A new route to incompletely-condensed silsesquioxane polyhedral oligosilsesquioxanes

Chemical Communications , 2309-2310 DOI: 10.1039/a906242d

Citation Report

#	Article	IF	CITATIONS
1	Major Advances in the Synthesis of POSS Monomers. Materials Research Society Symposia Proceedings, 2000, 628, 1.	0.1	1
2	Designed Hybrid Organicâ `'Inorganic Nanocomposites from Functional Nanobuilding Blocks. Chemistry of Materials, 2001, 13, 3061-3083.	3.2	1,194
3	Liquid-crystalline organic-inorganic hybrid polymers with functionalized silsesquioxanes. Journal of Polymer Science Part A, 2001, 39, 4035-4043.	2.5	56
5	The First CeIV Metallasilsesquioxane Complex: [Ce{(c-C6H11)8Si8O13}2(py)3]. Angewandte Chemie - International Edition, 2001, 40, 1279-1281.	7.2	51
6	Synthesis of functionalised porous network silsesquioxane polymers. Journal of Materials Chemistry, 2002, 12, 3208-3212.	6.7	65
7	Incompletely Condensed Silsesquioxanes:  Versatile Tools in Developing Silica-Supported Olefin Polymerization Catalysts. Chemical Reviews, 2002, 102, 3525-3542.	23.0	341
8	The differential reactivity of octahydridosilsesquioxane on Si(100)-2×1 and Si(111)-7×7: a comparative experimental study. Ultramicroscopy, 2003, 97, 35-45.	0.8	5
9	A Silsesquioxane-Based Diphosphinite Ligand: Synthesis, DFT Study, and Coordination Chemistry. Organometallics, 2003, 22, 5297-5306.	1.1	17
10	The preparation of hexasilsesquioxane (T6) cages by "non aqueous―hydrolysis of trichlorosilanes. Chemical Communications, 2003, , 1382-1383.	2.2	35
11	Organic–inorganic hybrid gels having functionalized silsesquioxanes. Journal of Materials Chemistry, 2003, 13, 1384-1391.	6.7	55
12	Network structures of polyhedral oligomeric silsesquioxane based nanocomposites: A Monte Carlo study. Journal of Chemical Physics, 2004, 121, 9693-9701.	1.2	19
13	Properties and Improved Space Survivability of POSS (Polyhedral Oligomeric Silsesquioxane) Polyimides. Materials Research Society Symposia Proceedings, 2004, 851, 487.	0.1	10
14	Versatile Phosphite Ligands Based on Silsesquioxane Backbones. Advanced Synthesis and Catalysis, 2004, 346, 399-412.	2.1	31
15	Styreneâ^'Butadieneâ^'Styrene Triblock Copolymers Modified with Polyhedral Oligomeric Silsesquioxanes. Macromolecules, 2004, 37, 5211-5218.	2.2	127
16	Thermomechanical Properties of Poly(methyl methacrylate)s Containing Tethered and Untethered Polyhedral Oligomeric Silsesquioxanes. Macromolecules, 2004, 37, 8992-9004.	2.2	209
17	Recent Developments in the Synthesis and Structure of Organosilanols. Chemical Reviews, 2004, 104, 5847-5910.	23.0	307
18	Synthesis and applications of chiral phosphite ligands derived from incompletely condensed silsesquioxane backbones. Tetrahedron: Asymmetry, 2005, 16, 3970-3975.	1.8	25
19	Modular materials from zeolite-like building blocks. Journal of Materials Chemistry, 2005, 15, 931.	6.7	60

