Thin Film Microstructure Control Using Glancing Angle

Journal of Materials Research 14, 1197-1199 DOI: 10.1557/jmr.1999.0162

Citation Report

#	Article	IF	CITATIONS
1	Fabrication of submicrometer regular arrays of pillars and helices. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 2671.	1.6	116
2	Thin films with nanometer-scale pillar microstructure. Journal of Materials Research, 1999, 14, 3158-3163.	1.2	78
3	Production of porous carbon thin films by pulsed laser deposition. Thin Solid Films, 1999, 350, 49-52.	0.8	65
4	Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature, 1999, 399, 764-766.	13.7	236
5	A reversibly antigen-responsive hydrogel. Nature, 1999, 399, 766-769.	13.7	1,108
6	Mechanical properties of microspring thin films fabricated by glancing angle deposition (CLAD). , 0, , .		1
7	Optical devices fabricated from porous thin films embedded with liquid crystals. , 0, , .		1
8	Non-lithographic Nanocolumn Fabrication with Application to Field Emitters. Materials Research Society Symposia Proceedings, 2000, 636, 9241.	0.1	1
9	Nanoindentation of Microspring Thin Films. Materials Research Society Symposia Proceedings, 2000, 657, 5151.	0.1	1
10	Spectral holes in Bragg reflection from chiral sculptured thin films: circular polarization filters. Optics Communications, 2000, 177, 57-68.	1.0	40
11	Alignment and switching of nematic liquid crystals embedded in porous chiral thin films. Liquid Crystals, 2000, 27, 387-391.	0.9	44
12	Axial loading of a chiral sculptured thin film. Modelling and Simulation in Materials Science and Engineering, 2000, 8, 677-686.	0.8	7
13	Origin and evolution of sculptured thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1538-1545.	0.9	221
14	Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 158-166.	0.9	101
15	Field emission from carbon and silicon films with pillar microstructure. Thin Solid Films, 2001, 389, 1-4.	0.8	32
16	Strain-energy-driven abnormal grain growth in copper films on silicon substrates. Journal of Crystal Growth, 2001, 226, 168-174.	0.7	54
17	Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications. Nanotechnology, 2001, 12, 336-349.	1.3	90
18	Thin-film regular-array structures with 10-100 nm repeat distance. Nanotechnology, 2001, 12, 11-13.	1.3	23

#	Article	IF	CITATIONS
19	Periodic submicrometer structures by sputtering. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1813.	1.6	49
20	Microsprings and microcantilevers: studies of mechanical response. Journal of Micromechanics and Microengineering, 2001, 11, 582-588.	1.5	51
21	Fractal analysis of sampled profiles: Systematic study. Physical Review E, 2002, 65, 021601.	0.8	20
22	Growth behavior of evaporated porous thin films. Journal of Materials Research, 2002, 17, 2904-2911.	1.2	63
23	Arrays of self-sealed microchambers and channels. Journal of Materials Chemistry, 2002, 12, 2348-2351.	6.7	21
24	Structural and Chemical Characterization of Aligned Crystalline Nanoporous MgO Films Grown via Reactive Ballistic Deposition. Journal of Physical Chemistry B, 2002, 106, 3526-3529.	1.2	93
25	Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Applied Surface Science, 2002, 187, 60-67.	3.1	63
26	Porous thin films for the characterization of atomic force microscope tip morphology. Thin Solid Films, 2002, 408, 79-86.	0.8	7
27	The deposition angle-dependent density of amorphous solid water films. Journal of Chemical Physics, 2003, 118, 364-372.	1.2	156
28	Optical performance of porous TiO2 chiral thin films. , 2003, , .		0
29	Three-dimensional square spiral photonic crystal nanostructures by glancing angle deposition. , 0, , .		2
30	Nanostructured Oxide Films for High-Speed Humidity Sensors. Materials Research Society Symposia Proceedings, 2003, 788, 1141.	0.1	2
31	Controlled growth of periodic pillars by glancing angle deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 23.	1.6	117
32	Mechanical characteristics of nanoscale springs. Journal of Applied Physics, 2004, 95, 267-271.	1.1	38
33	Effects of Deposition Angle on the Optical Properties of Helically Structured Films. Materials Research Society Symposia Proceedings, 2004, 846, DD10.17.1.	0.1	1
34	Continuum model for nanocolumn growth during oblique angle deposition. Journal of Applied Physics, 2004, 95, 4346-4351.	1.1	31
35	Optical properties of porous helical thin films and the effects of post-deposition annealing. , 2004, , .		15
36	CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES. Annual Review of Materials Research, 2004, 34, 151-180.	4.3	999

