Ternary nucleation of H2SO4, NH3, and H2O in the atm

Journal of Geophysical Research 104, 26349-26353 DOI: 10.1029/1999jd900784

Citation Report

#	Article	IF	CITATIONS
1	Stable sulphate clusters as a source of new atmospheric particles. Nature, 2000, 404, 66-69.	13.7	584
2	Formation and cycling of aerosols in the global troposphere. Atmospheric Environment, 2000, 34, 4215-4240.	1.9	386
3	Ternary nucleation of H[sub 2]SO[sub 4], NH[sub 3] and H[sub 2]O. AIP Conference Proceedings, 2000, ,	0.3	0
4	Long-term measurements of events of new particle formation at Hohenpeissenberg: Methods of analysis and climatology. AIP Conference Proceedings, 2000, , .	0.3	0
5	Application of nucleation theories to atmospheric aerosol formation. AIP Conference Proceedings, 2000, , .	0.3	5
6	The homogeneous heteromolecular nucleation of sulphuric acid, water and ammonia in the coastal environment. Journal of Aerosol Science, 2000, 31, 652-653.	1.8	0
7	A model prediction of the yield of CCN from tidal-related nucleation events. Journal of Aerosol Science, 2000, 31, 654-655.	1.8	1
8	Development of particle size and composition distribution with aerosol dynamics model AEROFOR2. Journal of Aerosol Science, 2000, 31, 936-937.	1.8	2
9	Observations of new particle production in the atmosphere of a moderately polluted site in eastern England. Journal of Geophysical Research, 2000, 105, 17819-17832.	3.3	36
10	Can new particle formation occur in the clean marine boundary layer?. Journal of Geophysical Research, 2000, 105, 26531-26546.	3.3	100
11	Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 2567-2580.	1.6	121
12	New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence. Geophysical Research Letters, 2000, 27, 3325-3328.	1.5	208
13	Evolution of newly formed aerosol particles in the continental boundary layer: A case study including OH and H2SO4measurements. Geophysical Research Letters, 2000, 27, 2205-2208.	1.5	75
14	The effect of atmospheric waves on aerosol nucleation and size distribution. Journal of Geophysical Research, 2000, 105, 19917-19926.	3.3	29
15	How significantly does coagulational scavenging limit atmospheric particle production?. Journal of Geophysical Research, 2001, 106, 24119-24125.	3.3	127
16	Vertical and horizontal distributions of the aerosol number concentration and size distribution over the northern Indian Ocean. Journal of Geophysical Research, 2001, 106, 28629-28641.	3.3	72
17	Description and evaluation of a six-moment aerosol microphysical module for use in atmospheric chemical transport models. Journal of Geophysical Research, 2001, 106, 20275-20291.	3.3	26
18	Experimental and modeling studies of secondary organic aerosol formation and some applications to the marine boundary layer. Journal of Geophysical Research, 2001, 106, 27619-27634.	3.3	24

ATION REDO

#	Article	IF	CITATIONS
19	Nucleation in the equatorial Pacific during PEM-Tropics B: Enhanced boundary layer H2SO4with no particle production. Journal of Geophysical Research, 2001, 106, 32767-32776.	3.3	21
20	On the contribution of lightning to ultrafine aerosol formation. Geophysical Research Letters, 2001, 28, 155-158.	1.5	10
21	Measurements of enhanced H2SO4and 3-4 nm particles near a frontal cloud during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research, 2001, 106, 24107-24117.	3.3	83
22	Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer. Journal of Geophysical Research, 2001, 106, 32111-32123.	3.3	99
23	Atmospheric program on the Arctic Ocean Expedition 1996 (AOE-96): An overview of scientific goals, experimental approach, and instruments. Journal of Geophysical Research, 2001, 106, 32051-32067.	3.3	78
24	From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation. Journal of Geophysical Research, 2001, 106, 4797-4814.	3.3	330
25	Analysis of particle formation bursts observed in Finland. Journal of Aerosol Science, 2001, 32, 217-236.	1.8	42
28	Effects of air masses and synoptic weather on aerosol formation in the continental boundary layer. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 462.	0.8	70
29	Modelling of aerosol processes in plumes. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 83-93.	0.8	1
31	Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR). Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 324.	0.8	209
32	New particle formation of ternary droplets in the atmosphere — a steady-state nucleation kinetics approach. Atmospheric Environment, 2001, 35, 599-607.	1.9	6
33	From binary and ternary to multicomponent nucleation: Atmospheric aerosol formation. Journal of Chemical Physics, 2001, 115, 2641-2651.	1.2	5
34	Chapter 18 Formation and cycling of aerosols in the global troposphere. Developments in Environmental Science, 2002, , 519-563.	0.5	4
35	An improved model for hydrate formation in sulfuric acid–water nucleation. Journal of Chemical Physics, 2002, 116, 218.	1.2	107
36	Ternary nucleation of inorganic acids, ammonia, and water. Journal of Chemical Physics, 2002, 117, 8418-8425.	1.2	46
37	An improved model for ternary nucleation of sulfuric acid–ammonia–water. Journal of Chemical Physics, 2002, 116, 4221-4227.	1.2	96
38	Application of the variability-size relationship to atmospheric aerosol studies: estimating aerosol lifetimes and ages. Atmospheric Chemistry and Physics, 2002, 2, 133-145.	1.9	127
39	Nucleation events in the continental boundary layer: Influence of physical and meteorological parameters. Atmospheric Chemistry and Physics, 2002, 2, 1-16.	1.9	169

