany, 2020, 178, 104157.	2.0	19
2023	Transcriptome Analysis of Genes Involved in Cold Hardiness of Peach Tree (Prunus persica) Shoots during Cold Acclimation and Deacclimation. Genes, 2020, 11, 611.	1.0	9
2024	Cold priming uncouples light- and cold-regulation of gene expression in Arabidopsis thaliana. BMC Plant Biology, 2020, 20, 281.	1.6	15
2025	Transcriptomics analysis unravels the response to low temperature in sensitive and tolerant eggplants. Scientia Horticulturae, 2020, 271, 109468.	1.7	18
2026	Ectopic expression of an oat SnRK2 gene, AsSnRK2D, enhances dehydration and salinity tolerance in tobacco by modulating the expression of stress-related genes. Revista Brasileira De Botanica, 2020, 43, 429-446.	0.5	3
2027	Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress. Plant Molecular Biology, 2020, 103, 303-320.	2.0	41
2028	Correlation-based network analysis combined with machine learning techniques highlight the role of the GABA shunt in Brachypodium sylvaticum freezing tolerance. Scientific Reports, 2020, 10, 4489.	1.6	13
2029	Comparative proteomics analysis of Tibetan hull-less barley under osmotic stress via data-independent acquisition mass spectrometry. GigaScience, 2020, 9, .	3.3	20
2030	Identification of tissue-specific and cold-responsive IncRNAs in Medicago truncatula by high-throughput RNA sequencing. BMC Plant Biology, 2020, 20, 99.	1.6	29
2031	How Plants Sense and Respond to Stressful Environments. Plant Physiology, 2020, 182, 1624-1635.	2.3	278
2032	Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation. Scientific Reports, 2020, 10, 5242.	1.6	29
2033	GhRH32 negatively regulates cold tolerance in upland cotton (Gossypium hirsutum L.). Plant Growth Regulation, 2020, 91, 201-208.	1.8	3

#	Article	IF	Citations
2034	Endophytic microbial influence on plant stress responses. , 2020, , 161-193.		5
2035	Multiple Genetic Trajectories to Extreme Abiotic Stress Adaptation in Arctic Brassicaceae. Molecular Biology and Evolution, 2020, 37, 2052-2068.	3.5	28
2036	Quantitative Trait Locus Analysis of Protein and Oil Content in Response to Planting Density in Soybean (Glycine max [L.] Merri.) Seeds Based on SNP Linkage Mapping. Frontiers in Genetics, 2020, 11, 563.	1.1	7
2037	CsICE1 Functions in Cold Tolerance by Regulating Polyamine levels May through Interacting with Arginine Decarboxylase in the Tea Tree. Agriculture (Switzerland), 2020, 10, 201.	1.4	5
2038	A Chloroplast COR413 Protein From Physcomitrella patens Is Required for Growth Regulation Under High Light and ABA Responses. Frontiers in Plant Science, 2020, 11, 845.	1.7	5
2039	Effect of Abiotic Stress on Crops. , 0, , .		98
2040	Comprehensive Evaluation and Analysis of the Mechanism of Cold Tolerance Based on the Transcriptome of Weedy Rice Seedlings. Rice, 2020, 13, 12.	1.7	23
2041	<i>DREB1A/CBF3</i> Is Repressed by Transgene-Induced DNA Methylation in the Arabidopsis <i>ice1-1</i> Mutant. Plant Cell, 2020, 32, 1035-1048.	3.1	42
2042	Diurnal patterns of growth and transient reserves of sink and source tissues are affected by cold nights in barley. Plant, Cell and Environment, 2020, 43, 1404-1420.	2.8	1
2043	The ethylene responsive factor CdERF1 from bermudagrass (Cynodon dactylon) positively regulates cold tolerance. Plant Science, 2020, 294, 110432.	1.7	38
2044	Genome-wide identification of cold responsive transcription factors in Brassica napus L. BMC Plant Biology, 2020, 20, 62.	1.6	24
2045	A universal pipeline for mobile mRNA detection and insights into heterografting advantages under chilling stress. Horticulture Research, 2020, 7, 13.	2.9	20
2046	DNA Damage Inducible Protein 1 is Involved in Cold Adaption of Harvested Cucumber Fruit. Frontiers in Plant Science, 2020, 10, 1723.	1.7	10
2047	The SWI/SNF ATP-Dependent Chromatin Remodeling Complex in Arabidopsis Responds to Environmental Changes in Temperature-Dependent Manner. International Journal of Molecular Sciences, 2020, 21, 762.	1.8	11
2048	Cold tolerance in the genus <i>Arabidopsis</i> . American Journal of Botany, 2020, 107, 489-497.	0.8	11
2049	Molecular Regulation of Plant Responses to Environmental Temperatures. Molecular Plant, 2020, 13, 544-564.	3.9	346
2050	Low temperature enhanced the podophyllotoxin accumulation vis-a-vis its biosynthetic pathway gene(s) expression in Dysosma versipellis (Hance) M. Cheng – A pharmaceutically important medicinal plant. Process Biochemistry, 2020, 95, 197-203.	1.8	5
2051	The inheritance of cold tolerance in seven interspecific grape populations. Scientia Horticulturae, 2020, 266, 109260.	1.7	8

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2052	The transcription factor ICE1 functions in cold stress response by binding to the promo <i>CBF</i> and <i>COR</i> genes. Journal of Integrative Plant Biology, 2020, 62, 258-2	ters of 63.	4.1	82
2053	Susceptibility of Winter Wheat and Triticale to Yellow Rust Influenced by Complex Inter between Vernalisation, Temperature, Plant Growth Stage and Pathogen Race. Agronom	actions y, 2020, 10, 13.	1.3	16
2054	ETHYLENE RESPONSE FACTOR39–MYB8 complex regulates low-temperature-induced loquat fruit. Journal of Experimental Botany, 2020, 71, 3172-3184.	l lignification of	2.4	54
2055	Species and termination method effects on phosphorus loss from plant tissue. Journal o Environmental Quality, 2020, 49, 97-105.	of	1.0	5
2056	Plant Thermomorphogenic Adaptation to Global Warming. Journal of Plant Biology, 202	20, 63, 1-9.	0.9	13
2057	Environmental constraints and stress physiology. , 2020, , 279-356.			1
2058	Comprehensive phylogenomic analysis of ERF genes in sorghum provides clues to the e gene functions and redundancy among gene family members. 3 Biotech, 2020, 10, 139	volution of	1.1	16
2059	A method to increase regrowth of vitrified shoot tips of avocado (Persea americana Mil critical step in developing a cryopreservation protocol. Scientia Horticulturae, 2020, 26	.): First 6, 109305.	1.7	8
2060	Temperature and Light-Quality-Dependent Regulation of Freezing Tolerance in Barley. P 83.	lants, 2020, 9,	1.6	18
2061	The Overexpression of a Transcription Factor Gene VbWRKY32 Enhances the Cold Toler bonariensis. Frontiers in Plant Science, 2019, 10, 1746.	ance in Verbena	1.7	33
2062	ABA-dependent bZIP transcription factor, CsbZIP18, from Camellia sinensis negatively r freezing tolerance in Arabidopsis. Plant Cell Reports, 2020, 39, 553-565.	egulates	2.8	32
2063	Suboptimal Temperature Acclimation Enhances Chilling Tolerance by Improving Photos Adaptability and Osmoregulation Ability in Watermelon. Horticultural Plant Journal, 202	ynthetic 20, 6, 49-60.	2.3	19
2064	Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in chilling stress in tomato. Journal of Experimental Botany, 2020, 71, 1092-1106.	esponse to	2.4	56
2065	Bioinspired functional organohydrogels with synergistic multiphases heterostructure. P 2020, 190, 122214.	olymer,	1.8	12
2066	Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to c Scientific Reports, 2020, 10, 689.	old stress.	1.6	64
2067	Glycosyltransferase OsUGT90A1 helps protect the plasma membrane during chilling str Journal of Experimental Botany, 2020, 71, 2723-2739.	ess in rice.	2.4	36
2068	Physiological and transcriptomicÂresponses of Lanzhou Lily (Lilium davidii, var. unicolo stress. PLoS ONE, 2020, 15, e0227921.) to cold	1.1	29
2069	A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. N Communications, 2020, 11, 613.	ature	5.8	147

#	Article	IF	CITATIONS
2070	Detecting Frost Stress in Wheat: A Controlled Environment Hyperspectral Study on Wheat Plant Components and Implications for Multispectral Field Sensing. Remote Sensing, 2020, 12, 477.	1.8	21
2071	SNP in DFR1 Coding Sequence Is Tightly Associated with Anthocyanin Accumulation in Cabbage (B.) Tj ETQq1 1	0.784314 1.3	rgBT /Over
2072	How does proteomics target plant environmental stresses in a semi-arid area?. Molecular Biology Reports, 2020, 47, 3181-3194.	1.0	12
2074	iTRAQ-based comparative proteomic analysis of two coconut varieties reveals aromatic coconut cold-sensitive in response to low temperature. Journal of Proteomics, 2020, 220, 103766.	1.2	33
2075	Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. Journal of Integrative Plant Biology, 2020, 62, 1461-1468.	4.1	34
2076	Comparative Study of Plant Physiological Responses to Long-Term and Short-Term Daily Exposures to Low Temperature in the Presence of Protein-Synthesis Inhibitors. Biology Bulletin Reviews, 2020, 10, 71-80.	0.3	1
2077	Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 2695.	1.8	86
2078	Molecular Mechanisms of Brassinosteroid-Mediated Responses to Changing Environments in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 2737.	1.8	36
2079	Characterization of Rosa chinensis CBF Genes and the Function of RcCBF6 in Cold Tolerance. Journal of Plant Biology, 2020, 63, 267-278.	0.9	2
2080	Overexpression of S-Adenosylmethionine Synthetase Enhances Tolerance to Cold Stress in Tobacco. Russian Journal of Plant Physiology, 2020, 67, 242-249.	0.5	9
2081	Gma-miR1508a confers dwarfing, cold tolerance, and drought sensitivity in soybean. Molecular Breeding, 2020, 40, 1.	1.0	6
2082	Small RNAs and cold stress tolerance. , 2020, , 209-230.		1
2083	Cold-Induced CBF–PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the phyB Thermosensor in Arabidopsis. Molecular Plant, 2020, 13, 894-906.	3.9	128
2084	Growing in time: exploring the molecular mechanisms of tree growth. Tree Physiology, 2021, 41, 657-678.	1.4	21
2085	First report on cryopreservation of mature shoot tips of two avocado (Persea americana Mill.) rootstocks. Plant Cell, Tissue and Organ Culture, 2021, 144, 103-113.	1.2	7
2086	Foliar application of potassium to improve the freezing tolerance of olive leaves by increasing some osmolite compounds and antioxidant activity. Scientia Horticulturae, 2021, 276, 109765.	1.7	14
2087	Transcriptional memories mediate the plasticity of cold stress responses to enable morphological acclimation in <i>Brachypodium distachyon</i> . New Phytologist, 2021, 229, 1615-1634.	3.5	12
2088	Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant, Cell and Environment, 2021, 44, 645-664.	2.8	115

#	Article	IF	CITATIONS
2089	Hormonal responses associated with acclimation to freezing stress in Lolium perenne. Environmental and Experimental Botany, 2021, 182, 104295.	2.0	12
2090	Dynamic modelling of cold-hardiness in tea buds by imitating past temperature memory. Annals of Botany, 2021, 127, 317-326.	1.4	5
2091	Light contributes to salt resistance through GAI protein regulation in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2021, 159, 1-11.	2.8	2
2092	Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice. Physiologia Plantarum, 2021, 172, 1352-1362.	2.6	27
2093	EARLY RESPONSE TO DEHYDRATION 7 Remodels Cell Membrane Lipid Composition during Cold Stress in Arabidopsis. Plant and Cell Physiology, 2021, 62, 80-91.	1.5	27
2094	Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. Molecular Plant, 2021, 14, 315-329.	3.9	89
2095	Molecular cloning and functional characterization of GmAAPTs from soybean (Glycine max). Plant Signaling and Behavior, 2021, 16, 1845048.	1.2	1
2096	Apple TIME FOR COFFEE contributes to freezing tolerance by promoting unsaturation of fatty acids. Plant Science, 2021, 302, 110695.	1.7	13
2097	Apple Bâ€box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZâ€BBX37â€ICE1â€CBF pathway and undergoes MIEL1â€mediated ubiquitination and degradation. New Phytologist, 2021, 229, 2707-2729.	3.5	88
2098	Characterization of the key region and putative phosphorylation sites of EcalCE1 in its molecular interaction with the EcaHOS1 protein in <i>Eucalyptus camaldulensis</i> . Plant Biology, 2021, 23, 400-406.	1.8	5
2099	The JAâ€responsive MYC2â€ <i>BADH</i> â€ <i>like</i> transcriptional regulatory module in <i>Poncirus trifoliata</i> contributes to cold tolerance by modulation of glycine betaine biosynthesis. New Phytologist, 2021, 229, 2730-2750.	3.5	50
2100	Global Analysis of Gene Expression Profiles in Glutinous Rice 89-1 (Oryza sativa L.) Seedlings Exposed to Chilling Stress. Plant Molecular Biology Reporter, 2021, 39, 626.	1.0	5
2101	Role of long noncoding RNAs during stress in cereal crops. , 2021, , 107-131.		1
2102	Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology, 2021, 63, 53-78.	4.1	273
2103	The role of fungi in abiotic stress tolerance of plants. , 2021, , 117-154.		2
2104	Chickpea Wild Relatives: Potential Hidden Source for the Development of Climate Resilient Chickpea Varieties. , 2021, , 269-297.		4
2105	Plant Growth Promoting Rhizobacteria in Amelioration of Abiotic Stresses: A Functional Interplay and Prospective. , 2021, , 25-49.		1
2106	Nitrogen uptake, assimilation, and mobilization in plants under abiotic stress. , 2021, , 215-233.		2