#	Article	IF	CITATIONS
37	Chiral and nanostructured optical materials. , 2004, , .		0
38	Critical review of stress coatings for membrane optics. , 2005, , .		0
39	Effect of porosity on optical properties of chiral films. , 2005, , .		0
40	Large-area microfabrication of three-dimensional, helical polymer structures. Journal of Micromechanics and Microengineering, 2005, 15, 49-54.	1.5	22
41	Nanostructure fabrication by glancing angle ion beam assisted deposition of silicon. Applied Physics A: Materials Science and Processing, 2005, 81, 481-486.	1.1	29
42	Structural characterization of nanoporous Pd films grown via ballistic deposition. Surface Science, 2005, 586, 137-145.	0.8	35
43	Direct deposition of aligned nanorod array onto cylindrical objects. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 947.	1.6	21
44	Generation of fibrous aerosols from thin films. Journal of Aerosol Science, 2005, 36, 933-937.	1.8	6
45	Double-handed circular Bragg phenomena in polygonal helix thin films. Journal of Applied Physics, 2005, 98, 083517.	1.1	52
46	Double-handed circular Bragg reflection bands in chiral thin films. , 2005, 5870, 16.		Ο
47	Characterization of Watermarks Formed in Nano-Carpet Effect. Langmuir, 2006, 22, 3662-3671.	1.6	27
48	Birefringence enhancement in annealed TiO2 thin films. Journal of Applied Physics, 2007, 102, 013517.	1.1	55
49	Reactive Ballistic Deposition of Porous TiO2Films:  Growth and Characterization. Journal of Physical Chemistry C, 2007, 111, 4765-4773.	1.5	56
50	Video-based Metrology of Water Droplet Spreading on Nanostructured Surfaces. Proceedings IEEE Workshop on Applications of Computer Vision, 2007, , .	0.0	0
51	Transparent conductors as solar energy materials: A panoramic review. Solar Energy Materials and Solar Cells, 2007, 91, 1529-1598.	3.0	1,362
52	Nanostructure engineering in porous columnar thin films: recent advances. Journal of Materials Science: Materials in Electronics, 2007, 18, 367-379.	1.1	101
53	WO3 pillar-type and helical-type thin film structures to be used in microbatteries. Journal of Power Sources, 2007, 172, 422-427.	4.0	15
54	Microstructures, surface areas, and oxygen absorption of Ti and Ti–Zr–V films grown using glancing-angle sputtering. Journal of Materials Research, 2008, 23, 579-587.	1.2	7