#	Article	lF	CITATIONS
40	The part of the solar spectrum with the highest influence on the formation of SOA in the continental boundary layer. Atmospheric Chemistry and Physics, 2002, 2, 375-386.	1.9	25
41	Effect of NO 2 on Particle Formation in SO 2 /H 2 O/Air Mixtures by Ion-Induced and Homogeneous Nucleation. Aerosol Science and Technology, 2002, 36, 941-952.	1.5	16
42	A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements. Journal of Geophysical Research, 2002, 107, PAR 1-1.	3.3	165
43	Aerosol formation during PARFORCE: Ternary nucleation of H2SO4, NH3, and H2O. Journal of Geophysical Research, 2002, 107, PAR 15-1.	3.3	75
44	Predicting global aerosol size distributions in general circulation models. Journal of Geophysical Research, 2002, 107, AAC 4-1.	3.3	335
45	Measurement of prenucleation molecular clusters in the NH3, H2SO4, H2O system. Journal of Geophysical Research, 2002, 107, AAC 10-1.	3.3	102
46	Condensation/evaporation of insoluble organic vapor as functions of source rate and saturation vapor pressure. Journal of Geophysical Research, 2002, 107, ACH 1-1-ACH 1-9.	3.3	6
47	Concentration trends and mixing states of particulate oxalate in Arctic boundary layer in winter/spring. Journal of Geophysical Research, 2002, 107, AAC 12-1.	3.3	14
48	Parametrization of ternary nucleation rates for H2SO4-NH3-H2O vapors. Journal of Geophysical Research, 2002, 107, AAC 6-1.	3.3	235
49	A hypothesis for growth of fresh atmospheric nuclei. Journal of Geophysical Research, 2002, 107, AAC 15-1-AAC 15-6.	3.3	70
50	An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions. Journal of Geophysical Research, 2002, 107, AAC 3-1.	3.3	492
51	Monitoring ammonia in urban, inner alpine and pre-alpine ambient air. Journal of Environmental Monitoring, 2002, 4, 205-209.	2.1	22
52	Analytical formulae connecting the "real―and the "apparent―nucleation rate and the nuclei number concentration for atmospheric nucleation events. Journal of Aerosol Science, 2002, 33, 609-622.	1.8	344
53	Coastal new particle formation: Environmental conditions and aerosol physicochemical characteristics during nucleation bursts. Journal of Geophysical Research, 2002, 107, PAR 12-1.	3.3	121
54	A model prediction of the yield of cloud condensation nuclei from coastal nucleation events. Journal of Geophysical Research, 2002, 107, PAR 3-1.	3.3	34
55	Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland. Journal of Geophysical Research, 2002, 107, PAR 5-1.	3.3	137
56	Cosmic Rays, Clouds, and Climate. Science, 2002, 298, 1732-1737.	6.0	506
57	Small-particle concentration fluctuations at a coastal site. Atmospheric Research, 2002, 63, 247-269.	1.8	2

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
58	Marine aerosol formation from biogenic iodine emissions. Nature, 2002, 417, 632-636.	13.7	705
59	Modelling of the influence of aerosol processes for the dispersion of vehicular exhaust plumes in street environment. Atmospheric Environment, 2003, 37, 339-351.	1.9	61
60	Chemical evolution and dispersion of ship plumes in the remote marine boundary layer: investigation of sulfur chemistry. Atmospheric Environment, 2003, 37, 2663-2679.	1.9	31
61	Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmospheric Environment, 2003, 37, 4109-4119.	1.9	319
62	Modelsâ€3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. Journal of Geophysical Research, 2003, 108, .	3.3	687
63	Observations of new particle formation in urban air. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	121
64	A monodisperse aerosol dynamics module, a promising candidate for use in long-range transport models: Box model tests. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	33
65	New particle formation in anthropogenic plumes advecting from Asia observed during TRACE-P. Journal of Geophysical Research, 2003, 108, .	3.3	50
66	Nucleation rate of particles in the lower atmosphere: Estimated time needed to reach pseudo-steady state and sensitivity to H2SO4gas concentration. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	12
67	Uptake of neutral polar vapor molecules by charged clusters/particles: Enhancement due to dipole-charge interaction. Journal of Geophysical Research, 2003, 108, .	3.3	102
68	Nucleation events in the continental boundary layer: Long-term statistical analyses of aerosol relevant characteristics. Journal of Geophysical Research, 2003, 108, .	3.3	61
69	Particle Formation by Ion Nucleation in the Upper Troposphere and Lower Stratosphere. Science, 2003, 301, 1886-1889.	6.0	330
70	Tropospheric Aerosols. , 2003, , 91-142.		9
71	Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications. Atmospheric Chemistry and Physics, 2003, 3, 1645-1664.	1.9	38
72	The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, H ₂ SO ₄ , OH, and monoterpenes measurements. Atmospheric Chemistry and Physics, 2003, 3, 361-376.	1.9	259
73	Particle formation at a continental background site: comparison of model results with observations. Atmospheric Chemistry and Physics, 2003, 3, 347-359.	1.9	14
74	ATMOSPHERIC PARTICLE FORMATION FROM H2SO4/H2O: AN EXPERIMENTAL STUDY. Journal of Aerosol Science, 2004, 35, S989-S990.	1.8	0
75	PHOTO STATIONARY CALCULATIONS OF SULPHURIC ACID AND ITS CONTRIBUTION TO NUCLEATION MODE PARTICLE GROWTH. Journal of Aerosol Science, 2004, 35, S1231-S1232.	1.8	0