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2107	Biodiversity of Genus Trichoderma and Their Potential Applications. Fungal Biology, 202	21, , 429-460.	0.3	0
2108	Overexpression of TaFBA-A10 from Winter Wheat Enhances Freezing Tolerance in Arab Journal of Plant Growth Regulation, 2022, 41, 314-326.	idopsis thaliana.	2.8	11
2109	Transcriptome sequencing and gene expression profiling of <i>Pinus sibirica</i> under stresses. Breeding Science, 2021, 71, 550-563.	different cold	0.9	3
2110	Biotechnological Approaches for Enhancing Stress Tolerance in Legumes. Sustainable A Reviews, 2021, , 247-293.	griculture	0.6	3
2111	Calmodulin and calmodulin-like Ca2+ binding proteins as molecular players of abiotic s in plants. , 2021, , 231-248.	tress response		1
2112	The Omics Strategies for Abiotic Stress Responses and Microbe-Mediated Mitigation in Sustainable Development and Biodiversity, 2021, , 315-377.	Plants.	1.4	3
2113	Role of Lipids and Fatty Acids in the Maintenance of Photosynthesis and the Assembly Photosynthetic Complexes During Photosystem II Turnover. Advances in Photosynthes Respiration, 2021, , 395-427.	of is and	1.0	0
2114	Lipid and Metabolite Profiling of Serpula lacrymans Under Freezing Stress. Current Mic 2021, 78, 961-966.	robiology,	1.0	5
2115	Rational design and testing of abiotic stressâ€inducible synthetic promoters from popl <i>cis</i> â€regulatory elements. Plant Biotechnology Journal, 2021, 19, 1354-1369.	ar	4.1	27
2116	Drought stress-induced physiological mechanisms, signaling pathways and molecular rechloroplasts in common vegetable crops. Critical Reviews in Biotechnology, 2021, 41, 6	esponse of 669-691.	5.1	98
2117	Natural Variation among Arabidopsis Accessions in the Regulation of Flavonoid Metabo Stress Gene Expression by Combined UV Radiation and Cold. Plant and Cell Physiology	olism and , 2021, 62, 502-514.	1.5	14
2119	A model system for studying plant–microbe interactions under snow. Plant Physiolog 1489-1494.	gy, 2021, 185,	2.3	2
2120	A tomato dynein light chain gene SILC6D is a negative regulator of chilling stress. Plant 303, 110753.	Science, 2021,	1.7	9
2121	<scp>AIR12</scp> confers cold tolerance through regulation of the <scp>CBF</scp> c pathway and ascorbate homeostasis. Plant, Cell and Environment, 2021, 44, 1522-153	old response 3.	2.8	14
2122	Adaptive evolution driving the young duplications in six Rosaceae species. BMC Genom	iics, 2021, 22, 112.	1.2	5
2123	Detection of DNA methylation in DBF1 gene of maize inbred W64A and mutant vp14 e stress. Cereal Research Communications, 2022, 50, 19-24.	xposed to drought	0.8	0
2124	Molecular and biochemical differences underlying the efficacy of lovastatin in preventir of superficial scald in a susceptible and resistant Pyrus communis L. cultivar. Postharve Technology, 2021, 173, 111435.	ig the onset st Biology and	2.9	6
2125	Effects of the blue light–cryptochrome system on the early process of cold acclimatic Arabidopsis thaliana. Environmental and Experimental Botany, 2021, 183, 104340.	pn of	2.0	8

#	Article	IF	CITATIONS
2126	Ethylene increases the cold tolerance of apple via the MdERF1B–MdClbHLH1 regulatory module. Plant Journal, 2021, 106, 379-393.	2.8	56
2127	Seeds Quality and Quantity of Soybean [Glycine max (L.) Merr.] Cultivars in Response to Cold Stress. Agronomy, 2021, 11, 520.	1.3	6
2128	Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	61
2129	Chemical products for crop protection against freezing stress: A review. Journal of Agronomy and Crop Science, 2021, 207, 391-403.	1.7	11
2130	The Absence of Hydrodynamic Stress Promotes Acquisition of Freezing Tolerance and Freeze-Dependent Asexual Reproduction in the Red Alga â€~Bangia' sp. ESS1. Plants, 2021, 10, 465.	1.6	5
2131	Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology. BMC Genomics, 2021, 22, 171.	1.2	13
2132	Changes in spring vegetation greenness over Siberia associated with weather disturbances during 1982–2015. International Journal of Climatology, 2021, 41, 4698.	1.5	2
2133	Autumn Phenology and Its Covariation with Climate, Spring Phenology and Annual Peak Growth on the Mongolian Plateau. Agricultural and Forest Meteorology, 2021, 298-299, 108312.	1.9	15
2134	Influence of Ice Encasement and Ethylene Regulation on Cellular-protection Responses in Annual Bluegrass. Journal of the American Society for Horticultural Science, 2021, 146, 87-98.	0.5	2
2135	Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum) Tj ETQq1 1	. 00784314	4 ngBT /Overl
2135 2136	Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum) Tj ETQq1 1 Genes with Cold Shock Domain from Eutrema salsugineum (Pall.) for Generating a Cold Stress Tolerance in Winter Rape (Brassica napus L.) Plants. Agronomy, 2021, 11, 827.	. 007 8 4314 1.3	1 ngBT /Over
2135 2136 2137	Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum) Tj ETQq1 1 Genes with Cold Shock Domain from Eutrema salsugineum (Pall.) for Generating a Cold Stress Tolerance in Winter Rape (Brassica napus L.) Plants. Agronomy, 2021, 11, 827. Transcriptome analysis of Chongyi wild mandarin, a wild species more cold-tolerant than Poncirus trifoliata, reveals key pathways in response to cold. Environmental and Experimental Botany, 2021, 184, 104371.	007 % 4314 1.3 2.0	1 9
2135 2136 2137 2138	Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum) Tj ETQq1 1 Genes with Cold Shock Domain from Eutrema salsugineum (Pall.) for Generating a Cold Stress Tolerance in Winter Rape (Brassica napus L.) Plants. Agronomy, 2021, 11, 827. Transcriptome analysis of Chongyi wild mandarin, a wild species more cold-tolerant than Poncirus trifoliata, reveals key pathways in response to cold. Environmental and Experimental Botany, 2021, 184, 104371. Membrane-Enriched Proteomics Link Ribosome Accumulation and Proteome Reprogramming With Cold Acclimation in Barley Root Meristems. Frontiers in Plant Science, 2021, 12, 656683.	00784314 1.3 2.0 1.7	4 ngBT /Overl 1 9 15
2135 2136 2137 2138 2138	Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum) Tj ETQq1 1 Genes with Cold Shock Domain from Eutrema salsugineum (Pall.) for Generating a Cold Stress Tolerance in Winter Rape (Brassica napus L.) Plants. Agronomy, 2021, 11, 827. Transcriptome analysis of Chongyi wild mandarin, a wild species more cold-tolerant than Poncirus trifoliata, reveals key pathways in response to cold. Environmental and Experimental Botany, 2021, 184, 104371. Membrane-Enriched Proteomics Link Ribosome Accumulation and Proteome Reprogramming With Cold Acclimation in Barley Root Meristems. Frontiers in Plant Science, 2021, 12, 656683. The Physiological, Biochemical, and Molecular Modifications of Chickpea (Cicer arietinum L.) Seedlings Under Freezing Stress. Journal of Plant Growth Regulation, 0, 1.	00784314 1.3 2.0 1.7 2.8	4 ngBT /Overl 1 9 15 5
2135 2136 2137 2138 2139 2140	Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum) Tj ETQq1 1 Genes with Cold Shock Domain from Eutrema salsugineum (Pall.) for Generating a Cold Stress Tolerance in Winter Rape (Brassica napus L.) Plants. Agronomy, 2021, 11, 827. Transcriptome analysis of Chongyi wild mandarin, a wild species more cold-tolerant than Poncirus trifoliata, reveals key pathways in response to cold. Environmental and Experimental Botany, 2021, 184, 104371. Membrane-Enriched Proteomics Link Ribosome Accumulation and Proteome Reprogramming With Cold Acclimation in Barley Root Meristems. Frontiers in Plant Science, 2021, 12, 656683. The Physiological, Biochemical, and Molecular Modifications of Chickpea (Cicer arietinum L.) Seedlings Under Freezing Stress. Journal of Plant Growth Regulation, 0, 1. Updated Mechanisms of GCN5â€"The Monkey King of the Plant Kingdom in Plant Development and Resistance to Abiotic Stresses. Cells, 2021, 10, 979.	. 007\$4314 1.3 2.0 1.7 2.8 1.8	4 ngBT /Overl 1 9 15 5 16
2135 2136 2137 2138 2139 2140	Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum) Tj ETQq1 1 Genes with Cold Shock Domain from Eutrema salsugineum (Pall.) for Generating a Cold Stress Tolerance in Winter Rape (Brassica napus L.) Plants. Agronomy, 2021, 11, 827. Transcriptome analysis of Chongyi wild mandarin, a wild species more cold-tolerant than Poncirus trifoliata, reveals key pathways in response to cold. Environmental and Experimental Botany, 2021, 184, 104371. Membrane-Enriched Proteomics Link Ribosome Accumulation and Proteome Reprogramming With Cold Acclimation in Barley Root Meristems. Frontiers in Plant Science, 2021, 12, 656683. The Physiological, Biochemical, and Molecular Modifications of Chickpea (Cicer arietinum L.) Seedlings Under Freezing Stress. Journal of Plant Growth Regulation, 0, , 1. Updated Mechanisms of GCN5â€"The Monkey King of the Plant Kingdom in Plant Development and Resistance to Abiotic Stresses. Cells, 2021, 10, 979. COR/LEA Proteins as Indicators of Frost Tolerance in Triticeae: A Comparison of Controlled versus Field Conditions. Plants, 2021, 10, 789.	. 007\$4314 1.3 2.0 1.7 2.8 1.8 1.6	4 ngBT /Overl 1 9 15 5 16 7
2135 2136 2137 2138 2139 2140 2141	Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum) Tj ETQq1 I Genes with Cold Shock Domain from Eutrema salsugineum (Pall.) for Generating a Cold Stress Tolerance in Winter Rape (Brassica napus L.) Plants. Agronomy, 2021, 11, 827. Transcriptome analysis of Chongyi wild mandarin, a wild species more cold-tolerant than Poncirus trifoliata, reveals key pathways in response to cold. Environmental and Experimental Botany, 2021, 184, 104371. Membrane-Enriched Proteomics Link Ribosome Accumulation and Proteome Reprogramming With Cold Acclimation in Barley Root Meristems. Frontiers in Plant Science, 2021, 12, 656683. The Physiological, Biochemical, and Molecular Modifications of Chickpea (Cicer arietinum L.) Seedlings Under Freezing Stress. Journal of Plant Growth Regulation, 0, , 1. Updated Mechanisms of GCN5ã€"The Monkey King of the Plant Kingdom in Plant Development and Resistance to Abiotic Stresses. Cells, 2021, 10, 979. COR/LEA Proteins as Indicators of Frost Tolerance in Triticeae: A Comparison of Controlled versus Field Conditions. Plants, 2021, 10, 789. Biophysical models and meta-modelling to reduce the basis risk in index-based insurance: A case study on winter cereals in Italy. Agricultural and Forest Meteorology, 2021, 300, 108320.	. 007\$4314 1.3 2.0 1.7 2.8 1.8 1.6 1.9	4 ngBT /Overl 1 9 15 5 16 7 3

#	Article	IF	CITATIONS
2146	Reciprocal regulation between the negative regulator PP2CG1 phosphatase and the positive regulator OST1 kinase confers cold response in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 1568-1587.	4.1	19
2147	CBF1 and CBF4 in Solanum tuberosum L. differ in their effect on low-temperature tolerance and development. Environmental and Experimental Botany, 2021, 185, 104416.	2.0	18
2148	Genetic mapping and identification of a QTL determining tolerance to freezing stress in Fragaria vesca L PLoS ONE, 2021, 16, e0248089.	1.1	2
2149	Population transcriptomic sequencing reveals allopatric divergence and local adaptation in Pseudotaxus chienii (Taxaceae). BMC Genomics, 2021, 22, 388.	1.2	11
2150	Cryopreservation of Woody Crops: The Avocado Case. Plants, 2021, 10, 934.	1.6	14
2151	Influence of Extremely Low Temperatures of the Pole of Cold on the Lipid and Fatty-Acid Composition of Aerial Parts of the Horsetail Family (Equisetaceae). Plants, 2021, 10, 996.	1.6	7
2152	Characterization of a transcription factor SINAC7 gene from Suaeda liaotungensis and its role in stress tolerance. Journal of Plant Research, 2021, 134, 1105-1120.	1.2	4
2153	The role of antioxidant defense in freezing tolerance of resurrection plant Haberlea rhodopensis. Physiology and Molecular Biology of Plants, 2021, 27, 1119-1133.	1.4	12
2154	The Halophyte Halostachys caspica AP2/ERF Transcription Factor HcTOE3 Positively Regulates Freezing Tolerance in Arabidopsis. Frontiers in Plant Science, 2021, 12, 638788.	1.7	20
2155	Using Stress Factors for Storage of Withania somnifera L. Hairy Roots without Passages. Russian Journal of Plant Physiology, 2021, 68, 536-544.	0.5	0
2156	Relationship between WCS120 Protein Family Accumulation and Frost Tolerance in Wheat Cultivars Grown under Different Temperature Treatments. Plants, 2021, 10, 1114.	1.6	3
2157	Identification of MicroRNAs in Taxillus chinensis (DC.) Danser Seeds under Cold Stress. BioMed Research International, 2021, 2021, 1-12.	0.9	5
2158	HsfA1d promotes hypocotyl elongation under chilling via enhancing expression of ribosomal protein genes in Arabidopsis. New Phytologist, 2021, 231, 646-660.	3.5	11
2159	Germinating seed can sense low temperature for the floral transition and vernalization of winter rapeseed (Brassica rapa). Plant Science, 2021, 307, 110900.	1.7	3
2160	Transcriptome analysis of <i>Sonneratia caseolaris</i> seedlings under chilling stress. PeerJ, 2021, 9, e11506.	0.9	10
2161	Estimation of Biomass Increase and CUE at a Young Temperate Scots Pine Stand Concerning Drought Occurrence by Combining Eddy Covariance and Biometric Methods. Forests, 2021, 12, 867.	0.9	3
2162	Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications. Advances in Colloid and Interface Science, 2021, 292, 102408.	7.0	22
2163	Plant phospholipase D: novel structure, regulatory mechanism, and multifaceted functions with biotechnological application. Critical Reviews in Biotechnology, 2022, 42, 106-124.	5.1	15

C^{1-}		ON	DED	ODT
	IAL	UN	KEP	URI

#	Article	IF	CITATIONS
2164	Transcriptome analysis reveals Vernalization is independent of cold acclimation in Arabidopsis. BMC Genomics, 2021, 22, 462.	1.2	15
2165	Low temperature elicits differential biochemical and antioxidant responses in maize (Zea mays) genotypes with different susceptibility to low temperature stress. Physiology and Molecular Biology of Plants, 2021, 27, 1395-1412.	1.4	27
2166	Redox-dependent structural switch and CBF activation confer freezing tolerance in plants. Nature Plants, 2021, 7, 914-922.	4.7	60
2167	MPK6 Kinase Regulates Plasma Membrane H+-ATPase Activity in Cold Acclimation. International Journal of Molecular Sciences, 2021, 22, 6338.	1.8	10
2168	Long Non-Coding RNA and Its Regulatory Network Response to Cold Stress in Eucalyptus urophylla S.T.Blake. Forests, 2021, 12, 836.	0.9	2
2169	Salicylic Acid Is Involved in Rootstock–Scion Communication in Improving the Chilling Tolerance of Grafted Cucumber. Frontiers in Plant Science, 2021, 12, 693344.	1.7	22
2170	Effect of chilling acclimation on germination and seedlings response to cold in different seed coat colored wheat (Triticum aestivum L.). BMC Plant Biology, 2021, 21, 252.	1.6	11
2171	Accumulation Dynamics of Transcripts and Proteins of Cold-Responsive Genes in Fragaria vesca Genotypes of Differing Cold Tolerance. International Journal of Molecular Sciences, 2021, 22, 6124.	1.8	4
2172	A transdisciplinary typology of change identifies new categories of adaptations and forms of co-adaptation in coupled human and natural systems. Sustainability Science, 2021, 16, 1609-1623.	2.5	2
2173	Loss of Function Mutation of IOS1 in Arabidopsis Is More Sensitive to Salt Stress. Plant Molecular Biology Reporter, 0, , 1.	1.0	0
2174	HSPs under Abiotic Stresses. , 0, , .		1
2175	Overexpression of Karrikins Receptor Gene Sapium sebiferum KAl2 Promotes the Cold Stress Tolerance via Regulating the Redox Homeostasis in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 657960.	1.7	17
2176	Identification and Characterization of SPL Transcription Factor Family Reveals Organization and Chilling-Responsive Patterns in Cabbage (Brassica oleracea var. capitata L.). Agronomy, 2021, 11, 1445.	1.3	2
2177	Cold response and tolerance in cereal roots. Journal of Experimental Botany, 2021, , .	2.4	7
2178	An intrinsically disordered radish vacuolar calcium-binding protein (RVCaB) showed cryoprotective activity for lactate dehydrogenase with its hydrophobic region. International Journal of Biological Macromolecules, 2021, 182, 1130-1137.	3.6	3
2179	Protein kinase and phosphatase control of plant temperature responses. Journal of Experimental Botany, 2021, , .	2.4	6
2180	The <i>Brachypodium distachyon</i> cold-acclimated plasma membrane proteome is primed for stress resistance. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
2181	An Insight into the Responses of Early-Maturing <i>Brassica napus</i> to Different Low-Temperature Stresses. , 0, , .		0

