Hydroxyl Radical Formation during Peroxynitrous Acid

Journal of the American Chemical Society 121, 2438-2443 DOI: 10.1021/ja982887t

Citation Report

#	Article	IF	CITATIONS
3	Oxidation of Acetaldehyde by Peroxynitrite and Hydrogen Peroxide/Iron(II). Production of Acetate, Formate, and Methyl Radicals. Chemical Research in Toxicology, 1999, 12, 1010-1018.	3.3	50
4	The Yield of Hydroxyl Radical from the Decomposition of Peroxynitrous Acid. Inorganic Chemistry, 1999, 38, 4317-4321.	4.0	103
5	Cage-Escape of Geminate Radical Pairs Can Produce Peroxynitrate from Peroxynitrite under a Wide Variety of Experimental Conditions1. Journal of the American Chemical Society, 1999, 121, 10695-10701.	13.7	126
6	Peroxynitrous Acid Decomposes via Homolysis:  Evidence from High-Pressure Pulse Radiolysis. Journal of Physical Chemistry A, 1999, 103, 6587-6590.	2.5	31
8	Uric Acid Oxidation by Peroxynitrite: Multiple Reactions, Free Radical Formation, and Amplification of Lipid Oxidation. Archives of Biochemistry and Biophysics, 1999, 372, 285-294.	3.0	229
9	Barium oxides immobilized SO4- and NO2 as chemiluminescence reaction media Bunseki Kagaku, 2000, 49, 547-550.	0.2	1
10	Modeling the Interaction of Peroxynitrite with Low-density Lipoproteins. I. Plasma Levels of Peroxynitrite. Journal of Theoretical Biology, 2000, 205, 457-464.	1.7	7
11	Modeling the Interaction of Peroxynitrite with Low-density Lipoproteins. II: Reaction/Diffusion Model of Peroxynitrite in Low-density Lipoprotein Particles. Journal of Theoretical Biology, 2000, 205, 465-471.	1.7	18
12	Autocatalytic nitration of P450CAM by peroxynitrite. Journal of Inorganic Biochemistry, 2000, 81, 213-220.	3.5	33
13	Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature, 2000, 407, 211-215.	27.8	629
14	A Novel Nitration Product Formed during the Reaction of Peroxynitrite with 2â€~,3â€~,5â€~-Tri-O-acetyl-7,8-dihydro-8-oxoguanosine:ÂN-Nitro-Nâ€~-[1-(2,3,5-Tri-O-acetyl-β-d-erythro-pentofur 2,4-dioxoimidazolidin-5-ylidene]guanidine. Chemical Research in Toxicology, 2000, 13, 390-396.	anosyl)-	39
15	The Biological Chemistry of Peroxynitrite. , 2000, , 57-82.		64
16	The decomposition of peroxynitrite does not yield nitroxyl anion and singlet oxygen. Proceedings of the United States of America, 2000, 97, 8216-8218.	7.1	30
17	Peroxynitrite does not decompose to singlet oxygen (1Delta gO2) and nitroxyl (NO-). Proceedings of the United States of America, 2000, 97, 10307-10312.	7.1	87
18	Dityrosine Formation Outcompetes Tyrosine Nitration at Low Steady-state Concentrations of Peroxynitrite. Journal of Biological Chemistry, 2000, 275, 6346-6352.	3.4	143
19	Rapid Reactions of Peroxynitrite with Heme–Thiolate Proteins as the Basis for Protection of Prostacyclin Synthase from Inactivation by Nitration. Archives of Biochemistry and Biophysics, 2000, 376, 149-155.	3.0	61
20	Reaction of Uric Acid with Peroxynitrite and Implications for the Mechanism of Neuroprotection by Uric Acid. Archives of Biochemistry and Biophysics, 2000, 376, 333-337.	3.0	300
21	Role of the Carbonate Radical Anion in Tyrosine Nitration and Hydroxylation by Peroxynitrite. Archives of Biochemistry and Biophysics, 2000, 377, 146-152.	3.0	100

