# CITATION REPORT List of articles citing



DOI: 10.1021/jp991673a Journal of Physical Chemistry B, 1999, 103, 7743-7746.

Source: https://exaly.com/paper-pdf/30843415/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

| #    | Paper                                                                                                                                                                                   | IF  | Citations   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|
| 2182 | Engineered pH-Responsive Mesoporous Carbon Nanoparticles for Drug Delivery.                                                                                                             |     |             |
| 2181 | Microporous Humins Prepared from Sugars and Bio-Based Polymers in Concentrated Sulfuric Acid.                                                                                           |     |             |
| 2180 | Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution. <i>Microporous and Mesoporous Materials</i> , <b>2000</b> , 41, 119-127                     | 5.3 | 65          |
| 2179 | Characterization of Pore Size Distributions of Mesoporous Materials from Adsorption Isotherms.<br>Journal of Physical Chemistry B, <b>2000</b> , 104, 9099-9110                         | 3.4 | 81          |
| 2178 | Fabrication of New Nanoporous Carbons through Silica Templates and Their Application to the Adsorption of Bulky Dyes. <b>2000</b> , 12, 3337-3341                                       |     | 226         |
| 2177 | Synthesis of Porous Palladium Superlattice Nanoballs and Nanowires. <b>2000</b> , 12, 3530-3532                                                                                         |     | 101         |
| 2176 | Characterization of MCM-48 Silicas with Tailored Pore Sizes Synthesized via a Highly Efficient Procedure. <b>2000</b> , 12, 1414-1421                                                   |     | 114         |
| 2175 | Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates.<br>Journal of Physical Chemistry B, <b>2000</b> , 104, 7960-7968                          | 3.4 | 290         |
| 2174 | Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. <b>2000</b> , 122, 10712-107                                                                                | '13 | 2131        |
| 2173 | Adsorption and Thermogravimetric Characterization of Mesoporous Materials with Uniform OrganicIhorganic Frameworks. <i>Journal of Physical Chemistry B</i> , <b>2001</b> , 105, 681-689 | 3.4 | 90          |
| 2172 | Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. <b>2001</b> , 123, 9208-9                                                                                |     | <b>2</b> 09 |
| 2171 | Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores. <b>2001</b> , 123, 5146-7                                                                             |     | 249         |
| 2170 | Template synthesis of asymmetrically mesostructured platinum networks. <b>2001</b> , 123, 1246-7                                                                                        |     | 257         |
| 2169 | Matrix-Assisted Synthesis of Palladium Nanocage and Nanowires. <b>2001</b> , 635, C3.3.1                                                                                                |     | 2           |
| 2168 | Synthesis of ordered mesoporous carbon molecular sieves CMK-1. <i>Microporous and Mesoporous Materials</i> , <b>2001</b> , 44-45, 153-158                                               | 5.3 | 135         |
| 2167 | The current role of mesostructures in composite materials and device fabrication. <i>Microporous and Mesoporous Materials</i> , <b>2001</b> , 44-45, 619-624                            | 5.3 | 55          |
| 2166 | Perspectives in catalytic applications of mesostructured materials. <b>2001</b> , 222, 299-357                                                                                          |     | 327         |

| 2165 | Ordered Mesoporous Carbons. <b>2001</b> , 13, 677-681                                                                                                                                                               |     | 1338 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 2164 | Ordered uniform porous carbon by carbonization of sugars. <i>Carbon</i> , <b>2001</b> , 39, 1442-1446                                                                                                               | 0.4 | 87   |
| 2163 | Silica gel-templated mesoporous carbons prepared from mesophase pitch and polyacrylonitrile.  Carbon, <b>2001</b> , 39, 2080-2082                                                                                   | 0.4 | 32   |
| 2162 | Non-siliceous Mesostructured and Mesoporous Materials <b>2001</b> , 13, 3184-3195                                                                                                                                   |     | 758  |
| 2161 | Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. <b>2001</b> , 40, 3237-3261                                                                             |     | 414  |
| 2160 | Very High Surface Area Microporous Carbon with a Three-Dimensional Nano-Array Structure: Synthesis and Its Molecular Structure. <b>2001</b> , 13, 4413-4415                                                         |     | 274  |
| 2159 | Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. <b>2001</b> , 412, 169-72                                                                                                |     | 2251 |
| 2158 | The dating of shallow faults in the Earth's crust. <b>2001</b> , 412, 172-5                                                                                                                                         |     | 193  |
| 2157 | Ordered mesoporous materials (State of the art and prospects. <b>2001</b> , 135, 1-12                                                                                                                               |     | 32   |
| 2156 | Alcothermal synthesis of large pore, high quality MCM-48 silica. <b>2002</b> , 141, 85-92                                                                                                                           |     | 6    |
| 2155 | Comparison of Porous Carbons Developed via Templating Approaches. <b>2002</b> , 139-146                                                                                                                             |     | 3    |
| 2154 | Synthesis and adsorption properties of novel carbons of tailored porosity. <b>2002</b> , 345-352                                                                                                                    |     | 1    |
| 2153 | Formation of Ordered Mesoporous Carbon Material from a Silica Template by a One-Step Chemical Vapour Infiltration Process. <b>2002</b> , 31, 1062-1063                                                              |     | 60   |
| 2152 | Evidence for General Nature of Pore Interconnectivity in 2-Dimensional Hexagonal Mesoporous Silicas Prepared Using Block Copolymer Templates. <i>Journal of Physical Chemistry B</i> , <b>2002</b> , 106, 4640-4646 | -4  | 192  |
| 2151 | Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry. <i>Chemical Communications</i> , <b>2002</b> , 2842-3                                                     | ;.8 | 134  |
| 2150 | Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. <b>2002</b> , 124, 9382-3                                                                                      |     | 455  |
| 2149 | Framework Characterization of Mesostructured Carbon CMK-1 by X-ray Powder Diffraction and Electron Microscopy. <i>Journal of Physical Chemistry B</i> , <b>2002</b> , 106, 12198-12202                              | 5-4 | 81   |
| 2148 | Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters. <b>2002</b> , 124, 1156-7                                        |     | 322  |

| 2147 | Structural Study of Mesoporous MCM-48 and Carbon Networks Synthesized in the Spaces of MCM-48 by Electron Crystallography. <i>Journal of Physical Chemistry B</i> , <b>2002</b> , 106, 1256-1266         | 3.4  | 292       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 2146 | Hollow Zeolite Capsules: A Novel Approach for Fabrication and Guest Encapsulation. 2002, 14, 3217-32                                                                                                     | 219  | 136       |
| 2145 | Synthesis of Mesoporous Carbon Foams Templated by Organic Colloids. <b>2002</b> , 14, 1665-1670                                                                                                          |      | 74        |
| 2144 | Porous materials via nanocasting procedures: innovative materials and learning about soft-matter organization. <i>Chemical Communications</i> , <b>2002</b> , 2593-604                                   | 5.8  | 158       |
| 2143 | 3D Quantum Dot Lattice Inside Mesoporous Silica Films. <b>2002</b> , 2, 409-414                                                                                                                          |      | 91        |
| 2142 | Adsorption Properties of Templated Mesoporous Carbon (CMK-1) for Nitrogen and Supercritical MethaneExperiment and GCMC Simulation. <i>Journal of Physical Chemistry B</i> , <b>2002</b> , 106, 6523-6528 | 3.4  | 96        |
| 2141 | Determination of Phase Composition of MCM-48/Lamellar Phase Mixtures Using Nitrogen Adsorption and Thermogravimetry. <b>2002</b> , 14, 4434-4442                                                         |      | 25        |
| 2140 | Taking Nanocasting One Step Further: Replicating CMK-3 as a Silica Material. <b>2002</b> , 114, 3639-3642                                                                                                |      | 24        |
| 2139 | Palladium-Catalyzed Asymmetric Allylic Alkylation of Aryl Ketones. <b>2002</b> , 114, 3642-3645                                                                                                          |      | 31        |
| 2138 | Taking nanocasting one step further: replicating CMK-3 as a silica material. <b>2002</b> , 41, 3489-92                                                                                                   |      | 169       |
| 2137 | Palladium-catalyzed asymmetric allylic alkylation of alpha-aryl ketones. <b>2002</b> , 41, 3492-5                                                                                                        |      | 102       |
| 2136 | Microporous and Mesoporous Materials. <b>2002</b> , 4, 269-279                                                                                                                                           |      | 64        |
| 2135 | Formation of SiC via carbothermal reduction of a carbon-containing mesoporous MCM-48 silica phase: a new route to produce high surface area SiC. <i>Ceramics International</i> , <b>2002</b> , 28, 1-7   | 5.1  | 98        |
| 2134 | Ordered porous materials for emerging applications. <b>2002</b> , 417, 813-21                                                                                                                            |      | 4430      |
|      |                                                                                                                                                                                                          |      |           |
| 2133 | Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y. <i>Carbon</i> , <b>2002</b> , 40, 2367-2374                                                               | 10.4 | 196       |
| 2133 |                                                                                                                                                                                                          | 10.4 | 196<br>55 |
|      | Preparation, characterization and pyrolysis of poly(furfuryl alcohol)/porous silica glass nanocomposites: novel route to carbon template. <i>Carbon</i> , <b>2002</b> , 40, 2413-2422                    | ,    | 55        |

## (2003-2002)

| 2129 | Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. <b>2002</b> , 102, 4093-138                                         |      | 1708 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 2128 | The potential of ordered mesoporous silica for the storage of drugs: the example of a pentapeptide encapsulated in a MSU-tween 80. <b>2003</b> , 4, 281-6                                                 |      | 86   |
| 2127 | Endo- und Exotemplate zur Erzeugung von anorganischen Materialien mit großr spezifischer Oberflähe. <b>2003</b> , 115, 3730-3750                                                                          |      | 60   |
| 2126 | Endo- and exotemplating to create high-surface-area inorganic materials. 2003, 42, 3604-22                                                                                                                |      | 519  |
| 2125 | A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. <b>2003</b> , 42, 4375-9                                                                                              |      | 344  |
| 2124 | Direct fabrication of mesoporous carbons using in-situ polymerized silica gel networks as a template. <i>Carbon</i> , <b>2003</b> , 41, 1525-1532                                                         | 10.4 | 70   |
| 2123 | Structured carbon adsorbents from clay, zeolite and mesoporous aluminosilicate templates. <i>Carbon</i> , <b>2003</b> , 41, 2231-2246                                                                     | 10.4 | 111  |
| 2122 | Synthesis of a carbon monolith with trimodal pores. <i>Carbon</i> , <b>2003</b> , 41, 2677-2679                                                                                                           | 10.4 | 54   |
| 2121 | Electrochemical capacitance of self-ordered mesoporous carbon. 2003, 122, 219-223                                                                                                                         |      | 199  |
| 2120 | Pore structure and graphitic surface nature of ordered mesoporous carbons probed by low-pressure nitrogen adsorption. <i>Microporous and Mesoporous Materials</i> , <b>2003</b> , 60, 139-149             | 5.3  | 43   |
| 2119 | Iron (III) oxide nanoparticles within the pore system of mesoporous carbon CMK-1: intra-pore synthesis and characterization. <i>Microporous and Mesoporous Materials</i> , <b>2003</b> , 60, 151-158      | 5.3  | 41   |
| 2118 | Study of the structural evolutions of mesoporous MCM-48 silica infiltrated with carbon by different techniques. <i>Microporous and Mesoporous Materials</i> , <b>2003</b> , 62, 87-96                     | 5.3  | 20   |
| 2117 | Control of mesoporous structure of carbons synthesised using a mesostructured silica as template. <i>Microporous and Mesoporous Materials</i> , <b>2003</b> , 62, 177-190                                 | 5.3  | 117  |
| 2116 | Synthesis and characterization of spherical carbon and polymer capsules with hollow macroporous core and mesoporous shell structures. <i>Microporous and Mesoporous Materials</i> , <b>2003</b> , 63, 1-9 | 5.3  | 83   |
| 2115 | Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors. <i>Microporous and Mesoporous Materials</i> , <b>2003</b> , 64, 69-81                                      | 5.3  | 77   |
| 2114 | Perspectives in catalytic applications of mesostructured materials. <b>2003</b> , 253, 545-602                                                                                                            |      | 187  |
| 2113 | Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. <b>2003</b> , 2, 159-63                                                                                                 |      | 418  |
| 2112 | Ordered nanoporous polymer-carbon composites. <b>2003</b> , 2, 473-6                                                                                                                                      |      | 158  |

| 2111 | Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes. 2003, 15, 2815-2823                                                                                                    |     | 240 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 2110 | Template Synthesis of a New Mesostructured Silica from Highly Ordered Mesoporous Carbon<br>Molecular Sieves. <b>2003</b> , 15, 1932-1934                                                       |     | 62  |
| 2109 | Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. <i>Chemical Communications</i> , <b>2003</b> , 2138-9                 | 5.8 | 212 |
| 2108 | Expanding horizons of mesoporous materials to non-siliceous systems. <b>2003</b> , 399-406                                                                                                     |     | 9   |
| 2107 | Colloid-Imprinted Carbons as Templates for the Nanocasting Synthesis of Mesoporous ZSM-5 Zeolite. <b>2003</b> , 15, 1664-1668                                                                  |     | 167 |
| 2106 | Synthesis of Carbon Nanotube Bundles with Mesoporous Structure by a Self-Assembly Solvothermal Route. <b>2003</b> , 15, 1470-1473                                                              |     | 50  |
| 2105 | Theoretical characterization of several models of nanoporous carbon. <b>2003</b> , 5, 123-123                                                                                                  |     | 31  |
| 2104 | General synthesis of mesoporous spheres of metal oxides and phosphates. <b>2003</b> , 125, 4976-7                                                                                              |     | 225 |
| 2103 | Small-Angle X-ray Scattering and Electron Microscopy Investigation of Silica and Carbon Replicas with Ordered Porosity. <b>2003</b> , 19, 4303-4308                                            |     | 44  |
| 2102 | Synthesis and Adsorption Properties of Colloid-Imprinted Carbons with Surface and Volume Mesoporosity. <b>2003</b> , 15, 1327-1333                                                             |     | 71  |
| 2101 | Surface and Pore Structures of CMK-5 Ordered Mesoporous Carbons by Adsorption and Surface Spectroscopy. <b>2003</b> , 15, 3300-3307                                                            |     | 96  |
| 2100 | Ordered mesoporous carbon molecular sieves with functionalized surfaces. 2003, 37-40                                                                                                           |     | 27  |
| 2099 | Adsorption of Cytochrome C on New Mesoporous Carbon Molecular Sieves. <i>Journal of Physical Chemistry B</i> , <b>2003</b> , 107, 8297-8299                                                    | 3.4 | 218 |
| 2098 | Template synthesis of mesoporous carbons from mesostructured silica by vapor deposition polymerisation. <b>2003</b> , 13, 1843                                                                 |     | 42  |
| 2097 | Surface and pore structures of CMK-5 ordered mesoporous carbons studied by nitrogen adsorption and surface spectroscopic methods. <b>2003</b> , 146, 335-338                                   |     |     |
| 2096 | Morphological control of highly ordered mesoporous carbon. <b>2003</b> , 146, 45-48                                                                                                            |     | 15  |
| 2095 | Preparation, characterization and catalytic activity of heteropolyacids supported on mesoporous silica and carbon. <b>2003</b> , 146, 657-660                                                  |     | 5   |
| 2094 | Characterisation of ordered mesoporous carbons and their MCM-48 silica templates obtained by the replication technique using different carbon infiltration processes. <b>2003</b> , 146, 41-44 |     | 3   |