#	Article	IF	CITATIONS
2182	Alfalfa (Medicago sativa L.) MsCML46 gene encoding calmodulin-like protein confers tolerance to abiotic stress in tobacco. Plant Cell Reports, 2021, 40, 1907-1922.	2.8	17
2183	The lincRNA XH123 is involved in cotton cold-stress regulation. Plant Molecular Biology, 2021, 106, 521-531.	2.0	20
2184	Differences in lipid homeostasis and membrane lipid unsaturation confer differential tolerance to low temperatures in two Cycas species. BMC Plant Biology, 2021, 21, 377.	1.6	15
2185	The direct targets of CBFs: In cold stress response and beyond. Journal of Integrative Plant Biology, 2021, 63, 1874-1887.	4.1	68
2186	Identification and expression pattern of lentil's HSPs under different abiotic stresses. Plant Biotechnology Reports, 2021, 15, 609-625.	0.9	4
2187	Characterization of Chromatin Accessibility and Gene Expression upon Cold Stress Reveals that the RAV1 Transcription Factor Functions in Cold Response in <i>Vitis Amurensis</i> . Plant and Cell Physiology, 2021, 62, 1615-1629.	1.5	23
2188	The CRY2–COP1–HY5–BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. Plant Cell, 2021, 33, 3555-3573.	3.1	49
2189	Natural variation in a type-A response regulator confers maize chilling tolerance. Nature Communications, 2021, 12, 4713.	5.8	63
2190	Recent Advances in Understanding the Roles of Pectin as an Active Participant in Plant Signaling Networks. Plants, 2021, 10, 1712.	1.6	40
2191	Ectopic expression of a novel cold-resistance protein 1 from Brassica oleracea promotes tolerance to chilling stress in transgenic tomato. Scientific Reports, 2021, 11, 16574.	1.6	13
2192	Genome-wide identification, phylogeny, and expression analysis of the bHLH gene family in tobacco (Nicotiana tabacum). Physiology and Molecular Biology of Plants, 2021, 27, 1747-1764.	1.4	15
2193	AtLRRop2, an leucine-rich repeat-only protein, mediates cold stress response in Arabidopsis thaliana. Plant Biotechnology Reports, 2021, 15, 641-649.	0.9	3
2194	DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. Biologia (Poland), 2021, 76, 3043-3055.	0.8	12
2195	Transcriptomic analysis of endoplasmic reticulum stress in roots of grapevine rootstock. Plant Biotechnology Reports, 2021, 15, 683-706.	0.9	3
2196	High relative humidity improve chilling tolerance by maintaining leaf water potential in watermelon seedlings. Plant Physiology and Biochemistry, 2021, 166, 818-826.	2.8	8
2197	Early detection of plant stress using the internal electrical conductivity of Capsicum annuum in response to temperature and salinity stress. Plant Growth Regulation, 2021, 95, 371-380.	1.8	11
2198	Current Outlook on Ice Encasement Stress and Management Strategies in Turfgrasses. HortTechnology, 2021, 31, 561-565.	0.5	0
2199	Epigenetic control of abiotic stress signaling in plants. Genes and Genomics, 2022, 44, 267-278.	0.5	11

#	Article	IF	CITATIONS
2200	Transcriptome profiling of Malus sieversii under freezing stress after being cold-acclimated. BMC Genomics, 2021, 22, 681.	1.2	18
2201	Cold-Triggered Induction of ROS- and Raffinose Metabolism in Freezing-Sensitive Taproot Tissue of Sugar Beet. Frontiers in Plant Science, 2021, 12, 715767.	1.7	17
2202	Forage potential of winterâ€hardy perennial ryegrass populations in monoculture and binary alfalfa mixture. Agronomy Journal, 0, , .	0.9	1
2203	Arabidopsis thaliana eIF4E1 and eIF(iso)4E Participate in Cold Response and Promote Translation of Some Stress-Related mRNAs. Frontiers in Plant Science, 2021, 12, 698585.	1.7	3
2204	Convergence and Divergence: Signal Perception and Transduction Mechanisms of Cold Stress in Arabidopsis and Rice. Plants, 2021, 10, 1864.	1.6	26
2205	Cold Stress in Citrus: A Molecular, Physiological and Biochemical Perspective. Horticulturae, 2021, 7, 340.	1.2	15
2206	Cold stress in maize (Zea mays) is alleviated by the over-expression of Phytoglobin 1 (ZmPgb1.1). Plant Physiology and Biochemistry, 2021, 167, 901-910.	2.8	7
2207	Temporal transcriptome profiling reveals candidate genes involved in cold acclimation of Camellia japonica (Naidong). Plant Physiology and Biochemistry, 2021, 167, 795-805.	2.8	8
2208	Polyols can alleviate chilling injury in â€~Palmer' mangoes during cold storage. Food Control, 2021, 129, 108248.	2.8	13
2209	Temporal expression profiling of GhNAC transcription factor genes in cotton cultivars under abiotic stresses. Plant Gene, 2021, 28, 100334.	1.4	1
2210	BaDBL1, a unique DREB gene from desiccation tolerant moss Bryum argenteum, confers osmotic and salt stress tolerances in transgenic Arabidopsis. Plant Science, 2021, 313, 111047.	1.7	14
2211	Cold acclimation and prospects for cold-resilient crops. Plant Stress, 2021, 2, 100028.	2.7	29
2212	NO regulates temperature stress in plants. , 2022, , 211-240.		0
2213	Explicating the cross-talks between nanoparticles, signaling pathways and nutrient homeostasis during environmental stresses and xenobiotic toxicity for sustainable cultivation of cereals. Chemosphere, 2022, 286, 131827.	4.2	22
2214	Cover crop and phosphorus fertilizer management impacts on surface water quality from a no-till corn-soybean rotation. Journal of Environmental Management, 2022, 301, 113818.	3.8	30
2215	Recombinant DNA Technology for Sustainable Plant Growth and Production. , 2021, , 99-120.		0
2216	Seed Priming: A Cost-effective Strategy to Impart Abiotic Stress Tolerance. , 2021, , 459-480.		5
2217	Arabidopsis ADF5 Acts as a Downstream Target Gene of CBFs in Response to Low-Temperature Stress. Frontiers in Cell and Developmental Biology, 2021, 9, 635533.	1.8	11

3

ARTICLE IF CITATIONS Quantitative Trait Locus Mapping of Winter Hardiness Metabolites in Autotetraploid Alfalfa (M.) Tj ETQq0 0 0 rgBT (Qverlock, 10 Tf 50 7 2225 New insights into abiotic stress signalling in plants. , 2006, , 248-274. 2226 AraCyc: Overview of an Arabidopsis Metabolism Database and its Applications for Plant Research. , 2227 10 2006, , 141-154. The Use of Non-targeted Metabolomics in Plant Science., 2006, , 311-325. 2228 Proteomic Approaches to Identify Cold-Regulated Plasma. Methods in Molecular Biology, 2020, 2156, 2229 0.4 2 171-186. Determining the and the Status of Leaves During Cold Acclimation. Methods in Molecular Biology, 2020, 2156, 241-254. 0.4 Analysis of Changes in Plant Cell Wall and Structure During Cold Acclimation. Methods in Molecular 2231 0.4 4 Biology, 2020, 2156, 255-268. Differential Thermal Analysis: A Fast Alternative to Measurements. Methods in Molecular Biology, 0.4 2020, 2156, 23-31. 2233 Metabolic Engineering of Chloroplasts for Abiotic Stress Tolerance., 2004, 513-525. 4 2234 The Low Temperature Metabolome of Arabidopsis., 2007, , 239-246. Abiotic Stress Tolerant Crops: Genes, Pathways and Bottlenecks., 2013, , 1-17. 2235 5 Mechanisms of Snow Mold Resistance in Wheat., 2013, , 319-330. 2236 Lignins and Abiotic Stress: An Overview., 2014, , 267-296. 2237 15 Molecular Genetics of Plant Responses to Low Temperatures., 2002,, 3-16. 2238

2239 Mutants Deficient in Cold Hardiness. , 2002, , 17-32.

2240	Proteomic Approaches to Identify Cold-Regulated Plasma Membrane Proteins. Methods in Molecular Biology, 2014, 1166, 159-170.	0.4	12
2241	Quantification of Superoxide and Hydrogen Peroxide in Leaves. Methods in Molecular Biology, 2014, 1166, 217-224.	0.4	28
2242	Mapping of Quantitative Trait Loci (QTL) Associated with Plant Freezing Tolerance and Cold Acclimation. Methods in Molecular Biology, 2014, 1166, 43-64.	0.4	5

#	Article	IF	CITATIONS
2243	Common Garden Experiments to Characterize Cold Acclimation Responses in Plants from Different Climatic Regions. Methods in Molecular Biology, 2014, 1166, 65-78.	0.4	5
2244	Phenotyping of Abiotic Responses and Hormone Treatments in Arabidopsis. Methods in Molecular Biology, 2009, 479, 35-59.	0.4	8
2245	Plant Water Relations. , 2019, , 187-263.		25
2246	Calcium Signaling in Plants Under Drought. Signaling and Communication in Plants, 2020, , 259-298.	0.5	7
2247	Special Adaptive Features of Plant Species in Response to Salinity. Signaling and Communication in Plants, 2020, , 53-76.	0.5	5
2248	Plant Antifreeze Proteins. , 2020, , 189-226.		5
2249	QTL Mapping for Abiotic Stresses in Cereals. , 2020, , 229-251.		7
2250	Introduction to Plant Stresses. SpringerBriefs in Systems Biology, 2017, , 1-19.	0.1	16
2251	Auxin and Temperature Stress: Molecular and Cellular Perspectives. Signaling and Communication in Plants, 2013, , 295-310.	0.5	3
2252	Cold Tolerance. , 2013, , 133-165.		2
2253	cis Elements and Transcription Factors Regulating Gene Promoters in Response to Environmental Stress. Ecological Studies, 2004, , 151-176.	0.4	4
2254	Bioinformatics Resources for the Management of Biological Information on Plant Responses Towards Stresses. , 2014, , 365-382.		1
2255	Pyramiding Genes for Enhancing Tolerance to Abiotic and Biotic Stresses. , 2010, , 163-184.		3
2256	Molecular Biology of Conifer Frost Tolerance and Potential Applications to Tree Breeding. Tree Physiology, 2001, , 187-219.	0.9	12
2257	Responses to Low Temperature and Adaptations to Freezing. , 2001, , 209-247.		3
2258	Application of Genomics in Agriculture. , 2001, , 61-79.		9
2259	Cells: Functional Units of TCLs. , 2003, , 65-133.		6
2260	Stress Management: Sustainable Approach Towards Resilient Agriculture. , 2019, , 231-270.		2

#	Article	IF	CITATIONS
2261	Photosynthetic Acclimation and Adaptation to Cold Ecosystems. , 2020, , 159-201.		2
2262	Tolerance mechanisms of medicinal plants to abiotic stresses. , 2020, , 663-679.		9
2263	Nitrate assimilation is essential for the synthesis of organic matter. , 2005, , 275-308.		4
2264	Upregulation of CBF/DREB1 and cold tolerance in artificial seeds of cauliflower (Brassica oleracea) Tj ETQq1 1 0.7	84314 rgl 1.7	BT /Overlock 12
2265	Last updates on cell death point, bud death time and exothermic characteristics of flower buds for deciduous fruit species by using differential thermal analysis. Scientia Horticulturae, 2020, 270, 109403.	1.7	22
2266	Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant Journal, 2001, 26, 461.	2.8	158
2267	Comparative transcriptome analysis of five Medicago varieties reveals the genetic signals underlying freezing tolerance. Crop and Pasture Science, 2019, 70, 273.	0.7	3
2268	Endogenous accumulation of glycine betaine confers improved low temperature resistance on transplastomic potato plants. Functional Plant Biology, 2020, 47, 1105.	1.1	11
2270	Plasma Membrane Aquaporin Members PIPs Act in Concert to Regulate Cold Acclimation and Freezing Tolerance Responses in Arabidopsis thaliana. Plant and Cell Physiology, 2020, 61, 787-802.	1.5	26
2274	Trimethylguanosine Synthase1 (TGS1) Is Essential for Chilling Tolerance. Plant Physiology, 2017, 174, 1713-1727.	2.3	25
2275	Genomic and Expression Analyses of Cold-Adapted Microorganisms. , 0, , 126-155.		22
2277	Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant. BMC Genomics, 2020, 21, 65.	1.2	43
2278	Adaptation Of Higher Plants To Freezing. , 2004, , 171-203.		12
2279	Oxidative Stress in the Frozen Plant. , 2004, , 205-241.		37
2280	Physiology, Biochemistry, and Molecular Biology of Vertebrate Freeze Tolerance. , 2004, , 243-274.		49
2281	Molecular Responses and Mechanisms of Plant Adaptation to Cold and Freezing Stress. , 2006, , 47-67.		5
2283	Poplar Proteomics. , 2011, , 128-165.		1
2284	Proteomics and Metabolomics. , 2012, , 323-354.		3

#	Article	IF	CITATIONS
2286	Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis. PLoS Genetics, 2016, 12, e1006027.	1.5	45
2287	Insights into Hypoxic Systemic Responses Based on Analyses of Transcriptional Regulation in Arabidopsis. PLoS ONE, 2011, 6, e28888.	1.1	84
2288	Expression of a Finger Millet Transcription Factor, EcNAC1, in Tobacco Confers Abiotic Stress-Tolerance. PLoS ONE, 2012, 7, e40397.	1.1	83
2289	Identification of Upregulated Genes under Cold Stress in Cold-Tolerant Chickpea Using the cDNA-AFLP Approach. PLoS ONE, 2013, 8, e52757.	1.1	30
2290	Genome Wide Transcriptional Profile Analysis of Vitis amurensis and Vitis vinifera in Response to Cold Stress. PLoS ONE, 2013, 8, e58740.	1.1	96
2291	Ectopic Expression of Arabidopsis Glycosyltransferase UGT85A5 Enhances Salt Stress Tolerance in Tobacco. PLoS ONE, 2013, 8, e59924.	1.1	91
2292	Comparative Proteomic Analysis of the Stolon Cold Stress Response between the C4 Perennial Grass Species Zoysia japonica and Zoysia metrella. PLoS ONE, 2013, 8, e75705.	1.1	36
2293	Leaves of the ArabidopsisÂmaltose exporter1ÂMutant Exhibit aÂMetabolic Profile withÂFeatures of Cold Acclimation in the Warm. PLoS ONE, 2013, 8, e79412.	1.1	25
2294	A Bulk Segregant Gene Expression Analysis of a Peach Population Reveals Components of the Underlying Mechanism of the Fruit Cold Response. PLoS ONE, 2014, 9, e90706.	1.1	38
2295	Metabolic Changes in Avena sativa Crowns Recovering from Freezing. PLoS ONE, 2014, 9, e93085.	1.1	8
2296	Transcriptome Sequencing and Identification of Cold Tolerance Genes in Hardy Corylus Species (C.) Tj ETQq0 0 () rgBT /Ov 1.1	erlock 10 Tf 5 14
2297	DeepSAGE Based Differential Gene Expression Analysis under Cold and Freeze Stress in Seabuckthorn (Hippophae rhamnoides L.). PLoS ONE, 2015, 10, e0121982.	1.1	26
2298	Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis). PLoS ONE, 2015, 10, e0125031.	1.1	104
2299	Comparative Transcriptomics of Sijung and Jumli Marshi Rice during Early Chilling Stress Imply Multiple Protective Mechanisms. PLoS ONE, 2015, 10, e0125385.	1.1	14
2300	Genes Upregulated in Winter Wheat (Triticum aestivum L.) during Mild Freezing and Subsequent Thawing Suggest Sequential Activation of Multiple Response Mechanisms. PLoS ONE, 2015, 10, e0133166.	1.1	13
2301	Chilling- and Freezing- Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana. PLoS ONE, 2015, 10, e0135485.	1.1	51
2302	Transcriptional Analysis of Resistance to Low Temperatures in Bermudagrass Crown Tissues. PLoS ONE, 2015, 10, e0136433.	1.1	4
2303	Functional Characterization of Hevea brasiliensis CRT/DRE Binding Factor 1 Gene Revealed Regulation Potential in the CBF Pathway of Tropical Perennial Tree. PLoS ONE, 2015, 10, e0137634.	1.1	39