#	Article	IF	CITATIONS
22	The Quantitative Oxidation of Methionine to Methionine Sulfoxide by Peroxynitrite. Archives of Biochemistry and Biophysics, 2000, 377, 266-272.	3.0	62
23	A Reevaluation of the Peroxynitrite Scavenging Activity of Some Dietary Phenolics. Biochemical and Biophysical Research Communications, 2000, 279, 692-699.	2.1	71
24	Application of Chemically Induced Dynamic Nuclear Polarization to the Nitration of N-Acetyltyrosine and to Some Reactions of Peroxynitrite. Nitric Oxide - Biology and Chemistry, 2000, 4, 472-482.	2.7	9
25	Formation of N-Nitrosamines and N-Nitramines by the Reaction of Secondary Amines with Peroxynitrite and Other Reactive Nitrogen Species:  Comparison with Nitrotyrosine Formation. Chemical Research in Toxicology, 2000, 13, 301-308.	3.3	84
26	26 Mechanisms of reactions in solution. Annual Reports on the Progress of Chemistry Section A, 2000, 96, 557-623.	0.8	5
27	Investigations into the spin trapping of nitric oxide and superoxide: models to explore free radical generation by nitric oxide synthase. Perkin Transactions II RSC, 2000, , 983-988.	1.1	12
28	Radical Dinitroalkane Dianions from the Nitration of Nitroalkanes by Peroxynitrite. Chemical Research in Toxicology, 2000, 13, 963-966.	3.3	6
29	Permeation of Phospholipid Membranes by Peroxynitriteâ€. Biochemistry, 2000, 39, 14238-14249.	2.5	67
30	A Novel Procedure for Generating both Nitric Oxide and Superoxide in Situ from Chemical Sources at Any Chosen Mole Ratio. First Application:Â Tyrosine Oxidation and a Comparison with Preformed Peroxynitrite. Chemical Research in Toxicology, 2000, 13, 1287-1293.	3.3	45
31	Mechanism of Peroxynitrite Oxidation of Aliphatic CH Bonds in Saturated and Unsaturated Hydrocarbons. A Theoretical Model for the CH Oxidation of Lipids. Journal of the American Chemical Society, 2000, 122, 1191-1199.	13.7	26
32	Tyrosine Nitration by Peroxynitrite Formed from Nitric Oxide and Superoxide Generated by Xanthine Oxidase. Journal of Biological Chemistry, 2000, 275, 32467-32474.	3.4	172
33	Nâ [~] 'NO Bond Dissociation Energies ofN-Nitroso Diphenylamine Derivatives (Or Analogues) and Their Radical Anions:Â Implications for the Effect of Reductive Electron Transfer on Nâ [~] 'NO Bond Activation and for the Mechanisms of NO Transfer to Nitranions. Journal of Organic Chemistry, 2000, 65, 6729-6735.	3.2	56
34	UV Photolysis of Nitrate:Â Effects of Natural Organic Matter and Dissolved Inorganic Carbon and Implications for UV Water Disinfection. Environmental Science & Technology, 2001, 35, 2949-2955.	10.0	121
35	Mechanisms of Peroxynitrite Decomposition Catalyzed by FeTMPS, a Bioactive Sulfonated Iron Porphyrin. Archives of Biochemistry and Biophysics, 2001, 387, 307-317.	3.0	92
36	Peroxynitrite decay in the presence of hydrogen peroxide, mannitol and ethanol: A reappraisal. Free Radical Research, 2001, 34, 467-475.	3.3	15
37	Does Peroxynitrite Partition between Aqueous and Gas Phases? Implication for Lipid Peroxidation. Chemical Research in Toxicology, 2001, 14, 1232-1238.	3.3	12
38	Mechanism of Peroxynitrite Interaction with Ferric Hemoglobin and Identification of Nitrated Tyrosine Residues. CO2 Inhibits Heme-Catalyzed Scavenging and Isomerization. Biochemistry, 2001, 40, 15300-15309.	2.5	31
39	Pressure Dependence of Peroxynitrite Reactions. Support for a Radical Mechanism. Inorganic Chemistry, 2001, 40, 528-532.	4.0	20

#	Article	IF	CITATIONS
40	Kinetic and Mechanistic Studies of the NO•-Mediated Oxidation of Oxymyoglobin and Oxyhemoglobinâ€. Biochemistry, 2001, 40, 3385-3395.	2.5	324
41	The Reaction of Peroxynitrite with Organic Molecules Bearing a Biologically Important Functionality. The Multiplicity of Reaction Modes as Exemplified by Hydroxylation, Nitration, Nitrosation, Dealkylation, Oxygenation, and Oxidative Dimerization and Cleavage. Bulletin of the Chemical Society of Japan. 2001. 74. 2385-2395.	3.2	27
42	Effect of chemical modifications upon exchange capacity of aminated macroporous styrene-divinyl benzene (PS-DVB) copolymer anion exchange resin. Journal of Applied Polymer Science, 2001, 79, 1735-1748.	2.6	13
43	S-Nitrosothiol and Disulfide Formation through Peroxynitrite-Promoted Oxidation of Thiols. European Journal of Organic Chemistry, 2001, 2001, 131-135.	2.4	16
44	The Chemistry of Peroxynitrite: Involvement of an ET Process in the Radical Nitration of Unsaturated and Aromatic Systems. European Journal of Organic Chemistry, 2001, 2001, 741-748.	2.4	23
45	Separation characteristics of modified polysulfone ultrafiltration membranes using NOx. Separation and Purification Technology, 2001, 24, 271-282.	7.9	25
46	EPR Detection of Glutathionyl and Protein-tyrosyl Radicals during the Interaction of Peroxynitrite with Macrophages (J774). Journal of Biological Chemistry, 2001, 276, 39879-39884.	3.4	44
47	Activation of Matrix Metalloproteinases by Peroxynitrite-induced Protein S-Glutathiolation via Disulfide S-Oxide Formation. Journal of Biological Chemistry, 2001, 276, 29596-29602.	3.4	394
48	Carbon Dioxide Stimulates the Production of Thiyl, Sulfinyl, and Disulfide Radical Anion from Thiol Oxidation by Peroxynitrite. Journal of Biological Chemistry, 2001, 276, 9749-9754.	3.4	172
49	Reaction of Superoxide and Nitric Oxide with Peroxynitrite. Journal of Biological Chemistry, 2001, 276, 28799-28805.	3.4	214
50	First Spectroscopic Observation of Gas-Phase HOONO. Journal of Physical Chemistry A, 2002, 106, 855-859.	2.5	82
51	Preparation of high capacity chloroethylated strong base anion exchange resin using NOx. Separation Science and Technology, 2002, 37, 895-919.	2.5	11
52	Reaction of a Superoxochromium(III) Ion with Nitrogen Monoxide:  Kinetics and Mechanism. Journal of the American Chemical Society, 2002, 124, 421-427.	13.7	44
53	Reaction of Nitrogen Monoxide with a Macrocyclic Superoxorhodium(III) Complex Produces an Observable Nitratorhodium Intermediate. Journal of the American Chemical Society, 2002, 124, 1698-1703.	13.7	34
54	Nitration of prostacyclin synthase: mechanism and physiological implications. International Congress Series, 2002, 1233, 405-414.	0.2	2
55	Product Distribution of Peroxynitrite Decay as a Function of pH, Temperature, and Concentration. Journal of the American Chemical Society, 2002, 124, 234-239.	13.7	110
56	Peroxynitrite Decomposition Activity of Iron Porphyrin Complexes. Inorganic Chemistry, 2002, 41, 4788-4797.	4.0	73
57	The Mechanism by which 4-Hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (Tempol) Diverts Peroxynitrite Decomposition from Nitrating to Nitrosating Species. Chemical Research in Toxicology, 2002, 15,	3.3	60