## (2004-2003)

| 2093                         | mesoporous silicas. <b>2003</b> , 33-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 4                        |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|
| 2092                         | MESOPOROUS MATERIALS. 2003, 39-68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 4                        |
| 2091                         | Structures of silica-mesoporous crystals and novel mesoporous carbon-networks synthesized within the pores. <b>2003</b> , 146, 275-280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 4                        |
| 2090                         | Strategies to Fabricate Large-Pore Three-Dimensional Mesoporous Materials with Versatile Applications. <b>2003</b> , 9-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                          |
| 2089                         | Thermally induced structural changes in SBA-15 and MSU-H silicas and their implications for synthesis of ordered mesoporous carbons. <b>2003</b> , 49-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 3                        |
| 2088                         | A direct template synthesis of highly ordered mesostructured carbons using as-synthesized MCM-48 as template. <b>2003</b> , 146, 259-262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                          |
| 2087                         | Porous Carbon. <b>2003</b> , 109-127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 5                        |
| 2086                         | Synthesis of Mesoporous Carbon-Containing Ferrocene Derivative and Its Electrochemical Property. <b>2003</b> , 32, 132-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 19                       |
| 2085                         | Organised Mesoporous Silica Synthesised by Nanoscale Duplication of an Ordered Mesoporous Carbon Material Using a Gas Phase Process. <b>2003</b> , 32, 262-263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 15                       |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                          |
| 2084                         | . 2003,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 64                       |
|                              | . 2003,  Mesoporous metal oxides with improved atomic ordering in the pore walls. 2004, 14-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 5                        |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                          |
| 2083                         | Mesoporous metal oxides with improved atomic ordering in the pore walls. <b>2004</b> , 14-24  SURFACTANT-TEMPLATED MESOSTRUCTURED MATERIALS: SYNTHESIS AND COMPOSITIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                          |
| 2083                         | Mesoporous metal oxides with improved atomic ordering in the pore walls. 2004, 14-24  SURFACTANT-TEMPLATED MESOSTRUCTURED MATERIALS: SYNTHESIS AND COMPOSITIONAL CONTROL. 2004, 125-164  Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. 2004,                                                                                                                                                                                                                                                                                                                                                          |      | 5                        |
| 2083                         | Mesoporous metal oxides with improved atomic ordering in the pore walls. 2004, 14-24  SURFACTANT-TEMPLATED MESOSTRUCTURED MATERIALS: SYNTHESIS AND COMPOSITIONAL CONTROL. 2004, 125-164  Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. 2004, 148, 241-260  Transformation of hexagonal mesoporous materials into zeolytically ordered structure: Dry gel                                                                                                                                                                                                                                              |      | 5<br>1<br>57             |
| 2083<br>2082<br>2081<br>2080 | Mesoporous metal oxides with improved atomic ordering in the pore walls. 2004, 14-24  SURFACTANT-TEMPLATED MESOSTRUCTURED MATERIALS: SYNTHESIS AND COMPOSITIONAL CONTROL. 2004, 125-164  Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. 2004, 148, 241-260  Transformation of hexagonal mesoporous materials into zeolytically ordered structure: Dry gel transformation. 2004, 154, 497-505  Synthesis of Polyacrylonitrile-Based Ordered Mesoporous Carbon with Tunable Pore Structures. 2004, 16, 100-103  A novel vesicular carbon synthesized using amphiphilic carbonaceous material and micelle | (0.4 | 5<br>1<br>57<br>5        |
| 2083<br>2082<br>2081<br>2080 | Mesoporous metal oxides with improved atomic ordering in the pore walls. 2004, 14-24  SURFACTANT-TEMPLATED MESOSTRUCTURED MATERIALS: SYNTHESIS AND COMPOSITIONAL CONTROL. 2004, 125-164  Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. 2004, 148, 241-260  Transformation of hexagonal mesoporous materials into zeolytically ordered structure: Dry gel transformation. 2004, 154, 497-505  Synthesis of Polyacrylonitrile-Based Ordered Mesoporous Carbon with Tunable Pore Structures. 2004, 16, 100-103  A novel vesicular carbon synthesized using amphiphilic carbonaceous material and micelle |      | 5<br>1<br>57<br>5<br>248 |

| 2075 | Graphitic mesoporous carbons synthesised through mesostructured silica templates. <i>Carbon</i> , <b>2004</b> , 42, 3049-3055                                                                                                        | 10.4 | 159 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 2074 | Capacitance properties of ordered porous carbon materials prepared by a templating procedure. <b>2004</b> , 65, 287-293                                                                                                              |      | 199 |
| 2073 | Full-profile refinement by derivative difference minimization. <b>2004</b> , 37, 743-749                                                                                                                                             |      | 228 |
| 2072 | Meso/Macroporous Carbon Monoliths from Polymeric Foams. <b>2004</b> , 6, 897-899                                                                                                                                                     |      | 46  |
| 2071 | Polymer Intercalation in Mesostructured Carbon. <b>2004</b> , 16, 736-739                                                                                                                                                            |      | 30  |
| 2070 | Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells. <b>2004</b> , 16, 2057-2061 |      | 279 |
| 2069 | Synthesis and characterization of nanocast silica NCS-1 with CMK-3 as a template. <b>2004</b> , 10, 6085-92                                                                                                                          |      | 30  |
| 2068 | Synthesis of ordered nanoporous carbons of tunable mesopore size by templating SBA-15 silica materials. <i>Microporous and Mesoporous Materials</i> , <b>2004</b> , 67, 273-281                                                      | 5.3  | 126 |
| 2067 | Easy and flexible preparation of nanocasted carbon monoliths exhibiting a multimodal hierarchical porosity. <i>Microporous and Mesoporous Materials</i> , <b>2004</b> , 72, 59-65                                                    | 5.3  | 81  |
| 2066 | Direct synthesis of unimodal and bimodal nanoporous carbon. <i>Microporous and Mesoporous Materials</i> , <b>2004</b> , 74, 73-78                                                                                                    | 5.3  | 55  |
| 2065 | Preparation and characteristics of crystallized mesoporous Zr6Nb2O17. <i>Microporous and Mesoporous Materials</i> , <b>2004</b> , 75, 203-208                                                                                        | 5.3  | 9   |
| 2064 | Microporosity of SBA-3 mesoporous molecular sieves. <i>Microporous and Mesoporous Materials</i> , <b>2004</b> , 75, 231-235                                                                                                          | 5.3  | 45  |
| 2063 | New carbons with controlled nanoporosity obtained by nanocasting using a SBA-15 mesoporous silica host matrix and different preparation routes. <b>2004</b> , 65, 139-146                                                            |      | 73  |
| 2062 | Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. <b>2004</b> , 84, 545                                                                                                                        | -553 | 135 |
| 2061 | Synthesis of a silica monolith with textural pores and ordered mesopores. <i>Microporous and Mesoporous Materials</i> , <b>2004</b> , 68, 55-59                                                                                      | 5.3  | 41  |
| 2060 | Synthesis and characterisation of mesoporous carbons of large textural porosity and tunable pore size by templating mesostructured HMS silica materials. <i>Microporous and Mesoporous Materials</i> , <b>2004</b> , 74, 49-58       | 5.3  | 36  |
| 2059 | Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure. <b>2004</b> , 108, 148-155                                                                                                    |      | 150 |
| 2058 | Synthesis of tubular silicon carbide (SiC) from a carbonBilica material by using a reactive replica technique: mechanism of formation of SiC. <b>2004</b> , 52, 1639-1651                                                            |      | 49  |

| 2057 | Template synthesis and characterization of mesoporous zeolites. <b>2004</b> , 241, 75-80                                                                                                                                | 30  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2056 | Synthesis of high-quality MCM-48 mesoporous silica using cationic Gemini surfactant C12-2-12. <b>2004</b> , 248, 75-78                                                                                                  | 8   |
| 2055 | Methane gas storage in self-ordered mesoporous carbon (CMK-3). <b>2004</b> , 396, 252-255                                                                                                                               | 30  |
| 2054 | Template synthesis of mesoporous carbons with tailorable pore size and porosity. <i>Carbon</i> , <b>2004</b> , 42, 433-43.6                                                                                             | 68  |
| 2053 | Carbons from furan-polymers prepared in the presence of a double-chain amphiphile. <i>Carbon</i> , <b>2004</b> , 42, 2207-2213                                                                                          | 4   |
| 2052 | Easy synthesis of an ordered mesoporous carbon with a hexagonally packed tubular structure.  Carbon, <b>2004</b> , 42, 2939-2948                                                                                        | 139 |
| 2051 | Soap and sand: construction tools for nanotechnology. <b>2004</b> , 362, 2635-51                                                                                                                                        | 14  |
| 2050 | Synthesis of High-Quality MCM-48 Mesoporous Silica Using Gemini Surfactant Dimethylene-1,2-bis(dodecyldimethylammonium bromide). <i>Journal of Physical Chemistry B</i> , <b>2004</b> , 3.4 108, 15043-15048            | 56  |
| 2049 | Mesoporous Carbon with Larger Pore Diameter as an Electrocatalyst Support for Methanol Oxidation. <b>2004</b> , 7, A336                                                                                                 | 58  |
| 2048 | Comprehensive Structure Analysis of Ordered Carbon Nanopipe Materials CMK-5 by X-ray Diffraction and Electron Microscopy. <b>2004</b> , 16, 2274-2281                                                                   | 54  |
| 2047 | Mesostructured Hollow Spheres of Graphitic N-Doped Carbon Nanocast from Spherical Mesoporous Silica. <i>Journal of Physical Chemistry B</i> , <b>2004</b> , 108, 19293-19298                                            | 125 |
| 2046 | Adsorption Properties and Structural Characterization of Activated Carbons and Nanocarbons. <i>Journal of Physical Chemistry B</i> , <b>2004</b> , 108, 15211-15215                                                     | 57  |
| 2045 | Simple Synthesis of Uniform Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites. <b>2004</b> , 16, 3323-3330                                                                   | 89  |
| 2044 | Replication of Mesoporous Aluminosilicate Molecular Sieves (RMMs) with Zeolite Framework from Mesoporous Carbons (CMKs). <b>2004</b> , 16, 3168-3175                                                                    | 164 |
| 2043 | A Simple Melt Impregnation Method to Synthesize Ordered Mesoporous Carbon and Carbon Nanofiber Bundles with Graphitized Structure from Pitches. <i>Journal of Physical Chemistry B</i> , <b>2004</b> , 108, 17320-17328 | 166 |
| 2042 | Fluorinated carbon with ordered mesoporous structure. <b>2004</b> , 126, 12782-3                                                                                                                                        | 77  |
| 2041 | Layered Double Hydroxide/Polymer Nanocomposites. <b>2004</b> , 459-495                                                                                                                                                  | 16  |
| 2040 | Mesocellular Foam Carbons: Aggregates of Hollow Carbon Spheres with Open and Closed Wall Structures. <b>2004</b> , 16, 3860-3866                                                                                        | 63  |

| 2039 | Hierachically porous nanocrystalline cobalt oxide monoliths through nanocasting. <i>Chemical Communications</i> , <b>2004</b> , 2188-9                              | } | 45   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
| 2038 | Colloidal Crystal-Templated Porous Carbon as a High Performance Electrical Double-Layer<br>Capacitor Material. <b>2004</b> , 7, A221                                |   | 70   |
| 2037 | The evolution of ordered mesoporous materials. <b>2004</b> , 1-13                                                                                                   |   | 12   |
| 2036 | Colloid-imprinted carbons as stationary phases for reversed-phase liquid chromatography. <b>2004</b> , 76, 5479-85                                                  |   | 32   |
| 2035 | Structural study of meso-porous materials by electron microscopy. <b>2004</b> , 148, 261-288                                                                        |   | 22   |
| 2034 | Low-Cost Synthetic Route to Mesoporous Carbons with Narrow Pore Size Distributions and Tunable Porosity through Silica Xerogel Templates. <b>2004</b> , 16, 449-455 |   | 40   |
| 2033 | Three-dimensional battery architectures. <b>2004</b> , 104, 4463-92                                                                                                 |   | 1038 |
| 2032 | Morphological and textural control of spray-dried mesoporous silica-based spheres. <b>2004</b> , 14, 2006-2016                                                      |   | 33   |
| 2031 | Determination of Silica Mesophases by Controlling Silicate Condensation in Liquid Phase. <b>2004</b> , 33, 734-73.                                                  | 5 | 6    |
| 2030 | Replication by molecular sieves: controlling the properties of porous carbon by the use of porous oxides. <b>2005</b> , 155, 213-226                                |   |      |
| 2029 | Fabrication and porosity control of mesoporous polycarbosilane from SBA-15 templated polymethylsilane. <b>2005</b> , 156, 443-450                                   |   | 1    |
| 2028 | Pitch-based carbons synthesized by using silica colloids and ordered mesoporous silica particles as templates. <b>2005</b> , 156, 581-588                           |   | 1    |
| 2027 | Synthesis, morphological and raman spectroscopic characterization of partially graphitized ordered mesoporous carbons. <b>2005</b> , 158, 509-516                   |   | 3    |
| 2026 | Well-ordered cubic mesoporous carbon with Im3m symmetry. <b>2005</b> , 551-556                                                                                      |   | 2    |
| 2025 | Adsorption of lysozyme over mesoporous carbons with various pore diameters. <b>2005</b> , 637-642                                                                   |   | 11   |
| 2024 | Electrical double-layer capacitive properties of colloidal crystaltemplated nanoporous carbons. <b>2005</b> , 156, 589-594                                          |   | 8    |
| 2023 | Synthesis, characterization and hydrogen storage on ordered carbon adsorbents. <b>2005</b> , 156, 603-608                                                           |   | 1    |
| 2022 | Preparation of Novel Mesoporous Carbon Materials with Tunable Pore Diameters Using Directly Synthesized AlSBA-15 Materials. <b>2005</b> , 34, 674-675               |   | 15   |

| 2021 | Preparation and application of nanoporous carbon templated by silica particle for use as a catalyst support for direct methanol fuel cell. <b>2005</b> , 145, 139-146                                                            | 52   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2020 | A general and low-cost synthetic route to high-surface area metal oxides through a silica xerogel template. <b>2005</b> , 66, 741-747                                                                                            | 33   |
| 2019 | Template synthesis of large pore ordered mesoporous carbon. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 80, 117-128                                                                                              | 71   |
| 2018 | Direct synthesis of palladium-containing mesoporous carbon. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 81, 149-154                                                                                              | 28   |
| 2017 | Low-temperature formation of nanocrystalline SiC with high surface area and mesoporosity via reaction of mesoporous carbon and silicon powder. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 82, 137-145           | 71   |
| 2016 | A facile synthesis of highly ordered mesoporous carbon monolith with mechanically stable mesostructure and superior conductivity from SBA-15 powder. <i>Microporous and Mesoporous</i> 5.3  Materials, <b>2005</b> , 85, 136-142 | 46   |
| 2015 | High-temperature synthesis of stable ordered mesoporous silica materials using mesoporous carbon as a hard template. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 86, 81-88                                       | 20   |
| 2014 | A novel self-assembly approach to form tubular poly(diphenylamine) inside the mesoporous silica. <b>2005</b> , 46, 1804-1812                                                                                                     | 23   |
| 2013 | Ordered mesoporous materials in catalysis. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 77, 1-45 5.3                                                                                                              | 1859 |
| 2012 | The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 79, 121-128                                                    | 104  |
| 2011 | Advanced porous materials: New developments and emerging trends. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 82, 227-239                                                                                         | 68   |
| 2010 | Iron oxide modified mesoporous carbons: Physicochemical and catalytic study. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 81, 333-341                                                                             | 39   |
| 2009 | Synthesis and characterization of novel mesoporous silica with large wormhole-like pores: Use of TBOS as silicon source. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 84, 34-40                                   | 17   |
| 2008 | Hollow shells of high surface area graphitic N-doped carbon composites nanocast using zeolite templates. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 86, 69-80                                                   | 49   |
| 2007 | Synthesis of mesoporous carbon using enzymatically polymerized polyphenolic precursor and simultaneously assembled silica template. <i>Microporous and Mesoporous Materials</i> , <b>2005</b> , 85, 293-296                      | 6    |
| 2006 | Templated mesoporous carbons for supercapacitor application. <b>2005</b> , 50, 2799-2805                                                                                                                                         | 362  |
| 2005 | Microporous carbons prepared from cationic surfactant desorcinol/formal dehyde composites.  **Carbon*, 2005*, 43, 269-274**  10.4                                                                                                | 63   |
| 2004 | Synthesis of supported carbon nanotubes in mineralized silical wood composites. <i>Carbon</i> , <b>2005</b> , 43, 1096- <b>10</b> 98                                                                                             | 1    |