ARTICLE IF CITATIONS # Binary homogeneous nucleation in water–succinic acid and water–glutaric acid systems. Journal of 1.2 40 76 Chemical Physics, 2004, 120, 282-291. Atmospheric particle formation from the ozonolysis of alkenes in the presence of SO2. Atmospheric 23 Environment, 2004, 38, 2145-2153. Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. 78 1.9 70 Atmospheric Environment, 2004, 38, 4979-4992. Air pollution: A half century of progress. AICHE Journal, 2004, 50, 1096-1108. 79 1.8 Surface Tensions and Densities of Sulfuric Acid + Dimethylamine + Water Solutions. Journal of 80 1.0 24 Chemical & amp; Engineering Data, 2004, 49, 917-922. How important is nucleation in regional/global modelling?. Geophysical Research Letters, 2004, 31, 1.5 24 n/a-n/a. Observations of particle formation and growth in a mountainous forest region in central Europe. 82 3.3 55 Journal of Geophysical Research, 2004, 109, . Gas emissions from soil and leaf litter as a source of new particle formation. Atmospheric Research, 1.8 2004, 70, 33-42. 84 Stable Ammonium Bisulfate Clusters in the Atmosphere. Physical Review Letters, 2004, 93, 148501. 2.9 42 Parameterization of Turbulence-Enhanced Nucleation in Large Scale Models: Conceptual Study., 2004, ,295-305. Kinetic nucleation and ions in boreal forest particle formation events. Atmospheric Chemistry and 103 86 1.9 Physics, 2004, 4, 2353-2366. Overview of the field measurement campaign in HyytiÃѬ́PAugust 2001 in the framework of the EU project OSOA. Atmospheric Chemistry and Physics, 2004, 4, 657-678. A look at aerosol formation using data mining techniques. Atmospheric Chemistry and Physics, 2005, 5, 88 1.9 87 3345-3356. Measurements of organic gases during aerosol formation events in the boreal forest atmosphere 89 during QUEST. Atmospheric Chemistry and Physics, 2005, 5, 373-384. Sulphuric acid closure and contribution to nucleation mode particle growth. Atmospheric Chemistry 90 1.9 178 and Physics, 2005, 5, 863-878. The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe. Atmospheric Chemistry and Physics, 2005, 5, 1773-1785. Evolution of particle concentration and size distribution observed upwind, inside and downwind hill cap clouds at connected flow conditions during FEBUKO. Atmospheric Environment, 2005, 39, 92 1.9 45 4233-4245. Nucleation and growth of new particles in the rural atmosphere of Northern Italyâ€"relationship to air quality monitoring. Atmospheric Environment, 2005, 39, 6734-6746.

#	Article	IF	Citations
94	An Investigation into the Ionic Chemical Composition and Mixing State of Biomass Burning Particles Recorded During TRACE-P P3B Flight#10. Journal of Atmospheric Chemistry, 2005, 51, 43-64.	1.4	22
95	Rapid Formation of Sulfuric Acid Particles at Near-Atmospheric Conditions. Science, 2005, 307, 698-700.	6.0	182
96	Surface tensions and densities of H2SO4+ NH3+ water solutions. Geophysical Research Letters, 2005, 32, .	1.5	21
97	Distribution of marine boundary layer ammonia over the Atlantic and Indian Oceans during the Aerosols99 cruise. Journal of Geophysical Research, 2005, 110, .	3.3	36
98	Interaction of mineral dust with gas phase nitric acid and sulfur dioxide during the MINATROC II field campaign: First estimate of the uptake coefficient γHNO3from atmospheric data. Journal of Geophysical Research, 2005, 110, .	3.3	28
99	Measurement of the Thermodynamics of the Hydrated Dimer and Trimer of Sulfuric Acid. Journal of Physical Chemistry A, 2006, 110, 9525-9528.	1.1	99
100	Effect of ammonia on new particle formation: A kinetic H2SO4-H2O-NH3nucleation model constrained by laboratory measurements. Journal of Geophysical Research, 2006, 111, .	3.3	101
101	Emissions of major gaseous and particulate species during experimental burns of southern African biomass. Journal of Geophysical Research, 2006, 111, .	3.3	84
102	Binary H2SO4-H2O homogeneous nucleation based on kinetic quasi-unary nucleation model: Look-up tables. Journal of Geophysical Research, 2006, 111, .	3.3	26
103	Formation of atmospheric H2SO4/H2O particles in the absence of organics: A laboratory study. Geophysical Research Letters, 2006, 33, .	1.5	50
104	Observations of elevated particle number concentration events at a rural site in New England. Journal of Geophysical Research, 2006, 111, .	3.3	17
105	Ab Initio and Density Functional Theory Reinvestigation of Gas-Phase Sulfuric Acid Monohydrate and Ammonium Hydrogen Sulfate. Journal of Physical Chemistry A, 2006, 110, 7178-7188.	1.1	92
106	Atmospheric variability and binary homogeneous nucleation: A parametrisation and conditions required for a significant effect. Atmospheric Research, 2006, 82, 503-513.	1.8	7
107	Parameterization of ammonia and water content of atmospheric droplets with fixed number of sulfuric acid molecules. Atmospheric Research, 2006, 82, 514-522.	1.8	4
108	Charging state of atmospheric nanoparticles during the nucleation burst events. Atmospheric Research, 2006, 82, 536-546.	1.8	45
109	From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model. Atmospheric Chemistry and Physics, 2006, 6, 5193-5211.	1.9	149
110	Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2006, 6, 315-327.	1.9	150
111	Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms. Atmospheric Chemistry and Physics, 2006, 6, 4079-4091.	1.9	444