#	Article	IF	CITATIONS
20	Layered Inorganicâ^'Organic Clay-like Nanocomposites Rearrange To Form Silsesquioxanes on Acid Treatment. Journal of Physical Chemistry B, 2005, 109, 16034-16039.	1.2	19
21	Metallasilsesquioxanes. Advances in Organometallic Chemistry, 2005, 53, 101-153.	0.5	87
22	Polyhedral Oligomeric Silsesquioxanes (POSS)-Containing Nanohybrid Polymers. Advances in Polymer Science, 2006, , 225-296.	0.4	321
23	A New Completely Condensed Silsesquioxane: Diphenyl-Silsesquioxane. Advanced Materials Research, 2006, 11-12, 327-330.	0.3	1
24	Oligosilanes. , 2007, , 409-512.		10
25	Synthesis and Characterization of Osmium-Containing Silsesquioxanes:  High-Yield Routes to $\{0s3(CO)10(\hat{1}/_4-H)[(\hat{1}/_4-O)Si7O10(c-C6H11)7]\}$ and the New Clusters $\{0s3(CO)10(\hat{1}/_4-H)[(\hat{1}/_4-O)Si7O9(OH)2(c-C6H11)7], \{0s3(CO)10(\hat{1}/_4-H)](\hat{1}/_4-O)Si7O9(OH)(c-C6H11)7], \{0s3(CO)10(\hat{1}/_4-H)](\hat{1}/_4-O)Si8O11(OH)(c-C6H11)8]\}$, and the New Clusters $\{0s3(CO)10(\hat{1}/_4-H)](\hat{1}/_4-O)Si8O11(OH)(c-C6H11)8]$, and $\{0s3(CO)10(\hat{1}/_4-H)](\hat{1}/_4-O)Si8O11(OH)(c-C6H11)8]\}$.	•C6H11)7] d 1.1	}, ₁₄
26	Synthesis and Characterisation of Metal Isobutylsilsesquioxanes and Their Role as Inorganic–Organic Nanoadditives for Enhancing Polymer Thermal Stability. European Journal of Inorganic Chemistry, 2007, 2007, 585-591.	1.0	63
27	Structural control and functionalization of oligomeric silsesquioxanes. Reactive and Functional Polymers, 2007, 67, 1137-1147.	2.0	25
28	[{ <i>μ</i> y ₈ Si ₈ O ₁₃ } ₂ Ca(DME)Ca(THF) ₂] The First Metallasilsesquioxane Derivative of a Heavier Alkaline Earth Metal. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 441-444.	– 0.6	6
29	Microwave-assisted synthesis of cyclopentyltrisilanol (c-C5H9)7Si7O9(OH)3. Journal of Organometallic Chemistry, 2008, 693, 905-907.	0.8	9
30	A spectroscopic investigation of incompletely condensed polyhedral oligomeric silsesquioxanes (POSS-mono-ol, POSS-diol and POSS-triol): Hydrogen-bonded interaction and host–guest complex. Journal of Organometallic Chemistry, 2008, 693, 1301-1308.	0.8	67
31	Polypropylene containing Ti- and Al-polyhedral oligomeric silsesquioxanes: crystallization process and thermal properties. Nanotechnology, 2008, 19, 475701.	1.3	37
32	Fully Condensed Polyhedral Oligosilsesquioxanes (POSS): From Synthesis to Application. Advances in Organometallic Chemistry, 2008, 57, 1-116.	0.5	207
34	Formation of Incompletely Condensed Oligosilsesquioxanes by Hydrolysis of Completely Condensed POSS via Reshuffling. Chemistry Letters, 2008, 37, 804-805.	0.7	24
36	An Efficient Approach to Monophenyl-Functionalized Octasilsesquioxanes. European Journal of Inorganic Chemistry, 2009, 2009, 1317-1319.	1.0	14
37	Monocyclopentadienyl(niobium) Compounds with Imido and Silsesquioxane Ligands: Synthetic, Structural and Reactivity Studies. European Journal of Inorganic Chemistry, 2009, 2009, 4401-4415.	1.0	12
38	Sol-gel reactions of 3-glycidoxypropyltrimethoxysilane in a highly basic aqueous solution. Dalton Transactions, 2009, , 9146.	1.6	63
39	Synthesis, Spectroscopic, and X-ray Characterization of Rhenium Carbonyl Complexes with Different Silsesquioxanes, as Models That Mimic the Chemical Behavior and the Topology of the Silica Surface. Organometallics, 2009, 28, 2668-2676.	1.1	3