| Macroscopic multi-branched carbon trees generated from chemical vapor deposition of toluene. <i>Carbon</i> , <b>2005</b> , 43, 1098-1100                                       | 10.4      | 18   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| 2002 Electrochemical energy storage in ordered porous carbon materials. <i>Carbon</i> , <b>2005</b> , 43, 1293-1302                                                            | 10.4      | 594  |
| Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan. <i>Carbon</i> , <b>2005</b> , 43, 1868-1873                   | 10.4      | 71   |
| Templated synthesis of mesoporous carbon from sucrosethe way from the silica pore filling to the carbon material. <i>Carbon</i> , <b>2005</b> , 43, 1918-1925                  | 10.4      | 44   |
| Synthesis of ordered carbon replicas by using Y-zeolite as template in a batch reactor. <i>Carbon</i> , <b>200</b> , , 43, 2330-2337                                           | 5 10.4    | 61   |
| 1998 Adsorption of vitamin B12 on ordered mesoporous carbons coated with PMMA. <i>Carbon</i> , <b>2005</b> , 43, 2                                                             | 2344-2354 | 57   |
| 1997 Ordered mesostructured carbon templated by SBA-16 silica. <i>Carbon</i> , <b>2005</b> , 43, 2423-2426                                                                     | 10.4      | 20   |
| Synthesis and characterization of in situ grown carbon nanofiber/nanotube reinforced carbon/carbon composites. <i>Carbon</i> , <b>2005</b> , 43, 2426-2429                     | 10.4      | 54   |
| 1995 Templating synthesis of ordered mesoporous carbon particles. <i>Carbon</i> , <b>2005</b> , 43, 2977-2982                                                                  | 10.4      | 53   |
| Characterization and microporosity analysis of mesoporous carbon molecular sieves by nitrogen and organics adsorption. <i>Catalysis Today</i> , <b>2005</b> , 102-103, 189-196 | 5.3       | 48   |
| Synthesis of ordered mesoporous carbon molecular sieve and its adsorption capacity for H2, N2, O2, CH4 and CO2. <b>2005</b> , 413, 6-9                                         |           | 55   |
| Organized mesoporous solids: mechanism of formation and use as host materials to prepare carbon and oxide replicas. <b>2005</b> , 8, 597-607                                   |           | 13   |
| 1991 Nanocasting pathways to create ordered mesoporous solids. <b>2005</b> , 8, 609-620                                                                                        |           | 78   |
| Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. <i>Chemical Communications</i> , <b>2005</b> , 2125-7                    | 5.8       | 458  |
| 1989 Ordered Mesoporous Materials for Bioadsorption and Biocatalysis. <b>2005</b> , 17, 4577-4593                                                                              |           | 1014 |
| Using phenol <b>f</b> ormaldehyde resin as carbon source to synthesize mesoporous carbons of different pore structures. <b>2005</b> , 90, 339-343                              |           | 13   |
| Nonionic triblock copolymer synthesis of SBA-15 above the isoelectric point of silica (pH = 2 <b>B</b> ). <b>2005</b> , 59, 2257-2261                                          |           | 63   |
| Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporou structures. <b>2004</b> , 44, 288-92                                            | S         | 226  |

## (2005-2005)

| 1985 | Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres. <b>2005</b> , 44, 2888-92                                             | 187  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1984 | Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. <b>2005</b> , 44, 7053-9                              | 1130 |
| 1983 | Preparation of a magnetically switchable bio-electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. <b>2005</b> , 44, 7427-32    | 128  |
| 1982 | Generalized Fluorocarbon-Surfactant-Mediated Synthesis of Nanoparticles with Various Mesoporous Structures. <b>2005</b> , 117, 292-296                                           | 31   |
| 1981 | Nanoporous Polyelectrolyte Spheres Prepared by Sequentially Coating Sacrificial Mesoporous Silica Spheres. <b>2005</b> , 117, 2948-2952                                          | 31   |
| 1980 | Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation. <b>2005</b> , 117, 7215-7221                          | 262  |
| 1979 | Preparation of a Magnetically Switchable Bio-electrocatalytic System Employing Cross-linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam. <b>2005</b> , 117, 7593-7598 | 24   |
| 1978 | Combined Surface and Volume Templating of Highly Porous Nanocast Carbon Monoliths. <b>2005</b> , 15, 865-871                                                                     | 59   |
| 1977 | Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries. <b>2005</b> , 15, 547-556                                        | 423  |
| 1976 | Tailored Macroporous SiCN and SiC Structures for High-Temperature Fuel Reforming. <b>2005</b> , 15, 1336-1342                                                                    | 121  |
| 1975 | Weakly Ferromagnetic Ordered Mesoporous Co3O4 Synthesized by Nanocasting from Vinyl-Functionalized Cubic Ia3d Mesoporous Silica. <b>2005</b> , 17, 53-56                         | 282  |
| 1974 | Synthesis of Boron Nitride with Ordered Mesostructure. <b>2005</b> , 17, 571-574                                                                                                 | 126  |
| 1973 | Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. <b>2005</b> , 17, 1648-1652                                                                | 474  |
| 1972 | Synthesis of g-C3N4 Nanoparticles in Mesoporous Silica Host Matrices. <b>2005</b> , 17, 1789-1792                                                                                | 688  |
| 1971 | Neue Materialien f∃die Heterogene Katalyse. <b>2005</b> , 77, 1399-1416                                                                                                          | 5    |
| 1970 | A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation. <i>Carbon</i> , <b>2005</b> , 43, 559-566     | 171  |
| 1969 | The Influence of Microporosity on the Hydrogen Storage Capacity of Ordered Mesoporous Carbons. <b>2005</b> , 11, 823-827                                                         | 19   |
| 1968 | Mesoporous activated carbon as electrode for electric double layer capacitor. <b>2005</b> , 40, 3703-3707                                                                        | 18   |

| 1967 | Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. <b>2005</b> , 1, 744-53                                         |     | 179 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1966 | Synthesis of silver nanoparticles within ordered CMK-3 mesoporous carbon. <b>2005</b> , 423-426                                                                                            |     | 6   |
| 1965 | Synthesis of hollow spherical mesoporous N-doped carbon materials with graphitic framework. <b>2005</b> , 565-572                                                                          |     | 13  |
| 1964 | Introduction to molecular sieves: trends of evolution of the zeolite community. <b>2005</b> , 157, 1-12                                                                                    |     | 20  |
| 1963 | Porous N-doped carbon with various hollow-cored morphologies nanocast using zeolite templates via chemical vapour deposition. <b>2005</b> , 156, 573-580                                   |     | 7   |
| 1962 | SYNTHESIS OF NANOSTRUCTURED POROUS CARBON. <b>2005</b> , 04, 261-268                                                                                                                       |     | 4   |
| 1961 | Comparative studies of the templated synthesis of porous carbon materials. <b>2005</b> , 158, 469-476                                                                                      |     | 8   |
| 1960 | Preparation and pore size control of cage type mesoporous carbon materials and their application in protein adsorption. <b>2005</b> , 971-978                                              |     | 15  |
| 1959 | Synthesis conditions of ordered mesostructured boron nitride prepared from borazinic precursors and CMK-3 carbon template. <b>2005</b> , 876, 1                                            |     |     |
| 1958 | Preparation and Charaterization of the Electrode Catalyst Supported on Mesoporous Carbons for the Dmfc Application. <b>2005</b> , 277-279, 899-902                                         |     |     |
| 1957 | Preparation of nanostructured boron nitride with borazinic precursor. <b>2005</b> , 279-286                                                                                                |     | 3   |
| 1956 | Electron tomography of molecular sieves. <b>2005</b> , 157, 225-242                                                                                                                        |     | 8   |
| 1955 | Mesoporous Carbons with Controlled Porosity as an Electrocatalytic Support for Methanol Oxidation. <b>2005</b> , 152, A1504                                                                |     | 80  |
| 1954 | Activated Carbon Materials of Uniform Porosity from Polyaramid Fibers. <b>2005</b> , 17, 5893-5908                                                                                         |     | 68  |
| 1953 | Al-MCM-48 as a template for synthesis of porous carbons-adsorption study. <b>2005</b> , 158, 447-454                                                                                       |     | 3   |
| 1952 | Replicating novel carbon nanostructures with 3D macroporous silica template. <b>2005</b> , 15, 2569                                                                                        |     | 45  |
| 1951 | A simple synthesis of mesoporous carbons with tunable mesopores using a colloidal template-mediated vapor deposition polymerization. <i>Chemical Communications</i> , <b>2005</b> , 4214-6 | 5.8 | 32  |
| 1950 | Encapsulation of metal particles within the wall structure of mesoporous carbons. <i>Chemical Communications</i> , <b>2005</b> , 1912-3                                                    | 5.8 | 24  |

## (2005-2005)

| 1949 | Rational design of ordered mesoporous carbon with controlled bimodal porosity via dual silica templating route. <i>Chemical Communications</i> , <b>2005</b> , 6035-7                                                                                  | .8 | 23  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 1948 | Carbonization of sucrose in the presence of zeolite: control over pore structure and morphology. <b>2005</b> , 156, 557-564                                                                                                                            |    | 6   |
| 1947 | Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials. <b>2005</b> , 15, 5122                                                                                                                                 |    | 136 |
| 1946 | Fabrication of flowerlike polymer superstructures using polymer/zeolite composites prepared with supercritical CO2. <i>Journal of Physical Chemistry B</i> , <b>2005</b> , 109, 2605-9                                                                 | -4 | 15  |
| 1945 | Monte Carlo based modeling of carbon nanostructured surfaces. <b>2005</b> , 72,                                                                                                                                                                        |    | 11  |
| 1944 | Biomaterial immobilization in nanoporous carbon molecular sieves: influence of solution pH, pore volume, and pore diameter. <i>Journal of Physical Chemistry B</i> , <b>2005</b> , 109, 6436-41                                                        | ·4 | 207 |
| 1943 | Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor. <i>Journal of Physical Chemistry B</i> , <b>2005</b> , 109, 9216-25                                                | ·4 | 186 |
| 1942 | A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. <b>2005</b> , 127, 13508-9                                                                                       |    | 558 |
| 1941 | Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates. <i>Journal of Physical Chemistry B</i> , <b>2005</b> , 109, 23263-8 | ·4 | 83  |
| 1940 | Comparison between SBA-15 silica and CMK-3 carbon nanocasting for mesoporous boron nitride synthesis. <b>2005</b> , 15, 1917                                                                                                                           |    | 81  |
| 1939 | Aqueous and gaseous adsorption from montmorillonite-carbon composites and from derived carbons. <b>2005</b> , 21, 2349-55                                                                                                                              |    | 30  |
| 1938 | Preparation of Monolithic Carbon Aerogels and Investigation of Their Pore Interconnectivity by a Nanocasting Pathway. <b>2005</b> , 17, 3620-3626                                                                                                      |    | 52  |
| 1937 | Surface functionalization of ordered mesoporous carbonsa comparative study. <b>2005</b> , 21, 11999-2006                                                                                                                                               |    | 77  |
| 1936 | Electrochemical deposition of mesoporous nickel hydroxide films from dilute surfactant solutions. <b>2005</b> , 127, 3596-604                                                                                                                          |    | 102 |
| 1935 | Synthesis of Nitrogen-Containing Microporous Carbon with a Highly Ordered Structure and Effect of Nitrogen Doping on H2O Adsorption. <b>2005</b> , 17, 5187-5193                                                                                       |    | 150 |
| 1934 | Generalized and Facile Synthesis Approach to N-Doped Highly Graphitic Mesoporous Carbon Materials. <b>2005</b> , 17, 1553-1560                                                                                                                         |    | 174 |
| 1933 | Systematic phase control of periodic mesoporous organosilicas using Gemini surfactants. <b>2005</b> , 15, 4711                                                                                                                                         |    | 51  |
| 1932 | MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system. <b>2005</b> , 127, 7601-10                                                                            |    | 635 |

| 1931 | Facile Template Synthesis of Ordered Mesoporous Carbon with Polypyrrole as Carbon Precursor. <b>2005</b> , 17, 355-358                                                                                                                                               | 186  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1930 | Characterization of mesoporous carbons synthesized with SBA-16 silica template. <b>2005</b> , 15, 1560                                                                                                                                                               | 146  |
| 1929 | Surface Functionalization and Pore Size Manipulation for Carbons of Ordered Structure. <b>2005</b> , 17, 1717-172                                                                                                                                                    | 1 79 |
| 1928 | Fabrication and Characterization of Mesostructured Silica, HUM-1, and Its Ordered Mesoporous Carbon Replica. <b>2005</b> , 44, 4316-4322                                                                                                                             | 13   |
| 1927 | Porous Inorganic-Organic Hybrid Materials. <b>2005</b> , 86-121                                                                                                                                                                                                      | 4    |
| 1926 | Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. <b>2005</b> , 127, 10794-5                                                                                                                                           | 232  |
| 1925 | Synthesis of Mesoporous BN and BCN Exhibiting Large Surface Areas via Templating Methods. <b>2005</b> , 17, 5887-5890                                                                                                                                                | 147  |
| 1924 | Adsorption of Vitamin E on Mesoporous Carbon Molecular Sieves. <b>2005</b> , 17, 829-833                                                                                                                                                                             | 206  |
| 1923 | Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. <b>2005</b> , 127, 4188-9                                                                                                                               | 229  |
| 1922 | Post-grafting preparation of large-pore mesoporous materials with localized high content titanium doping. <b>2005</b> , 15, 661                                                                                                                                      | 26   |
| 1921 | Evidence for C-C bond cleavage by H2O2 in a mesoporous CMK-5 type carbon at room temperature. <i>Chemical Communications</i> , <b>2005</b> , 5184-6                                                                                                                  | 60   |
| 1920 | Adsorption of amino acid on mesoporous molecular sieves. <b>2005</b> , 631-636                                                                                                                                                                                       | 15   |
| 1919 | Fabrication of bimodal porous silicate with silicalite-1 core/mesoporous shell structures and synthesis of nonspherical carbon and silica nanocases with hollow core/mesoporous shell structures. <i>Journal of Physical Chemistry B</i> , <b>2005</b> , 109, 7040-5 | 81   |
| 1918 | Templated Porous Carbons: A Review Article. <b>2005</b> , 44, 2893-2902                                                                                                                                                                                              | 222  |
| 1917 | Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping. <i>Journal of Physical Chemistry B</i> , <b>2006</b> , 110, 18424-31                   | 217  |
| 1916 | Periodic mesoporous organosilica mesophases are versatile precursors for the direct preparation of mesoporous silica/carbon composites, carbon and silicon carbide materials. <b>2006</b> , 16, 3417                                                                 | 28   |
| 1915 | Low Temperature Catalytic Pyrolysis for the Synthesis of High Surface Area, Nanostructured Graphitic Carbon. <b>2006</b> , 18, 2086-2094                                                                                                                             | 156  |
| 1914 | Controlled synthesis of highly dispersed platinum nanoparticles in ordered mesoporous carbons.  Chemical Communications, 2006, 3435-7  5.8                                                                                                                           | 96   |

| 1913 | Pyrolytic Synthesis of Carbon Nanotubes from Sucrose on a Mesoporous Silicate. <b>2006</b> , 14, 585-594                                                                                    | 19  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1912 | A novel porous carbon based on diatomaceous earth. <i>Chemical Communications</i> , <b>2006</b> , 2662-3 5.8                                                                                | 39  |
| 1911 | Synthesis and characterization of large-pore ordered mesoporous carbons using gyroidal silica template. <b>2006</b> , 16, 1445                                                              | 61  |
| 1910 | Textural and electrochemical properties of carbon replica obtained from styryl organo-modified layered double hydroxide. <b>2006</b> , 16, 2074-2081                                        | 52  |
| 1909 | Combined and Hybrid Adsorbents. 2006,                                                                                                                                                       | 11  |
| 1908 | Low temperature oxidative template removal from SBA-15 using MnO4Isolution and carbon replication of the mesoporous silica product. <b>2006</b> , 16, 3396-3401                             | 25  |
| 1907 | Preparation and characterization of ordered mesoporous carbons on SBA-15 template. <b>2006</b> , 16, 1350                                                                                   | 25  |
| 1906 | Template Synthesis of Stimuli-Responsive Nanoporous Polymer-Based Spheres via Sequential Assembly. <b>2006</b> , 18, 4089-4100                                                              | 89  |
| 1905 | Surface Selective Polymerization of Polypyrrole on Ordered Mesoporous Carbon: Enhancing Interfacial Conductivity for Direct Methanol Fuel Cell Application. <b>2006</b> , 39, 3275-3282     | 61  |
| 1904 | Simultaneous Control of Morphology and Porosity in Nanoporous Carbon: Graphitic Mesoporous Carbon Nanorods and Nanotubules with Tunable Pore Size. <b>2006</b> , 18, 140-148                | 81  |
| 1903 | Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. <b>2006</b> , 128, 11652-62 | 539 |
| 1902 | "Nanocasting": using SBA-15 silicas as hard templates to obtain ultrasmall monodispersed gamma-Fe2O3 nanoparticles. <i>Journal of Physical Chemistry B</i> , <b>2006</b> , 110, 26001-11    | 98  |
| 1901 | An Aqueous Cooperative Assembly Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology. <b>2006</b> , 18, 5279-5288                                       | 226 |
| 1900 | Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors. <b>2006</b> , 18, 2318-2326                                                            | 393 |
| 1899 | Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. <b>2006</b> , 128, 10026-7                | 131 |
| 1898 | Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosus ₱MnO2. <b>2006</b> , 18, 5618-5623                                                                                    | 174 |
| 1897 | Chapter 6 Application of nanotextured carbons for supercapacitors and hydrogen storage. <b>2006</b> , 7, 293-34.                                                                            | 3 9 |
| 1896 | Hierarchically Porous Metal Oxide Monoliths Prepared by the Nanocasting Route. <b>2006</b> , 18, 1443-1450                                                                                  | 124 |

