A test particle simulation of the motion of oxygen ions a

Journal of Geophysical Research 104, 557-579 DOI: 10.1029/1998ja900043

Citation Report

#	Article	IF	CITATIONS
1	3D multiscale mass loaded MHD simulations of the solar wind interaction with Mars. Advances in Space Research, 2000, 26, 1571-1575.	1.2	7
2	Physics of Mass Loaded Plasmas. Space Science Reviews, 2000, 94, 429-671.	3.7	123
3	A semiempirical magnetosheath model to analyze the solar wind-magnetosphere interaction. Journal of Geophysical Research, 2000, 105, 27469-27479.	3.3	18
4	X-ray imaging of the solar wind-Mars interaction. Geophysical Research Letters, 2001, 28, 1287-1290.	1.5	43
5	Oxygen ions escaping from the dayside Martian upper atmosphere. Advances in Space Research, 2001, 27, 1825-1830.	1.2	4
6	Escaping of planetary ions from Mars and Venus. Advances in Space Research, 2001, 27, 1815-1824.	1.2	2
7	Some expected impacts of a solar energetic particle event at Mars. Journal of Geophysical Research, 2002, 107, SIA 5-1.	3.3	54
8	lon escape from Mars in a quasi-neutral hybrid model. Journal of Geophysical Research, 2002, 107, SIA 1-1.	3.3	78
9	Pickup ions near Mars associated with escaping oxygen atoms. Journal of Geophysical Research, 2002, 107, SMP 7-1-SMP 7-10.	3.3	41
10	Energetic neutral atoms at Mars 3. Flux and energy distributions of planetary energetic H atoms. Journal of Geophysical Research, 2002, 107, SSH 6-1.	3.3	49
11	Energetic neutral atoms at Mars 1. Imaging of solar wind protons. Journal of Geophysical Research, 2002, 107, SSH 4-1.	3.3	53
12	Energetic neutral atoms at Mars 4. Imaging of planetary oxygen. Journal of Geophysical Research, 2002, 107, SSH 7-1.	3.3	46
13	Characteristics of Scatterâ€free Behavior of Heliospheric Pickup Ions. Astrophysical Journal, 2003, 592, 1241-1251.	1.6	14
14	The Plasma Environment of Mars. Space Sciences Series of ISSI, 2004, , 33-114.	0.0	14
15	The plasma Environment of Mars. Space Science Reviews, 2004, 111, 33-114.	3.7	261
16	Influence of the solar EUV flux on the Martian plasma environment. Annales Geophysicae, 2005, 23, 433-444.	0.6	129
17	Three-dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events. Journal of Geophysical Research, 2006, 111, .	3.3	52
18	First ENA observations at Mars: Charge exchange ENAs produced in the magnetosheath. Icarus, 2006, 182, 431-438.	1.1	39

#	Article	IF	Citations
19	Planetary ENA imaging: Effects of different interaction models for Mars. Planetary and Space Science, 2006, 54, 117-131.	0.9	18
20	Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space. Journal of Geophysical Research, 2007, 112, .	3.3	115
21	Energisation of O+ and O+ 2 Ions at Mars: An Analysis of a 3-D Quasi-Neutral Hybrid Model Simulation. Space Science Reviews, 2007, 126, 39-62.	3.7	11
22	Modeling and Simulating Flowing Plasmas and Related Phenomena. Space Science Reviews, 2008, 139, 143-189.	3.7	86
23	Exospheres and Atmospheric Escape. Space Science Reviews, 2008, 139, 355-397.	3.7	103
24	Pickup oxygen ion velocity space and spatial distribution around Mars. Journal of Geophysical Research, 2008, 113, .	3.3	80
25	Morphology of the dayside ionosphere of Mars: Implications for ion outflows. Journal of Geophysical Research, 2009, 114, .	3.3	58
26	Modeling and Simulating Flowing Plasmas and Related Phenomena. Space Sciences Series of ISSI, 2008, , 143-189.	0.0	1
27	On the effect of the martian crustal magnetic field on atmospheric erosion. Icarus, 2010, 206, 130-138.	1.1	57
28	Escape probability of Martian atmospheric ions: Controlling effects of the electromagnetic fields. Journal of Geophysical Research, 2010, 115, .	3.3	36
29	Mars ionosphere: A review of experimental results and modeling studies. Reviews of Geophysics, 2011, 49, .	9.0	66
30	Effects of solar Xâ€ray flares in the E region ionosphere of Mars: First model results. Journal of Geophysical Research, 2012, 117, .	3.3	16
31	Comparison of highâ€altitude production and ionospheric outflow contributions to O ⁺ loss at Mars. Journal of Geophysical Research: Space Physics, 2013, 118, 4093-4107.	0.8	9
32	The influence of production mechanisms on pickâ€up ion loss at Mars. Journal of Geophysical Research: Space Physics, 2013, 118, 554-569.	0.8	31
33	Mars Express observations of high altitude planetary ion beams and their relation to the "energetic plume―loss channel. Journal of Geophysical Research: Space Physics, 2014, 119, 9702-9713.	0.8	21
34	Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophysical Research Letters, 2015, 42, 8942-8950.	1.5	143
35	MAVEN insights into oxygen pickup ions at Mars. Geophysical Research Letters, 2015, 42, 8870-8876.	1.5	53
36	Dynamics of planetary ions in the induced magnetospheres of Venus and Mars. Planetary and Space Science, 2016, 127, 1-14.	0.9	22

CITATION REPORT

#	Article	IF	CITATIONS
37	MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape. Journal of Geophysical Research: Space Physics, 2017, 122, 3689-3706.	0.8	55
38	Influence of the Interplanetary Convective Electric Field on the Distribution of Heavy Pickup Ions Around Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 473-484.	0.8	6
39	Magnetic Field in the Martian Magnetosheath and the Application as an IMF Clock Angle Proxy. Journal of Geophysical Research: Space Physics, 2019, 124, 4295-4313.	0.8	16
40	Energisation of O+ and O 2 + Ions at Mars: An Analysis of A 3-D Quasi-Neutral Hybrid Model Simulation. , 2007, , 39-62.		0
41	Exospheres and Atmospheric Escape. Space Sciences Series of ISSI, 2008, , 355-397.	0.0	7
42	Formation Mechanisms of the Molecular Ion Polar Plume and Its Contribution to Ion Escape From Mars. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	4
43	Structure of the Martian Dayside Magnetosphere: Two Types. Solar System Research, 2022, 56, 279-290.	0.3	0