#	Article	IF	CITATIONS
55	Patterned Silver Nanorod Array Substrates for Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2009, 63, 1101-1106.	1.2	15
56	Photocatalytic Properties of TiO[sub 2] Nanostructures Fabricated by Means of Glancing Angle Deposition and Anodization. Journal of the Electrochemical Society, 2009, 156, K160.	1.3	35
57	Growth and Characterization of High Surface Area Titanium Carbide. Journal of Physical Chemistry C, 2009, 113, 12742-12752.	1.5	48
58	Photonic crystal switching by the electrophoretic movement of dye ions. Proceedings of SPIE, 2010, , .	0.8	1
59	Structured Ti/Hydrocarbon Plasma Polymer Nanocomposites Produced By Magnetron Sputtering with Glancing Angle Deposition. Plasma Processes and Polymers, 2010, 7, 25-32.	1.6	30
60	Thin Film Deposition Using Energetic Ions. Materials, 2010, 3, 4109-4141.	1.3	74
61	Multilayered Pt/Ru nanorods with controllable bimetallic sites as methanol oxidation catalysts. Physical Chemistry Chemical Physics, 2010, 12, 15240.	1.3	33
62	Thermal Stability of Silver Nanorod Arrays. Chemistry of Materials, 2010, 22, 2184-2189.	3.2	21
63	Low Temperature Synthesis and Characterization of Nanocrystalline Titanium Carbide with Tunable Porous Architectures. Chemistry of Materials, 2010, 22, 319-329.	3.2	54
64	Glancing Angle Deposition. , 2010, , 621-678.		63
65	Plasma-Enhanced Chemical Vapor Deposition of Functional Coatings. , 2010, , 392-465.		37
66	Morphology Dependence of the Lithium Storage Capability and Rate Performance of Amorphous TiO ₂ Electrodes. Journal of Physical Chemistry C, 2011, 115, 2585-2591.	1.5	82
67	Advanced multi-component nanostructures designed by dynamic shadowing growth. Nanoscale, 2011, 3, 2361.	2.8	81
68	Glancing angle deposition of crystalline zinc oxide nanorods. Thin Solid Films, 2011, 519, 3530-3537.	0.8	27
69	Suppression of circular Bragg phenomenon in chiral sculptured thin films produced with simultaneous rocking and rotation of substrate during serial bideposition. Proceedings of SPIE, 2012, , .	0.8	0
70	Characterization of Nanoporous WO3 Films Grown via Ballistic Deposition. Journal of Physical Chemistry C, 2012, 116, 10649-10655.	1.5	15
71	Nanostructured Ta ₃ N ₅ Films as Visible-Light Active Photoanodes for Water Oxidation. Journal of Physical Chemistry C, 2012, 116, 19225-19232.	1.5	76
72	Flux Engineering To Control In-Plane Crystal and Morphological Orientation. Crystal Growth and Design, 2012, 12, 3661-3667.	1.4	22

#	Article	IF	CITATIONS
73	Nanostructures and sensing properties of ZnO prepared using normal and oblique angle deposition techniques. Thin Solid Films, 2012, 520, 3493-3498.	0.8	36
74	Fractal characteristics and microstructure evolution of magnetron sputtering Cu thin films. Chinese Journal of Mechanical Engineering (English Edition), 2013, 26, 137-143.	1.9	2
75	Surface multiplasmonics with periodically non-homogeneous thin films. , 2013, , 450-492.		2
76	Suppression of circular Bragg phenomenon in chiral sculptured thin films produced with simultaneous rocking and rotation of substrate during serial bideposition. Journal of Nanophotonics, 2013, 7, 073599.	0.4	12
77	Dynamic Shadowing Growth and Its Energy Applications. Frontiers in Energy Research, 2014, 2, .	1.2	15
81	Tailoring of optical and wetting properties of sputter deposited silica thin films by glancing angle deposition. Applied Surface Science, 2014, 290, 509-513.	3.1	19
82	Highly Sensitive H2S Sensor Based on the Metal-Catalyzed SnO2 Nanocolumns Fabricated by Glancing Angle Deposition. Sensors, 2015, 15, 15468-15477.	2.1	39
83	Deposition of porous titanium oxide thin films as anode material for dye sensitized solar cells. Vacuum, 2015, 114, 213-220.	1.6	27
84	Optical and infrared properties of glancing angle-deposited nanostructured tungsten films. Optics Letters, 2015, 40, 506.	1.7	1
85	Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation. Acta Biomaterialia, 2015, 15, 20-28.	4.1	85
86	Study of hafnium oxide thin films deposited by RF magnetron sputtering under glancing angle deposition at varying target to substrate distance. Applied Surface Science, 2015, 353, 459-468.	3.1	20
87	Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering. ACS Applied Materials & Interfaces, 2015, 7, 22594-22600.	4.0	15
88	High-response and selective hydrogen sensing properties of porous ZnO nanotubes. Current Applied Physics, 2016, 16, 1263-1269.	1.1	19
89	Critical angles in DC magnetron glad thin films. Vacuum, 2016, 131, 305-311.	1.6	40
90	Band Gap Tuning and Room-Temperature Photoluminescence of a Physically Self-Assembled Cu ₂ 0 Nanocolumn Array. Journal of Physical Chemistry C, 2016, 120, 1077-1082.	1.5	28
91	Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progress in Materials Science, 2016, 76, 59-153.	16.0	564
92	Synthesis of nanostructured Ti thin films by combining glancing angle deposition and magnetron sputtering: A joint experimental and modeling study. Thin Solid Films, 2017, 636, 644-657.	0.8	44
93	Fabrication of black-gold coatings by glancing angle deposition with sputtering. Beilstein Journal of Nanotechnology, 2017, 8, 434-439.	1.5	26