| 1895 | Pore structures of ordered large cage-type mesoporous silica FDU-12s. <i>Journal of Physical Chemistry B</i> , <b>2006</b> , 110, 21467-72                                                         | 3.4 | 93  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1894 | Some aspects of the direct synthesis of platinum containing carbons by template assisted routes. <b>2006</b> , 7, 950-954                                                                          |     | 1   |
| 1893 | Well-Defined Poly(ethylene oxide)Polyacrylonitrile Diblock Copolymers as Templates for Mesoporous Silicas and Precursors for Mesoporous Carbons. <b>2006</b> , 18, 1417-1424                       |     | 54  |
| 1892 | Thermodynamic and neutron scattering study of hydrogen adsorption in two mesoporous ordered carbons. <b>2006</b> , 22, 4614-9                                                                      |     | 28  |
| 1891 | Templated carbon nanofiber with mesoporosity and semiconductivity. <i>Journal of Physical Chemistry B</i> , <b>2006</b> , 110, 6447-50                                                             | 3.4 | 32  |
| 1890 | Ordered Crystalline Alumina Molecular Sieves Synthesized via a Nanocasting Route. <b>2006</b> , 18, 5153-51                                                                                        | 55  | 145 |
| 1889 | Chapter 2 Pore formation and control in carbon materials. <b>2006</b> , 7, 49-105                                                                                                                  |     | 11  |
| 1888 | Chapter 3 Characterization of nanoporous carbons by using gas adsorption isotherms. <b>2006</b> , 107-158                                                                                          |     | 19  |
| 1887 | Three-dimensionally ordered macroporous carbons having walls composed of hollow mesosized spheres. <i>Chemical Communications</i> , <b>2006</b> , 4099-101                                         | 5.8 | 28  |
| 1886 | Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon Carbon Nanocomposites. <b>2006</b> , 18, 5543-5553                   |     | 165 |
| 1885 | Synthesis of Mesoporous Magnesium Oxide by CMK-3 Carbon Structure Replication. <b>2006</b> , 18, 4151-41                                                                                           | 56  | 123 |
| 1884 | Ordered porous carbon with tailored pore size for electrochemical hydrogen storage application.<br>Journal of Physical Chemistry B, <b>2006</b> , 110, 4875-80                                     | 3.4 | 134 |
| 1883 | Facile Preparation of Hierarchically Porous Carbon Monoliths with Well-Ordered Mesostructures. <b>2006</b> , 18, 6373-6381                                                                         |     | 60  |
| 1882 | Structural Peculiarities of Mesostructured Carbons Obtained by Nanocasting Ordered Mesoporous Templates via Carbon Chemical Vapor or Liquid Phase Infiltration Routes. <b>2006</b> , 18, 6316-6323 |     | 15  |
| 1881 | Formation Mechanism of Porous Single-Crystal Cr2O3 and Co3O4 Templated by Mesoporous Silica. <b>2006</b> , 18, 3088-3095                                                                           |     | 176 |
| 1880 | Templating methods for preparation of porous structures. <b>2006</b> , 16, 637-648                                                                                                                 |     | 170 |
| 1879 | Use of Poly(furfuryl alcohol) in the Fabrication of Nanostructured Carbons and Nanocomposites. <b>2006</b> , 45, 6393-6404                                                                         |     | 102 |
| 1878 | DESIGN, SYNTHESIS AND CHARACTERIZATION OF ORDERED MESOPOROUS MATERIALS FOR ENVIRONMENTAL APPLICATIONS. <b>2006</b> , 23-36                                                                         |     | 3   |

| 1877 | Three-dimensionally Ordered Array of Nanoporous Starburst Carbon Spheres. <b>2006</b> , 35, 1436-1437                                                     |     | 13  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1876 | Amorphous Carbon-promoted Low-temperature Crystallization of Silica. <b>2006</b> , 35, 228-229                                                            |     | 5   |
| 1875 | Structure and Electrochemical Capacitance of Nitrogen-enriched Mesoporous Carbon. <b>2006</b> , 35, 680-681                                               |     | 35  |
| 1874 | Synthesis of Various Types of Nano Carbons Using the Template Technique. <b>2006</b> , 79, 1322-1337                                                      |     | 86  |
| 1873 | Synthesis of new nanostructured carbon materials using silica nanostructured templates by Korean research groups. <b>2006</b> , 3, 253                    |     | 7   |
| 1872 | Grand Canonical Monte Carlo Simulation Study of Hydrogen Storage in Ordered Mesoporous Carbons at 303 K. <b>2006</b> , 24, 411-426                        |     | 4   |
| 1871 | ??????????????????, ???, ???????????. <b>2006</b> , 45, 540-546                                                                                           |     | Ο   |
| 1870 | Carbon nanospheres produced in an arc-discharge process. <i>Carbon</i> , <b>2006</b> , 44, 187-190                                                        | 0.4 | 46  |
| 1869 | Superior electric double layer capacitors using ordered mesoporous carbons. <i>Carbon</i> , <b>2006</b> , 44, 216-224 10                                  | 0.4 | 634 |
| 1868 | Synthesis and characterization of a new nanoporous carbon material with a bimodal pore system.  Carbon, <b>2006</b> , 44, 184-187                         | 0.4 | 11  |
| 1867 | Adsorption of l-histidine over mesoporous carbon molecular sieves. <i>Carbon</i> , <b>2006</b> , 44, 530-536                                              | 0.4 | 152 |
| 1866 | Methane sorption on ordered mesoporous carbon in the presence of water. <i>Carbon</i> , <b>2006</b> , 44, 1386-1392                                       | 0.4 | 52  |
| 1865 | Tuning pore size of mesoporous carbon via confined activation process. <i>Carbon</i> , <b>2006</b> , 44, 1349-1352                                        | 0.4 | 3   |
| 1864 | Super-hydrophobic ordered mesoporous carbon monolith. <i>Carbon</i> , <b>2006</b> , 44, 1336-1339                                                         | 0.4 | 37  |
| 1863 | Synthesis of carbon nanotubes from solid carbon sources by direct microwave irradiation. <i>Carbon</i> , <b>2006</b> , 44, 1339-1343                      | 0.4 | 23  |
| 1862 | Synthesis of mesoporous carbon supports via liquid impregnation of polystyrene onto a MCM-48 silica template. <i>Carbon</i> , <b>2006</b> , 44, 1476-1483 | 0.4 | 24  |
| 1861 | Partially graphitized carbon filaments from as-synthesized silica/surfactant composite. <i>Carbon</i> , <b>2006</b> , 44, 1969-1973                       | 0.4 | 8   |
| 1860 | Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons. <i>Carbon</i> , <b>2006</b> , 44, 1601-1604                           | 0.4 | 26  |

| 1859 | Novel catalyst particle production method for CVD growth of single- and double-walled carbon nanotubes. <i>Carbon</i> , <b>2006</b> , 44, 1604-1608                                                                                    | 10.4 | 16 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 1858 | Examination of synthesis conditions for graphite-derived nanoporous carbon lilica composites. <i>Carbon</i> , <b>2006</b> , 44, 2479-2488                                                                                              | 10.4 | 32 |
| 1857 | Graphitization of carbons synthesized in a confined geometry. Carbon, 2006, 44, 3348-3352                                                                                                                                              | 10.4 | 59 |
| 1856 | New structural insights into ordered porous carbon by scanning tunneling microscopy. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 87, 268-271                                                                           | 5.3  |    |
| 1855 | Transformation of mesoporous benzene silica to nanoporous carbon. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 91, 276-285                                                                                              | 5.3  | 8  |
| 1854 | Preparation, characterization and catalytic behavior in methanol decomposition of nanosized iron oxide particles within large pore ordered mesoporous silicas. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 89, 209-218 | 5.3  | 50 |
| 1853 | Nickel oxide nanocrystallites within the wall of ordered mesoporous carbon CMK-3: Synthesis and characterization. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 89, 196-203                                              | 5.3  | 37 |
| 1852 | Highly mesoporous carbons obtained using a dynamic template method. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 89, 315-324                                                                                            | 5.3  | 15 |
| 1851 | A structure of MnO2 embedded in CMK-3 framework developed by a redox method. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 91, 120-127                                                                                   | 5.3  | 19 |
| 1850 | Metal-loaded carbonaceous adsorbents templated from porous clay heterostructures. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 92, 47-55                                                                                | 5.3  | 23 |
| 1849 | Formation of graphite-derived layered mesoporous carbon materials. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 93, 254-262                                                                                             | 5.3  | 1  |
| 1848 | Cu-incorporated mesoporous materials: Synthesis, characterization and catalytic activity in phenol hydroxylation. <b>2006</b> , 260, 121-127                                                                                           |      | 36 |
| 1847 | Magnetoresistance and resistance versus temperature dependence of a mesoporous mesophase carbon. <b>2006</b> , 34, 655-657                                                                                                             |      | 2  |
| 1846 | Characterization of the porous carbon prepared by using halloysite as template and its application to EDLC. <b>2006</b> , 67, 1186-1189                                                                                                |      | 32 |
| 1845 | Fabrication of a mesoporous Pt-carbon catalyst by the direct templating of mesoporous Pt-alumina for the methanol electro-oxidation. <b>2006</b> , 157, 196-200                                                                        |      | 18 |
| 1844 | Thermal stability of high surface area silicon carbide materials. <b>2006</b> , 179, 2281-2289                                                                                                                                         |      | 54 |
| 1843 | The local and surface structure of ordered mesoporous carbons from nitrogen sorption, NEXAFS and synchrotron radiation studies. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 92, 81-93                                  | 5.3  | 14 |
| 1842 | Adsorption properties of various carbon materials prepared by template synthesis route. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 89, 164-169                                                                        | 5.3  | 19 |

## (2006-2006)

| 1841 | Synthesis of boron nitride with a cubic mesostructure. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 92, 286-291                                                                                 | 5.3 | 25  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1840 | Synthesis of nanoporous carbon: An in situ template approach. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 94, 122-126                                                                          | 5.3 | 2   |
| 1839 | Synthesis of carbon replicas of SBA-1 and SBA-7 mesoporous silicas. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 95, 193-199                                                                    | 5.3 | 19  |
| 1838 | Fabrication of ultra-large mesoporous carbon with tunable pore size by monodisperse silica particles derived from seed growth process. <i>Microporous and Mesoporous Materials</i> , <b>2006</b> , 96, 127-134 | 5.3 | 41  |
| 1837 | New families of mesoporous materials. <b>2006</b> , 7, 753-771                                                                                                                                                 |     | 142 |
| 1836 | Template-assisted synthesis of mesoporous tubular carbon nanostructure by chemical vapor infiltration method. <b>2006</b> , 498, 193-197                                                                       |     | 13  |
| 1835 | Characterization of Coke on Zeolites. <b>2006</b> , 249-364                                                                                                                                                    |     | 50  |
| 1834 | Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. <b>2006</b> , 128, 5316                                                                                                    | 5-7 | 659 |
| 1833 | "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. <b>2006</b> , 39, 423-3                                                                                                  | 2   | 327 |
| 1832 | Preparation of ultramicro-, micro-, and supermicroporous carbon adsorbents by template procedure. <b>2006</b> , 68, 182-188                                                                                    |     | 3   |
| 1831 | Œlectronic Soft Materials Based on Graphitic Nanostructures. <b>2006</b> , 38, 743-756                                                                                                                         |     | 17  |
| 1830 | First zeolite carbon replica with a well resolved X-ray diffraction pattern. <i>Chemical Communications</i> , <b>2006</b> , 991-3                                                                              | 5.8 | 86  |
| 1829 | Template-assisted syntheses of porous metal methylphosphonates. <i>Journal of Porous Materials</i> , <b>2006</b> , 13, 73-80                                                                                   | 2.4 | 5   |
| 1828 | Preparation of phenolic resin derived 3-D ordered macroporous carbon. <i>Journal of Porous Materials</i> , <b>2006</b> , 13, 115-121                                                                           | 2.4 | 29  |
| 1827 | Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. <i>Journal of Porous Materials</i> , <b>2006</b> , 13, 379-383                                            | 2.4 | 97  |
| 1826 | Acidity and Catalytic Behaviors of Ordered Mesoporous Aluminosilicate Materials Containing Zeolite Building Units. <b>2006</b> , 108, 173-178                                                                  |     | 15  |
| 1825 | Multiple-scattering extended X-ray absorption fine structure analysis of nanostructured iron(III) oxide in the pore system of mesoporous carbon CMK-1. <b>2006</b> , 384, 817-26                               |     | 3   |
| 1824 | Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. <b>2006</b> , 27, 5755-62                                                                                         |     | 111 |

| 1823 | Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors. <b>2006</b> , 51, 5715-5720                         | 96   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1822 | Facile synthesis of carbon monolith with bimodal mesopores. <b>2006</b> , 97, 472-475                                                                                        | 11   |
| 1821 | Synthesis of hollow carbon microspheres in ionic liquids and their electrochemical capacitance characteristics. <b>2006</b> , 98, 456-458                                    | 15   |
| 1820 | Synthesis of mesoporous silicas with different pore sizes using PEO polymers via hydrothermal treatment: A direct template for mesoporous carbon. <b>2006</b> , 100, 112-116 | 6    |
| 1819 | High-surface area inorganic compounds prepared by nanocasting techniques. 2006, 41, 2187-2197                                                                                | 103  |
| 1818 | Nickel oxide nanocrystallites embedded within the wall of ordered mesoporous carbon. <b>2006</b> , 60, 943-946                                                               | 6    |
| 1817 | High-yield synthesis of monodispersed SBA-15 equilateral hexagonal platelet with thick wall. <b>2006</b> , 60, 3857-3860                                                     | 24   |
| 1816 | Silica-based mesoporous organic-inorganic hybrid materials. <b>2006</b> , 45, 3216-51                                                                                        | 2575 |
| 1815 | Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. <b>2006</b> , 45, 3782-6                                                             | 211  |
| 1814 | Diatom-Templated Synthesis of Ordered Meso/Macroporous Hierarchical Materials. <b>2006</b> , 2006, 3641-3645                                                                 | 51   |
| 1813 | Synthesis and Electrochemical Properties of Semicrystalline Gyroidal Mesoporous MnO2. <b>2006</b> , 24, 835-839                                                              | 28   |
| 1812 | MesoporBe organisch-anorganische Hybridmaterialien auf Silicabasis. <b>2006</b> , 118, 3290-3328                                                                             | 276  |
| 1811 | Starbons: New Starch-Derived Mesoporous Carbonaceous Materials with Tunable Properties. <b>2006</b> , 118, 3866-3870                                                         | 62   |
| 1810 | Recent Progress in the Synthesis of Porous Carbon Materials. <b>2006</b> , 18, 2073-2094                                                                                     | 1748 |
| 1809 | Nanoporous Protein Particles Through Templating Mesoporous Silica Spheres. <b>2006</b> , 18, 795-800                                                                         | 110  |
| 1808 | Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials. <b>2006</b> , 18, 1793-1805                                                                  | 1085 |
| 1807 | Porous Inorganic Materials. <b>2006</b> ,                                                                                                                                    | 2    |
| 1806 | Nanocasting synthesis of ordered mesoporous alumina with crystalline walls: influence of aluminium precursors and filling times. <b>2007</b> , 170, 1819-1826                | 2    |