#	Article	IF	CITATIONS
58	Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. Talanta, 2002, 57, 883-890.	5.5	222
59	Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Advanced Drug Delivery Reviews, 2002, 54, 1425-1443.	13.7	269
60	Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radical Biology and Medicine, 2002, 32, 841-859.	2.9	477
61	Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling 1,2 1This article is part of a series of reviews on "Reactive Nitrogen Species, Tyrosine Nitration and Cell Signaling.―The full list of papers may be found on the homepage of the journal. 2Guest Editor: Harry Ischiropoulos. Free Radical Biology and Medicine. 2002. 33. 744-754.	2.9	107
62	Stickstoffmonoxid, Superoxid und Peroxynitrit: Radikalchemie im Organismus. Chemie in Unserer Zeit, 2002, 36, 366-375.	0.1	11
63	Prevention of peroxynitrite-dependent damage by carnosine and related sulphonamido pseudodipeptides. Cellular and Molecular Life Sciences, 2002, 59, 546-551.	5.4	67
64	Radiolytic degradation and toxicity changes in Î ³ -irradiated solutions of 2,4-dichlorophenol. Radiation Physics and Chemistry, 2002, 65, 357-366.	2.8	30
65	Oxidations of iron(II)/(III) by hydrogen peroxide: from aquo to enzyme. Coordination Chemistry Reviews, 2002, 233-234, 311-318.	18.8	188
66	A Reassessment of the Peroxynitrite Scavenging Activity of Uric Acid. Annals of the New York Academy of Sciences, 2002, 962, 242-259.	3.8	161
67	Peroxynitrite Reacts with 8-Nitropurines to Yield 8-Oxopurines. Chemical Research in Toxicology, 2002, 15, 7-14.	3.3	38
69	Electron transfer, 151. Decomposition of peroxynitrite as catalyzed by copper(II). Research on Chemical Intermediates, 2002, 28, 575-583.	2.7	14
70	Mechanism of the Oxidation of Cyclohexane by Peroxynitrous Acid in Media with and without Oxygen. Theoretical and Experimental Chemistry, 2003, 39, 36-40.	0.8	1
71	Electron transfer. 153. Internal electron transfer to bound cobalt(III) induced by hydroxyl radical. Research on Chemical Intermediates, 2003, 29, 343-348.	2.7	1
72	Nitrate photosensitized degradation of atrazine during UV water treatment. Aquatic Sciences, 2003, 65, 359-366.	1.5	42
73	Peroxynitrite reactivity with amino acids and proteins. Amino Acids, 2003, 25, 295-311.	2.7	495
74	Rapid scavenging of peroxynitrous acid by monohydroascorbate. Free Radical Biology and Medicine, 2003, 35, 1529-1537.	2.9	28
75	Pyrolysis–gas chromatography/mass spectrometry of peroxynitrite-treated melanins. Journal of Analytical and Applied Pyrolysis, 2003, 70, 457-467.	5.5	14
76	Gibbs energies of reactive species involved in peroxynitrite chemistry calculated by density functional theory. Computational and Theoretical Chemistry, 2003, 623, 95-103.	1.5	8

#	Article	IF	CITATIONS
77	Early events of target deprivation/axotomyâ€induced neuronal apoptosis <i>in vivo</i> : oxidative stress, DNA damage, p53 phosphorylation and subcellular redistribution of death proteins. Journal of Neurochemistry, 2003, 85, 234-247.	3.9	71
78	Hydroxyl Radical Formation by Oâ^'O Bond Homolysis in Peroxynitrous Acid. Inorganic Chemistry, 2003, 42, 5259-5266.	4.0	77
79	Theoretical Studies of the Reaction Mechanisms of Dimethylsulfide and Dimethylselenide with Peroxynitrite. Journal of Physical Chemistry A, 2003, 107, 5862-5873.	2.5	21
80	Evidence of an Electron-Transfer Mechanism in the Peroxynitrite-Mediated Oxidation of 4-Alkylphenols and Tyrosine. Journal of Organic Chemistry, 2003, 68, 6349-6353.	3.2	8
81	Evaluation of Activation Volumes for the Conversion of Peroxynitrous to Nitric Acid. Journal of Physical Chemistry A, 2003, 107, 11261-11263.	2.5	9
82	Reactivity of Ebtellur Derivatives with the Peroxynitrite Anion:  Comparison with Their Ebselen Analogues. Journal of Physical Chemistry A, 2003, 107, 5631-5639.	2.5	9
83	Rate of ONâ^'OO-Bond Homolysis and the Gibbs Energy of Formation of Peroxynitrite. Journal of Physical Chemistry A, 2003, 107, 7991-7996.	2.5	22
84	Product formation and kinetic simulations in the pH range 1–14 account for a free-radical mechanism of peroxynitrite decomposition. Archives of Biochemistry and Biophysics, 2003, 418, 133-150.	3.0	62
85	Impact of hydrogen peroxide on nitrite formation during UV disinfection. Water Research, 2003, 37, 4730-4736.	11.3	50
86	Direct Evidence of Singlet Molecular Oxygen [O2 (1Δg)] Production in the Reaction of Linoleic Acid Hydroperoxide with Peroxynitrite. Journal of the American Chemical Society, 2003, 125, 4510-4517.	13.7	138
87	Transmembrane Nitration of Hydrophobic Tyrosyl Peptides. Journal of Biological Chemistry, 2003, 278, 8969-8978.	3.4	52
88	The Autoxidation of Tetrahydrobiopterin Revisited. Journal of Biological Chemistry, 2003, 278, 24481-24490.	3.4	76
89	Peroxynitrous Acid - Where is the Hydroxyl Radical?. IUBMB Life, 2004, 55, 567-572.	3.4	38
90	DIOXYGEN ACTIVATION BY TRANSITION METAL COMPLEXES. ATOM TRANSFER AND FREE RADICAL CHEMISTRY IN AQUEOUS MEDIA. Advances in Inorganic Chemistry, 2004, 55, 1-59.	1.0	28
91	Kinetics of Conversions of Peroxynitrous Acid in Reactions of Isomerization, Decomposition, and Reduction by Cyclohexane. Theoretical and Experimental Chemistry, 2004, 40, 309-313.	0.8	1
92	Determination of pipemidic acid based on flow-injection chemiluminescence due to energy transfer from peroxynitrous acid synthesized on-line. Analytical and Bioanalytical Chemistry, 2004, 380, 918-923.	3.7	11
93	Flow-injection chemiluminescence determination of fluoroquinolones by enhancement of weak chemiluminescence from peroxynitrous acid. Analytica Chimica Acta, 2004, 510, 21-28.	5.4	73
94	Reaction of Peroxynitrite with Hyaluronan and Related Saccharides. Free Radical Research, 2004, 38, 343-353.	3.3	29