#	Article	IF	CITATIONS
2304	The Recovery of Plastid Function Is Required for Optimal Response to Low Temperatures in Arabidopsis. PLoS ONE, 2015, 10, e0138010.	1.1	17
2305	Frost Induces Respiration and Accelerates Carbon Depletion in Trees. PLoS ONE, 2015, 10, e0144124.	1.1	39
2306	Overexpression of the NDR1/HIN1-Like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis. PLoS ONE, 2016, 11, e0148572.	1.1	39
2307	Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis). PLoS ONE, 2016, 11, e0165953.	1.1	38
2308	Knockdown of Ice-Binding Proteins in Brachypodium distachyon Demonstrates Their Role in Freeze Protection. PLoS ONE, 2016, 11, e0167941.	1.1	34
2309	Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PLoS ONE, 2017, 12, e0172133.	1.1	107
2310	Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS ONE, 2017, 12, e0188514.	1.1	58
2311	Urbanization may reduce the risk of frost damage to spring flowers: A case study of two shrub species in South Korea. PLoS ONE, 2018, 13, e0191428.	1.1	5
2312	The calcium transporter ANNEXIN1 mediates coldâ€induced calcium signaling and freezing tolerance in plants. EMBO Journal, 2021, 40, e104559.	3.5	99
2313	A simplified method to test cereal frost tolerance. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2010, 58, 143-149.	0.2	3
2314	COLD ACCLIMATION AND DEVELOPMENT OF FREEZING AND DROUGHT TOLERANCE IN PLANTS. Acta Horticulturae, 2001, , 277-284.	0.1	7
2315	Characterization of CBF1, CBF2, CBF3, and CBF4 genes of Malus sieversii and analysis of their expression in different habitats. European Journal of Horticultural Science, 2017, 82, 81-89.	0.3	3
2316	Transcription factor genes involved in plant response to abiotic stress factors. Ecological Genetics, 2019, 17, 47-58.	0.1	13
2317	Promoter Analysis of Cold-responsive (COR) Gene from Capsella bursa-pastoris and Expression Character in Response to Low Temperature. International Journal of Agriculture and Biology, 2016, 18, 346-352.	0.2	7
2318	Cold Stress in Rice at Early Growth Stage – An Overview. International Journal of Pure & Applied Bioscience, 2017, 5, 407-419.	0.1	8
2319	An Overview of Cold Hardiness in Woody Plants: Seeing the Forest Through the Trees. Hortscience: A Publication of the American Society for Hortcultural Science, 2003, 38, 952-959.	0.5	98
2320	Breeding Temperate Fruit Crops for Improved Freezing Tolerance. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1950-1953.	0.5	2
2321	Differential Cold Acclimation Ability of Petunia spp Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1219-1222.	0.5	10

#	Article	IF	CITATIONS
2322	Freezing Tolerance and Cold Acclimation in Guava (Psidium guajava L.). Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1258-1266.	0.5	19
2323	Interspecific Analysis of Xylem Freezing Responses in Acer and Betula. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 165-168.	0.5	3
2324	DcHsp17.7, a Small Heat Shock Protein from Carrot, Is Upregulated under Cold Stress and Enhances Cold Tolerance by Functioning as a Molecular Chaperone. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 469-474.	0.5	16
2325	Freeze Tolerance of Nine Zoysiagrass Cultivars Using Natural Cold Acclimation and Freeze Chambers. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 112-115.	0.5	21
2326	CBF1 Orthologs in Sour Cherry and Strawberry and the Heterologous Expression of CBF1 in Strawberry. Journal of the American Society for Horticultural Science, 2002, 127, 489-494.	0.5	77
2327	Environmental Regulation of a 25 kDa Dehydrin in Relation to Rhododendron Cold Acclimation. Journal of the American Society for Horticultural Science, 2004, 129, 354-359.	0.5	17
2328	Bermudagrass Freezing Tolerance Associated with Abscisic Acid Metabolism and Dehydrin Expression during Cold Acclimation. Journal of the American Society for Horticultural Science, 2008, 133, 542-550.	0.5	29
2329	Applying Freezing Test to Quantify Cold Acclimation in Medicago truncatula. Journal of the American Society for Horticultural Science, 2008, 133, 684-691.	0.5	18
2330	Functional Identification of a C-repeat Binding Factor Transcriptional Activator from Blueberry Associated with Cold Acclimation and Freezing Tolerance. Journal of the American Society for Horticultural Science, 2010, 135, 40-48.	0.5	40
2331	Proteomic Responses during Cold Acclimation in Association with Freezing Tolerance of Velvet Bentgrass. Journal of the American Society for Horticultural Science, 2012, 137, 391-399.	0.5	15
2332	Molecular Cloning and Characterization of the HOS1 Gene from â€~Muscat Hamburg' Grapevine. Journal of the American Society for Horticultural Science, 2014, 139, 54-62.	0.5	3
2333	Geneâ€Based Approaches to Crop Simulation. Agronomy Journal, 2003, 95, 52-64.	0.9	15
2334	Overexpression of Glutathione Reductase in Cotton Does Not Alter Emergence Rates under Temperature Stress. Crop Science, 2009, 49, 272-280.	0.8	9
2335	An Overview of Signaling Regulons During Cold Stress Tolerance in Plants. Current Genomics, 2017, 18, 498-511.	0.7	62
2336	Investigation of Drought and Salinity Tolerance Related Genes and their Regulatory Mechanisms in Arabidopsis (Arabidopsis thaliana). Open Bioinformatics Journal, 2018, 11, 12-28.	1.0	21
2337	Meta-Analysis of Expression of the Stress Tolerance Associated Genes and Uncover their Cis-Regulatory Elements in Rice (Oryza sativa L.). Open Bioinformatics Journal, 2020, 13, 39-49.	1.0	14
2338	Plant Responses to Abiotic Stresses: Shedding Light on Salt, Drought, Cold and Heavy Metal Stress. , 2011, , 39-64.		25
2339	Genetic Engineering for Cold Stress Tolerance in Crop Plants. , 2016, , 173-201.		13

#	Article	IF	CITATIONS
2340	Assessing Plant Tolerance to Acute Heat Stress. Bio-protocol, 2017, 7, e2405.	0.2	10
2341	Plant AP2/ERF transcription factors. Genetika, 2003, 35, 37-50.	0.1	37
2342	Carbohydrate Changes in Peach Shoot Tissues and Their Relationship to Cold Acclimation and Deacclimation. Horticulture Journal, 2015, 84, 21-29.	0.3	20
2343	Proline Accumulates in Response to Higher Temperatures during Dehardening in Peach Shoot Tissues. Horticulture Journal, 2016, 85, 37-45.	0.3	9
2344	Chilling-Induced Limitations on Photosynthesis in Warm Climate Plants: Contrasting Mechanisms Seibutsu Kankyo Chosetsu [Environment Control in Biology, 2002, 40, 7-18.	0.2	12
2345	Molybdenum as an Essential Element for Crops: An Overview. Biomedical Journal of Scientific & Technical Research, 2020, 24, .	0.0	18
2346	Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Frontiers in Bioscience - Landmark, 2007, 12, 2494.	3.0	140
2347	Isolation and molecular characterization of a cax gene from Capsella bursa-pastoris. Biocell, 2008, 32, 229-225.	0.4	5
2348	From the Outside to the Inside: New Insights on the Main Factors That Guide Seed Dormancy and Germination. Genes, 2021, 12, 52.	1.0	15
2351	Expression and Cloning of a Novel Stress Responsive Gene (<i>OsMsr1</i>) in Rice. Acta Agronomica Sinica(China), 2009, 34, 1712-1718.	0.1	3
2352	Cloning of Cotton <1>CBF 1 Gene and Its Cold Tolerance Expression in Transgenic Tobacco. Acta Agronomica Sinica(China), 2011, 37, 286-293.	0.1	3
2353	Changes of DNA Methylation Levels and Patterns in Tea Plant (<i>Camellia sinensis</i>) during Cold Acclimation. Acta Agronomica Sinica(China), 2015, 41, 1047.	0.1	5
2354	Changes in Anatomical Structure and Levels of Endogenous Phytohormones during Leaf Rolling in Ctenanthe setosa under Drought Stress. Turkish Journal of Biology, 0, , .	2.1	9
2355	Transgenic Tobacco Plants Over-expressing Arabidopsis Transcriptional Factor CBF1 Show Morphological and Biochemical Characteristics Associated with Cold Tolerance. Asian Journal of Plant Sciences, 2006, 5, 932-939.	0.2	4
2356	Semiquantitative RT-PCR Analysis to Assess the Expression Levels of Wcor14 Transcripts in Winter-Type Wheat. Biotechnology, 2009, 8, 323-328.	0.5	2
2357	Zinc and Salinity Interaction on Agronomical Traits, Chlorophyll and Proline Content in Lowland Rice (Oryza sativa L.) Genotypes. Pakistan Journal of Biological Sciences, 2006, 9, 1315-1319.	0.2	8
2358	Cold Tolerance of an Inbred Line Population of Rice (Oryza sativa L) at Different Growth Stages. Tropical Agricultural Research and Extension, 2012, 14, 25.	0.1	6
2359	COR-Like Gene Is Involved in Induced-Expression Response to Multiple Abiotic Stresses in Grape Vine (<i>Vitis amurensis</i>) Tissues. Agricultural Sciences, 2014, 05, 604-610.	0.2	2

#	Article	IF	CITATIONS
2360	Phenotyping Winter Dormancy in Switchgrass to Extend the Growing Season and Improve Biomass Yield. Journal of Sustainable Bioenergy Systems, 2018, 08, 1-22.	0.2	4
2362	Induced freezing tolerance and free amino acids perturbation of spinach by exogenous proline. Journal of Plant Biotechnology, 2018, 45, 357-363.	0.1	6
2363	Regulatory mechanisms involved in cold acclimation response: a review. Spanish Journal of Agricultural Research, 2008, 6, 211.	0.3	10
2364	Molecular responses to thermal stress in woody plants. Investigacion Agraria Sistemas Y Recursos Forestales, 2005, 14, 307.	0.4	3
2365	Isolation and Molecular Characterization of a New CRT Binding Factor Gene from Capsella bursa-pastoris. BMB Reports, 2004, 37, 538-545.	1.1	13
2366	Differentially Expressed Genes under Cold Acclimation in Physcomitrella patens. BMB Reports, 2007, 40, 986-1001.	1.1	19
2367	Signaling crosstalk between ethylene and other molecules. Plant Biotechnology, 2005, 22, 401-407.	0.5	3
2368	Cold-induced changes in antioxidant defenses and reactive oxygen species in eight wild almond species. Free Radicals and Antioxidants, 2014, 4, 70-74.	0.2	2
2370	Cryopreservation of Tropical Plant Germplasm with Vegetative Propagation - Review of Sugarcane (Saccharum spp.) and Pineapple (Ananas comusus (L.) Merrill) Cases. , 0, , .		8
2371	Abiotic Stress - Plant Responses and Applications in Agriculture. , 2013, , .		54
2372	Bioinformatics Based Comparative Analysis of Omega-3 Fatty Acids in Desert Plants and Their Role in Stress Resistance and Tolerance. International Journal of Plant Research, 2012, 2, 80-89.	0.5	13
2373	Isolation and Sequence Analysis of Drought Induced Dreb2a in Indian Wheat Cultivars Under Water Stress Condition. Vegetos, 2013, 26, 331.	0.8	1
2374	Proteomic Analysis of Common Bean (Phaseolus vulgaris L.) by Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Journal of Basic & Applied Sciences, 0, 9, 424-437.	0.8	7
2375	Prediction of functions for two LEA proteins from mung bean. Bioinformation, 2006, 1, 133-138.	0.2	15
2376	Assessment of Chilling Injury and Molecular Marker Analysis in Cucumber Cultivars (Cucumis sativus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
2378	SIMYB102 expression enhances low-temperature stress resistance in tomato plants. PeerJ, 2020, 8, e10059.	0.9	11
2379	Growth under cold conditions in a wide perennial ryegrass panel is under tight physiological control. PeerJ, 2018, 6, e5520.	0.9	10
2380	Identification and comparative analysis of the <i>CIPK</i> gene family and characterization of the cold stress response in the woody plant <i>Prunus mumes/i> Peerl 2019 7 e6847</i>	0.9	20

#	Article	IF	CITATIONS
2381	Site selection for subtropical thicket restoration: mapping cold-air pooling in the South African sub-escarpment lowlands. PeerJ, 2020, 8, e8980.	0.9	8
2382	Use of Electrical Conductivity as a Tool for Determining Damage Index of Some Mango Cultivars. International Journal of Plant & Soil Science, 2014, 3, 448-456.	0.2	6
2383	Differential Expression Screening of Defense Related Genes in Dormant Buds of Cold-Treated Grapevines. Plant Breeding and Biotechnology, 2013, 1, 14-23.	0.3	4
2384	Transcript Analysis of WheatWAS-2Gene Family under High Temperature Stress during Ripening Period. Plant Breeding and Biotechnology, 2018, 6, 363-380.	0.3	3
2385	Cold Hardiness of 8 Hybrid Poplar Clones for the Introduction to Arid and Semi-Arid Areas. Plant Breeding and Biotechnology, 2020, 8, 11-18.	0.3	3
2386	Identification of dehydrin genes Dhn1 and Zmdhn13 alleles in maize varieties and lines. Faktori Eksperimental Noi Evolucii Organizmiv, 0, 28, 42-47.	0.0	0
2387	Abiotic stress responses in plants. Nature Reviews Genetics, 2022, 23, 104-119.	7.7	710
2388	A Cold-Shock Protein from the South Pole-Dwelling Soil Bacterium Arthrobacter sp. Confers Cold Tolerance to Rice. Genes, 2021, 12, 1589.	1.0	4
2389	Saussurea involucrata (Snow Lotus) ICE1 and ICE2 Orthologues Involved in Regulating Cold Stress Tolerance in Transgenic Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 10850.	1.8	9
2391	Dehydrins and Soluble Sugars Involved in Cold Acclimation of Rosa wichurana and Rose Cultivar †Yesterday'. Horticulturae, 2021, 7, 379.	1.2	4
2392	Physiological and transcriptome analysis of Magnolia denudata leaf buds during long-term cold acclimation. BMC Plant Biology, 2021, 21, 460.	1.6	5
2393	Transcriptional analysis of the response of nectarine fruit to low-temperature stress in cold storage. Food Biotechnology, 2021, 35, 349-373.	0.6	1
2394	A novel LRRâ€RLK (CTLK) confers cold tolerance through regulation on the Câ€repeatâ€binding factor pathway, antioxidants, and proline accumulation. Plant Journal, 2021, 108, 1679-1689.	2.8	16
2395	Evaluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting Medicago truncatula Lines under Water Deficit Stress. Plants, 2021, 10, 2114.	1.6	7
2396	Identification and characterization of AnICE1 and AnCBFs involved in cold tolerance from Ammopiptanthus nanus. Plant Physiology and Biochemistry, 2021, 168, 70-82.	2.8	3
2397	Molecular Cloning of Eskimo1 Gene of Arabidopsis Reveals Novel Mechanism of Freezing Tolerance. , 2002, , 33-41.		0
2398	Molecular Markers and Abiotic Stresses. , 2002, , 203-237.		1
2399	Engineering Trehalose Biosynthesis Improves Stress Tolerance in Arabidopsis. , 2002, , 249-257.		0