#### (2007-2007)

| 1805 | and Relations between Adsorption Parameters of Silica Templates and their Inverse Carbon Replicas. <b>2007</b> , 111, 9742-9748                       | 25 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1804 | Catalytic phenol hydroxylation over Cu-incorporated mesoporous materials. 2007, 165, 675-678                                                          |    |
| 1803 | Condensation of borazinic precursors for mesoporous boron nitride synthesis by carbon nanocasting. <b>2007</b> , 22, 26-34                            | 7  |
| 1802 | Chemically modified nanoporous carbons obtained using template carbonization method. <b>2007</b> , 160, 559-566                                       | 2  |
| 1801 | The Synthesis of Mesoporous Molecular Sieves. <b>2007</b> , 168, 241-III                                                                              | 12 |
| 1800 | Novel Preparation of Nano-Sized TiO2 and ZrO2 Particles by Nanocasting with Nanoporous SiO2 and Selective Dissolution. <b>2007</b> , 124-126, 643-646 |    |
| 1799 | A facile aqueous route tosynthesize highly ordered mesoporous carbons with open pore structures. <b>2007</b> , 1856-1862                              | 2  |
| 1798 | Structural and Electrochemical Characterization of Pt/CMK-5 via CTAB Introduced into the Microwave Heating Process. <b>2007</b> , 10, B191            | 7  |
| 1797 | Advantageous Effect on Porosity of Template Carbon Materials by Residue of Templates. <b>2007</b> , 115, 751-756                                      | 2  |
| 1796 | One and three dimensional mesoporous carbon nitride molecular sieves with tunable pore diameters. <b>2007</b> , 165, 905-908                          | 2  |
| 1795 | Synthesis of mesoporous carbon frameworks with graphitic walls by secondary hard template method. <b>2007</b> , 165, 373-376                          | 3  |
| 1794 | Mesoporous crystals of metal oxides and their properties. <b>2007</b> , 165, 335-338                                                                  | 1  |
| 1793 | Rational control of the micro/mesoporosity of multimodally porous carbon monoliths synthesized by nanocasting. <b>2007</b> , 369-372                  |    |
| 1792 | Synthesis of large pore mesoporous carbon using colloidal silica template. <b>2007</b> , 165, 413-416                                                 |    |
| 1791 | The application of supercritical fluids in the preparation and processing of mesoporous materials. <b>2007</b> , 1796-1803                            | 2  |
| 1790 | Template Approaches to Preparing Porous Carbon. <b>2007</b> , 63-128                                                                                  | 1  |
| 1789 | Preparation of Pillared Carbons by Pyrolysis of Silylated Graphite Oxide. <b>2007</b> , 36, 1050-1051                                                 | 29 |
| 1788 | Novel Hexagonally Ordered Nitrogen-doped Mesoporous Carbon from SBA-15/Polyaniline<br>Nanocomposite. <b>2007</b> , 36, 770-771                        | 23 |

| 1787 | A Facile Route to Mesoporous Carbon Catalyst Support Modified with Magnetic Nanoparticles. <b>2007</b> , 36, 422-423                                                          | 11  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1786 | Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. <b>2007</b> , 129, 1690-7 | 354 |
| 1785 | Recent Advances and Future Aspects in the Selective Isomerization of High n-Alkanes. <i>Catalysis Reviews - Science and Engineering</i> , <b>2007</b> , 49, 33-139            | 193 |
| 1784 | Novel monolithic mesoporous foamed carbons prepared using micro-colloidal particles as templates. <b>2007</b> , 353, 2893-2899                                                | 10  |
| 1783 | Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. <b>2007</b> , 129, 1673-9                                                              | 509 |
| 1782 | Mesoporous carbons with KOH activated framework and their hydrogen adsorption. <b>2007</b> , 17, 4204                                                                         | 119 |
| 1781 | Versatile mesoporous carbonaceous materials for acid catalysis. <i>Chemical Communications</i> , <b>2007</b> , 634-6 5.8                                                      | 145 |
| 1780 | Interfacial Bioelectrochemistry: Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces. <b>2007</b> , 111, 2351-2367                            | 136 |
| 1779 | A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization. <b>2007</b> , 19, 4205-4212               | 391 |
| 1778 | Mesoporous Silica Applications. <b>2007</b> , 258, 129-141                                                                                                                    | 119 |
| 1777 | Surface functionalization of templated porous carbon materials. 2007, 165, 365-368                                                                                            | 3   |
| 1776 | Aminated hydrophilic ordered mesoporous carbons. <b>2007</b> , 17, 3412                                                                                                       | 145 |
| 1775 | Use of Iron-Containing Mesoporous Carbon (IMC) for Arsenic Removal from Drinking Water. <b>2007</b> , 24, 113-121                                                             | 51  |
| 1774 | Synthesis and Magnetic Properties of Mesostructured Fe2O3/Carbon Composites by a Co-casting Method. <b>2007</b> , 19, 3484-3490                                               | 99  |
| 1773 | Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. <b>2007</b> , 19, 3271-3277                                  | 193 |
| 1772 | Synthesis and characterization of mesoporous carbon for fuel cell applications. <b>2007</b> , 17, 3078                                                                        | 314 |
| 1771 | Ordered Mesoporous Carbon Monoliths: CVD Nanocasting and Hydrogen Storage Properties. <b>2007</b> , 111, 10035-10039                                                          | 84  |
| 1770 | Maghemite nanocrystal impregnation by hydrophobic surface modification of mesoporous silica. <b>2007</b> , 23, 8838-44                                                        | 35  |

| 1769 | Fabrication of continuous mesoporous carbon films with face-centered orthorhombic symmetry through a soft templating pathway. <b>2007</b> , 17, 3639                          | 120 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1768 | Ordered mesoporous polymers and polymer-silica anocomposites. <b>2007</b> , 170, 1721-1733                                                                                    | 1   |
| 1767 | Carbon/MoO2 Composite Based on Porous Semi-Graphitized Nanorod Assemblies from In Situ Reaction of Tri-Block Polymers. <b>2007</b> , 19, 374-383                              | 96  |
| 1766 | Preparation of graphitic carbon with high surface area and its application as an electrode material for fuel cells. <b>2007</b> , 17, 2251                                    | 43  |
| 1765 | Soft Chemical Dehydration Route to Carbon Coating of Metal Oxides: Its Application for Spinel Lithium Manganate. <b>2007</b> , 111, 11347-11352                               | 33  |
| 1764 | Synthesis of High Surface Area, Water-Dispersible Graphitic Carbon Nanocages by an in Situ Template Approach. <b>2007</b> , 19, 453-459                                       | 66  |
| 1763 | Functional Carbon Nanoflakes with High Aspect Ratio by Pyrolysis of Cured Templates of Block Copolymer and Phenolic Resin. <b>2007</b> , 19, 3093-3095                        | 6   |
| 1762 | Ordered Mesoporous SiOC and SiCN Ceramics from Atmosphere-Assisted in Situ Transformation. <b>2007</b> , 19, 1761-1771                                                        | 54  |
| 1761 | Disilazane functionalization of large-pore hybrid periodic mesoporous organosilicas. <b>2007</b> , 17, 2506                                                                   | 24  |
| 1760 | The Preparation of Carbon-Supported Magnesium Nanoparticles using Melt Infiltration. <b>2007</b> , 19, 6052-6057                                                              | 168 |
| 1759 | Dual-Porosity Carbon Templated from Monosize Mesoporous Silica Nanoparticles. <b>2007</b> , 19, 2786-2795                                                                     | 49  |
| 1758 | Simple Preparation of Honeycomb-like Macrostructured and Microporous Carbons with High Performance in Oxidative Dehydrogenation of Ethylbenzene. <b>2007</b> , 19, 2894-2897  | 37  |
| 1757 | Experimental and Atomistic Simulation Study of the Structural and Adsorption Properties of Faujasite ZeoliteIIemplated Nanostructured Carbon Materials 2007, 111, 15863-15876 | 48  |
| 1756 | Self-Assembled Ultralarge Millimeter-Sized Graphitic Carbon Rods Grown on Mesoporous Silica Substrate. <b>2007</b> , 19, 6317-6322                                            | 5   |
| 1755 | Mesoporous carbon single-crystals from organic-organic self-assembly. <b>2007</b> , 129, 7746-7                                                                               | 101 |
| 1754 | Novel Nanostructures of Porous Carbon Synthesized with Zeolite LTA-Template and Methanol. <b>2007</b> , 111, 2459-2464                                                        | 24  |
| 1753 | An Ordered Mesoporous Aluminosilicate Oxynitride Template to Prepare N-Incorporated Ordered Mesoporous Carbon. <b>2007</b> , 111, 7266-7272                                   | 50  |
| 1752 | Introduction. 1-18                                                                                                                                                            | 2   |

1751 Porous Host**©**uest Advanced Materials. 603-666

| 1750 | Nickel-Catalyzed Fabrication of SiO2, TiO2/Graphitized Carbon, and the Resultant Graphitized Carbon with Periodically Macroporous Structure. <b>2007</b> , 19, 477-484               | 67  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1749 | Hard Templating Pathways for the Synthesis of Nanostructured Porous Co3O4. <b>2007</b> , 19, 485-496                                                                                 | 298 |
| 1748 | Infiltration of Macromolecules into Nanoporous Silica Particles. <b>2007</b> , 40, 7594-7600                                                                                         | 57  |
| 1747 | Synthesis, Structure, and Characterization of Mesoporous Materials. 467-601                                                                                                          | 2   |
| 1746 | Electrocatalytical Activity on Oxidizing Hydrogen and Methanol of Novel Carbon Nanocages of Different Pore Structures with Various Platinum Loadings. <b>2007</b> , 111, 10329-10335 | 17  |
| 1745 | Facile synthesis of ordered mesoporous carbons from F108/resorcinol-formaldehyde composites obtained in basic media. <i>Chemical Communications</i> , <b>2007</b> , 757-9            | 94  |
| 1744 | Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. <b>2007</b> , 17, 1819                                                                               | 171 |
| 1743 | Poly(3,4-ethylenedioxythiophene)/Mesoporous Carbon Composite. 2007, 111, 18073-18077                                                                                                 | 30  |
| 1742 | Synthesis and catalytic applications of CMK-LDH (layered double hydroxides) nanocomposite materials. <b>2007</b> , 9, 424                                                            | 17  |
| 1741 | Mesoporous metal oxides and mixed oxides nanocasted from mesoporous vinylsilica and their applications in catalysis. <b>2007</b> , 361-364                                           | 4   |
| 1740 | . 2007,                                                                                                                                                                              | 216 |
| 1739 | Preparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystalline walls. <b>2007</b> , 13, 592-7                                          | 113 |
| 1738 | Porous metal oxides as gas sensors. <b>2007</b> , 13, 8376-88                                                                                                                        | 556 |
| 1737 | Shaping mesoporous silica nanoparticles by disassembly of hierarchically porous structures. <b>2007</b> , 46, 1885-8                                                                 | 64  |
| 1736 | Arsenic sorption and redox transformation on iron-impregnated ordered mesoporous carbon. <b>2007</b> , 21, 750-757                                                                   | 22  |
| 1735 | Shaping Mesoporous Silica Nanoparticles by Disassembly of Hierarchically Porous Structures. <b>2007</b> , 119, 1917-1920                                                             | 17  |
| 1734 | Replication and Coating of Silica Templates by Hydrothermal Carbonization. <b>2007</b> , 17, 1010-1018                                                                               | 220 |

| 1733 | Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High-Rate Capability. <b>2007</b> , 17, 1873-1878              |               | 622 |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|--|
| 1732 | Sulfur-Functionalized Mesoporous Carbon. <b>2007</b> , 17, 2897-2901                                                                                                                                               |               | 208 |  |
| 1731 | Ordered Mesoporous Nanocrystalline Titanium-Carbide/Carbon Composites from In Situ Carbothermal Reduction. <b>2007</b> , 19, 2301-2306                                                                             |               | 133 |  |
| 1730 | Generation of Hierarchical Meso- and Macroporous Carbon from Mesophase Pitch by Spinodal Decomposition using Polymer Templates. <b>2007</b> , 19, 4012-4017                                                        |               | 142 |  |
| 1729 | Synthesis of ultrafine carbon cryogel microspheres using a homogenizer. <b>2007</b> , 53, 228-236                                                                                                                  |               | 6   |  |
| 1728 | Highly ordered mesoporous carbon materials CMI-8 with variable morphologies synthesised by nanocasting. <b>2007</b> , 300, 65-69                                                                                   |               | 7   |  |
| 1727 | Template synthesis of ordered cubic Ia3d mesoporous carbons with different pore sizes. <i>Carbon</i> , <b>2007</b> , 45, 220-222                                                                                   | 10.4          | 6   |  |
| 1726 | Synthesis and characterization of transition metal and metal oxide nanoparticles inside mesoporous carbon CMK-3. <i>Carbon</i> , <b>2007</b> , 45, 304-314                                                         | 10.4          | 81  |  |
| 1725 | Characterization of porous carbonaceous materials derived from poly(phenylenebutadiynylene)s. <i>Carbon</i> , <b>2007</b> , 45, 594-601                                                                            | 10.4          | 14  |  |
| 1724 | Shape-controlled synthesis of nanocarbons from resorcinolformaldehyde nanopolymers using surfactant-templated vesicular assemblies. <i>Carbon</i> , <b>2007</b> , 45, 1289-1295                                    | 10.4          | 43  |  |
| 1723 | One-step synthesis of new mesoporous carbon nanofibers through an easy template method. <i>Carbon</i> , <b>2007</b> , 45, 1111-1113                                                                                | 10.4          | 27  |  |
| 1722 | Multiwalled-carbon-nanotube-based carbon foams. <i>Carbon</i> , <b>2007</b> , 45, 2317-2320                                                                                                                        | 10.4          | 44  |  |
| 1721 | Electron microscopy and nitrogen adsorption studies of film-type carbon replicas with large pore volume synthesized by using colloidal silica and SBA-15 as templates. <i>Carbon</i> , <b>2007</b> , 45, 2171-2177 | 10.4          | 22  |  |
| 1720 | Ultrafast production of ordered mesoporous carbons via microwave irradiation. <i>Carbon</i> , <b>2007</b> , 45, 2851                                                                                               | -285 <u>4</u> | 14  |  |
| 1719 | CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation. <b>2007</b> , 52, 4691-4695                                                              |               | 59  |  |
| 1718 | Functional mesoporous carbon built from the 1,10-phenanthroline building block: A new class of catalyst support. <b>2007</b> , 10, 1541-1544                                                                       |               | 6   |  |
| 1717 | Equilibrium and kinetic studies on the adsorption of VB12 onto CMK-3. <i>Chinese Chemical Letters</i> , <b>2007</b> , 18, 233-236                                                                                  | 8.1           | 9   |  |
| 1716 | Coordination chemistry and supramolecular chemistry in mesoporous nanospace. <i>Coordination Chemistry Reviews</i> , <b>2007</b> , 251, 2562-2591                                                                  | 23.2          | 167 |  |

| 1715 | Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode. <b>2007</b> , 587, 124-31                                                                                                                  |     | 129 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1714 | Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors. <b>2007</b> , 52, 2498-2505                                                                                   |     | 87  |
| 1713 | Synthesis and characterization of mesoporous carbon through inexpensive mesoporous silica as template. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 98, 189-199                                                                    | 5.3 | 48  |
| 1712 | A facile route to a silica monolith with ordered mesopores and tunable through pores by using hydrophilic urea formaldehyde resin as a template. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 98, 303-308                          | 5.3 | 17  |
| 1711 | New synthesis technique of supported ZSM-5 using organo-alumino-silicic gels. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 100, 70-76                                                                                              | 5.3 | 15  |
| 1710 | Controlling the textural parameters of mesoporous carbon materials. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 100, 20-26                                                                                                        | 5.3 | 86  |
| 1709 | Preparation of ordered mesoporous SiCN ceramics with large surface area and high thermal stability. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 100, 128-133                                                                      | 5.3 | 40  |
| 1708 | Functionalized nanoporous carbon as a catalyst for Suzuki coupling reactions. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 101, 342-347                                                                                            | 5.3 | 8   |
| 1707 | Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 102, 178-187                                 | 5.3 | 80  |
| 1706 | Layered double hydroxides as templates for nanocasting porous N-doped graphitic carbons via chemical vapour deposition. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 106, 147-154                                                  | 5.3 | 22  |
| 1705 | Mesoporous silicalite-1 zeolite crystals with unique pore shapes analogous to the morphology. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 106, 174-179                                                                            | 5.3 | 52  |
| 1704 | Active solid acid catalysts prepared by sulfonation of carbonization-controlled mesoporous carbon materials. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 105, 41-48                                                               | 5.3 | 130 |
| 1703 | Surface properties of porous carbons obtained from polystyrene-based polymers within inorganic templates: role of polymer chemistry and inorganic template pore structure. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 100, 45-54 | 5.3 | 13  |
| 1702 | Synthesis and characterization of hybrid nano-crystallites inside self-ordered mesoporous carbon. <i>Microporous and Mesoporous Materials</i> , <b>2007</b> , 100, 227-232                                                                        | 5.3 | 3   |
| 1701 | Preparation of Pt/CMK-3 Anode Catalyst for Methanol Fuel Cells Using Paraformaldehyde as Reducing Agent. <b>2007</b> , 28, 17-21                                                                                                                  |     | 10  |
| 1700 | Characterization of silicalarbon mesoporous matrix with embedded nickel nanoparticles synthesized by the polymeric precursor method. <b>2007</b> , 106, 286-291                                                                                   |     | О   |
| 1699 | Several ways to produce porous carbon monoliths by template assisted routes. <b>2007</b> , 61, 2037-2039                                                                                                                                          |     | 25  |
| 1698 | Evaporation-controlled nanocasting approach to a precision replication at nanometer scale. <b>2007</b> , 61, 4231-4234                                                                                                                            |     | 2   |