#	Article	IF	CITATIONS
112	Columnar modelling of nucleation burst evolution in the convective boundary layer – first results from a feasibility study Part I: Modelling approach. Atmospheric Chemistry and Physics, 2006, 6, 4175-4214.	1.9	18
113	Columnar modelling of nucleation burst evolution in the convective boundary layer – first results from a feasibility study Part III: Preliminary results on physicochemical model performance using two & amp;quot;clean air mass" reference scenarios. Atmospheric Chemistry and Physics, 2006, 6, 4231-4251.	1.9	7
114	Columnar modelling of nucleation burst evolution in the convective boundary layer – first results from a feasibility study Part IV: A compilation of previous observations for valuation of simulation results from a columnar modelling study. Atmospheric Chemistry and Physics, 2006, 6, 4253-4274.	1.9	7
115	Evaluation of Fine Particle Number Concentrations in CMAQ. Aerosol Science and Technology, 2006, 40, 985-996.	1.5	20
116	Nature and evolution of ultrafine aerosol particles in the atmosphere. Izvestiya - Atmospheric and Oceanic Physics, 2006, 42, 663-687.	0.2	4
117	Nucleation of atmospheric aerosol particles. Comptes Rendus Physique, 2006, 7, 1027-1045.	0.3	116
118	Densities of liquid H+/NH4+/SO42-/NO3-/H2O solutions at tropospheric temperatures. Atmospheric Environment, 2006, 40, 467-483.	1.9	18
119	A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmospheric Environment, 2006, 40, 5902-5928.	1.9	510
120	Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and HyytiÃѬ́¤Atmospheric Chemistry and Physics, 2007, 7, 1899-1914.	1.9	329
121	Concentrations and fluxes of aerosol particles during the LAPBIAT measurement campaign at Väiö field station. Atmospheric Chemistry and Physics, 2007, 7, 3683-3700.	1.9	19
122	Computational Study of the Reaction between Biogenic Stabilized Criegee Intermediates and Sulfuric Acid. Journal of Physical Chemistry A, 2007, 111, 3394-3401.	1.1	33
123	A density functional study on water-sulfuric acid-ammonia clusters and implications for atmospheric cluster formation. Journal of Geophysical Research, 2007, 112, .	3.3	111
124	New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research, 2007, 112, .	3.3	257
125	Ammonia sources, transport, transformation, and deposition in coastal New England during summer. Journal of Geophysical Research, 2007, 112, .	3.3	56
126	New parameterization of sulfuric acidâ€ammoniaâ€water ternary nucleation rates at tropospheric conditions. Journal of Geophysical Research, 2007, 112, .	3.3	131
127	Factors influencing new particle formation at the rural site, Harwell, United Kingdom. Journal of Geophysical Research, 2007, 112, .	3.3	60
128	Characteristics of particle formation events in the coastal region of Korea in 2005. Atmospheric Environment, 2008, 42, 3729-3739.	1.9	49
129	Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmospheric Environment, 2008, 42, 8113-8138.	1.9	531

#	Article	IF	CITATIONS
130	Nucleation mode particles in upslope valley winds at Mount Norikura, Japan: Implications for the vertical extent of new particle formation events in the lower troposphere. Journal of Geophysical Research, 2008, 113, .	3.3	35
131	On the formation and growth of atmospheric nanoparticles. Atmospheric Research, 2008, 90, 132-150.	1.8	414
132	Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmospheric Research, 2008, 90, 278-286.	1.8	77
133	Importance of the Number of Acid Molecules and the Strength of the Base for Double-Ion Formation in (H ₂ SO ₄) _{<i>m</i>/i>} ·Base·(H ₂ O) ₆ Clusters. Journal of the American Chemical Society, 2008, 130, 14144-14147.	6.6	34
134	Evaluation of Nucleation Theories in a Sulfur-Rich Environment. Aerosol Science and Technology, 2008, 42, 495-504.	1.5	47
135	Coupling between dimethylsulfide emissions and the ocean - atmosphere exchange of ammonia. Environmental Chemistry, 2008, 5, 259.	0.7	35
136	Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid/sulfuric acid/water system. Journal of Chemical Physics, 2008, 128, 064508.	1.2	51
137	Laboratory studies of H ₂ SO ₄ /H <sub&am binary homogeneous nucleation from the SO₂+OH reaction: evaluation of the experimental setup and preliminary results. Atmospheric Chemistry and Physics,</sub&am 	p;gt;2&an 1.9	1p;lt;/sub&ar 95
138	Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmospheric Chemistry and Physics, 2008, 8, 4095-4103.	1.9	424
139	Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002). Atmospheric Chemistry and Physics, 2008, 8, 603-623.	1.9	49
140	Variation and balance of positive air ion concentrations in a boreal forest. Atmospheric Chemistry and Physics, 2008, 8, 655-675.	1.9	47
141	Large-scale aircraft observations of ultra-fine and fine particle concentrations in the remote Siberian troposphere: New particle formation studies. Atmospheric Environment, 2009, 43, 1302-1309.	1.9	22
142	Laboratoryâ€measured H ₂ SO ₄ â€H ₂ Oâ€NH ₃ ternary homogeneous nucleation rates: Initial observations. Geophysical Research Letters, 2009, 36, .	1.5	80
143	Aerosol size distribution modeling with the Community Multiscale Air Quality modeling system in the Pacific Northwest: 2. Parameterizations for ternary nucleation and nucleation mode processes. Journal of Geophysical Research, 2009, 114, .	3.3	19
144	Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Precursors. Journal of Physical Chemistry A, 2009, 113, 680-689.	1.1	183
145	Thermodynamics and Kinetics of Nanoclusters Controlling Gas-to-Particle Nucleation. Journal of Physical Chemistry C, 2009, 113, 10354-10370.	1.5	59
146	Coupled IMPACT aerosol and NCAR CAM3 model: Evaluation of predicted aerosol number and size distribution. Journal of Geophysical Research, 2009, 114, .	3.3	64
147	Aerosol indirect forcing in a global model with particle nucleation. Atmospheric Chemistry and Physics, 2009, 9, 239-260.	1.9	267