CITATION REPORT

#	Article	IF	CITATIONS
40	Formation and hydrogen bonding of a novel POSS-trisilanol. Dalton Transactions, 2009, , 163-167.	1.6	43
41	Understanding the physico-chemical properties of polyhedral oligomeric silsesquioxanes: a variable temperature multidisciplinary study. Physical Chemistry Chemical Physics, 2009, 11, 10087.	1.3	28
42	Synthesis and Catalytic Activity of Titanium Silsesquioxane Frameworks as Models of Titanium Active Surface Sites of Controlled Nuclearity. Organometallics, 2010, 29, 6687-6694.	1.1	20
43	Crystallographic characterisation of novel Zn(II) silsesquioxane complexes and their application as initiators for the production of polylactide. Polyhedron, 2010, 29, 312-316.	1.0	22
44	Synthesis and characterization of reactive polyhedral oligomeric silsesquioxanes (R-POSS) containing multi-N-methylol groups. Journal of Organometallic Chemistry, 2010, 695, 687-691.	0.8	15
45	Cage octaphenylsilsesquioxane from cyclic tetrasiloxanetetraol and its sodium salt. Journal of Organometallic Chemistry, 2010, 695, 898-902.	0.8	23
46	The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Solar Energy Materials and Solar Cells, 2010, 94, 232-245.	3.0	75
47	Novel polymer nanocomposites based on polystyrene and Tiâ€functionalized polyhedral silsesquioxanes. Polymers for Advanced Technologies, 2010, 21, 848-853.	1.6	12
48	Polyhedral Oligomeric Silsesquioxanes with Controlled Structure: Formation and Application in New Si-Based Polymer Systems. Advances in Polymer Science, 2010, , 185-228.	0.4	22
49	Octa, deca, and dodeca(4-nitrophenyl) cage silsesquioxanes via 4-trimethylsilylphenyl derivatives. Dalton Transactions, 2010, 39, 3239.	1.6	25
50	Incompletely Condensed Fluoroalkyl Silsesquioxanes and Derivatives: Precursors for Low Surface Energy Materials. Journal of the American Chemical Society, 2011, 133, 20084-20087.	6.6	49
51	Sorbitol–POSS Interactions on Development of Isotactic Polypropylene Composites. Macromolecules, 2011, 44, 8064-8079.	2.2	40
53	Polyhedral Oligomeric Silsesquioxanes: From Early and Strategic Development through to Materials Application. Advances in Silicon Science, 2011, , 1-46.	0.6	32
54	Novel hybrid systems based on poly(propylene-g-maleic anhydride) and Ti-POSS by direct reactive blending. Polymer Degradation and Stability, 2011, 96, 1793-1798.	2.7	19
55	Synthesis and characterization of organic–inorganic hybrid block copolymers containing a fully condensed ladderâ€like polyphenylsilsesquioxane. Journal of Polymer Science Part A, 2012, 50, 4563-4570.	2.5	22
56	Ultra-thin hybrid polyhedral silsesquioxane–polyamide films with potentially unlimited 2D dimensions. Journal of Materials Chemistry, 2012, 22, 14835.	6.7	52
57	Mechanical and thermal properties of POSS-g-GO reinforced epoxy composites. Iranian Polymer Journal (English Edition), 2012, 21, 497-503.	1.3	29
58	Bridged polyhedral oligomeric silsesquioxane (POSS): A potential member of silsesquioxanes. Chinese Chemical Letters, 2012, 23, 181-184.	4.8	10