#### (2008-2007)

| 1697 | Behaviour of pure water and water mixture with benzene or chloroform adsorbed onto ordered mesoporous silicas. <b>2007</b> , 5, 420-454                                                                    |     | 25   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 1696 | Sulfonated Ordered Mesoporous Carbon as a Stable and Highly Active Protonic Acid Catalyst. <b>2007</b> , 19, 2395-2397                                                                                     |     | 228  |
| 1695 | Highly ordered mesoporous carbonaceous frameworks from a template of a mixed amphiphilic triblock-copolymer system of PEO-PPO-PEO and reverse PPO-PEO-PPO. <b>2007</b> , 2, 1282-9                         |     | 50   |
| 1694 | Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. <i>Chemical Communications</i> , <b>2007</b> , 897-926                                                                | 5.8 | 279  |
| 1693 | Carbon materials for supercapacitor application. <b>2007</b> , 9, 1774-85                                                                                                                                  |     | 1539 |
| 1692 | Structural Changes of Polyacrylonitrile Film by Catalytic Effects of Nickel Particles under Carbonization Process. <b>2007</b> , 39, 568-578                                                               |     | 4    |
| 1691 | On the controllable soft-templating approach to mesoporous silicates. <b>2007</b> , 107, 2821-60                                                                                                           |     | 2000 |
| 1690 | Synthesis of nanoporous carbons by an in situ template approach. <b>2007</b> , 42, 3692-3694                                                                                                               |     | 3    |
| 1689 | CO2 activation of ordered porous carbon CMK-1 for hydrogen storage. <b>2008</b> , 33, 116-123                                                                                                              |     | 65   |
| 1688 | Effect of matrix polymerization conditions on the structure and adsorption properties of porous polymers on the basis of divinylbenzene, acrylonitrile, and methyl methacrylate. <b>2008</b> , 44, 380-385 |     | 1    |
| 1687 | Effect of the conditions of the matrix carbonization of sucrose on the structure and adsorption properties of mesoporous carbon materials. <b>2008</b> , 44, 374-379                                       |     | 1    |
| 1686 | Influence of the thermal process of carbon template removal in the mesoporous boron nitride synthesis. <i>Journal of Porous Materials</i> , <b>2008</b> , 15, 13-20                                        | 2.4 | 12   |
| 1685 | The influence of carbon source on the wall structure of ordered mesoporous carbons. <i>Journal of Porous Materials</i> , <b>2008</b> , 15, 601-611                                                         | 2.4 | 53   |
| 1684 | Effect of mixed support of carbon black and nanographite on the activity of Pt catalyst for ethanol oxidation. <b>2008</b> , 38, 1357-1362                                                                 |     | 2    |
| 1683 | Preparation and electrochemical hydrogen storage of mesoporous carbons by degradation of polyethylene in supercritical water. <b>2008</b> , 43, 1376-1381                                                  |     | 6    |
| 1682 | Preparation of Pt-Co catalysts on mesoporous carbon and effect of alloying on catalytic activity in oxygen electro-reduction. <b>2008</b> , 25, 431-436                                                    |     | 14   |
| 1681 | Aerosol assisted synthesis of silica/phenolic resin composite mesoporous hollow spheres. <b>2008</b> , 286, 1361-1368                                                                                      |     | 21   |
| 1680 | Chemistry in confining reaction fields with special emphasis on nanoporous materials. <b>2008</b> , 14, 9816-2                                                                                             | 9   | 42   |

| 1679 | Anodic Stripping Voltammetric Determination of Lead in Tap Water at an Ordered Mesoporous Carbon/Nafion Composite film Electrode. <b>2008</b> , 20, 527-533                                                              |     | 81   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 1678 | Ordered Mesoporous Carbon Paste Electrodes for Electrochemical Sensing and Biosensing. <b>2008</b> , 20, 1128-1134                                                                                                       |     | 51   |
| 1677 | Selective Determination of Dopamine in the Presence of Ascorbic Acid at Porous-Carbon-Modified Glassy Carbon Electrodes. <b>2008</b> , 20, 1159-1166                                                                     |     | 15   |
| 1676 | Bioanalytical Application of the Ordered Mesoporous Carbon Modified Electrodes. <b>2008</b> , 20, 2518-2525                                                                                                              |     | 45   |
| 1675 | Mesoporous carbon materials: synthesis and modification. <b>2008</b> , 47, 3696-717                                                                                                                                      |     | 1551 |
| 1674 | Two-Dimensional Hexagonally-Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content. <b>2008</b> , 18, 816-827                                                                  |     | 413  |
| 1673 | Synthesis and Application of Graphitic Carbon with High Surface Area. <b>2008</b> , 18, 1790-1798                                                                                                                        |     | 57   |
| 1672 | Nanoarchitecturing of Activated Carbon: Facile Strategy for Chemical Functionalization of the Surface of Activated Carbon. <b>2008</b> , 18, 3613-3619                                                                   |     | 74   |
| 1671 | Synthesis and Catalytic Applications of Self-Assembled Carbon Nanofoams. 2008, 20, 288-292                                                                                                                               |     | 14   |
| 1670 | Nanoporous Carbon Films from Hairy Polyacrylonitrile-Grafted Colloidal Silica Nanoparticles. <b>2008</b> , 20, 1516-1522                                                                                                 |     | 73   |
| 1669 | Core/Shell Pt/C Nanoparticles Embedded in Mesoporous Carbon as a Methanol-Tolerant Cathode Catalyst in Direct Methanol Fuel Cells. <b>2008</b> , 20, 743-747                                                             |     | 293  |
| 1668 | Rational Synthesis Pathway for Ordered Mesoporous Carbon with Controllable 30- to 100-Angstrom Pores. <b>2008</b> , 20, 757-762                                                                                          |     | 80   |
| 1667 | MesoporBe Kohlenstoffmaterialien: Synthese und Modifizierung. <b>2008</b> , 120, 3754-3776                                                                                                                               |     | 142  |
| 1666 | Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 108, 266-275                                        | 5.3 | 178  |
| 1665 | CarbonBilica composite adsorbent: Characterization and adsorption of light gases. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 111, 1-11                                                                  | 5.3 | 52   |
| 1664 | Mesoporous carbons synthesized by soft-templating method: Determination of pore size distribution from argon and nitrogen adsorption isotherms. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 112, 573-579 | 5.3 | 33   |
| 1663 | Synthesis and characterization of hollow mesoporous carbon spheres with a highly ordered bicontinuous cubic mesostructure. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 112, 597-602                      | 5.3 | 34   |
| 1662 | Mesoporous carbon functionalized with ferrocenecarboxylic acid and its electrocatalytic properties. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 113, 114-121                                             | 5.3 | 25   |

## (2008-2008)

| 1661 | Preparation of a carbon monolith with bimodal perfusion pores. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 115, 618-623                                                                                                | 5.3          | 16  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| 1660 | Morphology maps of ice-templated silica gels derived from silica hydrogels and hydrosols. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 116, 166-170                                                                     | 5.3          | 38  |
| 1659 | Preparation of ordered mesoporous crystalline alumina replicated by mesoporous carbon. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 116, 461-468                                                                        | 5.3          | 38  |
| 1658 | Platinum nanophase electro catalysts and composite electrodes for hydrogen production. <b>2008</b> , 185, 838-845                                                                                                                      |              | 20  |
| 1657 | The use of organometallic transition metal complexes in the synthesis of shaped carbon nanomaterials. <b>2008</b> , 693, 2205-2222                                                                                                     |              | 67  |
| 1656 | Synthesis and properties of new nitrogen-doped nanostructured carbon materials obtained by templating of mesoporous silicas with aminosugars. <b>2008</b> , 69, 1808-1814                                                              |              | 32  |
| 1655 | Synthesis and electrochemical performance of ordered mesoporous carbons with different pore characteristics for electrocatalytic oxidation of hydroquinone. <i>Journal of Electroanalytical Chemistry</i> , <b>2008</b> , 617, 211-217 | 4.1          | 37  |
| 1654 | Synthesis and characteristics of continuous mesoporous carbon films by a rapid solvent evaporation method. <b>2008</b> , 255, 1719-1725                                                                                                |              | 5   |
| 1653 | Potential of carbon nanomaterials for removal of heavy metals from water. <b>2008</b> , 232, 145-156                                                                                                                                   |              | 155 |
| 1652 | Preparation of Pt/mesoporous carbon (MC) electrode catalyst and its reactivity toward oxygen reduction. <b>2008</b> , 53, 6117-6125                                                                                                    |              | 45  |
| 1651 | Carbon-coated mesoporous silica with hydrophobicity and electrical conductivity. <i>Carbon</i> , <b>2008</b> , 46, 48-5                                                                                                                | <b>3</b> 0.4 | 61  |
| 1650 | Catalytic activities of Pd-tailored single wall carbon nanohorns. <i>Carbon</i> , <b>2008</b> , 46, 172-175                                                                                                                            | 10.4         | 31  |
| 1649 | Hydrogen storage properties of Pd nanoparticle/carbon template composites. <i>Carbon</i> , <b>2008</b> , 46, 206-214                                                                                                                   | <b>1</b> 0.4 | 116 |
| 1648 | Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material. <i>Carbon</i> , <b>2008</b> , 46, 297-304                                                                                        | 10.4         | 47  |
| 1647 | KOH activation of mesoporous carbons obtained by soft-templating. <i>Carbon</i> , <b>2008</b> , 46, 1159-1161                                                                                                                          | 10.4         | 152 |
| 1646 | Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. <i>Carbon</i> , <b>2008</b> , 46, 1718-1726                                                                               | 10.4         | 517 |
| 1645 | Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes. <i>Carbon</i> , <b>2008</b> , 46, 2034-2045                                                                     | 10.4         | 90  |
| 1644 | p-Aminophenol synthesis in an organic/aqueous system using Pt supported on mesoporous carbons. <b>2008</b> , 337, 97-104                                                                                                               |              | 62  |

| 1643 | The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes. <b>2008</b> , 10, 859-863                                               |                     | 115  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|
| 1642 | Direct electrochemistry of myoglobin based on bicontinuous gyroidal mesoporous carbon matrix. <b>2008</b> , 10, 1864-1867                                                                                             |                     | 25   |
| 1641 | Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine. <b>2008</b> , 53, 4176-4184                                                             |                     | 73   |
| 1640 | Synthesis of ordered mesoporous carbon containing highly dispersed copperBulphur compounds in the carbon framework via a nanocasting route. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 111, 117      | 7- <del>5</del> :23 | 14   |
| 1639 | Synthesis of nanoporous carbon with controlled pore size distribution and examination of its accessibility for electric double layer formation. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 111, 307- | 313                 | 13   |
| 1638 | Sulfonic acid functionalized periodic mesoporous organosilicas as acetalization catalysts. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 112, 26-31                                                     | 5.3                 | 66   |
| 1637 | Synthesis of micrometer sized mesoporous metal oxide spheres by nanocasting. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 112, 308-318                                                                 | 5.3                 | 40   |
| 1636 | The pore structure evolution and stability of mesoporous carbon FDU-15 under CO2, O2 or water vapor atmospheres. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 113, 305-314                             | 5.3                 | 35   |
| 1635 | Probing the effect of the carbonisation process on the textural properties and morphology of mesoporous carbons. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 113, 378-384                             | 5.3                 | 9    |
| 1634 | Direct fabrication of bimodal mesoporous carbon by nanocasting. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 116, 91-94                                                                                | 5.3                 | 32   |
| 1633 | A template method for the synthesis of hollow carbon fibers. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 116, 698-700                                                                                 | 5.3                 | 17   |
| 1632 | Fabrication of molecular-sieve-type carbons from Salix viminalis. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 116, 723-726                                                                            | 5.3                 | 11   |
| 1631 | Direct synthesis of porous carbon via carbonizing precursors of aluminum phosphate containing citric acid. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 116, 439-444                                   | 5.3                 | 29   |
| 1630 | Argon adsorption in channel-like mesoporous carbons at 77K: Grand Canonical Monte Carlo simulations and pore size analysis. <i>Microporous and Mesoporous Materials</i> , <b>2008</b> , 116, 665-669                  | 5.3                 | 6    |
| 1629 | Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions. <b>2008</b> , 24, 7500-5                  |                     | 268  |
| 1628 | Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. <i>Chemical Society Reviews</i> , <b>2008</b> , 37, 2530-42                                         | 58.5                | 1413 |
| 1627 | Rational design of mesoporous metals and related nanomaterials by a soft-template approach. <b>2008</b> , 3, 664-76                                                                                                   |                     | 238  |
| 1626 | Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system. <b>2008</b> , 80, 4642-50                                                                                            |                     | 106  |