#	Article	IF	CITATIONS
148	Kinetic modeling of nucleation experiments involving SO ₂ and OH: new insights into the underlying nucleation mechanisms. Atmospheric Chemistry and Physics, 2009, 9, 7913-7922.	1.9	6
	Particle formation in the Arctic free troposphere during the ASTAR 2004 campaign: a case study on the influence of vertical motion on the binary homogeneous nucleation of		
149	H ₂ SO ₄ /H <sub&< td=""><td>p;gt;2&am</td><td>p;lt;/sub&a</td></sub&<>	p;gt;2&am	p ; lt;/sub&a
150	Atmospheric Chemistry and Physics, 2010, 10, 1105-1120, Laboratory study on new particle formation from the reaction OH + SO ₂ : influence of experimental conditions, H ₂ O vapour, NH ₃ and the amine tert-butylamine on the overall process. Atmospheric Chemistry and Physics, 2010, 10, 7101-7116.	1.9	194
151	Changes in concentration and size distribution of aerosols during fog over the south Indian Ocean. Journal of Earth System Science, 2010, 119, 479-487.	0.6	9
152	Gaseous and particulate emissions from thermal power plants operating on different technologies. Environmental Monitoring and Assessment, 2010, 166, 625-639.	1.3	10
153	Airborne observations of the effect of a cold front on the aerosol particle size distribution and new particle formation. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 944-961.	1.0	5
154	Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study. Atmospheric Chemistry and Physics, 2010, 10, 4961-4974.	1.9	245
155	A comparative study of nucleation parameterizations: 1. Examination and evaluation of the formulations. Journal of Geophysical Research, 2010, 115, .	3.3	45
156	New Particle Formation and Growth in the Troposphere. Analytical Chemistry, 2010, 82, 7871-7878.	3.2	80
157	A Computational Fluid Dynamics Approach to Nucleation in the Waterâ^'Sulfuric Acid System. Journal of Physical Chemistry A, 2010, 114, 8033-8042.	1.1	22
158	Ion chemistry and source identification of coarse and fine aerosols in an urban area of eastern central India. Atmospheric Research, 2010, 95, 65-76.	1.8	42
159	Computational High-Frequency Overtone Spectra of the Water–Ammonia Complex. Journal of Physical Chemistry A, 2011, 115, 11594-11605.	1.1	20
160	On the sub-micron aerosol size distribution in a coastal-rural site at El Arenosillo Station (SW –) Tj ETQq0 0 0 rg	BT /Overlo 1.9	c_{32}^{k} 10 Tf 50
161	Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmospheric Chemistry and Physics, 2011, 11, 12663-12671.	1.9	75
162	Spatial and vertical extent of nucleation events in the Midwestern USA: insights from the Nucleation In ForesTs (NIFTy) experiment. Atmospheric Chemistry and Physics, 2011, 11, 1641-1657.	1.9	37
163	Aerosol nucleation spikes in the planetary boundary layer. Atmospheric Chemistry and Physics, 2011, 11, 7171-7184.	1.9	12
164	Atmospheric amines – Part I. A review. Atmospheric Environment, 2011, 45, 524-546.	1.9	725

165	Observations of nucleation of new particles in a volcanic plume. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12223-12226.	3.3	38
-----	---	-----	----

#	Article	IF	CITATIONS
167	On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber. Atmospheric Measurement Techniques, 2012, 5, 1719-1725.	1.2	37
168	Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign. Atmospheric Measurement Techniques, 2012, 5, 2161-2167.	1.2	47
170	Structure and Energetics of Nanometer Size Clusters of Sulfuric Acid with Ammonia and Dimethylamine. Journal of Physical Chemistry A, 2012, 116, 1030-1040.	1.1	65
171	Aerosol nucleation in an ultra-low ion density environment. Journal of Aerosol Science, 2012, 50, 75-85.	1.8	5
172	New particle formation at a remote site in the eastern Mediterranean. Journal of Geophysical Research, 2012, 117, .	3.3	50
173	Nucleation and Growth of Nanoparticles in the Atmosphere. Chemical Reviews, 2012, 112, 1957-2011.	23.0	938
174	Ab Initio Structural and Vibrational Investigation of Sulfuric Acid Monohydrate. Journal of Physical Chemistry A, 2012, 116, 2867-2879.	1.1	18
175	Physico-Chemical Characteristics of Particulate Emissions from Diesel Engines Fuelled with Waste Cooking Oil Derived Biodiesel and Ultra Low Sulphur Diesel. , 2012, , .		4
176	Five-year roadside measurements of ultrafine particles in a major Canadian city. Atmospheric Environment, 2012, 49, 245-256.	1.9	62
177	Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation. Journal of the American Chemical Society, 2013, 135, 3276-3285.	6.6	42
178	Cluster analysis of roadside ultrafine particle size distributions. Atmospheric Environment, 2013, 70, 64-74.	1.9	20
179	Assessment of the legislated particle number measurement procedure for a Euro 5 and a Euro 6 compliant diesel passenger cars under regulated and unregulated conditions. Journal of Aerosol Science, 2013, 55, 31-47.	1.8	61
180	Vibrational Spectra and Fragmentation Pathways of Size-Selected, D ₂ -Tagged Ammonium/Methylammonium Bisulfate Clusters. Journal of Physical Chemistry A, 2013, 117, 13265-13274.	1.1	30
181	SO2 oxidation and nucleation studies at near-atmospheric conditions in outdoor smog chamber. Environmental Chemistry, 2013, 10, 210.	0.7	10
182	Identification and quantification of particle growth channels during new particle formation. , 2013, , .		0
183	A rotamer energy level study of sulfuric acid. Journal of Chemical Physics, 2013, 139, 144311.	1.2	8
184	COMPASS – COMparative Particle formation in the Atmosphere using portable Simulation chamber Study techniques. Atmospheric Measurement Techniques, 2013, 6, 3407-3423.	1.2	4
185	Identification and quantification of particle growth channels during new particle formation. Atmospheric Chemistry and Physics, 2013, 13, 10215-10225.	1.9	20