ARTICLE IF CITATIONS Transgenic Coffee., 2002,,. 0 2401 Phase Changes in Arrhenius Plots on NMR Relaxation Times for Various Organs of Crop Plants Exposed to Temperature Stresses. Seibutsu Kankyo Chosetsu [Environment Control in Biology, 2004, 2402 0.2 42, 5-19. Molecular Bases of Plant Adaptation to Abiotic Stress and Approaches to Enhance Tolerance to 2403 1 Hostile Environments., 0, , . Cold-induced Antioxidant Enzymes Changes in Leucanthemum maximum'Silver Princess'. Hortscience: A 2404 Publication of the American Society for Hortcultural Science, 2005, 40, 546-548. 2405 Salinity Tolerance., 2006, , 121-175. 5 Improving Low-Temperature Tolerance in Plants., 2006, , 247-290. 2406 Cold-Stress Physiology and Management of Turfgrasses., 2007, , 499-532. 2408 0 Enhancing Turfgrass Nitrogen Use under Stresses. Books in Soils, Plants, and the Environment, 2007, , 2409 0.1 557-601. Cold-Stress Physiology and Management of Turfgrasses. Books in Soils, Plants, and the Environment, 2410 0.1 2 2007, , 473-505. Expression of <i>COR</i> gene homologues in different plants during cold acclimation. 2411 Biologija (Vilnius, Lithuania), 2008, 54, 33-35. Molecular genetic analysis of Arabidopsis thaliana cold sensitive mutant nfz24. Ecological Genetics, 2412 0 0.1 2008, 6, 20-26. Expressing the Tyrosine Phosphatase (CaTPP1) Gene from Capsicum annuum in Tobacco Enhances Cold and Drought Tolérances. Journal of Applied Biólogical Chemistry, 2008, 51, 50-56. Ecophysiological Changes in a Cold Tolerant Transgenic Tobacco Plant Containing a Zinc Finger 2414 0.0 0 Protein (PIFI) Gene. Korean Journal of Environmental Agriculture, 2008, 27, 389-394. Cold-induced response of buckwheat (Fagopyrum esculentum Moench) seedlings. Archives of 2415 0.2 Biological Sciences, 2009, 61, 3-4. Semiquantitative RT-PCR Analysis to Assess the Expression Levels of Wcor14 Transcripts in Winter-Type 2417 0.2 0 Wheat. Journal of Molecular Genetics, 2009, 1, 23-28. Influence of Cold Hardening on Chlorophyll and Carotenoid in Chlorella vulgaris. Journal of the 2418 0.1 Faculty of Agriculture, Kyushu University, 2009, 54, 195-200. Functional characterization of a CCCH type zinc-finger protein gene OsZF2 by ectopic overexpression 2419 0.1 0 of the gene in rice. Journal of Plant Biotechnology, 2009, 36, 23-29. Expression of <I>GMCHI</I> Gene, Isolated from Soybean, Enhances the Survival in Prokaryotes to Low 2420 0.1 Temperature Stress. Acta Agronomica Sinica (China), 2009, 35, 1156-1160.

#	Article	IF	CITATIONS
2422	Integration of Photoperiodic Timing and Vernalization in <i>Arabidopsis</i> ., 2009, , 107-133.		0
2423	Construction and analysis of suppression subtractive library of <1>Festuca arundinacea 1 to low temperature stress. Chinese Journal of Eco-Agriculture, 2009, 17, 1162-1167.	0.1	0
2424	Stress und Stressresistenz. , 2010, , 583-616.		0
2425	Stress und Stressresistenz. , 2010, , 583-616.		0
2426	ESTs and their Role in Functional Genomics. , 2010, , 104-119.		0
2427	Construction and Analysis of Binary Vectors for Co-Overexpression, Tissue- or Development-Specific Expression and Stress-Inducible Expression in Plant. Journal of Life Science, 2010, 20, 1314-1323.	0.2	0
2428	Expression of some water stress-induced genes in the seedlings of Arabidopsis thaliana grown under conditions of moderate water deficit. Biopolymers and Cell, 2011, 27, 59-65.	0.1	0
2429	Genetic Control of the Annual Growth Cycle in Woody Plants. , 2011, , 255-271.		0
2430	THE ROLE OF PHOSPHOLIPASE C IN SIGNAL TRANSDUCTION DURING DROUGHT AND COLD STRESSES IN WHEAT (Triticum aestivum L.). Egyptian Journal of Genetics and Cytology, 2011, 40, 253-262.	0.1	0
2431	Plant Abiotic Stress: Insights from the Genomics Era. , 0, , .		Ο
2432	Acclimation responses of Tamarix chinensis seedlings related to cold stress. Journal of Ecology and Environment, 2011, 34, 251-257.	1.6	5
2433	Proteomic analysis of cold stress responses in tobacco seedlings. African Journal of Biotechnology, 2011, 10, .	0.3	5
2434	Physiological and biochemical responses to low temperature stress in hybrid clones of Populus ussuriensis Kom. × P. deltoides Bartr. African Journal of Biotechnology, 2011, 10, .	0.3	2
2435	Genome-Wide Analysis of Putative ERF and DREB GENE Families in Indica Rice (O. sativa L. subsp. Indica). International Journal of Machine Learning and Computing, 2012, , 556-559.	0.8	2
2436	Seasonal alteration of sugar metabolism in strawberry (Fragaria × ananassa) plants during cold-acclimated and non-acclimated stages. African Journal of Biotechnology, 2012, 11, .	0.3	1
2437	Analysis of Putative Downstream Genes of Arabidopsis AtERF71/HRE2 Transcription Factor using a Microarray. Journal of Life Science, 2012, 22, 1359-1370.	0.2	3
2438	Abiotic Stress Signal Network with Expression QTLs for Cold-Responsive Genes in Common Wheat. , 2013, , 219-229.		0
2439	Isolation and expression characterization of CBF2 in <i>vitis amurensis</i> with stress. Agricultural Sciences, 2013, 04, 466-472.	0.2	Ο

#	Article	IF	CITATIONS
2440	Med16/SFR6 is Necessary but not Sufficient for COR Gene Ex-Pression of Cbf Pathway. Tropical Agricultural Research and Extension, 2013, 15, 1.	0.1	1
2441	Progress of microarray analysis for studying plant gene expression in response to abiotic stress. Hunan Nong Ye Da Xue Xue Bao = Journal of Hunan Agricultural University, 2013, 38, 156-161.	0.0	0
2442	Practical Omics Approaches for Drought Tolerance in Rice. , 2013, , 47-72.		0
2444	Overexpression of Ice Recrystallization Inhibition Protein (HvIRIP) from Barley Enhances Cold Tolerance in Transgenic rapeseed plants. Journal of Applied Biological Chemistry, 2015, 58, 325-332.	0.2	0
2445	Transcriptomic analysis of â€~Campbell Early' and â€~Muscat Bailey A' grapevine shoots exposed to freezi cold stress. Journal of Plant Biotechnology, 2016, 43, 204-212.	ng 0.1	0
2447	Evaluation of Thermal Insulation Properties of Covering Materials to Protect Peach Trunks against Freezing Injury. Protected Horticulture and Plant Factory, 2016, 25, 288-293.	0.4	1
2448	Expression, purification, and characterization of an intrinsically disordered Late Embryogenesis Abundant (LEA) protein from Artemia franciscana utilizing Escherichia coli and Nicotiana tabacum. FASEB Journal, 2017, 31, 914.3.	0.2	1
2449	Potentialities of Proteomics for Generating Abiotic Stress Tolerant Crop Species. , 2017, , 421-442.		0
2450	Strategies for Breeding Cereal Crops to Attain Sustainability with Major Emphasis on Rice. , 2017, , 443-459.		0
2453	Microbe-Mediated Abiotic Stress Alleviation: Molecular and Biochemical Basis. , 2019, , 263-281.		1
2454	Molecular and Developmental Biology: Pistil Abortion. Compendium of Plant Genomes, 2019, , 137-148.	0.3	0
2455	Relationship of Phenolic Metabolism to Growth in Plant and Cell Cultures Under Stress. Reference Series in Phytochemistry, 2019, , 1-32.	0.2	0
2456	Potassium fertilisation reduced late embryogenesis abundant <i>(LEA)</i> gene expression in Malaysian rice (MR220) under water stress condition. AIMS Agriculture and Food, 2019, 4, 376-385.	0.8	0
2457	Role of Histone Acetyltransferases in Plant Abiotic Stress. Energy, Environment, and Sustainability, 2019, , 103-112.	0.6	1
2459	Simultaneous responses of photosystem II and soluble proteins of rapeseed to cold acclimation. Cellular and Molecular Biology, 2019, 65, 37-49.	0.3	2
2460	Evaluation of cold response in Ilex paraguariensis. Journal of Plant Science and Phytopathology, 2019, 3, 009-012.	0.4	0
2463	Effects of Seeding Date on Dry Matter Yield and Nutritive Value of Three Italian Ryegrass Cultivars Harvested Before Heading Stage at Chuncheon, South Korea. Journal of the Korean Society of Grassland and Forage Science, 2019, 39, 178-184.	0.1	0
2468	Progress in physiological and genetic research concerning forest tree response to low temperature. Forest Research Papers, 2019, 80, 277-284.	0.2	0

ARTICLE IF CITATIONS Breeding Plants for Future Climates., 2020,, 753-795. 4 2469 Flower Crop Response to Biotic and Abiotic Stresses., 2020, , 477-491. 2470 Characterization of transcription factors for drought tolerance in maize., 2020, , 85-97. 0 2471 Genes underlying cold acclimation in the tea plant (<i>Camellia sinensis</i> (L.) Kuntze). 2472 0.4 Vavilovskii Zhurnal Genetiki I Selektsii, 2020, 23, 958-963. Rice Tolerance to Multiple Abiotic Stress: Genomics and Genetic Engineering., 2020, , 591-615. 2473 2 Different Cis-Regulatory Elements Control the Tissue-Specific Contribution of Plastid ï‰-3 Desaturases 2474 1.7 to Wounding and Hormone Responses. Frontiers in Plant Science, 2021, 12, 727292. Cold Tolerance during the Reproductive Phase in Chickpea (Cicer arietinum L.) Is Associated with 2475 Superior Cold Acclimation Ability Involving Antioxidants and Cryoprotective Solutes in Anthers and 2.2 8 Ovules. Antioxidants, 2021, 10, 1693. Comparative Transcriptomics for Pepper (Capsicum annuum L.) under Cold Stress and after 2476 1.3 Rewarming. Applied Sciences (Switzerland), 2021, 11, 10204. Relationship of Phenolic Metabolism to Growth in Plant and Cell Cultures Under Stress. Reference 2477 0.2 2 Series in Phytochemistry, 2021, , 837-868. Osmosensing and Signalling in Plants: Potential Role in Crop Improvement Under Climate Change., 2478 2021, , 11-46 Climate-Smart Agriculture: Assessment and Adaptation Strategies in Changing Climate., 2020, , 351-377. 2479 2 Molecular Mechanism of Plant Adaptation and Tolerance to Cold Stress., 2020, , 61-87. 2480 A Lipidomic Approach to Identify Cold-Induced Changes in Arabidopsis Membrane Lipid Composition. 2482 0.4 2 Methods in Molecular Biology, 2020, 2156, 187-202. Role of ionomics in plant abiotic stress tolerance., 2020, , 835-860. 2483 Improving Rice Tolerance to Low- and High-Temperature Stress Through Biotechnological Approaches. 2484 0 , 2020, , 525-547. Genotypic Variation in Calcium Uptake in Common Bean (Phaseolus vulgaris L.) under Chilling Stress. 2485 Türkiye Tarımsal AraÅŸtırmalar Dergisi, 2020, 7, 59-65. Transcriptional memory and response to adverse temperatures in plants. Journal of Zhejiang 2486 1.38 University: Science B, 2021, 22, 791-804. 2488 Two-Dimensional Electrophoresis. Stress Proteins., 2001, , 297-333.

	Сіт	ation Report	
#	Article	IF	CITATIONS
2489	Genetic improvement of crops for energy generation: comparison of different provision chains with respect to biomass and biofuel production. , 2007, , 307-334.		1
2490	Beyond osmolytes and transcription factors: drought tolerance in plants via protective proteins and aquaporins. Biologia Plantarum, 0, , .	1.9	1
2492	Transgenic Tomatoes for Abiotic Stress Tolerance and Fruit Traits: A Review of Progress and a Preview of Potential. , 2021, , 1-30.		1
2494	Peanut (Arachis hypogaea L.) Transgenic Plants for Abiotic Stress Tolerance. , 2021, , 139-173.		3
2495	Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell, 2000, 12, 2441-2454.	3.1	55
2496	Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology, 2001, 127, 910-7.	2.3	188
2497	Luc genetic screen illuminates stress-responsive gene regulation. Plant Cell, 2001, 13, 1969-72.	3.1	1
2498	Ferulic acid enhances chilling tolerance in tomato fruit by up-regulating the gene expression of CBF transcriptional pathway in MAPK3-dependent manner. Postharvest Biology and Technology, 2022, 185 111775.	, 2.9	11
2499	Physiological Responses and Proteomic Analysis on the Cold Stress Responses of Annual Pitaya (Hylocereus spp.) Branches. Journal of Chemistry, 2021, 2021, 1-12.	0.9	2
2500	Data-Independent Acquisition-Based Proteome and Phosphoproteome Profiling Reveals Early Protein Phosphorylation and Dephosphorylation Events in Arabidopsis Seedlings upon Cold Exposure. International Journal of Molecular Sciences, 2021, 22, 12856.	1.8	10
2501	Coronatine alleviates cold stress by improving growth and modulating antioxidative defense system in rice (Oryza sativa L.) seedlings. Plant Growth Regulation, 2022, 96, 283-291.	1.8	5
2502	Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. Plant Cell, 2022, 34, 889-909	3.1	31