#	Article	IF	CITATIONS
95	Homolytic Pathways Drive Peroxynitrite-Dependent Trolox C Oxidation. Chemical Research in Toxicology, 2004, 17, 1377-1384.	3.3	22
96	Mass Spectrometric Identification of 4-Hydroxy-2,5-dioxo-imidazolidine-4-carboxylic Acid during Oxidation of 8-Oxoguanosine by Peroxynitrite and KHSO5/CoCl2. Chemical Research in Toxicology, 2004, 17, 1501-1509.	3.3	13
97	Spiroiminodihydantoin and Guanidinohydantoin Are the Dominant Products of 8-Oxoguanosine Oxidation at Low Fluxes of Peroxynitrite:  Mechanistic Studies with 180. Chemical Research in Toxicology, 2004, 17, 1510-1519.	3.3	77
98	Preventing Nitrite Contamination in Tetramethylammonium Peroxynitrite Solutions. Inorganic Chemistry, 2004, 43, 6519-6521.	4.0	15
99	Peroxynitrite Reactions with Dimethylsulfide and Dimethylselenide:  An Experimental Study. Journal of Physical Chemistry A, 2004, 108, 289-294.	2.5	12
100	Nitration and hydroxylation of benzene in the presence of nitrite/nitrous acid in aqueous solution. Chemosphere, 2004, 56, 1049-1059.	8.2	63
101	Flow-injection chemiluminescence determination of chloroquine using peroxynitrous acid as oxidant. Talanta, 2004, 62, 757-763.	5.5	29
102	Kinetics and Mechanism of Octacyanomolybdate(IV) Oxidation by Peroxynitrite. Journal of Chemical Research, 2004, 2004, 94-98.	1.3	2
103	Effects of Oxygen on the Reactivity of Nitrogen Oxide Species Including Peroxynitrite. Biological and Pharmaceutical Bulletin, 2004, 27, 17-23.	1.4	20
104	Oxidation of hypotaurine and cysteine sulphinic acid by peroxynitrite. Biochemical Journal, 2005, 389, 233-240.	3.7	22
105	Flow-injection chemiluminescence determination of tryptophan through its peroxidation and epoxidation by peroxynitrous acid. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 100-106.	2.8	39
106	Peroxynitritometal complexes. Coordination Chemistry Reviews, 2005, 249, 499-506.	18.8	45
107	Nitrated phenols in the atmosphere: a review. Atmospheric Environment, 2005, 39, 231-248.	4.1	348
108	Adult Motor Neuron Apoptosis Is Mediated by Nitric Oxide and Fas Death Receptor Linked by DNA Damage and p53 Activation. Journal of Neuroscience, 2005, 25, 6449-6459.	3.6	140
109	Reactions Induced in Natural Waters by Irradiation of Nitrate and Nitrite Ions. , 0, , 221-253.		22
110	A comparative study on the degradation of cotton linters induced by carbonate and hydroxyl radicals generated from peroxynitrite. Holzforschung, 2005, 59, 132-142.	1.9	3
111	Interaction of peroxynitrite with myoglobin and hemoglobin. Canadian Journal of Chemistry, 2006, 84, 788-793.	1.1	3
112	Theoretical Study on the Mechanisms of the Reaction of Peroxynitrous Acid and Phenol. Acta Physico-chimica Sinica, 2006, 22, 1266-1272.	0.6	3