#	Article	IF	CITATIONS
186	Engine Exhaust Solid Sub-23 nm Particles: II. Feasibility Study for Particle Number Measurement Systems. SAE International Journal of Fuels and Lubricants, 0, 7, 935-949.	0.2	47
187	Air–Sea Exchange of Marine Trace Gases. , 2014, , 53-92.		7
188	Tropospheric Aerosols. , 2014, , 95-137.		2
189	The application of wavelet decomposition to quantify the local and regional sources of ultrafine particles in cities. Atmospheric Environment, 2014, 95, 249-257.	1.9	15
190	Adsorption of ammonia on treated stainless steel and polymer surfaces. Applied Physics B: Lasers and Optics, 2014, 115, 185-196.	1.1	61
191	Subâ€3 nm particles observed at the coastal and continental sites in the United States. Journal of Geophysical Research D: Atmospheres, 2014, 119, 860-879.	1.2	26
192	A theoretical study of temperature dependence of cluster formation from sulfuric acid and ammonia. Chemical Physics, 2014, 433, 60-66.	0.9	17
193	Growth of sulphuric acid nanoparticles under wet and dry conditions. Atmospheric Chemistry and Physics, 2014, 14, 6461-6475.	1.9	12
194	Enhancement of atmospheric H ₂ SO ₄ / H ₂ O nucleation: organic oxidation products versus amines. Atmospheric Chemistry and Physics, 2014, 14, 751-764.	1.9	48
195	Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies. Atmospheric Chemistry and Physics, 2015, 15, 3429-3443.	1.9	16
196	The role of organic condensation on ultrafine particle growth during nucleation events. Atmospheric Chemistry and Physics, 2015, 15, 6337-6350.	1.9	23
197	Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?. Atmospheric Chemistry and Physics, 2015, 15, 13339-13364.	1.9	27
198	PM ₁ geochemical and mineralogical characterization using SEM-EDX to identify particle origin – Agri Valley pilot area (Basilicata, southern Italy). Natural Hazards and Earth System Sciences, 2015, 15, 1551-1561.	1.5	20
199	A long-term study of new particle formation in a coastal environment: Meteorology, gas phase and solar radiation implications. Science of the Total Environment, 2015, 511, 723-737.	3.9	18
200	Observations of Nucleation Mode Particles Formation and Growth on Mount Huang, China. Procedia Engineering, 2015, 102, 1167-1176.	1.2	1
201	New particle formation and growth from methanesulfonic acid, trimethylamine and water. Physical Chemistry Chemical Physics, 2015, 17, 13699-13709.	1.3	88
202	Mechanism of the Gaseous Hydrolysis Reaction of SO ₂ : Effects of NH ₃ versus H ₂ O. Journal of Physical Chemistry A, 2015, 119, 102-111.	1.1	61
203	Implementation of state-of-the-art ternary new-particle formation scheme to the regional chemical transport model PMCAMx-UF in Europe. Geoscientific Model Development, 2016, 9, 2741-2754.	1.3	13

	Сітатіс	on Report	
#	Article	IF	Citations
204	Charging State of Aerosols during Particle Formation Events in an Urban Environment and Its Implications for Ion-Induced Nucleation. Aerosol and Air Quality Research, 2016, 16, 348-360.	0.9	8
205	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,377.	1.2	71
206	Theoretical Studies on Reactions of OH with H ₂ SO ₄ […] NH ₃ Complex and NH ₂ with H ₂ SO ₄ in the Presence of Water. ChemistrySelect, 2016, 1, 1421-1430.	0.7	18
208	Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China. Atmospheric Chemistry and Physics, 2016, 16, 2477-2492.	1.9	47
209	Indirect evidence of the composition of nucleation mode atmospheric particles in the high Arctic. Journal of Geophysical Research D: Atmospheres, 2016, 121, 965-975.	1.2	37
210	Temporal evolution of charged and neutral nanoparticle concentrations during atmospheric new particle formation events and its implications for ion-induced nucleation. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	4
211	Reactions of Methanesulfonic Acid with Amines and Ammonia as a Source of New Particles in Air. Journal of Physical Chemistry B, 2016, 120, 1526-1536.	1.2	115
212	An Observational Case Study on the Influence of Atmospheric Boundary-Layer Dynamics on New Particle Formation. Boundary-Layer Meteorology, 2016, 158, 67-92.	1.2	66
213	Synergistic formation of sulfate and ammonium resulting from reaction between SO ₂ and NH ₃ on typical mineral dust. Physical Chemistry Chemical Physics, 2016, 18, 956-964.	1.3	66
214	Improvement of a Global High-Resolution Ammonia Emission Inventory for Combustion and Industrial Sources with New Data from the Residential and Transportation Sectors. Environmental Science & Technology, 2017, 51, 2821-2829.	4.6	113
215	Proton Transfer in Mixed Clusters of Methanesulfonic Acid, Methylamine, and Oxalic Acid: Implications for Atmospheric Particle Formation. Journal of Physical Chemistry A, 2017, 121, 2377-2385.	1.1	42
216	Cosmic rays, aerosols, clouds, and climate: Recent findings from the CLOUD experiment. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8051-8055.	1.2	23
217	lon pair particles at the air–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12401-12406.	3.3	25
218	Understanding aerosol formation mechanisms in a subtropical atmosphere impacted by biomass burning and agroindustry. Atmospheric Research, 2017, 183, 94-103.	1.8	9
219	New Particle Formation from Methanesulfonic Acid and Amines/Ammonia as a Function of Temperature. Environmental Science & amp; Technology, 2017, 51, 243-252.	4.6	76
220	Estimation of atmospheric particle formation rates through an analytical formula: validation and application in Hyyti¤nd Puijo, Finland. Atmospheric Chemistry and Physics, 2017, 17, 13361-13371.	1.9	1
221	Observational evidence for the formation of DMS-derived aerosols during Arctic phytoplankton blooms. Atmospheric Chemistry and Physics, 2017, 17, 9665-9675.	1.9	65
222	Different Characteristics of New Particle Formation Events at Two Suburban Sites in Northern China. Atmosphere, 2017, 8, 258.	1.0	6