2502	Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. Plant Cell, 2022, 34, 889-909.	3.1	31
2503	Gene Expression Profiles Suggest a Better Cold Acclimation of Polyploids in the Alpine Species Ranunculus kuepferi (Ranunculaceae). Genes, 2021, 12, 1818.	1.0	11
2504	HbSnRK2.6 Functions in ABA-Regulated Cold Stress Response by Promoting HbICE2 Transcriptional Activity in Hevea brasiliensis. International Journal of Molecular Sciences, 2021, 22, 12707.	1.8	4
2505	Overexpression of the VaERD15 gene increases cold tolerance in transgenic grapevine. Scientia Horticulturae, 2022, 293, 110728.	1.7	4
2506	Transcript Profiles Differentiate Cold Acclimation-Induced Processes in a Summer and Winter Biotype of Camelina. Plant Molecular Biology Reporter, 2022, 40, 359-375.	1.0	3
2507	Genotypeâ€dependent contribution of CBF transcription factors to longâ€ŧerm acclimation to high light and cool temperature. Plant, Cell and Environment, 2022, 45, 392-411.	2.8	7
2508	Different G6PDH isoforms show specific roles in acclimation to cold stress at various growth stages of barley (Hordeum vulgare) and Arabidopsis thaliana. Plant Physiology and Biochemistry, 2021, 169, 190-202.	2.8	8

#	Article	IF	CITATIONS
2509	Genetic Improvement of Yardlong Bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis (L.) Verdc.). , 2021, , 379-420.		1
2510	Ecological and biological features of Achillea millefolium, which grows in the Baikalov district. AIP Conference Proceedings, 2021, , .	0.3	0
2512	The CBL-interacting protein kinase CaCIPK13 positively regulates defence mechanisms against cold stress in pepper. Journal of Experimental Botany, 2022, 73, 1655-1667.	2.4	16
2513	Evaluation of expression changes, proteins interaction network, and microRNAs targeting catalase and superoxide dismutase genes under cold stress in rapeseed (<i>Brassica napus</i> L.). OCL - Oilseeds and Fats, Crops and Lipids, 2022, 29, 3.	0.6	4
2514	Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. Plant Cell, 2022, 34, 1226-1249.	3.1	46
2515	Analysis of Camelina sativa transcriptomes identified specific transcription factors and processes associated with freezing tolerance in a winter biotype. Industrial Crops and Products, 2022, 177, 114414.	2.5	5
2516	ICE-CBF-COR Signaling Cascade and Its Regulation in Plants Responding to Cold Stress. International Journal of Molecular Sciences, 2022, 23, 1549.	1.8	101
2517	Epigenetic regulation of thermomorphogenesis and heat stress tolerance. New Phytologist, 2022, 234, 1144-1160.	3.5	54
2518	Different Phenylalanine Pathway Responses to Cold Stress Based on Metabolomics and Transcriptomics in Tartary Buckwheat Landraces. Journal of Agricultural and Food Chemistry, 2022, 70, 687-698.	2.4	11
2519	Biophysical properties of glycerolipids and their impact on membrane architecture and biology. Advances in Botanical Research, 2022, 101, 1-57.	0.5	0
2520	Large-scale comparative transcriptomic analysis of temperature-responsive genes in Arabidopsis thaliana. Plant Molecular Biology, 2022, 110, 425-443.	2.0	4
2521	The decreased PG content of pgp1 inhibits PSI photochemistry and limits reaction center and light-harvesting polypeptide accumulation in response to cold acclimation. Planta, 2022, 255, 36.	1.6	2
2522	Cold Response Transcriptome Analysis of the Alternative Splicing Events Induced by the Cold Stress in D. catenatum. International Journal of Molecular Sciences, 2022, 23, 981.	1.8	8
2523	Functional Identification of ICE Transcription Factors in Rubber Tree. Forests, 2022, 13, 52.	0.9	2
2524	Comparative carbohydrate metabolism in the shoots of a cold-hardy and a cold-sensitive peach (Prunus persica) cultivar during cold acclimation and deacclimation. Horticulture Environment and Biotechnology, 2022, 63, 39-53.	0.7	7
2525	Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice. Frontiers in Plant Science, 2021, 12, 803603.	1.7	9
2526	Overexpression mutants reveal a role for a chloroplast MPD protein in regulation of reactive oxygen species during chilling in Arabidopsis. Journal of Experimental Botany, 2022, 73, 2666-2681.	2.4	3
2527	Functional validation of miRNA target genes in abiotic stress in Hippophae salicifolia. Bioinformation, 2022, 18, 61-65.	0.2	0

#	Δρτιςι ε	IF	CITATIONS
2528	Short-term suboptimal low temperature has short- and long-term effects on melon seedlings. Scientia Horticulturae, 2022, 297, 110967.	1.7	5
2529	Genome-wide association study identifies variants of <i>GhSAD1</i> conferring cold tolerance in cotton. Journal of Experimental Botany, 2022, 73, 2222-2237.	2.4	9
2532	Low Temperature Stress and Plant-Water Relationship: A Review. , 2022, , 107-197.		2
2533	Designer plants for climate-resilient phytoremediation. , 2022, , 227-274.		0
2534	Low-Temperature Stress and Nitrogen Metabolism in Plants: A Review. , 2022, , 299-407.		3
2535	Lipid Metabolism in Plants Under Low-Temperature Stress: A Review. , 2022, , 409-516.		8
2536	Genome-Wide Identification of Lea Gene Family and Cold Response Mechanism of Bclea4-7 and Bclea4-18 in Non-Heading Chinese Cabbage [Brassica Campestris (Syn. Brassica Rapa) Ssp. Chinensis]. SSRN Electronic Journal, 0, , .	0.4	0
2537	Plant responses toward climatic stressors individually and in combination with soil heavy metals. , 2022, , 25-76.		0
2540	Grafting Watermelon Onto Pumpkin Increases Chilling Tolerance by Up Regulating Arginine Decarboxylase to Increase Putrescine Biosynthesis. Frontiers in Plant Science, 2021, 12, 812396.	1.7	13
2541	Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science, 2022, 27, 922-935.	4.3	115
2542	VviRafS5 Is a Raffinose Synthase Involved in Cold Acclimation in Grapevine Woody Tissues. Frontiers in Plant Science, 2021, 12, 754537.	1.7	7
2544	Roles of E3 Ubiquitin Ligases in Plant Responses to Abiotic Stresses. International Journal of Molecular Sciences, 2022, 23, 2308.	1.8	18
2545	Genome-Wide Identification and Analysis of bZIP Gene Family and Resistance of TaABI5 (TabZIP96) under Freezing Stress in Wheat (Triticum aestivum). International Journal of Molecular Sciences, 2022, 23, 2351.	1.8	28
2546	Distinct Cold Acclimation of Productivity Traits in Arabidopsis thaliana Ecotypes. International Journal of Molecular Sciences, 2022, 23, 2129.	1.8	2
2547	Metabolic signatures of Arabidopsis thaliana abiotic stress responses elucidate patterns in stress priming, acclimation, and recovery. Stress Biology, 2022, 2, 1.	1.5	12
2548	Multi-Approach Analysis Reveals Pathways of Cold Tolerance Divergence in Camellia japonica. Frontiers in Plant Science, 2022, 13, 811791.	1.7	4
2549	Sugarcane Transcriptomics in Response to Abiotic and Biotic Stresses: A Review. Sugar Tech, 2022, 24, 1295-1318.	0.9	5
2550	CabHLH79 Acts Upstream of CaNAC035 to Regulate Cold Stress in Pepper. International Journal of Molecular Sciences, 2022, 23, 2537.	1.8	8

	CHANON	REPORT	
#	ARTICLE Cellular Protein Trafficking: A New Player in Low-Temperature Response Pathway, Plants, 2022, 11, 933	IF	CITATIONS
2552	An Acer palmatum R2R3-MYB Gene, ApMYB77, Confers Freezing and Drought Tolerance in Arabidopsis thaliana. Journal of Plant Growth Regulation, 2023, 42, 1017-1030.	2.8	3
2553	Effect of leaf cold damage after chilling temperature treatment on growth and reproductive parameters of chilli pepper plants. OvoÅi Rossii, 2022, , 5-11.	0.1	1
2554	Relationship between Freezing Tolerance and Leaf Growth during Acclimation in Winter Wheat. Agronomy, 2022, 12, 859.	1.3	11
2555	Mechanistic Insights Into Trehalose-Mediated Cold Stress Tolerance in Rapeseed (Brassica napus L.) Seedlings. Frontiers in Plant Science, 2022, 13, 857980.	1.7	24
2556	The network centered on ICEs play roles in plant cold tolerance, growth and development. Planta, 2022, 255, 81.	1.6	7
2557	The sweet potato transcription factor lbbHLH33 enhances chilling tolerance in transgenic tobacco. Czech Journal of Genetics and Plant Breeding, 2022, 58, 210-222.	0.4	7
2558	Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development. Scientific Reports, 2022, 12, 5793.	1.6	3
2559	Proteomic analysis reveals the molecular mechanism underlying the cold acclimation and freezing tolerance of wheat (Triticum aestivum L.). Plant Science, 2022, 318, 111242.	1.7	11
2560	Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. Plant Physiology and Biochemistry, 2022, 179, 10-24.	2.8	78
2561	Low temperature tolerance is depressed in wild-type and abscisic acid-deficient mutant barley grown in Cd-contaminated soil. Journal of Hazardous Materials, 2022, 430, 128489.	6.5	15
2562	Integrated transcriptome, small RNA and degradome analysis provide insights into the transcriptional regulatory networks underlying cold acclimation in jojoba. Scientia Horticulturae, 2022, 299, 111050.	1.7	3
2563	Enhanced brassinosteroid signaling via the overexpression of SlBRI1 positively regulates the chilling stress tolerance of tomato. Plant Science, 2022, 320, 111281.	1.7	18
2564	Research progress on plant noncoding RNAs in response to low-temperature stress. Plant Signaling and Behavior, 2022, 17, 0.	1.2	22
2565	Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves. Plant Signaling and Behavior, 2022, 17, 2013638.	1.2	30
2566	Cold Acclimation in Brachypodium Is Accompanied by Changes in Above-Ground Bacterial and Fungal Communities. Plants, 2021, 10, 2824.	1.6	7
2567	Differential Functions of Pepper Stress-Associated Proteins in Response to Abiotic Stresses. Frontiers in Plant Science, 2021, 12, 756068.	1.7	8
2568	Muscles in Winter: The Epigenetics of Metabolic Arrest. Epigenomes, 2021, 5, 28.	0.8	5

щ		15	CITATIONS
#	ARTICLE	IF	CITATIONS
2569	Horticulturae, 2021, 7, 572.	1.2	9
2570	Functional Characterization of Cotton C-Repeat Binding Factor Genes Reveal Their Potential Role in Cold Stress Tolerance. Frontiers in Plant Science, 2021, 12, 766130.	1.7	10
2574	Molecular Responses of Plant Due to Stress Induced by Salt. , 2021, 11, .		0
2575	Silicon-mediated cold stress tolerance in plants. , 2022, , 161-180.		3
2576	Effects of Light Intensity and Temperature on the Photosynthesis Characteristics and Yield of Lettuce. Horticulturae, 2022, 8, 178.	1.2	23
2577	Heat shockâ€induced cold acclimation in cucumber through <scp><i>CsHSFA1d</i></scp> â€activated <scp>JA</scp> biosynthesis and signaling. Plant Journal, 2022, 111, 85-102.	2.8	22
2579	The interaction of CsWRKY4 and CsOCP3 with CsICE1 regulates CsCBF1/3 and mediates stress response in tea plant (Camellia sinensis). Environmental and Experimental Botany, 2022, 199, 104892.	2.0	7
2580	Surviving and thriving: How plants perceive and respond to temperature stress. Developmental Cell, 2022, 57, 947-958.	3.1	104
2698	Expression analysis of transcription factors in sugarcane during cold stress. Brazilian Journal of Biology, 2021, 83, e242603.	0.4	3
2699	NAC-mediated membrane lipid remodeling negatively regulates fruit cold tolerance. Horticulture Research, 2022, 9, uhac039.	2.9	15
2701	Comparative Transcriptome Analysis Revealed the Freezing Tolerance Signaling Events in Winter Rapeseed (Brassica rapa L.). Frontiers in Genetics, 2022, 13, 871825.	1.1	4
2702	Effect of cold stress on water relations, photosynthetic pigments and antioxidant enzymes in olive seedlings. European Journal of Horticultural Science, 2022, 87, .	0.3	0
2703	Survival strategies in two high altitude Sorghum species from western Himalayas. Acta Physiologiae Plantarum, 2022, 44, 1.	1.0	6
2704	Determination of Freezing Tolerance in Twenty Iranian Pomegranate Cultivars and Its Relationship to Geographic and Climatic Distribution and Some Tree Characteristics. Erwerbs-Obstbau, 2023, 65, 819-827.	0.5	2
2705	Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. Frontiers in Plant Science, 2022, 13, .	1.7	13
2706	The transcription factor <i>bZIP68</i> negatively regulates cold tolerance in maize. Plant Cell, 2022, 34, 2833-2851.	3.1	42
2707	Analysis of the Expression and Function of Key Genes in Pepper Under Low-Temperature Stress. Frontiers in Plant Science, 2022, 13, .	1.7	2
2708	Inoculation with Lysinibacillus fusiformis Strain YJ4 and Lysinibacillus sphaericus Strain YJ5 Alleviates the Effects of Cold Stress in Maize Plants. Gesunde Pflanzen, 2023, 75, 77-95.	1.7	21