CITATION REPORT

	CITATION REF	PORT	
#	Article	IF	CITATIONS
59	Silsesquioxanes and Their Use as Precursors for Catalysts and as Model Compounds. , 2013, , 385-422.		6
60	New organic–inorganic hybrid materials based on perylene diimide–polyhedral oligomeric silsesquioxane dyes with reduced quenching of the emission in the solid state. Dyes and Pigments, 2013, 96, 748-755.	2.0	50
61	Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Progress in Polymer Science, 2013, 38, 1121-1162.	11.8	352
62	Heterometallic Alumo- and Gallodisilicates with M(O–Si–O) ₂ M′ and [M(O–Si–O) ₂] ₂ M′ Cores (M = Al, Ga; M′ = Ti, Zr, Hf). Inorganic Chemistry, 20 52, 6934-6943.	1139	14
63	The design and synthesis of an innovative octacarboxy-silsesquioxane building block. Chemical Communications, 2014, 50, 11008-11011.	2.2	9
64	Synthesis and Polymerization of a <i>para</i> -Disubstituted T8-caged Hexaisobutyl-POSS Monomer. Chemistry Letters, 2014, 43, 1532-1534.	0.7	49
65	Ultraviolet resistance modification of poly(<i>p</i> â€phenyleneâ€1,3,4â€oxadiazole) and poly(<i>p</i> â€phenylene terephthalamide) fibers with polyhedral oligomeric silsesquioxane. Journal of Applied Polymer Science, 2015, 132, .	1.3	11
66	Incompletely condensed POSS-based spin-on-glass networks for impeccable ultra low-k integration. Journal of Materials Chemistry C, 2015, 3, 11605-11611.	2.7	25
67	para-Bisvinylhexaisobutyl-substituted T ₈ caged monomer: synthesis and hydrosilylation polymerization. Polymer Chemistry, 2015, 6, 7500-7504.	1.9	57
68	Synthesis of silsesquioxane-based element-block amphiphiles and their self-assembly in water. RSC Advances, 2016, 6, 73006-73012.	1.7	31
69	Architecture of Silsesquioxanes. , 2016, , 1-34.		0
70	Synthesis and properties of polyimides containing hexaisobutyl-substituted T ₈ cages in their main chains. RSC Advances, 2016, 6, 31751-31757.	1.7	41
71	Vinylâ€Functionalized Silsesquioxanes and Germasilsesquioxanes. European Journal of Inorganic Chemistry, 2017, 2017, 3337-3342.	1.0	13
72	Preparation of a one-dimensional soluble polysilsesquioxane containing phosphonic acid side-chain groups and its thermal and proton-conduction properties. Polymer, 2017, 121, 228-233.	1.8	12
73	Effect of octa(aminopropyl) polyhedral oligomeric silsesquioxane (OapPOSS) functionalized graphene oxide on the mechanical, thermal, and hydrophobic properties of waterborne polyurethane composites. Journal of Applied Polymer Science, 2017, 134, .	1.3	14
74	Fabrication of composite films with poly(methyl methacrylate) and incompletely condensed cageâ€silsesquioxane fillers. Journal of Applied Polymer Science, 2018, 135, 46033.	1.3	30
75	UV resistance graft modification of poly(p-phenylene-l,3,4-oxadiazole) fiber with polyhedral oligomeric silsesquioxane. Journal of the Textile Institute, 2018, 109, 1173-1185.	1.0	1
76	Synthesis of incompletely caged silsesquioxane (T7-POSS) compounds via a versatile three-step approach. Research on Chemical Intermediates, 2018, 44, 4277-4294.	1.3	20