#	ARTICLE		CITATIONS
223	Hydration of the methanesulfonate–ammonia/amine complex and its atmospheric implications. RSC Advances, 2018, 8, 3250-3263.	1.7	16
224	Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site. Atmospheric Chemistry and Physics, 2018, 18, 311-326.	1.9	31
225	Current state of aerosol nucleation parameterizations for air-quality and climate modeling. Atmospheric Environment, 2018, 179, 77-106.	1.9	27
226	Physico-Chemical Characterization of Fine and Ultrafine Particles Emitted during Diesel Particulate Filter Active Regeneration of Euro5 Diesel Vehicles. Environmental Science & Technology, 2018, 52, 3312-3319.	4.6	34
227	Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth's Atmosphere. A Theoretical Study. Journal of Physical Chemistry A, 2018, 122, 3470-3479.	1.1	41
228	Smog chamber study of the role of NH3 in new particle formation from photo-oxidation of aromatic hydrocarbons. Science of the Total Environment, 2018, 619-620, 927-937.	3.9	31
229	Impacts of Future European Emission Reductions on Aerosol Particle Number Concentrations Accounting for Effects of Ammonia, Amines, and Organic Species. Environmental Science & Technology, 2018, 52, 692-700.	4.6	17
230	H ₂ SO ₄ –H <sub&a ternary ion-mediated nucleation (TIMN): kinetic-based model and comparison with CLOUD measurements. Atmospheric Chemistry and Physics, 2018, 18, 17451-17474.</sub&a 	amp;gt;28 1.9	amp;lt;/sub 52
231	Size resolved chemical composition of nanoparticles from reactions of sulfuric acid with ammonia and dimethylamine. Aerosol Science and Technology, 2018, 52, 1120-1133.	1.5	26
232	The role of nitric acid in atmospheric new particle formation. Physical Chemistry Chemical Physics, 2018, 20, 17406-17414.	1.3	47
233	Role of NH ₃ in the Heterogeneous Formation of Secondary Inorganic Aerosols on Mineral Oxides. Journal of Physical Chemistry A, 2018, 122, 6311-6320.	1.1	25
234	Preparation of Ag Nanoparticles in Ammonia by Using EDM and a Study of the Relationships Between Ammonia and Silver Nanoparticles. Journal of Cluster Science, 2018, 29, 1115-1122.	1.7	5
235	Growth rates of fine aerosol particles at a site near Beijing in June 2013. Advances in Atmospheric Sciences, 2018, 35, 209-217.	1.9	45
236	New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7098-7146.	1.2	185
237	Analysis of new particle formation (NPF) events at nearby rural, urban background and urban roadside sites. Atmospheric Chemistry and Physics, 2019, 19, 5679-5694.	1.9	30
238	New particle formation events observed at the King Sejong Station, Antarctic Peninsula – Part 2: Link with the oceanic biological activities. Atmospheric Chemistry and Physics, 2019, 19, 7595-7608.	1.9	21
239	Observation of atmospheric new particle growth events at the summit of mountain Tai (1534 m) in Central East China. Atmospheric Environment, 2019, 201, 148-157.	1.9	17
240	A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing. Atmospheric Chemistry and Physics, 2019, 19, 1971-1983.	1.9	46