#	Article	IF	Citations
2709	Genome-wide identification of <i>CBF</i> genes and their responses to cold acclimation in <i>Taraxacum kok-saghyz</i> . PeerJ, 2022, 10, e13429.	0.9	8
2710	Genetic Mechanisms of Cold Signaling in Wheat (Triticum aestivum L.). Life, 2022, 12, 700.	1.1	2
2711	Genome-wide Identification and Characterization of the Strawberry (Fragaria Vesca) FvAP2/ERF Gene Family in Abiotic Stress. Plant Molecular Biology Reporter, 2022, 40, 646-660.	1.0	3
2712	Integrative Comparative Assessment of Cold Acclimation in Evergreen and Deciduous Iris Species. Antioxidants, 2022, 11, 977.	2.2	1
2713	Mechanism of <i>CsGPA1</i> in regulating cold tolerance of cucumber. Horticulture Research, 2022, 9,	2.9	6
2714	Integrative analysis of transcriptome and metabolome provides insights into the underlying mechanism of cold stress response and recovery in two tobacco cultivars. Environmental and Experimental Botany, 2022, 200, 104920.	2.0	10
2715	Expression Level Dominance and Homeolog Expression Bias Upon Cold Stress in the F1 Hybrid Between the Invasive Sphagneticola trilobata and the Native S. calendulacea in South China, and Implications for Its Invasiveness. Frontiers in Genetics, 2022, 13, .	1.1	1
2716	Overexpression of the intertidal seagrass J protein ZjDjB1 enhances tolerance to chilling injury. Plant Biotechnology Reports, 2022, 16, 419-435.	0.9	4
2717	Dehydration-Responsive Element Binding Protein 1C, 1E, and 1G Promote Stress Tolerance to Chilling, Heat, Drought, and Salt in Rice. Frontiers in Plant Science, 2022, 13, .	1.7	10
2718	Antioxidant metabolic system and comparative proteomics analysis in winter turnip rape (Brassica) Tj ETQq1 1 0	.784314 rş 0.9	gBŢ /Overlac
2719	Protein Metabolism in Plants to Survive against Abiotic Stress. , 0, , .		2
2720	Genome-wide identification and expression analysis of <i>DREB</i> genes in alfalfa (<i>Medicago) Tj ETQq1 1 0.</i>	784314 rg 1.2	BT ₆ /Overlock
2721	Transcriptome analysis of the winter wheat Dn1 in response to cold stress. BMC Plant Biology, 2022, 22, .	1.6	18
2722	Effects of Cold Temperature and Acclimation on Cold Tolerance and Cannabinoid Profiles of Cannabis sativa L. (Hemp). Horticulturae, 2022, 8, 531.	1.2	7
2723	Light Quality Modulates Plant Cold Response and Freezing Tolerance. Frontiers in Plant Science, 0, 13, .	1.7	6
2724	From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity. Plants, 2022, 11, 1654.	1.6	1
2726	Identifying conserved genes involved in crop tolerance to cold stress. Functional Plant Biology, 2022, 49, 861-873.	1.1	4
2727	Comparative Metabolomics Analysis of Dormancy Buds During Cold Accumulation between Cold-Sensitive Grapevine (Vitis Vinifera) and Cold-Hardy Grapevine (Vitis Amurensis). SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
2728	CPK28-NLP7 module integrates cold-induced Ca ²⁺ signal and transcriptional reprogramming in <i>Arabidopsis</i> . Science Advances, 2022, 8, .	4.7	35
2729	Repeated colonization of alpine habitats by <i>Arabidopsis arenosa</i> viewed through freezing resistance and ice management strategies. Plant Biology, 2022, 24, 939-949.	1.8	5
2730	The CBLâ€CIPK network is involved in the physiological crosstalk between plant growth and stress adaptation. Plant, Cell and Environment, 2023, 46, 3012-3022.	2.8	15
2731	Salicylic acid-mediated diacylglycerol/triacylglycerol conversion affects the freezing tolerance of Arabidopsis. Plant Growth Regulation, 2022, 98, 249-258.	1.8	2
2732	Sulfenylation of ENOLASE2 facilitates H2O2-conferred freezing tolerance in Arabidopsis. Developmental Cell, 2022, 57, 1883-1898.e5.	3.1	18
2733	Modulation of plant development and chilling stress responses by alternative splicing events under control of the spliceosome protein SmEb in <i>Arabidopsis</i> . Plant, Cell and Environment, 2022, 45, 2762-2779.	2.8	4
2734	Specific <scp>CBF</scp> transcription factors and coldâ€responsive genes fineâ€tune the early triggering response after acquisition of cold priming and memory. Physiologia Plantarum, 2022, 174, .	2.6	11
2735	Cloning and function analysis of a Saussurea involucrata LEA4 gene. Frontiers in Plant Science, 0, 13, .	1.7	2
2736	What can coldâ€induced transcriptomes of Arctic Brassicaceae tell us about the evolution of cold tolerance?. Molecular Ecology, 2022, 31, 4271-4285.	2.0	5
2737	Computational analysis of potential candidate genes involved in the cold stress response of ten Rosaceae members. BMC Genomics, 2022, 23, .	1.2	1
2739	Chilling-induced phosphorylation of IPA1 by OsSAPK6 activates chilling tolerance responses in rice. Cell Discovery, 2022, 8, .	3.1	16
2740	Cold acclimation diversity in Arabidopsis thaliana: CRISPR/Cas9 as a tool to fine analysis of Tandem Gene Arrays, application to CBF genes. Development Genes and Evolution, 2022, 232, 147-154.	0.4	3
2741	Transcriptome-based gene regulatory network analyses of differential cold tolerance of two tobacco cultivars. BMC Plant Biology, 2022, 22, .	1.6	8
2742	Locally adaptive temperature response of vegetative growth in Arabidopsis thaliana. ELife, 0, 11, .	2.8	10
2743	A De Novo Transcriptome Analysis Identifies Cold-Responsive Genes in the Seeds of Taxillus chinensis (DC.) Danser. BioMed Research International, 2022, 2022, 1-22.	0.9	2
2744	Identification of Chilling-Responsive Genes in Litchi chinensis by Transcriptomic Analysis Underlying Phytohormones and Antioxidant Systems. International Journal of Molecular Sciences, 2022, 23, 8424.	1.8	0
2745	Coâ€expression networks of deacclimationâ€impaired transcription factor mutants identified complex regulation of the cold stress release response. Physiologia Plantarum, 2022, 174, .	2.6	3
2746	Temperature modulation of <scp>CAMTA3</scp> gene induction activity is mediated through the <scp>DNA</scp> binding domain. Plant Journal, 2022, 112, 235-248.	2.8	8

#	Article	IF	CITATIONS
2747	Overexpression of PgCBF3 and PgCBF7 Transcription Factors from Pomegranate Enhances Freezing Tolerance in Arabidopsis under the Promoter Activity Positively Regulated by PgICE1. International Journal of Molecular Sciences, 2022, 23, 9439.	1.8	4
2748	Physiological, Transcriptomic and Metabolomic Analyses of Overwintering Cryptomeria fortunei Needles. Forests, 2022, 13, 1249.	0.9	1
2749	Reactivation of the Photosynthetic Apparatus of Resurrection Plant Haberlea rhodopensis during the Early Phase of Recovery from Drought- and Freezing-Induced Desiccation. Plants, 2022, 11, 2185.	1.6	8
2750	Cold adaptation strategies in plants—An emerging role of epigenetics and antifreeze proteins to engineer cold resilient plants. Frontiers in Genetics, 0, 13, .	1.1	16
2751	The Application of Auxin-like Compounds Promotes Cold Acclimation in the Oilseed Rape Plant. Life, 2022, 12, 1283.	1.1	6
2752	Recent insights into cell responses to cold stress in plants: Signaling, defence, and potential functions of phosphatidic acid. Environmental and Experimental Botany, 2022, 203, 105068.	2.0	11
2753	IsoSeq and RNA-Seq analyses uncover the molecular response of Dalbergia odorifera T. Chen to low temperature. Gene, 2022, 847, 146844.	1.0	0
2754	SINPR1 modulates chilling stress resistance in tomato plant by alleviating oxidative damage and affecting the synthesis of ferulic acid. Scientia Horticulturae, 2023, 307, 111486.	1.7	7
2755	Omic analysis of anthocyanin synthesis in wine grape leaves under low-temperature. Scientia Horticulturae, 2023, 307, 111483.	1.7	16
2756	Detection and validation of. Functional Plant Biology, 2022, 49, 1043-1054.	1.1	2
2756 2757	Detection and validation of. Functional Plant Biology, 2022, 49, 1043-1054. Crosstalk of Putrescine Synthetic Pathway with Abscisic Acid Signaling Pathway in Cold Tolerance of Potato. SSRN Electronic Journal, 0, , .	1.1 0.4	2
2756 2757 2758	Detection and validation of. Functional Plant Biology, 2022, 49, 1043-1054. Crossstalk of Putrescine Synthetic Pathway with Abscisic Acid Signaling Pathway in Cold Tolerance of Potato. SSRN Electronic Journal, 0, , . Gibberellic Acid and Indole Acetic Acid Improves Salt Tolerance in Transgenic Tomato Plants Overexpressing LeNHX4 Antiporter. Gesunde Pflanzen, 2023, 75, 687-693.	1.1 0.4 1.7	2 0 4
2756 2757 2758 2759	Detection and validation of. Functional Plant Biology, 2022, 49, 1043-1054. Crosstalk of Putrescine Synthetic Pathway with Abscisic Acid Signaling Pathway in Cold Tolerance of Potato. SSRN Electronic Journal, 0, , . Gibberellic Acid and Indole Acetic Acid Improves Salt Tolerance in Transgenic Tomato Plants Overexpressing LeNHX4 Antiporter. Gesunde Pflanzen, 2023, 75, 687-693. Transcriptomic Analysis Reveals the Correlation between End-of-Day Far Red Light and Chilling Stress in Setaria viridis. Genes, 2022, 13, 1565.	1.1 0.4 1.7 1.0	2 0 4 0
2756 2757 2758 2759 2760	Detection and validation of. Functional Plant Biology, 2022, 49, 1043-1054. Crosstalk of Putrescine Synthetic Pathway with Abscisic Acid Signaling Pathway in Cold Tolerance of Potato. SSRN Electronic Journal, 0, , . Gibberellic Acid and Indole Acetic Acid Improves Salt Tolerance in Transgenic Tomato Plants Overexpressing LeNHX4 Antiporter. Gesunde Pflanzen, 2023, 75, 687-693. Transcriptomic Analysis Reveals the Correlation between End-of-Day Far Red Light and Chilling Stress in Setaria viridis. Genes, 2022, 13, 1565. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. Journal of Integrative Plant Biology, 2022, 64, 2252-2274.	1.1 0.4 1.7 1.0 4.1	2 0 4 0
2755 2757 2758 2759 2760	Detection and validation of. Functional Plant Biology, 2022, 49, 1043-1054. Crossstalk of Putrescine Synthetic Pathway with Abscisic Acid Signaling Pathway in Cold Tolerance of Potato. SSRN Electronic Journal, 0, , . Gibberellic Acid and Indole Acetic Acid Improves Salt Tolerance in Transgenic Tomato Plants Overexpressing LeNHX4 Antiporter. Gesunde Pflanzen, 2023, 75, 687-693. Transcriptomic Analysis Reveals the Correlation between End-of-Day Far Red Light and Chilling Stress in Setaria viridis. Genes, 2022, 13, 1565. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. Journal of Integrative Plant Biology, 2022, 64, 2252-2274. Physiological genetic variation in tomato fruit chilling tolerance during postharvest storage. Frontiers in Plant Science, 0, 13, .	 1.1 0.4 1.7 1.0 4.1 1.7 	2 0 4 0 16
2755 2757 2758 2759 2760 2761	Detection and validation of. Functional Plant Biology, 2022, 49, 1043-1054. Crosstalk of Putrescine Synthetic Pathway with Abscisic Acid Signaling Pathway in Cold Tolerance of Potato. SSRN Electronic Journal, 0, , . Gibberellic Acid and Indole Acetic Acid Improves Salt Tolerance in Transgenic Tomato Plants Overexpressing LeNHX4 Antiporter. Gesunde Pflanzen, 2023, 75, 687-693. Transcriptomic Analysis Reveals the Correlation between End-of-Day Far Red Light and Chilling Stress in Setaria viridis. Genes, 2022, 13, 1565. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. Journal of Integrative Plant Biology, 2022, 64, 2252-2274. Physiological genetic variation in tomato fruit chilling tolerance during postharvest storage. Frontiers in Plant Science, 0, 13, . Time-course RNA-seq analysis provides an improved understanding of genetic regulation in response to cold stress from white clover (<1>Trifolium repens Time-course RNA-seq analysis provides an improved understanding of genetic regulation in response to cold stress from white clover (<1>Trifolium repens	 1.1 0.4 1.7 1.0 4.1 1.7 0.5 	2 0 4 0 16 3
2755 2757 2758 2759 2760 2761 2762	Detection and validation of. Functional Plant Biology, 2022, 49, 1043-1054. Crosstalk of Putrescine Synthetic Pathway with Abscisic Acid Signaling Pathway in Cold Tolerance of Potato. SSRN Electronic Journal, 0, , . Gibberellic Acid and Indole Acetic Acid Improves Salt Tolerance in Transgenic Tomato Plants Overexpressing LeNHX4 Antiporter. Gesunde Pflanzen, 2023, 75, 687-693. Transcriptomic Analysis Reveals the Correlation between End-of-Day Far Red Light and Chilling Stress in Setaria viridis. Genes, 2022, 13, 1565. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. Journal of Integrative Plant Biology, 2022, 64, 2252-2274. Physiological genetic variation in tomato fruit chilling tolerance during postharvest storage. Frontiers in Plant Science, 0, 13, . Time-course RNA-seq analysis provides an Improved understanding of genetic regulation in response to cold stress from white clover (<1) Triffolium repens	 1.1 0.4 1.7 1.0 4.1 1.7 0.5 1.8 	2 0 4 0 16 3 6 2

#	Article	IF	CITATIONS
2765	Transcriptome Analysis of the Responses of Rice Leaves to Chilling and Subsequent Recovery. International Journal of Molecular Sciences, 2022, 23, 10739.	1.8	3
2766	Innovations and stepwise evolution of CBFs/DREB1s and their regulatory networks in angiosperms. Journal of Integrative Plant Biology, 2022, 64, 2111-2125.	4.1	12
2767	Techniques against Distinct Abiotic Stress of Rice. , 0, , .		0
2768	Genome-Wide Identification and Expression Analysis of the Zinc Finger Protein Gene Subfamilies under Drought Stress in Triticum aestivum. Plants, 2022, 11, 2511.	1.6	5
2769	Climate Change and Abiotic Stresses in Plants. , 0, , .		0
2770	Crosstalk of Putrescine Synthetic Pathway with Abscisic Acid Signaling Pathway in Cold Tolerance of Potato. Environmental and Experimental Botany, 2022, , 105085.	2.0	2
2772	Freeze dehydration vs. supercooling of mesophyll cells: Impact of cell wall, cellular and tissue traits on the extent of water displacement. Physiologia Plantarum, 2022, 174, .	2.6	9
2773	Transcriptomic and proteomic mechanisms underlying cold tolerance in plants. Biologia Plantarum, 0, 66, 240-254.	1.9	2
2774	Bolstered plant tolerance to low temperatures by overexpressing NAC transcription factors: identification of critical variables by meta-analysis. Planta, 2022, 256, .	1.6	2
2775	Epigenetics and the Extreme Stress Response. , 2022, , 177-213.		Ο
2776	Transgenics and Crop Improvement. , 2022, , 131-347.		0
2777	An Insight into Animal Glutamate Receptors Homolog of Arabidopsis thaliana and Their Potential Applications—A Review. Plants, 2022, 11, 2580.	1.6	5
2779	<scp>SEC1 3H39</scp> module fineâ€ŧunes cold tolerance by mediating its target <scp>mRNA</scp> degradation in tomato. New Phytologist, 2023, 237, 870-884.	3.5	5
2780	Integrated Transcriptome and Metabolome Analysis of Color Change and Low-Temperature Response during Flowering of Prunus mume. International Journal of Molecular Sciences, 2022, 23, 12831.	1.8	3
2781	The Interconnected Relationship between Auxin Concentration Gradient Changes in Chinese Fir Radial Stems and Dynamic Cambial Activity. Forests, 2022, 13, 1698.	0.9	2
2782	Maintenance of abiotic stress memory in plants: Lessons learned from heat acclimation. Plant Cell, 2023, 35, 187-200.	3.1	20
2783	Wood Vinegar Impact on the Growth and Low-Temperature Tolerance of Rapeseed Seedlings. Agronomy, 2022, 12, 2453.	1.3	2
2784	An overview of cold stress responses in Eucalyptus globulus. Trees - Structure and Function, 0, , .	0.9	0

