Alkali Salt Ash Formation in Four Finnish Industrial Red

Energy & Fuels 13, 778-795 DOI: 10.1021/ef9801890

Citation Report

CITATION REPORT

#	Article	IF	CITATIONS
1	Coarse ash particle characteristics in a pulp and paper industry chemical recovery boiler. Fuel, 2001, 80, 987-999.	6.4	15
2	Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass and Bioenergy, 2002, 23, 171-179.	5.7	216
3	Modelling alkali chloride superheater deposition and its implications. Fuel Processing Technology, 2003, 80, 225-262.	7.2	39
4	Electrostatic Precipitator Performance and Trace Element Emissions from Two Kraft Recovery Boilers. Environmental Science & Technology, 2006, 40, 584-589.	10.0	8
5	Cost-effective reduction of fine primary particulate matter emissions in Finland. Environmental Research Letters, 2007, 2, 044002.	5.2	8
6	Directions for Combustion Engine Aerosol Measurement in the 21st Century. Journal of the Air and Waste Management Association, 2010, 60, 1165-1176.	1.9	8
7	Measurement System for Characterization of Gas and Particle Phase of High Temperature Combustion Aerosols. Aerosol Science and Technology, 2010, 44, 1-9.	3.1	39
8	Behavior of Alkali Metal Aerosol in a High-Temperature Porous Tube Sampling Probe. Aerosol Science and Technology, 2012, 46, 1151-1162.	3.1	21
9	Emissions of Heavy Metals during Fixed-Bed Combustion of Six Biomass Fuels. Energy & Fuels, 2013, 27, 1073-1080.	5.1	35
10	Numerical modeling of fine particle and deposit formation in a recovery boiler. Fuel, 2014, 129, 45-53.	6.4	48
12	2D dynamic mesh model for deposit shape prediction in boiler banks of recovery boilers with different tube spacing arrangements. Fuel, 2015, 158, 139-151.	6.4	49
13	Unsteady CFD analysis of kraft recovery boiler fly-ash trajectories, sticking efficiencies and deposition rates with a mechanistic particle rebound-stick model. Fuel, 2016, 181, 408-420.	6.4	32
14	Fouling growth modeling of kraft recovery boiler fume ash deposits with dynamic meshes and a mechanistic sticking approach. Fuel, 2016, 185, 872-885.	6.4	35
15	Separation, treatment and utilization of inorganic residues of chemical pulp mills. Journal of Cleaner Production, 2016, 133, 953-964.	9.3	47
16	Study of aerosol behaviour in filmwise condensation processes with the presence of inert gas. International Journal of Heat and Mass Transfer, 2016, 93, 1059-1071.	4.8	2
17	Environmental Issues and Challenges. , 2017, , 221-230.		0
18	Computational fluid dynamics modeling and experimental validation of heat transfer and fluid flow in the recovery boiler superheater region. Applied Thermal Engineering, 2018, 139, 222-238.	6.0	20
19	Optimizing the heat transfer performance of the recovery boiler superheaters using simulated annealing, surrogate modeling, and computational fluid dynamics. Energy, 2018, 160, 361-377.	8.8	24

CITATION REPORT

#	Article	IF	CITATIONS
20	Modeling fine particles and alkali metal compound behavior in a kraft recovery boiler. Tappi Journal, 2012, 11, 9-14.	0.5	3
21	Improving recovery boiler availability through understanding fume behavior. Tappi Journal, 2016, 15, 187-193.	0.5	3
24	Optimizing ash deposit removal system to maximize biomass recycling as renewable energy for CO2 reduction. Renewable Energy, 2022, 190, 1006-1017.	8.9	11
25	Reinforcement learning-based optimal operation of ash deposit removal system to improve recycling efficiency of biomass for CO2 reduction. Journal of Cleaner Production, 2022, 370, 133605.	9.3	3
26	Changes in chlorine content over time – Probe deposit sampling in a Finnish kraft recovery boiler. Fuel, 2023, 340, 127599.	6.4	1
27	Superheater ash deposit ageing – Impact of melt fraction on morphology and chemistry. Fuel, 2024, 359, 130386.	6.4	0
28	Eco-friendly and sustainable process for recovery of sulfate from paper mill mixed salt: Recycling of sulfate for dye fixation process. Journal of Environmental Management, 2024, 353, 120201.	7.8	0