#	Article	IF	CITATIONS
241	Impact of a hydrophobic ion on the early stage of atmospheric aerosol formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22540-22544.	3.3	8
242	Ultrafine Particles in Concern of Vehicular Exhaust—An Overview. Energy, Environment, and Sustainability, 2019, , 7-38.	0.6	2
243	Formation of atmospheric molecular clusters consisting of methanesulfonic acid and sulfuric acid: Insights from flow tube experiments and cluster dynamics simulations. Atmospheric Environment, 2019, 199, 380-390.	1.9	12
244	Particle formation and surface processes on atmospheric aerosols: A review of applied quantum chemical calculations. International Journal of Quantum Chemistry, 2020, 120, e26350.	1.0	30
245	Size-Resolved Chemical Composition of Sub-20 nm Particles from Methanesulfonic Acid Reactions with Methylamine and Ammonia. ACS Earth and Space Chemistry, 2020, 4, 1182-1194.	1.2	20
246	Review of aircraft measurements over China: aerosol, atmospheric photochemistry, and cloud. Atmospheric Research, 2020, 243, 104972.	1.8	8
247	The effect of meteorological conditions and atmospheric composition in the occurrence and development of new particle formation (NPF) events in Europe. Atmospheric Chemistry and Physics, 2021, 21, 3345-3370.	1.9	21
248	Technical note: Emission factors, chemical composition, and morphology of particles emitted from Euro 5 diesel and gasoline light-duty vehicles during transient cycles. Atmospheric Chemistry and Physics, 2021, 21, 4779-4796.	1.9	23
249	Secondary aerosol formation from dimethyl sulfide – improved mechanistic understanding based on smog chamber experiments and modelling. Atmospheric Chemistry and Physics, 2021, 21, 9955-9976.	1.9	24
250	A phenomenology of new particle formation (NPF) at 13 European sites. Atmospheric Chemistry and Physics, 2021, 21, 11905-11925.	1.9	13
251	Derivation and validation of a simplified analytical mass transfer model of the laminar co-flow tube for nucleation studies. International Journal of Heat and Mass Transfer, 2021, 179, 121705.	2.5	0
252	The potential mechanism of atmospheric new particle formation involving amino acids with multiple functional groups. Physical Chemistry Chemical Physics, 2021, 23, 10184-10195.	1.3	9
253	Short-Lived Trace Gases in the Surface Ocean and the Atmosphere. Springer Earth System Sciences, 2014, , 1-54.	0.1	17
254	Comparison of formation conditions of secondary aerosol particles in boreal forests of Southern Finland and Siberia. Russian Journal of Earth Sciences, 2010, 11, 1-11.	0.2	2
255	Nocturnal aerosol particle formation in the North China Plain. Lithuanian Journal of Physics, 2015, 55,	0.1	13
256	Size-Resolved Water-Soluble Ionic Composition of Ambient Particles in an Urban Area in Southern Poland. Journal of Environmental Protection, 2013, 04, 371-379.	0.3	13
268	Observations of new particle formation events in the south-eastern Baltic Sea. Oceanologia, 2010, 52, 53-75.	1.1	11
272	NEW PARTICLE FORMATION IN THE CONTINENTAL BOUNDARY LAYER: INFLUENCE OF PHYSICAL AND METEOROLOGICAL PARAMETER. Journal of Aerosol Science, 2001, 32, 601-602.	1.8	1

		CITATION REPORT		
#	Article		IF	Citations
273	Initial Results from Long-Range Transport of Particulate Matter in Europe. , 2002, , 298-307	· .		0
274	Parameterization of new particle formation and growth at the Preila station. Lithuanian Jou Physics, 2005, 45, 139-147.	rnal of	0.1	2
275	New condensation particle counter UF-02. Lithuanian Journal of Physics, 2006, 46, 489-496	5.	0.1	0
284	GLOMAP-Mode Overview. Springer Theses, 2013, , 31-43.		0.0	0
287	Estimation of the Deposited Aerosol Particles in Baghdad City, using Image Processing Tech International Journal of Computer Applications, 2014, 85, 17-25.	ınique.	0.2	0
290	Predicting the Mechanism and Products of CO ₂ Capture by Amines in the Pres H ₂ O. Journal of Physical Chemistry A, 2021, 125, 9802-9818.	sence of	1.1	8
291	Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecule particles. Journal of Environmental Sciences, 2023, 123, 183-202.	s and larger	3.2	7
292	Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from N Vehicles under Low-Speed Driving Conditions. Environmental Science & Technology, 2 5440-5447.	Aotor 022, 56,	4.6	19
294	Studies on the Conformation, Thermodynamics, and Evaporation Rate Characteristics of Su and Amines Molecular Clusters Jiao Chen1. SSRN Electronic Journal, 0, , .	ılfuric Acid	0.4	0
295	Temporal variations, transport, and regional impacts of atmospheric aerosol and acid gases an oil and gas trading hub. International Journal of Environmental Science and Technology,	close to 0, , .	1.8	0
296	Computational chemistry of cluster: Understanding the mechanism of atmospheric new pa formation at the molecular level. Chemosphere, 2022, 308, 136109.	rticle	4.2	7
297	Sulfuric acid in the Amazon basin: measurements and evaluation of existing sulfuric acid pr Atmospheric Chemistry and Physics, 2022, 22, 10061-10076.	oxies.	1.9	0
298	Studies on the conformation, thermodynamics, and evaporation rate characteristics of sulf and amines molecular clusters. Results in Chemistry, 2022, 4, 100527.	uric acid	0.9	0
299	Observation and Source Apportionment of Atmospheric Alkaline Gases in Urban Beijing. En Science & Technology, 2022, 56, 17545-17555.	vironmental	4.6	8
300	Atmospheric Particle Number Concentrations and New Particle Formation over the Souther and Antarctica: A Critical Review. Atmosphere, 2023, 14, 402.	n Ocean	1.0	0
301	Analysis of new particle formation events and comparisons to simulations of particle numb concentrations based on GEOS-Chem–advanced particle microphysics in Beijing, China. A Chemistry and Physics, 2023, 23, 4091-4104.		1.9	1
302	Real-time monitoring of atmospheric ammonia based on modifier-enhanced vacuum ultravi photoionization ion mobility spectrometry. Analytical Methods, 2023, 15, 2191-2198.	olet	1.3	0
303	Preparation of Simulation Chambers for Experiments. , 2023, , 113-127.			2

ARTICLE

IF CITATIONS