#	Article	IF	CITATIONS
94	Double Hard Axes of Hysteresis Loop in Wide-Angle Obliquely Sputtered CoFeB Amorphous Films. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2393-2397.	0.8	2
95	Surface multiplasmonics with periodically nonhomogeneous thin films. , 2018, , 449-486.		Ο
96	On the Large Near-Field Enhancement on Nanocolumnar Gold Substrates. Scientific Reports, 2019, 9, 13933.	1.6	8
97	Broadband and antireflective characteristics of glancing angle deposited titanium dioxide nanostructures for photovoltaic applications. Thin Solid Films, 2019, 685, 53-58.	0.8	6
98	Silica-based antireflection coating by glancing angle deposition. Surface Engineering, 2019, 35, 982-985.	1.1	8
99	Glancing Angle Deposition of Zn-Doped Calcium Phosphate Coatings by RF Magnetron Sputtering. Coatings, 2019, 9, 220.	1.2	25
100	Enhanced hydrogen storage by a variable temperature process. International Journal of Hydrogen Energy, 2019, 44, 3771-3778.	3.8	7
101	Electrical resistivity and elastic wave propagation anisotropy in glancing angle deposited tungsten and gold thin films. Applied Surface Science, 2019, 475, 606-614.	3.1	20
102	Synergic antibacterial coatings combining titanium nanocolumns and tellurium nanorods. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 36-46.	1.7	17
103	Factors influencing the nanostructure of obliquely deposited thin films. Surface Engineering, 2019, 35, 227-233.	1.1	11
104	Recent Advances in the Development of Nano-Sculpted Films by Magnetron Sputtering for Energy-Related Applications. Nanomaterials, 2020, 10, 2039.	1.9	14
105	Silver nanopillar coatings grown by glancing angle magnetron sputtering for reducing multipactor effect in spacecrafts. Applied Surface Science, 2020, 526, 146699.	3.1	5
106	Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments. Lab on A Chip, 2021, 21, 254-271.	3.1	20
107	Branching of Titanium Nanorods. Nanomaterials, 2021, 11, 1070.	1.9	2
108	A review on the prominence of porosity in tungsten oxide thin films for electrochromism. lonics, 2021, 27, 2307-2334.	1.2	34
109	On Improving Wear Resistance of Cr-Al-N Coatings Using Dynamic Glancing Angle DC Magnetron Sputtering. Nanomaterials, 2021, 11, 2187.	1.9	6
110	Nanoindentation of Microsprings and Microcantilevers. , 2002, , 35-42.		0
111	Deposition of WO3 Thin Films at Oblique Angle -Growth and Electrochemical Behavior. E-Journal of Surface Science and Nanotechnology, 2009, 7, 465-470.	0.1	0

#	Article	IF	CITATIONS
112	Crystal orientation control of antimony telluride thermoelectric thin films by oblique deposition. Journal of Advanced Science, 2016, 28, n/a.	0.1	0
113	Effects of nanostructuration on the electrochemical performance of metallic bioelectrodes. Nanoscale, 2022, 14, 3179-3190.	2.8	6
114	PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO3) thin films: A review. Materials Science in Semiconductor Processing, 2022, 143, 106534.	1.9	31
115	Large-Area Nanopillar Arrays by Glancing Angle Deposition with Tailored Magnetic Properties. Nanomaterials, 2022, 12, 1186.	1.9	4
116	Tailoring of optical and wetting properties of electron beam deposited Ag nanostructure films by oblique angle deposition. Journal of Optics (India), 0, , .	0.8	1
117	Optimization of GLAD Angle for E-Beam-Fabricated Tungsten Oxide (WO3) Thin Films Towards Novel Electrochromic Behavior. Journal of Electronic Materials, 2023, 52, 653-668.	1.0	5
118	Resistant Characteristics of AAO-Based Thin Film Solid Oxide Fuel Cells Using Ni-GDC Anode by GLAD Method. Journal of the Korean Society for Precision Engineering, 2023, 40, 335-340.	0.1	0