		EPORT	
#	Article	IF	CITATIONS
113	Nitroxidative, Nitrosative, and Nitrative Stress:Â Kinetic Predictions of Reactive Nitrogen Species Chemistry Under Biological Conditions. Chemical Research in Toxicology, 2006, 19, 1160-1174.	3.3	208
114	A Highly Selective Fluorescent Probe for the Detection and Imaging of Peroxynitrite in Living Cells. Journal of the American Chemical Society, 2006, 128, 6004-6005.	13.7	259
115	Formation of Reactive Free Radicals in an Aqueous Environment. , 2006, , 7-46.		4
116	Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: Structures and mechanisms of product formation. Nitric Oxide - Biology and Chemistry, 2006, 14, 109-121.	2.7	173
118	Use of Fluorescence Probes for Detection of Reactive Nitrogen Species: A Review. Journal of Fluorescence, 2006, 16, 119-139.	2.5	151
119	The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: A self-fulfilling prophesy?. Free Radical Biology and Medicine, 2006, 40, 968-975.	2.9	201
120	Iron and Manganese Corroles Are Potent Catalysts for the Decomposition of Peroxynitrite. Angewandte Chemie - International Edition, 2006, 45, 6544-6547.	13.8	91
121	15N Chemically Induced Dynamic Nuclear Polarization (15N-CIDNP) Investigations of the Peroxynitrite Decay and Nitration ofN-Acetyl-L-tyrosine. Helvetica Chimica Acta, 2006, 89, 2144-2166.	1.6	2
123	Nitric Oxide and Peroxynitrite in Health and Disease. Physiological Reviews, 2007, 87, 315-424.	28.8	5,209
124	Nitric oxide increases toxicity of hydrogen peroxide against rat liver endothelial cells and hepatocytes by inhibition of hydrogen peroxide degradation. American Journal of Physiology - Cell Physiology, 2007, 292, C1440-C1449.	4.6	24
125	CARDIOVASCULAR EFFECTS OF PEROXYNITRITE. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 933-937.	1.9	39
126	Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide. Free Radical Biology and Medicine, 2007, 42, 1359-1368.	2.9	89
127	Peroxynitrite: In vivo and In vitro synthesis and oxidant degradative action on biological systems regarding biomolecular injury and inflammatory processes. Chemical Papers, 2007, 61, .	2.2	12
128	Kinetic studies of the reaction of heme-thiolate enzyme chloroperoxidase with peroxynitrite. Journal of Inorganic Biochemistry, 2007, 101, 159-164.	3.5	17
129	Selective iNOS inhibition reduces renal damage induced by cisplatin. Toxicology Letters, 2008, 176, 48-57.	0.8	98
130	Fluorogenic and Chromogenic Rhodamine Spirolactam Based Probe for Nitric Oxide by Spiro Ring Opening Reaction. Organic Letters, 2008, 10, 2357-2360.	4.6	138
131	EFFECTS OF NITRATE ON THE UV PHOTOLYSIS OF H ₂ O ₂ FOR VOCs DEGRADATION IN AN AQUEOUS SOLUTION. Environmental Technology (United Kingdom), 2008, 29, 91-99.	2.2	8
132	Reaction of a Copperâ^'Dioxygen Complex with Nitrogen Monoxide (•NO) Leads to a Copper(II)â^'Peroxynitrite Species. Journal of the American Chemical Society, 2008, 130, 6700-6701.	13.7	78

#	Article	IF	CITATIONS
133	Advanced H2O2 oxidation for diethyl phthalate degradation in treated effluents: effect of nitrate on oxidation and a pilot-scale AOP operation. Water Science and Technology, 2008, 58, 1031-1037.	2.5	8
134	Nitrite formation during low pressure ultraviolet lamp irradiation of nitrate. Water Science and Technology, 2009, 60, 1393-1400.	2.5	21
135	Effects of nitrate on the UV photolysis of H ₂ O ₂ for 2,4-dichlorophenol degradation in treated effluents. Desalination and Water Treatment, 2009, 2, 6-11.	1.0	10
136	Kinetic study of Orange II oxidation using peroxynitrous acid. Journal of Physical Organic Chemistry, 2009, 22, 546-549.	1.9	3
137	Peroxynitrate is formed rapidly during decomposition of peroxynitrite at neutral pH. Dalton Transactions, 2009, , 5730.	3.3	42
138	Understanding peroxynitrite biochemistry and its potential for treating human diseases. Archives of Biochemistry and Biophysics, 2009, 484, 114-116.	3.0	51
140	Bicarbonate-enhanced transformation of phenol upon irradiation of hematite, nitrate, and nitrite. Photochemical and Photobiological Sciences, 2009, 8, 91-100.	2.9	33
141	Direct evidence of singlet molecular oxygen generation from peroxynitrate, a decomposition product of peroxynitrite. Dalton Transactions, 2009, , 5720.	3.3	50
142	Redox Chemistry of Biological Thiols. Advances in Molecular Toxicology, 2010, , 183-222.	0.4	94
143	Kinetic and theoretical study on peroxynitrite decomposition catalyzed by iron porphyrins. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101, 291-300.	1.7	5
144	Degradation of diethyl phthalate in treated effluents from an MBR via advanced oxidation processes: Effects of nitrate on oxidation and a pilotâ€scale AOP operation. Environmental Technology (United) Tj ETQqO 0	0 ஜ®T /O	ve do ck 10 Tf
145	Nitrosation-modulating effect of ascorbate in a model dynamic system of coexisting nitric oxide and superoxide. Free Radical Research, 2010, 44, 552-562.	3.3	15
146	The Mitochondrial Permeability Transition Pore Regulates Nitric Oxide-Mediated Apoptosis of Neurons Induced by Target Deprivation. Journal of Neuroscience, 2011, 31, 359-370.	3.6	85
148	Analytical and Toxicological Studies of Decomposition of Insecticide Parathion after Gamma-Irradiation and Ozonation. Journal of AOAC INTERNATIONAL, 2012, 95, 1378-1385.	1.5	4
149	Effects of nitrate on the advanced UV photolysis of di(2-ethylhexyl) phthalate degradation in aqueous solution. Desalination and Water Treatment, 2012, 47, 163-170.	1.0	9
150	The formation of reactive species having hydroxyl radical-like reactivity from UV photolysis of N-nitrosodimethylamine (NDMA): Kinetics and mechanism. Science of the Total Environment, 2012, 437, 237-244.	8.0	19
151	Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Research, 2012, 46, 2815-2827.	11.3	473
152	Biochemical insight into physiological effects of H2S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite. Biochemical Journal, 2012, 441, 609-621.	3.7	99