#	Article	IF	CITATIONS	
2785	Transcriptomic Responses to Chilling Reveal Potential Chilling Tolerance Mechanisms in Cucumber. International Journal of Molecular Sciences, 2022, 23, 12834.	1.8	3	
2786	Transcriptome Analysis of Apricot Kernel Pistils Reveals the Mechanisms Underlying ROS-Mediated Freezing Resistance. Forests, 2022, 13, 1655.	0.9	3	
2787	Sprayed biodegradable liquid film improved the freezing tolerance of cv. Cabernet Sauvignon by up-regulating soluble protein and carbohydrate levels and alleviating oxidative damage. Frontiers in Plant Science, 0, 13, .	1.7	5	
2788	Overexpression of a Malus baccata CBF transcription factor gene, MbCBF1, Increases cold and salinity tolerance in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2022, 192, 230-242.	2.8	21	
2789	The Arabidopsis thaliana trehalose-6-phosphate phosphatase gene AtTPPI improve chilling tolerance through accumulating soluble sugar and JA. Environmental and Experimental Botany, 2023, 205, 105117.	2.0	6	
2790	Plasma membrane proteomic changes of <i>Arabidopsis</i> <scp>DRP1E</scp> during cold acclimation in association with the enhancement of freezing tolerance. Physiologia Plantarum, 2022, 174, .	2.6	3	
2791	Plant responses to high temperature and drought: A bibliometrics analysis. Frontiers in Plant Science, 0, 13, .	1.7	12	
2792	MdbHLH4 negatively regulates apple cold tolerance by inhibiting <i>MdCBF1/3</i> expression and promoting <i>MdCAX3L-2</i> expression. Plant Physiology, 2023, 191, 789-806.	2.3	13	
2793	Identification of key gene networks related to the freezing resistance of apricot kernel pistils by integrating hormone phenotypes and transcriptome profiles. BMC Plant Biology, 2022, 22, .	1.6	1	
2794	Molecular breeding for the development of drought stress tolerance in soybean. , 2023, , 311-323.		2	
2795	QTL analysis for low temperature tolerance of wild potato species Solanum commersonii in natural field trials. Scientia Horticulturae, 2023, 310, 111689.	1.7	4	
2796	Fine-scale mapping of daily minimum temperature in a cropland with complex terrains through the combination of a cold flow accumulation model with inversion strength. Agricultural and Forest Meteorology, 2023, 329, 109247.	1.9	0	
2797	Exocyst subunit VviExo70B is degraded by ubiquitin ligase VviPUB19 and they regulate drought and salt tolerance in grapevine. Environmental and Experimental Botany, 2023, 206, 105175.	2.0	4	
2798	Freeze-thaw-induced aggregation of bovine gamma globulin was efficiently inhibited by an intrinsically disordered plant protein dehydrin. Food Hydrocolloids for Health, 2023, 3, 100108.	1.6	0	
2799	Does phenotyping of Hypericum secondary metabolism reveal a tolerance to biotic/abiotic stressors?. Frontiers in Plant Science, 0, 13, .	1.7	2	
2800	<i>>FER</i> and <i>LecRK</i> show haplotype-dependent cold-responsiveness and mediate freezing tolerance in <i>Lotus japonicus</i> . Plant Physiology, 2023, 191, 1138-1152.	2.3	3	
2801	Identification of Key Regulatory Factors of Molecular Marker TGS377 on Chromosome 1 and Its Response to Cold Stress in Tomato. Agronomy, 2022, 12, 2985.	1.3	0	
2802	Transcriptomics Profiling of Acer pseudosieboldianum Molecular Mechanism against Freezing Stress. International Journal of Molecular Sciences, 2022, 23, 14676.	1.8	1	
		CITATION RE	PORT	
------	---	------------------	------------	-------------
#	Article		IF	CITATIONS
2803	Protective Strategies of Haberlea rhodopensis for Acquisition of Freezing Tolerance: Interaction between Dehydration and Low Temperature. International Journal of Molecular Sciences, 2022, 23 15050.	3,	1.8	3
2805	Jasmonate Positively Regulates Cold Tolerance by Promoting ABA Biosynthesis in Tomato. Plants, 12, 60.	2023,	1.6	11
2806	Mechanisms of coldâ€induced immunity in plants. Physiologia Plantarum, 2023, 175, .		2.6	4
2807	Overexpression of CfICE1 from Cryptomeria fortunei Enhances Cold, Drought and Salt Stress in Poplar. International Journal of Molecular Sciences, 2022, 23, 15214.		1.8	0
2808	Temporal cell wall changes during cold acclimation and deacclimation and their potential involvement in freezing tolerance and growth. Physiologia Plantarum, 2023, 175, .		2.6	9
2811	Isolation and characterization of wheat ice recrystallisation inhibition gene promoter involved in low temperature and methyl jasmonateÂresponses. Physiology and Molecular Biology of Plants, 2 28, 1969-1979.	022,	1.4	1
2812	Foxtail millet SiCDPK7 gene enhances tolerance to extreme temperature stress in transgenic plan Environmental and Experimental Botany, 2023, 207, 105197.	ts.	2.0	2
2813	The Effect of White Light Spectrum Modifications by Excess of Blue Light on the Frost Tolerance, and Hormone Composition of Barley in the Early Pre-Hardening Phase. Plants, 2023, 12, 40.	Lipid-	1.6	3
2814	Transcriptome and Expression Analysis of Genes Related to Regulatory Mechanisms in Holly (Ilex)	Tj ETQq0 0 0 rgl	3T./Overlo	ck 10 Tf 50
2816	Phytochrome and Hormone Signaling Crosstalk in Response to Abiotic Stresses in Plants. , 2023, 145-165.			1
2817	Global variation in nonstructural carbohydrate stores in response to climate. Global Change Biology, 2023, 29, 1854-1869.		4.2	17
2818	Natural Physiological Changes on Overwintering and Spring Recovery of Needles of Pinus densiflo Siebold & Zucc Forests, 2023, 14, 168.	ra	0.9	1
2819	Transcription Factor ERF194 Modulates the Stress-Related Physiology to Enhance Drought Tolera of Poplar. International Journal of Molecular Sciences, 2023, 24, 788.	nce	1.8	6
2820	Cold priming improves chilling resistance in wheat seedlings: Changing of photosystem II imprints during recovery from priming. Environmental and Experimental Botany, 2023, 207, 105220.		2.0	3
2821	Transcriptomic and physiological analysis reveals crucial biological pathways associated with low-temperature stress in Tunisian soft-seed pomegranate (<i>Punica granatum</i> L.). Journal of Plant Interactions, 2023, 18, .	:	1.0	0
2822	Applications of Molecular Markers for Developing Abiotic-Stress-Resilient Oilseed Crops. Life, 202 88.	3, 13,	1.1	8

2823	Salicylic Acid Improves the Constitutive Freezing Tolerance of Potato as Revealed by Transcriptomics and Metabolomics Analyses. International Journal of Molecular Sciences, 2023, 24, 609.	1.8	3
2824	Genome-wide identification and expression reveal the involvement of the FCS-like zinc finger (FLZ) gene family in <i>Gossypium hirsutum</i> at low temperature. PeerJ, 0, 11, e14690.	0.9	1

#	Article	IF	CITATIONS
2825	Integration of chromatin accessibility and gene expression reveals new regulators of cold hardening to enhance freezing tolerance in <i>Prunus mume</i> . Journal of Experimental Botany, 2023, 74, 2173-2187.	2.4	4
2826	The non-coding RNA SVALKA locus produces a cis-natural antisense transcript that negatively regulates the expression of CBF1 and biomass production at normal temperatures. Plant Communications, 2023, 4, 100551.	3.6	4
2827	Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. Advances in Protein Chemistry and Structural Biology, 2023, , 371-439.	1.0	4
2828	Indole-3-acetic acid, a hormone potentially involved in chilling-induced seed browning of pepper (Capsicum annuum L.) fruit during cold storage. Postharvest Biology and Technology, 2023, 199, 112299.	2.9	4
2829	Chemical induction of the Arabidopsis thaliana CBF1 gene in transgenic tomato fruit to study postharvest chilling injury. Current Plant Biology, 2023, 33, 100275.	2.3	3
2830	Protease inhibitor ASP enhances freezing tolerance by inhibiting protein degradation in kumquat. Horticulture Research, 2023, 10, .	2.9	1
2831	Functional Characterization of Lobularia maritimaÂLmTrxh2 Gene Involved in Cold Tolerance in Tobacco through Alleviation of ROS Damage to the Plasma Membrane. International Journal of Molecular Sciences, 2023, 24, 3030.	1.8	5
2832	De Novo Transcriptome Assembly and Comparative Analysis of Differentially Expressed Genes Involved in Cold Acclimation and Freezing Tolerance of the Arctic Moss Aulacomnium turgidum (Wahlenb.) Schwaegr. Plants, 2023, 12, 1250.	1.6	1
2833	Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics, 2023, 24, .	1.2	5
2834	Arundo donax L. growth potential under different abiotic stress. Heliyon, 2023, 9, e15521.	1.4	3
2835	Genome-wide identification of papain-like cysteine protease family genes in cultivated peanut (Arachis) Tj ETQqC Environmental and Experimental Botany, 2023, 209, 105272.	0 0 rgBT / 2.0	Overlock 10 2
2836	Evolutionary footprints of cold adaptation in arctic-alpine Cochlearia (Brassicaceae) – Evidence from freezing experiments and electrolyte leakage. Perspectives in Plant Ecology, Evolution and Systematics, 2023, 59, 125728.	1.1	2
2837	The alteration of proteins and metabolites in leaf apoplast and the related gene expression associated with the adaptation of Ammopiptanthus mongolicus to winter freezing stress. International Journal of Biological Macromolecules, 2023, 240, 124479.	3.6	3
2838	Transcriptome Analysis Revealed the Dynamic and Rapid Transcriptional Reprogramming Involved in Cold Stress and Related Core Genes in the Rice Seedling Stage. International Journal of Molecular Sciences, 2023, 24, 1914.	1.8	3
2839	Vernalization-triggered expression of the antisense transcript COOLAIR is mediated by CBF genes. ELife, 0, 12, .	2.8	9
2840	Transcriptome analysis of brassinolide under low temperature stress in winter wheat. AoB PLANTS, 2023, 15, .	1.2	1
2841	Effect of shading on physiological attributes and comparative transcriptome analysis of Camellia sinensis cultivar reveals tolerance mechanisms to low temperatures. Frontiers in Plant Science, 0, 14, .	1.7	4
2842	<scp>Mdmâ€miR160–MdARF17–MdWRKY33</scp> module mediates freezing tolerance in apple. Plant Journal, 2023, 114, 262-278.	2.8	9

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
2843	Improving abiotic stress tolerance of forage grasses – prospects of using genome editing. Frontiers in Plant Science, 0, 14, .	1.7	7
2844	Nucleotide Imbalance, Provoked by Downregulation of Aspartate Transcarbamoylase Impairs Cold Acclimation in Arabidopsis. Molecules, 2023, 28, 1585.	1.7	1
2845	Tetratricopeptide repeat protein SIREC2 positively regulates cold tolerance in tomato. Plant Physiology, 2023, 192, 648-665.	2.3	7
2846	Recent progress and perspectives on physiological and molecular mechanisms underlying cold tolerance of tea plants. Frontiers in Plant Science, 0, 14, .	1.7	5
2847	Advances in understanding cold tolerance in grapevine. Plant Physiology, 0, , .	2.3	6
2848	Comparative transcriptome analysis reveals the regulatory mechanisms of two tropical water lilies in response to cold stress. BMC Genomics, 2023, 24, .	1.2	4
2849	Physiological and Transcriptomic Analysis Reveals Drought-Stress Responses of Arabidopsis DREB1A in Transgenic Potato. Potato Research, 0, , .	1.2	0
2851	Field plus lab experiments help identify freezing tolerance and associated genes in subtropical evergreen broadleaf trees: A case study of Camellia oleifera. Frontiers in Plant Science, 0, 14, .	1.7	3
2852	Auxin Participates in the Regulation of the Antioxidant System in Malus baccata Borkh. Roots under Sub-Low Temperature by Exogenous Sucrose Application. Horticulturae, 2023, 9, 297.	1.2	2
2853	MOLECULAR-GENETIC ASPECTS OF WINTER WHEAT (TRÃTICUM L.) RESISTANCE TO LOW TEMPERATURE STRESS. , 2022, 33, 137-150.		0
2854	Homozygosity mapping identified loci and candidate genes responsible for freezing tolerance in <i>Camelina sativa</i> . Plant Genome, 0, , .	1.6	0
2855	Dissecting the effect of ethylene in the transcriptional regulation of chilling treatment in grapevine leaves. Plant Physiology and Biochemistry, 2023, 196, 1084-1097.	2.8	2
2856	The transcription factor <scp>MYB43</scp> antagonizes with <scp>ICE1</scp> to regulate freezing tolerance in <i>Arabidopsis</i> . New Phytologist, 2023, 238, 2440-2459.	3.5	5
2857	Transcription factor CabHLH035 promotes cold resistance and homeostasis of reactive oxygen species in pepper. Horticultural Plant Journal, 2023, , .	2.3	2
2858	Arabidopsis LFR, a SWI/SNF complex component, interacts with ICE1 and activates ICE1 and CBF3 expression in cold acclimation. Frontiers in Plant Science, 0, 14, .	1.7	5
2859	Novel function of a putative TaCOBL ortholog associated with cold response. Molecular Biology Reports, 2023, 50, 4375-4384.	1.0	0
2860	Evolutionary Aspects of the Fructan Syndrome. , 2023, , 75-90.		0
2861	Genome-Wide Identification of the Rose SWEET Gene Family and Their Different Expression Profiles in Cold Response between Two Rose Species. Plants, 2023, 12, 1474.	1.6	3

ARTICLE

Comprehensive Transcriptome Analysis of Responses during Cold Stress in Wheat (Triticum aestivum) Tj ETQq0 0 0 rgBT /Overlock 10 T

2863	Overexpression of the <scp>FERONIA</scp> receptor kinase <scp>MdMRLK2</scp> enhances apple cold tolerance. Plant Journal, 2023, 115, 236-252.	2.8	3
2864	Low-temperature and circadian signals are integrated by the sigma factor SIG5. Nature Plants, 2023, 9, 661-672.	4.7	5
2866	The new directions in genetics, breeding and biotechnology of ornamental and berry crops in the N.I. Vavilov Institute of Plant Genetic Resources (VIR). Plant Biotechnology and Breeding, 2023, 5, 65-78.	0.9	0
2867	Genome-wide transcriptional profiling provides clues to molecular mechanisms underlying cold tolerance in chickpea. Scientific Reports, 2023, 13, .	1.6	4
2868	Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Current Research in Biotechnology, 2023, 5, 100128.	1.9	22
2896	Magnetic resonance studies of adaptation to freezing and injury in plants. Annual Reports on NMR Spectroscopy, 2023, , 1-61.	0.7	0
2905	Role of phospholipase D in abiotic stress tolerance. , 2023, , 287-308.		0
2905 2914	Role of phospholipase D in abiotic stress tolerance. , 2023, , 287-308. Regulation of plant epigenetic memory in response to cold and heat stress: towards climate resilient agriculture. Functional and Integrative Genomics, 2023, 23, .	1.4	0
2905 2914 2921	Role of phospholipase D in abiotic stress tolerance. , 2023, , 287-308. Regulation of plant epigenetic memory in response to cold and heat stress: towards climate resilient agriculture. Functional and Integrative Genomics, 2023, 23, . An overview of gene regulations in crop plants. , 2023, , 261-275.	1.4	0 4 0
2905 2914 2921 2935	Role of phospholipase D in abiotic stress tolerance., 2023, , 287-308. Regulation of plant epigenetic memory in response to cold and heat stress: towards climate resilient agriculture. Functional and Integrative Genomics, 2023, 23, . An overview of gene regulations in crop plants., 2023, , 261-275. Signaling Molecules in Medicinal Plants Response to Cold Stress., 2023, , 169-191.	1.4	0 4 0
2905 2914 2921 2935	Role of phospholipase D in abiotic stress tolerance. , 2023, , 287-308. Regulation of plant epigenetic memory in response to cold and heat stress: towards climate resilient agriculture. Functional and Integrative Genomics, 2023, 23, . An overview of gene regulations in crop plants. , 2023, , 261-275. Signaling Molecules in Medicinal Plants Response to Cold Stress. , 2023, , 169-191. Impact of Abiotic Stresses on Production of Secondary Metabolites in Medicinal and Aromatic Plants. Environmental Science and Engineering, 2023, , 169-252.	0.1	0 4 0 0