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
77	Synthesis Routes of POSS. Springer Series on Polymer and Composite Materials, 2018, , 1-26.	0.5	2
78	Chlorineâ€Free Catalytic Formation of Silsesquioxanes with Siâ€OH and Siâ€OR Functional Groups. European Journal of Inorganic Chemistry, 2018, 2018, 4905-4910.	1.0	14
79	Silsesquioxane‣upported Chromium Catalyst for Insight into Phillipsâ€Type Ethylene Polymerization. Macromolecular Reaction Engineering, 2018, 12, 1800049.	0.9	6
80	Synthesis and properties of hyperbranched polymers by polymerization of an AB3-type incompletely condensed cage silsesquioxane (IC-POSS) monomer. Polymer Journal, 2018, 50, 879-887.	1.3	17
81	Development of macromolecules and supramolecules based on silicon and arsenic chemistries. Polymer Journal, 2018, 50, 837-846.	1.3	48
82	Open-cage silsesquioxane necklace polymers having closed-cage silsesquioxane pendants. Polymer Chemistry, 2018, 9, 4108-4112.	1.9	22
83	Architecture of Silsesquioxanes. , 2018, , 3119-3151.		4
84	Polymers and cyclic compounds based on a sideâ€opening type cage silsesquioxane. Journal of Polymer Science Part A, 2019, 57, 2243-2250.	2.5	13
85	Soluble Network Polymers Based on Trifunctional Open-cage Silsesquioxanes. Chemistry Letters, 2019, 48, 1266-1269.	0.7	9
86	Effect of different POSS structures on the crystallization behavior and dynamic mechanical properties of biodegradable Poly(ethylene succinate). Polymer, 2019, 163, 68-73.	1.8	16
87	An intramolecular hybrid of metal polyhedral oligomeric silsesquioxanes with special titanium-embedded cage structure and flame retardant functionality. Chemical Engineering Journal, 2019, 374, 1304-1316.	6.6	97
88	Corner―and Sideâ€Opened Cage Silsesquioxanes: Structural Effects on the Materials Properties. European Journal of Inorganic Chemistry, 2020, 2020, 737-742.	1.0	18
89	Uranyl Oxo Silylation Promoted by Silsesquioxane Coordination. Journal of the American Chemical Society, 2020, 142, 8738-8747.	6.6	16
90	Soluble network polymers based on <scp>trifluoropropylâ€substituted openâ€cage</scp> silsesquioxan Synthesis, properties, and application for surface modifiers. Journal of Applied Polymer Science, 2021, 138, 50167.	e: 1.3	6
91	Organocatalytic controlled/living ring-opening polymerization of 1,3,5-triphenyl-1,3,5-tri- <i>p</i> -tolylcyclotrisiloxane for the precise synthesis of fusible, soluble, functionalized, and solid poly[phenyl(<i>p</i> -tolyl)siloxane]s. Polymer Chemistry, 2021, 12, 5178-5190	1.9	5
92	Intermolecular interactions between sol–gel-derived random-structure oligomeric silsesquioxanes and a diazonaphthoquinone derivative. Japanese Journal of Applied Physics, 2021, 60, 051002.	0.8	4
93	Influence of Substitutional Groups on the Ordering and Crystallization of Amphiphilic Silsesquioxanes at the Air–Water Interface. Langmuir, 2021, 37, 6232-6242.	1.6	1
94	Alkenyl-Functionalized Open-Cage Silsesquioxanes (RSiMe ₂ O/sub>3R′ ₇ Si ₇ O ₉ : A Novel Clas Building Nanoblocks. Inorganic Chemistry, 2021, 60, 11006-11013.	s of 1.9	14

#	Article	IF	CITATIONS
95	Silsesquioxanes: Advanced Model Supports in Developing Silica-Immobilized Polymerization Catalysts. , 2005, , 57-83.		3
96	Polyhedral Oligomeric Silsesquioxane (POSS). , 2007, , 577-584.		8
97	Element-Block Polymeric Materials Based on Cage Silsesquioxane Frameworks. , 2019, , 77-94.		0
98	Siloxane Oligomer with Random Structure for Use in Photosensitive White Decorative Coatings. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 517-524.	0.1	Ο
99	Recent Progress on Designable Hybrids with Stimuliâ€Responsive Optical Properties Originating from Molecular Assembly Concerning Polyhedral Oligomeric Silsesquioxane. Chemistry - an Asian Journal, 2022, 17, .	1.7	7
100	One-pot synthesis of bifunctional polyhedral oligomeric silsesquioxane: Full spectrum ratio of vinyl groups from 0 to 100%. Journal of Industrial and Engineering Chemistry, 2022, 113, 502-512.	2.9	2
101	Enhancement of thermal stability of structural color by the substituent effect in polyhedral oligomeric silsesquioxane in block copolymers. European Polymer Journal, 2022, 175, 111360.	2.6	0
102	Thermal and mechanical behaviors of beads-on-string-shaped poly(azomethine)s based on their linker structures. Polymer Journal, 2023, 55, 849-858.	1.3	1