#	Article	IF	CITATIONS
153	Fine Tuning the Reactivity of Corrole-Based Catalytic Antioxidants. Inorganic Chemistry, 2012, 51, 8083-8090.	4.0	35
154	What really happens in the neutrophil phagosome?. Free Radical Biology and Medicine, 2012, 53, 508-520.	2.9	106
155	Peroxynitrous acid: controversy and consensus surrounding an enigmatic oxidant. Dalton Transactions, 2012, 41, 13779.	3.3	61
156	Determination of berberine in pharmaceutical preparations using acidic hydrogen peroxide–nitrite chemiluminescence system. Drug Testing and Analysis, 2013, 5, 150-155.	2.6	9
157	Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. Journal Physics D: Applied Physics, 2013, 46, 175203.	2.8	253
158	Separation and characterization of nitrated variants of the major birch pollen allergen by <scp>CZE</scp> â€ <scp>ESI</scp> â€î¼ <scp>TOF MS</scp> . Electrophoresis, 2013, 34, 2695-2704.	2.4	14
159	Effect of nitrate on the degradation of bisphenol A by UV/H ₂ O ₂ and ozone/H ₂ O ₂ oxidation in aqueous solution. Desalination and Water Treatment, 2014, 52, 797-804.	1.0	12
160	Reactive Oxygen and Nitrogen Species in Steatotic Hepatocytes: A Molecular Perspective on the Pathophysiology of Ischemia-Reperfusion Injury in the Fatty Liver. Antioxidants and Redox Signaling, 2014, 21, 1119-1142.	5.4	98
161	Indirect Photochemistry in Sunlit Surface Waters: Photoinduced Production of Reactive Transient Species. Chemistry - A European Journal, 2014, 20, 10590-10606.	3.3	325
162	About the mechanism for paramagnetic centers formation under the radiolysis of RbNO3 and CsNO3 crystals. Nuclear Instruments & Methods in Physics Research B, 2014, 326, 65-67.	1.4	1
163	2,4,6-Trichlorophenol-promoted catalytic wet oxidation of humic substances and stabilized landfill leachate. Chemical Engineering Journal, 2014, 247, 216-222.	12.7	27
164	Predicting pharmaceutical degradation by UV (LP)/H2O2 processes: A kinetic model. Chemical Engineering Journal, 2014, 255, 334-343.	12.7	69
165	Prediction of the removal efficiency of pharmaceuticals by a rapid spectrophotometric method using Rhodamine B in the UV/H2O2 process. Chemical Engineering Journal, 2014, 236, 438-447.	12.7	19
166	Tyrosine nitration in peptides by peroxynitrite generated in situ in a light-controlled platform: Effects of pH and thiols. Journal of Inorganic Biochemistry, 2014, 138, 24-30.	3.5	3
167	Peroxynitrite chemistry derived from nitric oxide reaction with a Cu(<scp>ii</scp>)–OOH species and a copper mediated NO reductive coupling reaction. Chemical Communications, 2014, 50, 2844-2846.	4.1	15
168	Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets. Journal Physics D: Applied Physics, 2015, 48, 424007.	2.8	81
169	Physicochemical processes in the indirect interaction between surface air plasma and deionized water. Journal Physics D: Applied Physics, 2015, 48, 495201.	2.8	160
170	Influence of process conditions and water quality on the formation of mutagenic byproducts in UV/H2O2 processes. Water Research, 2015, 74, 191-202.	11.3	23

#	Article	IF	CITATIONS
171	Reactions of Co(III)–Nitrosyl Complexes with Superoxide and Their Mechanistic Insights. Journal of the American Chemical Society, 2015, 137, 4284-4287.	13.7	38
172	Degradation of bisphenol A by UV/H ₂ O ₂ oxidation in aqueous solution containing nitrate and alkalinity. Desalination and Water Treatment, 2015, 54, 1022-1028.	1.0	4
173	Nitration of indoxyl sulfate facilitates its cytotoxicity in human renal proximal tubular cells via expression of heme oxygenase-1. Biochemical and Biophysical Research Communications, 2015, 465, 481-487.	2.1	3
174	Predicting pharmaceutical degradation by UV (MP)/H2O2 processes: A kinetic model. Chemical Engineering Journal, 2015, 263, 336-345.	12.7	30
175	Mechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34. Biochemistry, 2016, 55, 3403-3417.	2.5	37
176	Removal of taste and odor causing compounds by UV/H ₂ O ₂ treatment: effect of the organic and inorganic water matrix. Desalination and Water Treatment, 0, , 1-10.	1.0	5
177	Factors That Control the Reactivity of Cobalt(III)–Nitrosyl Complexes in Nitric Oxide Transfer and Dioxygenation Reactions: A Combined Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2016, 138, 7753-7762.	13.7	36
178	Emerging investigators series: prediction of trace organic contaminant abatement with UV/H ₂ O ₂ : development and validation of semi-empirical models for municipal wastewater effluents. Environmental Science: Water Research and Technology, 2016, 2, 460-473.	2.4	29
179	Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integrative Medicine Research, 2016, 5, 250-258.	1.8	175
180	A Free Radical Primer. , 2016, , 1-33.		11
180 181		16.2	11
	A Free Radical Primer. , 2016, , 1-33. Photochemical reaction of peroxynitrite and carbon dioxide could account for up to 15Â% of	16.2 12.7	
181	A Free Radical Primer. , 2016, , 1-33. Photochemical reaction of peroxynitrite and carbon dioxide could account for up to 15Â% of carbonate radicals generation in surface waters. Environmental Chemistry Letters, 2016, 14, 183-187. Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H 2 O 2.		11
181 182	A Free Radical Primer. , 2016, , 1-33. Photochemical reaction of peroxynitrite and carbon dioxide could account for up to 15Â% of carbonate radicals generation in surface waters. Environmental Chemistry Letters, 2016, 14, 183-187. Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H 2 O 2. Chemical Engineering Journal, 2016, 285, 392-401. The UV/peroxymonosulfate process for the mineralization of artificial sweetener sucralose. Chemical	12.7	11 104
181 182 183	A Free Radical Primer. , 2016, , 1-33. Photochemical reaction of peroxynitrite and carbon dioxide could account for up to 15Â% of carbonate radicals generation in surface waters. Environmental Chemistry Letters, 2016, 14, 183-187. Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H 2 O 2. Chemical Engineering Journal, 2016, 285, 392-401. The UV/peroxymonosulfate process for the mineralization of artificial sweetener sucralose. Chemical Engineering Journal, 2017, 317, 561-569. Alpha radiolysis of nitric acid aqueous solution irradiated by 238Pu source. Nuclear Science and	12.7 12.7	11 104 66
181 182 183 184	A Free Radical Primer. , 2016, , 1-33. Photochemical reaction of peroxynitrite and carbon dioxide could account for up to 15Â% of carbonate radicals generation in surface waters. Environmental Chemistry Letters, 2016, 14, 183-187. Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H 2 O 2. Chemical Engineering Journal, 2016, 285, 392-401. The UV/peroxymonosulfate process for the mineralization of artificial sweetener sucralose. Chemical Engineering Journal, 2017, 317, 561-569. Alpha radiolysis of nitric acid aqueous solution irradiated by 238Pu source. Nuclear Science and Techniques/Hewuli, 2017, 28, 1. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation.	12.7 12.7 3.4	11 104 66 6
181 182 183 184 185	A Free Radical Primer., 2016, , 1-33. Photochemical reaction of peroxynitrite and carbon dioxide could account for up to 15Â% of carbonate radicals generation in surface waters. Environmental Chemistry Letters, 2016, 14, 183-187. Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H 2 O 2. Chemical Engineering Journal, 2016, 285, 392-401. The UV/peroxymonosulfate process for the mineralization of artificial sweetener sucralose. Chemical Engineering Journal, 2017, 317, 561-569. Alpha radiolysis of nitric acid aqueous solution irradiated by 238Pu source. Nuclear Science and Techniques/Hewuli, 2017, 28, 1. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation. Archives of Biochemistry and Biophysics, 2017, 622, 9-25. Reaction of a Co(III)-Peroxo Complex and NO: Formation of a Putative Peroxynitrite Intermediate.	12.7 12.7 3.4 3.0	11 104 66 6 14