#### (2008-2008)

| 1625 | Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. <b>2008</b> , 18, 4893                                                      |     | 2493 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 1624 | Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation. <i>Chemical Communications</i> , <b>2008</b> , 4022-4                                                   | 5.8 | 152  |
| 1623 | Ordered mesoporous materials at the beginning of the third millennium: new strategies to create hybrid and non-siliceous variants. <b>2008</b> , 10, 347-60                                  |     | 101  |
| 1622 | Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity <b>2008</b> , 20, 682-737                                                    |     | 689  |
| 1621 | Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. <b>2008</b> , 7, 222-8                                                       |     | 527  |
| 1620 | Nano-sized mesoporous carbon particles with bimodal pore system and semi-crystalline porous walls. <b>2008</b> , 62, 2935-2938                                                               |     | 8    |
| 1619 | Mesoporous single-crystal Cr2O3: Synthesis, characterization, and its activity in toluene removal. <b>2008</b> , 10, 1117-1123                                                               |     | 48   |
| 1618 | One-pot synthesized MoC imbedded in ordered mesoporous carbon as a catalyst for N2H4 decomposition. <i>Chemical Communications</i> , <b>2008</b> , 2565-7                                    | 5.8 | 74   |
| 1617 | Nanocasted Synthesis of Mesoporous LaCoO3 Perovskite with Extremely High Surface Area and Excellent Activity in Methane Combustion. <b>2008</b> , 112, 15293-15298                           |     | 254  |
| 1616 | Ordered Mesoporous BiVO4 through Nanocasting: A Superior Visible Light-Driven Photocatalyst. <b>2008</b> , 20, 3983-3992                                                                     |     | 319  |
| 1615 | Polypyrrole-Based Nitrogen-Doped Carbon Replicas of SBA-15 and SBA-16 Containing Magnetic Nanoparticles. <b>2008</b> , 112, 13126-13133                                                      |     | 63   |
| 1614 | Design of Inorganic and Inorganic-Organic Hybrid Materials by Sol-Gel Processing (From Nanostructures to Hierarchical Networks. <b>2008</b> , 91-104                                         |     | 3    |
| 1613 | Heterogeneity Characterization of Ordered Mesoporous Carbon Adsorbent CMK-1 for Methane and Hydrogen Storage: GCMC Simulation and Comparison with Experiment. <b>2008</b> , 112, 13024-13036 |     | 36   |
| 1612 | Physicochemical Properties of Carbon Materials: A Brief Overview. 2008, 1-44                                                                                                                 |     | 8    |
| 1611 | Challenges and breakthroughs in recent research on self-assembly. 2008, 9, 014109                                                                                                            |     | 645  |
| 1610 | Repeated Templating. <b>2008</b> , 20, 961-971                                                                                                                                               |     | 249  |
| 1609 | From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. <b>2008</b> , 130, 13333-7                       |     | 481  |
| 1608 | Overview of Carbon Materials in Relation to Adsorption. <b>2008</b> , 15-49                                                                                                                  |     | 5    |
|      |                                                                                                                                                                                              |     |      |

| 1607 | Ordered Mesoporous Silicoboron Carbonitride Materials via Preceramic Polymer Nanocasting. <b>2008</b> , 20, 6325-6334                                                                     | 52  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1606 | 1,3,5-Tris(functionalised-phenylethynyl)benzenefhetal complexes: synthetic survey of mesoporous coordination polymers and investigation of their carbonisation. <b>2008</b> , 18, 1037    | 16  |
| 1605 | Synthesis and magnetic investigation of ordered mesoporous two-line ferrihydrite. 2008, 130, 280-7                                                                                        | 86  |
| 1604 | Synthesis of porous silica with hierarchical structure directed by a silica precursor carrying a pore-generating cage. <b>2008</b> , 18, 4971                                             | 7   |
| 1603 | Aqueous Synthesis of Ordered Mesoporous Carbon via Self-Assembly Catalyzed by Amino Acid. <b>2008</b> , 20, 5314-5319                                                                     | 122 |
| 1602 | Tubular and Rodlike Ordered Mesoporous Silicon (Oxy)carbide Ceramics and their Structural Transformations. <b>2008</b> , 20, 5421-5433                                                    | 51  |
| 1601 | Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)-b-Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander. <b>2008</b> , 20, 7281-7286 | 108 |
| 1600 | Adsorption on Ordered Porous Carbons. 2008, 455-477                                                                                                                                       |     |
| 1599 | Templating Mesoporous Zeolites□ <b>2008</b> , 20, 946-960                                                                                                                                 | 576 |
| 1598 | Highly Dispersed Pt Nanoparticles on Mesoporous Carbon Nanofibers Prepared by Two Templates. <b>2008</b> , 112, 1028-1033                                                                 | 68  |
| 1597 | Templated Synthesis of Pyridine Functionalized Mesoporous Carbons through the Cyclotrimerization of Diethynylpyridines <b>2008</b> , 20, 981-986                                          | 35  |
| 1596 | Conducting nanocomposite systems. <b>2008</b> , 143-235                                                                                                                                   | 3   |
| 1595 | Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. <b>2008</b> , 18, 2194                                           | 87  |
| 1594 | Using mesoporous carbon electrodes for brackish water desalination. <b>2008</b> , 42, 2340-8                                                                                              | 291 |
| 1593 | Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEOBMMA diblock copolymer. <b>2008</b> , 18, 91-97                                          | 89  |
| 1592 | Pseudomorphic transformation of highly ordered mesoporous Co3O4 to CoO via reduction with glycerol. <b>2008</b> , 130, 14108-10                                                           | 117 |
| 1591 | Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons 2008, 20, 932-945                                                                                         | 389 |
| 1590 | Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. <b>2008</b> , 10, 1204                                          | 609 |

#### (2008-2008)

| 1589 | New Carbon Materials, <b>2008</b> , 23, 216-220                                                                                                                                    | 4.4 | 25  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1588 | Colloidal Silica Templating Synthesis of Carbonaceous Monoliths Assuring Formation of Uniform Spherical Mesopores and Incorporation of Inorganic Nanoparticles 2008, 20, 1069-1075 |     | 49  |
| 1587 | Surface Modification of Ordered Mesoporous Carbons via 1,3-Dipolar Cycloaddition of Azomethine Ylides. <b>2008</b> , 20, 4800-4802                                                 |     | 30  |
| 1586 | Mesoporous boron nitride and boron-nitride-carbon materials from mesoporous silica templates. <b>2008</b> , 18, 235-241                                                            |     | 50  |
| 1585 | High temperature treatment of ordered mesoporous carbons prepared by using various carbon precursors and ordered mesoporous silica templates. <b>2008</b> , 32, 981                |     | 74  |
| 1584 | Probing the conformation of polyelectrolytes in mesoporous silica spheres. <b>2008</b> , 24, 4224-30                                                                               |     | 31  |
| 1583 | Ordered Mesoporous Ni Nanowires with Enhanced Hydrogenation Activity Prepared by Electroless Plating on Functionalized SBA-15. <b>2008</b> , 20, 3936-3943                         |     | 27  |
| 1582 | Preparation of Nanoporous Carbon Particles and Their Cryogenic Hydrogen Storage Capacities. <b>2008</b> , 112, 1516-1523                                                           |     | 56  |
| 1581 | Rapid micropatterning of mesoporous silica film by site-selective low-energy electron beam irradiation. <b>2008</b> , 24, 11141-6                                                  |     | 12  |
| 1580 | Synthesis and High Hydrogen Storage Capacity of Zeolite-Like Carbons Nanocast Using As-Synthesized Zeolite Templates. <b>2008</b> , 112, 2764-2769                                 |     | 92  |
| 1579 | Incorporation of Inorganic Nanoparticles into Mesoporous Carbons Synthesized by Soft Templating. <b>2008</b> , 112, 11657-11660                                                    |     | 47  |
| 1578 | Morphology Control of Carbon, Silica, and Carbon/Silica Nanocomposites: From 3D Ordered Macro-/Mesoporous Monoliths to Shaped Mesoporous Particles <b>2008</b> , 20, 1029-1040     |     | 103 |
| 1577 | Oxygen Reduction Behavior of Highly Porous Non-Noble Metal Catalysts Prepared by a Template-Assisted Synthesis Route. <b>2008</b> , 155, B236                                      |     | 50  |
| 1576 | SYNTHESIS OF MESOPOROUS IRON OXIDE NANOPARTICLES FROM MESOPOROUS SILICA TEMPLATE VIA NANO-REPLICATION. <b>2008</b> , 01, 151-154                                                   |     | 14  |
| 1575 | Adsorption of dyes on mesoporous carbons. <b>2008</b> , 63,                                                                                                                        |     |     |
| 1574 | Carbon nanostructures formed on mesoporous silica by catalytic chemical vapor deposition of ethene. <b>2008</b> , 23, 435-443                                                      |     | 1   |
| 1573 | Synthesis of ordered mesoporous carbons in film morphology using organic-organic interaction approach. <b>2008</b> , 174, 657-660                                                  |     |     |
| 1572 | Carbon molecular sieves for catalyst supports: Thiophene hydrodesulfurization. 2008,                                                                                               |     |     |

| 1571 | Ordered Mesoporous Materials. <b>2008</b> , 178                                                                                                                                                                   | 3   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1570 | Effect of the porosity and hydrothermal stability of SBA-16 type mesoporous silica on the characteristics of their carbon replicas. <b>2008</b> , 174, 361-364                                                    | 1   |
| 1569 | Preparation of Highly Ordered Mesoporous TiO2Materials with Crystalline Framework from Different Mesostructured Silica Templates via Nanoreplication. <b>2008</b> , 37, 140-141                                   | 32  |
| 1568 | Preparation of Silicon Carbide-based Nanoporous Materials by Replica Technique. <b>2008</b> , 37, 574-575                                                                                                         | 13  |
| 1567 | Synthesis, characterization and catalytic properties of nanostructured porous carbon. <b>2008</b> , 174, 1303-1306                                                                                                | 7   |
| 1566 | Further Reading. <b>2009</b> , 17, 113-197                                                                                                                                                                        |     |
| 1565 | Nano/Microporous Materials: Mesoporous and Surface-Functionalized Mesoporous Carbon. 2009,                                                                                                                        |     |
| 1564 | Preparation of macroporous carbon nanofibers with macroscopic openings in the surfaces and their applications. <b>2009</b> , 20, 445702                                                                           | 17  |
| 1563 | Proteins Induced Formation of Hydrothermal Nitrogen Doped Carbons. <b>2009</b> , 1219, 4051                                                                                                                       |     |
| 1562 | High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches. <b>2009</b> , 20, 204023                                      | 27  |
| 1561 | Nanoscale Carbon Materials for Contaminant Separation. <b>2009</b> , 269-311                                                                                                                                      | 1   |
| 1560 | Electrical Double-Layer Capacitance of Zeolite-Templated Carbon in Organic Electrolyte. <b>2009</b> , 156, A1                                                                                                     | 95  |
| 1559 | Effect of the Si/Zr molar ratio on the synthesis of Zr-based mesoporous molecular sieves. <b>2009</b> , 114, 139-144                                                                                              | 39  |
| 1558 | Preparation of a kind of mesoporous carbon and its performance in adsorptive desulfurization. <b>2009</b> , 18, 365-368                                                                                           | 23  |
| 1557 | Hard Macrocellular Silica Si(HIPE) Foams Templating Micro/Macroporous Carbonaceous Monoliths: Applications as Lithium Ion Battery Negative Electrodes and Electrochemical Capacitors. <b>2009</b> , 19, 3136-3145 | 91  |
| 1556 | Functionalization of Porous Carbon Materials with Designed Pore Architecture. <b>2009</b> , 21, 265-293                                                                                                           | 718 |
| 1555 | Diatomaceous Lessons in Nanotechnology and Advanced Materials. <b>2009</b> , 21, 2947-2958                                                                                                                        | 296 |
| 1554 | Simple Synthesis of Graphitic Ordered Mesoporous Carbon Materials by a Solid-State Method Using Metal Phthalocyanines. <b>2009</b> , 121, 5771-5775                                                               | 19  |

| 1553 | Benefit of Microscopic Diffusion Measurement for the Characterization of Nanoporous Materials. <b>2009</b> , 32, 1494-1511                                                                      | 26  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1552 | Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials. <b>2009</b> , 15, 5355-63                   | 133 |
| 1551 | Mesoporous Carbon Materials with Ultra-Thin Pore Walls and Highly Dispersed Nickel<br>Nanoparticles. <b>2009</b> , 2009, 605-612                                                                | 21  |
| 1550 | Superparamagnetic Composites: Magnetism with No Memory. <b>2009</b> , 2009, 333-343                                                                                                             | 33  |
| 1549 | Electrochemical Properties of Ordered Mesoporous Carbon Film Adsorbed onto a Self-Assembled Alkanethiol Monolayer on Gold Electrode. <b>2009</b> , 21, 184-189                                  | 20  |
| 1548 | Amperometric Ethanol Biosensor Based on Integration of Alcohol Dehydrogenase with Meldola's Blue/Ordered Mesoporous Carbon Electrode. <b>2009</b> , 21, 1617-1623                               | 35  |
| 1547 | Electrochemical Oxidation and Detection of Morphine at Ordered Mesoporous Carbon Modified Glassy Carbon Electrodes. <b>2009</b> , 21, 2549-2555                                                 | 18  |
| 1546 | Ferromagnetic Mesostructured Alloys: Design of Ordered Mesostructured Alloys with Multicomponent Metals from Lyotropic Liquid Crystals. <b>2009</b> , 121, 7932-7937                            | 7   |
| 1545 | Simple synthesis of graphitic ordered mesoporous carbon materials by a solid-state method using metal phthalocyanines. <b>2009</b> , 48, 5661-5                                                 | 112 |
| 1544 | Ferromagnetic mesostructured alloys: design of ordered mesostructured alloys with multicomponent metals from lyotropic liquid crystals. <b>2009</b> , 48, 7792-7                                | 35  |
| 1543 | Electrochemistry and biosensing of glucose oxidase immobilized on Pt-dispersed mesoporous carbon. <b>2009</b> , 167, 109-116                                                                    | 28  |
| 1542 | Fabrication and carbon monoxide sensing characteristics of mesostructured carbon gas sensors. <b>2009</b> , 143, 12-16                                                                          | 20  |
| 1541 | Poly(sodium-p-styrenesulfonate) assisted microwave synthesis of ordered mesoporous carbon supported Pd nanoparticles for formic acid electro-oxidation. <b>2009</b> , 256, 33-38                | 14  |
| 1540 | Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. <b>2009</b> , 187, 268-274 | 174 |
| 1539 | Fabrication of Cs2.5H0.5PW12O40 three-dimensional ordered film by colloidal crystal template. <b>2009</b> , 182, 1661-1665                                                                      | 5   |
| 1538 | Hierarchical control of porous silica by pH adjustment: Alkyl polyamines as surfactants for bimodal silica synthesis and its carbon replica. <b>2009</b> , 182, 2141-2148                       | 13  |
| 1537 | Synthesis of ordered mesoporous carbon/cobalt oxide nanocomposite for determination of glutathione. <b>2009</b> , 54, 6166-6171                                                                 | 58  |
| 1536 | Electrochemical properties and simultaneous determination of dihydroxybenzene isomers at ordered mesoporous carbon-modified electrode. <b>2009</b> , 39, 2497-2503                              | 55  |

| 1535                         | Replication Route Synthesis of Mesoporous Titanium@obalt Oxides and Their Photocatalytic Activity in the Degradation of Methyl Orange. <b>2009</b> , 129, 26-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           | 8                           |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|
| 1534                         | High Catalytic Activity of Nitrogen-Containing Carbon from Molecular Sieves in Fine Chemistry. <b>2009</b> , 131, 135-145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           | 20                          |
| 1533                         | Synthesis of Ordered Mesoporous Carbon Materials with Semi-Graphitized Walls via Direct In-situ Silica-Confined Thermal Decomposition of CH4 and Their Hydrogen Storage Properties. <b>2009</b> , 52, 12-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           | 33                          |
| 1532                         | A Novel Catalyst Type Containing Noble Metal Nanoparticles Supported on Mesoporous Carbon: Synthesis, Characterization and Catalytic Properties. <b>2009</b> , 52, 1242-1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           | 7                           |
| 1531                         | Asymmetric catalysis by chiral salen complexes immobilized on mesoporous materials having modified pore channel system by dimethylcarbonate. <i>Journal of Porous Materials</i> , <b>2009</b> , 16, 367-378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.4                                                       | 10                          |
| 1530                         | Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption. <i>Journal of Porous Materials</i> , <b>2009</b> , 16, 545-551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4                                                       | 114                         |
| 1529                         | Preparation of mesoporous carbons using acid- and alkali-treated zeolite X as the template. <i>Journal of Porous Materials</i> , <b>2009</b> , 16, 699-705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4                                                       | 9                           |
| 1528                         | Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials. <b>2009</b> , 9, 321-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           | 97                          |
| 1527                         | Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route. <b>2009</b> , 5, 2738-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           | 69                          |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |                             |
| 1526                         | A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. <b>2009</b> , 8, 500-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           | 4489                        |
| 1526<br>1525                 | A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. <b>2009</b> , 8, 500-6  Synthesis of activated carbon with highly developed thesoporosity (IMicroporous and Mesoporous Materials, <b>2009</b> , 117, 519-521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3                                                       | 4489<br>61                  |
|                              | Synthesis of activated carbon with highly developed Thesoporosity (IMicroporous and Mesoporous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5·3<br>5·3                                                |                             |
| 1525                         | Synthesis of activated carbon with highly developed Thesoporosity (Microporous and Mesoporous Materials, 2009, 117, 519-521)  The Sonogashira reaction catalyzed by palladium leached from ordered mesoporous carbon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           | 61                          |
| 1525<br>1524                 | Synthesis of activated carbon with highly developed Thesoporosity (IMicroporous and Mesoporous Materials, 2009, 117, 519-521  The Sonogashira reaction catalyzed by palladium leached from ordered mesoporous carbon. Microporous and Mesoporous Materials, 2009, 117, 126-135  Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered                                                                                                                                                                                                                                                                                                                                                                             | 5.3                                                       | 61                          |
| 1525<br>1524<br>1523         | Synthesis of activated carbon with highly developed Thesoporosity (IMicroporous and Mesoporous Materials, 2009, 117, 519-521  The Sonogashira reaction catalyzed by palladium leached from ordered mesoporous carbon. Microporous and Mesoporous Materials, 2009, 117, 126-135  Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous and Mesoporous Materials, 2009, 117, 257-267  Enhanced electrical capacitance of porous carbons by nitrogen enrichment and control of the pore                                                                                                                                                                                              | 5-3                                                       | 61<br>16<br>129             |
| 1525<br>1524<br>1523<br>1522 | Synthesis of activated carbon with highly developed Thesoporosity (IMicroporous and Mesoporous Materials, 2009, 117, 519-521  The Sonogashira reaction catalyzed by palladium leached from ordered mesoporous carbon. Microporous and Mesoporous Materials, 2009, 117, 126-135  Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous and Mesoporous Materials, 2009, 117, 257-267  Enhanced electrical capacitance of porous carbons by nitrogen enrichment and control of the pore structure. Microporous and Mesoporous Materials, 2009, 118, 28-34  Characterization of carbon materials with the help of NMR methods. Microporous and Mesoporous                             | 5·3<br>5·3                                                | 61<br>16<br>129<br>70       |
| 1525<br>1524<br>1523<br>1522 | Synthesis of activated carbon with highly developed thesoporosity (IMicroporous and Mesoporous Materials, 2009, 117, 519-521  The Sonogashira reaction catalyzed by palladium leached from ordered mesoporous carbon. Microporous and Mesoporous Materials, 2009, 117, 126-135  Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous and Mesoporous Materials, 2009, 117, 257-267  Enhanced electrical capacitance of porous carbons by nitrogen enrichment and control of the pore structure. Microporous and Mesoporous Materials, 2009, 118, 28-34  Characterization of carbon materials with the help of NMR methods. Microporous and Mesoporous Materials, 2009, 120, 91-97 | <ul><li>5-3</li><li>5-3</li><li>5-3</li><li>5-3</li></ul> | 61<br>16<br>129<br>70<br>15 |