# 189	ARTICLE UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents. Water Research, 2018, 136, 169-179.	IF 11.3	Citations 99
190	Bed flow photoreactor experiments to assess the photocatalytic nitrogen oxides abatement under simulated atmospheric conditions. Applied Catalysis B: Environmental, 2018, 231, 161-172.	20.2	29
191	Reaction Rate Constants of Hydroxyl Radicals with Micropollutants and Their Significance in Advanced Oxidation Processes. Journal of Advanced Oxidation Technologies, 2018, 21, 178-195.	0.5	28
192	Orally administered gold nanoparticles protect against colitis by attenuating Toll-like receptor 4- and reactive oxygen/nitrogen species-mediated inflammatory responses but could induce gut dysbiosis in mice. Journal of Nanobiotechnology, 2018, 16, 86.	9.1	48
193	The labile iron pool attenuates peroxynitrite-dependent damage and can no longer be considered solely a pro-oxidative cellular iron source. Journal of Biological Chemistry, 2018, 293, 8530-8542.	3.4	18
194	Oxidative Release of Copper from Pharmacologic Copper Bis(thiosemicarbazonato) Compounds. Inorganic Chemistry, 2018, 57, 8923-8932.	4.0	13
195	Removal of trace organic chemicals in wastewater effluent by UV/H2O2 and UV/PDS. Water Research, 2018, 145, 487-497.	11.3	124
196	The effect of pH on the aqueous reactive species in sodium phosphate buffers induced by surface air discharge. Journal Physics D: Applied Physics, 2019, 52, 415201.	2.8	10
197	Ultrasound-assisted Plasma-activated Water for Bacterial Inactivation in Poultry Industry. , 2019, , .		5
198	Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide - Biology and Chemistry, 2019, 93, 102-114.	2.7	79
199	Full-scale comparison of UV/H2O2 and UV/Cl2 advanced oxidation: The degradation of micropollutant surrogates and the formation of disinfection byproducts. Water Research, 2019, 161, 448-458.	11.3	85
200	Effects of Sunlight on the Trichloronitromethane Formation Potential of Wastewater Effluents: Dependence on Nitrite Concentration. Environmental Science & Technology, 2019, 53, 4285-4294.	10.0	24
201	Microbubble-enhanced DBD plasma reactor: Design, characterisation and modelling. Chemical Engineering Research and Design, 2019, 144, 159-173.	5.6	29
202	Nitric oxide dioxygenation (NOD) reactions of Colll-peroxo and Nilll-peroxo complexes: NODversusNO activation. Inorganic Chemistry Frontiers, 2020, 7, 4872-4882.	6.0	10
203	On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways. Cells, 2020, 9, 2330.	4.1	16
204	Nitrate with benefits: optimizing radical production during UV water treatment. Environmental Science: Water Research and Technology, 2020, 6, 1163-1175.	2.4	19
205	Modification of DNA structure by reactive nitrogen species as a result of 2-methoxyestradiol–induced neuronal nitric oxide synthase uncoupling in metastatic osteosarcoma cells. Redox Biology, 2020, 32, 101522.	9.0	10
206	Nitric oxide monooxygenation (NOM) reaction of cobalt-nitrosyl {Co(NO)}8to Coll-nitrito {Coll(NO2â^')}: base induced hydrogen gas (H2) evolution. Chemical Science, 2020, 11, 5037-5042.	7.4	11

# 207	ARTICLE Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chemical Reviews, 2020, 120, 4355-4454.	IF 47.7	Citations
208	Features and application of coupled cold plasma and photocatalysis processes for decontamination of water. Chemosphere, 2021, 262, 128336.	8.2	15
209	Photochemical origin of reactive radicals and halogenated organic substances in natural waters: A review. Journal of Hazardous Materials, 2021, 401, 123884.	12.4	37
210	Fluid model of plasma–liquid interaction: The effect of interfacial boundary conditions and Henry's law constants. AIP Advances, 2021, 11, .	1.3	7
211	Reactivity and Diffusivity of Nitrogen Oxides in Mammalian Biology. , 2003, , 53-79.		5
212	Reactive Nitrogen Species and Nitric Oxide. , 2015, , 3-19.		8
214	Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: effects of gas flow on chemical reactions. Journal Physics D: Applied Physics, 2021, 54, 065201.	2.8	53
215	^{â^'} OONO. Circulation Research, 2001, 89, 295-297.	4.5	28
216	Peroxynitrite mediated linoleic acid oxidation and tyrosine nitration in the presence of synthetic neuromelanins Acta Biochimica Polonica, 2000, 47, 931-940.	0.5	10
217	Mechanism of peroxynitrite interaction with cytochrome c Acta Biochimica Polonica, 2003, 50, 815-823.	0.5	12
218	Comparative Assessment of Melatonin-Afforded Protection in Liver, Kidney and Heart of Male Mice against Doxorubicin Induced Toxicity. Pharmacology & Pharmacy, 2013, 04, 590-598.	0.7	5
219	Formation of Reactive Species Enhanced by H2O2Addition in the Photodecomposition of N-Nitrosodimethylamine (NDMA). Environmental Engineering Research, 2013, 18, 29-35.	2.5	6
220	Determination of Efficient Operating Condition of UV/H2O2Process Using the OH Radical Scavenging Factor. Daehan Hwan'gyeong Gonghag Hoeji, 2014, 36, 534-541.	1.1	1
221	Modeling study of the indirect treatment of phosphate buffered saline in surface air plasma. Journal Physics D: Applied Physics, 2021, 54, 065203.	2.8	10
222	Resorufin-based fluorescent probe with elevated water solubility for visualizing fluctuant peroxynitrite in progression of inflammation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120620.	3.9	25
223	Unravelling the performance of UV/H2O2 on the removal of pharmaceuticals in real industrial, hospital, grey and urban wastewaters. Chemosphere, 2022, 290, 133315.	8.2	17
224	Advances in mass spectrometry-based epitope mapping of protein therapeutics. Journal of Pharmaceutical and Biomedical Analysis, 2022, 215, 114754.	2.8	8
225	Degradation of 2,6-dichloro-1,4-benzoquinone by UV/H2O2/O3 treatment: Effectiveness, water matrix effects, and degradation mechanism. Chemosphere, 2022, 296, 134014.	8.2	10

#	Article	IF	CITATIONS
226	Frozen Hydrogen Peroxide and Nitrite Solution: The Acceleration of Benzoic Acid Oxidation via the Decreased pH in Ice. Environmental Science & Technology, 2022, 56, 2323-2333.	10.0	10
228	Kinetics of processes initiated in a water cathode by the action of a direct current discharge at atmospheric pressure in air: simulation and experiment. Journal Physics D: Applied Physics, 0, , .	2.8	5
229	Regulation of pulse DC power on the Long lived reactive species concentration of AC excited plasma in liquid phase. , 2022, , .		0
230	Experimental review of different plasma technologies for the degradation of cylindrospermopsin as model water pollutant. Chemical Engineering Journal, 2023, 451, 138984.	12.7	4
231	Hydroxylation and dimerization of <i>para</i> -dihydroxylated aromatic compounds mediated by cold atmospheric-pressure plasma in comparison with chemically catalyzed reactions. Green Chemistry, 2022, 24, 7951-7967.	9.0	1
232	Dominant Dissolved Oxygen-Independent Pathway to Form Hydroxyl Radicals and the Generation of Reactive Chlorine and Nitrogen Species in Breakpoint Chlorination. Environmental Science & Technology, 2023, 57, 150-159.	10.0	7
233	Combined effect of atmospheric gas plasma and UVA light: A sustainable and green alternative for chemical decontamination and microbial inactivation of fish processing water. Chemosphere, 2023, 317, 137792.	8.2	1
234	Fluorescence-based chemical tools for monitoring ultrasound-induced hydroxyl radical production in aqueous solution and in cells. Chemical Communications, 2023, 59, 4328-4331.	4.1	4
235	Exploring the nitric oxide dioxygenation (NOD) reactions of manganese–peroxo complexes. Dalton Transactions, 2023, 52, 5095-5100.	3.3	3
236	The Chemical Composition of Species Formed in a Water Anode Under the Action of a Direct Current Electric Discharge: Comparison with Liquid Cathode—Experiment and Simulation. Plasma Chemistry and Plasma Processing, 2023, 43, 577-597.	2.4	5
237	Nitric Oxide Oxygenation Reactions of Cobalt-Peroxo and Cobalt-Nitrosyl Complexes. Inorganic Chemistry, 2023, 62, 7385-7392.	4.0	4
238	Reaction of a Co(<scp>iii</scp>)-peroxo complex with nitric oxide: putative formation of a peroxynitrite intermediate. Dalton Transactions, 0, , .	3.3	0
239	Mechanistic insights into nitric oxide oxygenation (NOO) reactions of {CrNO} ⁵ and {CoNO} ⁸ . Dalton Transactions, 0, , .	3.3	1
240	Degradation of carbamazepine in surface water: performance of Pd-modified TiO2 and Ce-modified ZnO as photocatalysts. Environmental Science and Pollution Research, 2023, 30, 116078-116090.	5.3	0
241	Structural dependent degradation of histamine H2-receptor antagonists by UV/NH2CI: Reactive species contribution and the role of carbonate ions on ·NO generation. Chemical Engineering Journal, 2024,	12.7	0