| 1517 | Detailed study of the pore-filling processes during nanocasting of mesoporous films using SnO2/SiO2 as a model system. <i>Microporous and Mesoporous Materials</i> , <b>2009</b> , 123, 185-192                              | 5.3  | 25  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 1516 | Fe2O3/SBA-15 catalyst synthesized by chemical vapor infiltration for Friedel@rafts alkylation reaction. <i>Microporous and Mesoporous Materials</i> , <b>2009</b> , 123, 306-313                                             | 5.3  | 21  |
| 1515 | Formation of mesoporous Co3O4 replicas of different mesostructures with different pore sizes.<br>Microporous and Mesoporous Materials, <b>2009</b> , 123, 314-323                                                            | 5.3  | 21  |
| 1514 | Preparation of silica/carbon composites with uniform and well-ordered mesopores by esterification method. <i>Microporous and Mesoporous Materials</i> , <b>2009</b> , 124, 123-130                                           | 5.3  | 18  |
| 1513 | Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. <b>2009</b> , 11, 130-133                                                                                           |      | 192 |
| 1512 | Worm-like mesoporous carbon synthesized from metal®rganic coordination polymers for supercapacitors. <b>2009</b> , 11, 1191-1194                                                                                             |      | 126 |
| 1511 | Storage of hydrogen in nanostructured carbon materials. <b>2009</b> , 34, 3784-3798                                                                                                                                          |      | 342 |
| 1510 | Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film. <i>Journal of Electroanalytical Chemistry</i> , <b>2009</b> , 625, 82-87                             | 4.1  | 132 |
| 1509 | Monodispersed nanoporous starburst carbon spheres and their three-dimensionally ordered arrays. <i>Microporous and Mesoporous Materials</i> , <b>2009</b> , 117, 478-485                                                     | 5.3  | 43  |
| 1508 | Ordered mesoporous carbon-supported Prussian blue: Characterization and electrocatalytic properties. <i>Microporous and Mesoporous Materials</i> , <b>2009</b> , 119, 193-199                                                | 5.3  | 34  |
| 1507 | Effect of template and precursor chemistry on pore architectures of triblock copolymer-templated mesoporous carbons. <i>Microporous and Mesoporous Materials</i> , <b>2009</b> , 121, 58-66                                  | 5.3  | 23  |
| 1506 | Comparative study on the magnetic properties of iron oxide nanoparticles loaded on mesoporous silica and carbon materials with different structure. <i>Microporous and Mesoporous Materials</i> , <b>2009</b> , 121, 178-184 | 5.3  | 30  |
| 1505 | Biomolecular adsorption behavior on spherical carbon aerogels with various mesopore sizes. <b>2009</b> , 331, 40-6                                                                                                           |      | 53  |
| 1504 | Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons. <b>2009</b> , 189, 902                                                                                                                    | -908 | 135 |
| 1503 | A proper amount of carbon nanotubes for improving the performance of PtRu/C catalysts for methanol electro-oxidation. <b>2009</b> , 193, 462-469                                                                             |      | 12  |
| 1502 | Mechanism for the formation of tin oxide nanoparticles and nanowires inside the mesopores of SBA-15. <b>2009</b> , 182, 2822-2828                                                                                            |      | 27  |
| 1501 | Facile synthesis of SBA-15/polyaniline nanocomposites with high electrochemical activity under neutral and acidic conditions. <b>2009</b> , 69, 130-136                                                                      |      | 30  |
| 1500 | Nanotechnology for sustainable energy. <b>2009</b> , 13, 2373-2384                                                                                                                                                           |      | 387 |

| 1499 | Grand canonical Monte Carlo simulation of methanedarbon dioxide mixtures on ordered mesoporous carbon CMK-1. <b>2009</b> , 68, 50-60                                                                    |      | 21          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| 1498 | Adsorption of naphthalene-derived compounds from water by chemically oxidized nanoporous carbon. <b>2009</b> , 148, 452-458                                                                             |      | 57          |
| 1497 | Preparation and properties of sulfonated carbonBilica composites from sucrose dispersed on MCM-48. <b>2009</b> , 148, 201-206                                                                           |      | 31          |
| 1496 | Functionalization of mesostructured inorganic and porous inorganic materials. 2009, 14, 281-29                                                                                                          | 2    | 73          |
| 1495 | Electrorheological effect of carbonaceous materials with hierarchical porous structures. <b>2009</b> , 340, 33-3                                                                                        | 39   | 24          |
| 1494 | Synthesis and characterization of mesoporous carbon thin films from phloroglucinol/surfactant self-assembly. <b>2009</b> , 347, 142-145                                                                 |      | 7           |
| 1493 | Influence of temperature, carbon precursor/copolymer ratio and acid concentration on adsorption and structural properties of mesoporous carbons prepared by soft-templating. <b>2009</b> , 352, 113-117 |      | 32          |
| 1492 | Removal of naphthalene from petrochemical wastewater streams using carbon nanoporous adsorbent. <b>2009</b> , 255, 5041-5047                                                                            |      | 59          |
| 1491 | The effect of surface modification on heavy metal ion removal from water by carbon nanoporous adsorbent. <b>2009</b> , 256, 1347-1354                                                                   |      | 68          |
| 1490 | Transition metal ion capture using functional mesoporous carbon made with 1,10-phenanthroline. <b>2009</b> , 12, 1099-1103                                                                              |      | 6           |
| 1489 | PtCo supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation. <i>Carbon</i> , <b>2009</b> , 47, 186-194                                                                  | 10.4 | 54          |
| 1488 | Synthesis of magnetically separable ordered mesoporous carbons from F127/[Ni(H2O)6](NO3)2/resorcinol-formaldehyde composites. <i>Carbon</i> , <b>2009</b> , 47, 436-444                                 | 10.4 | 63          |
| 1487 | Ordered mesoporous carbons synthesized by a modified solgel process for electrosorptive removal of sodium chloride. <i>Carbon</i> , <b>2009</b> , 47, 775-781                                           | 10.4 | <b>2</b> 10 |
| 1486 | Preparation and characterization of pillared carbons obtained by pyrolysis of silylated graphite oxides. <i>Carbon</i> , <b>2009</b> , 47, 804-811                                                      | 10.4 | 32          |
| 1485 | Preparation and application of chelating polymerthesoporous carbon composite for copper-ion adsorption. <i>Carbon</i> , <b>2009</b> , 47, 1043-1049                                                     | 10.4 | 25          |
| 1484 | Microstructure and morphology of porous carbons derived from sucrose. <i>Carbon</i> , <b>2009</b> , 47, 1102-1111                                                                                       | 10.4 | 20          |
| 1483 | Synthesis and characterization of ruthenium-containing ordered mesoporous carbon with high specific surface area. <i>Carbon</i> , <b>2009</b> , 47, 2194-2199                                           | 10.4 | 21          |
| 1482 | Nitrogen-containing microporous carbons prepared from anionic surfactant-melamine/formaldehyde composites. <i>Carbon</i> , <b>2009</b> , 47, 2138-2141                                                  | 10.4 | 25          |

| 1481 | Ordered mesoporous carbon films prepared from 1,5-dihydroxynaphthalene/triblock copolymer composites. <i>Carbon</i> , <b>2009</b> , 47, 2531-2533                                           | 17        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1480 | Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymer-templating method using an ethanol/water system. <i>Carbon</i> , <b>2009</b> , 47, 2688-2698 | 84        |
| 1479 | Synthesis and properties of mesoporous carbons with high loadings of inorganic species. <i>Carbon</i> , <b>2009</b> , 47, 3034-3040                                                         | 40        |
| 1478 | Porous carbon nanotube-reinforced metals and ceramics via a double templating approach. <i>Carbon</i> , <b>2009</b> , 47, 3208-3214                                                         | 19        |
| 1477 | Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. <b>2009</b> , 386, 79-84                                           | 117       |
| 1476 | Adsorption of phenolic compounds from aqueous solutions using carbon nanoporous adsorbent coated with polymer. <b>2009</b> , 255, 9487-9492                                                 | 70        |
| 1475 | Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. <b>2009</b> , 43, 8355-60                                             | 95        |
| 1474 | Highly ordered mesoporous carbon as catalyst for oxidative dehydrogenation of ethylbenzene to styrene. <b>2009</b> , 4, 1108-13                                                             | 61        |
| 1473 | Hollow mesoporous carbon spheres with magnetic cores and their performance as separable bilirubin adsorbents. <b>2009</b> , 4, 1480-5                                                       | 77        |
| 1472 | Solid Catalysts on the Nanoscale: Design of Complex Morphologies and Pore Structures.  ChemCatChem, 2009, 1, 53-67  5.2                                                                     | 59        |
| 1471 | Adsorption of Direct Yellow 12 onto Ordered Mesoporous Carbon and Activated Carbon. <b>2009</b> , 54, 3043-3050                                                                             | 42        |
| 1470 | Synthesis, Characterization, and Hydrodesulfurization Activity of New Mesoporous Carbon Supported Transition Metal Sulfide Catalysts. <b>2009</b> , 48, 698-707                             | 47        |
| 1469 | Periodic mesoporous organosilica with a hexagonally pillared lamellar structure. <b>2009</b> , 131, 14249-51                                                                                | 13        |
| 1468 | Synthesis of periodic mesoporous coesite. <b>2009</b> , 131, 9638-9                                                                                                                         | 26        |
| 1467 |                                                                                                                                                                                             |           |
|      | Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru. <b>2009</b> , 25, 12550-60                                                                                 | 130       |
| . ,  | Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru. <b>2009</b> , 25, 12550-60  Supramolecular approaches to biological therapy. <b>2009</b> , 9, 307-20       | 130<br>28 |
| . ,  |                                                                                                                                                                                             |           |

| 1463 | Synthesis and electrochemical capacitor performance of mesostructured nickel oxide/carbon composites by a co-casting method. <b>2009</b> , 481, 100-105                                                         | 23  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1462 | A curing agent method to synthesize ordered mesoporous carbons from linear novolac phenolic resin polymers. <b>2009</b> , 19, 6536                                                                              | 32  |
| 1461 | Synthesis of cubic ordered mesoporous YPO4:Ln3+ and their photoluminescence properties. <b>2009</b> , 19, 8079                                                                                                  | 51  |
| 1460 | Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. <i>Chemical Communications</i> , <b>2009</b> , 1261-3                                                  | 66  |
| 1459 | Ordered three- and five-ply nanocomposites from ABC block terpolymer microphase separation with niobia and aluminosilicate sols. <b>2009</b> , 21, 5466-5473                                                    | 58  |
| 1458 | Three-Component PoroustarbonTitania Nanocomposites through Self-Assembly of ABCBA Block<br>Terpolymers with Titania Sols. <b>2009</b> , 42, 6682-6687                                                           | 28  |
| 1457 | Facile synthesis of mesoporous carbon and silica from a silica nanosphereBucrose nanocomposite. <b>2009</b> , 19, 299-304                                                                                       | 11  |
| 1456 | Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. <b>2009</b> , 5, 3562                                                   | 75  |
| 1455 | Hollow mesoporous carbon spheresan excellent bilirubin adsorbent. <i>Chemical Communications</i> , <b>2009</b> , 6071-3                                                                                         | 159 |
| 1454 | Mesoporous Carbon Nanofibers for Supercapacitor Application. <b>2009</b> , 113, 1093-1097                                                                                                                       | 174 |
| 1453 | Ordered mesoporous Pd/silica-carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media. <b>2009</b> , 131, 4541-50                                               | 319 |
| 1452 | Integrating structure control over multiple length scales in porous high temperature ceramics with functional platinum nanoparticles. <b>2009</b> , 9, 2756-62                                                  | 56  |
| 1451 | Self-assembly of optical molecules with supramolecular concepts. <b>2009</b> , 10, 1950-66                                                                                                                      | 11  |
| 1450 | Supramolecular Structures and Functions with Inorganic Building Blocks. <b>2009</b> , 1-33                                                                                                                      |     |
| 1449 | Nanoporous Materials Latalysts for Green Chemistry. 2009, 725-748                                                                                                                                               | 1   |
| 1448 | Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. <b>2009</b> , 19, 3661                                       | 186 |
| 1447 | Naturally inspired nitrogen doped porous carbon. <b>2009</b> , 19, 8645                                                                                                                                         | 179 |
| 1446 | Preparation of Mesoporous Co3O4 Nanoparticles via Solid[liquid Route and Effects of Calcination Temperature and Textural Parameters on Their Electrochemical Capacitive Behaviors. <b>2009</b> , 113, 3887-3894 | 141 |

| 1445 | High-temperature synthesis of stable and ordered mesoporous polymer monoliths with low dielectric constants. <b>2009</b> , 19, 7921                                                                   |     | 57 |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|
| 1444 | A new restriction effect of hard templates for the shrinkage of mesoporous polymer during carbonization. <i>Chemical Communications</i> , <b>2009</b> , 5033-5                                        | 5.8 | 22 |  |
| 1443 | Hollow Silica Spheres with a Novel Mesoporous Shell Perforated Vertically by Hexagonally Arrayed Cylindrical Nanochannels. <b>2009</b> , 21, 4122-4126                                                |     | 43 |  |
| 1442 | Nanostructured Supported Catalysts for Low-Temperature Fuel Cells. <b>2009</b> , 1, 173-231                                                                                                           |     | 3  |  |
| 1441 | Hydrogen storage enhanced in Li-doped carbon replica of zeolites: a possible route to achieve fuel cell demand. <b>2009</b> , 130, 174717                                                             |     | 30 |  |
| 1440 | Mesoporous materials: tunable structure, morphology and composition. <i>Chemical Communications</i> , <b>2009</b> , 2270-7                                                                            | 5.8 | 78 |  |
| 1439 | Nanocasting Route to Ordered Mesoporous Carbon with FePt Nanoparticles and Its Phenol Adsorption Property. <b>2009</b> , 113, 5998-6002                                                               |     | 31 |  |
| 1438 | Immobilization of Proteins and Enzymes, Mesoporous Supports. <b>2009</b> , 1                                                                                                                          |     | 1  |  |
| 1437 | Nanostructured carbon-crystalline titania composites from microphase separation of poly(ethylene oxide-b-acrylonitrile) and titania sols. <i>Chemical Communications</i> , <b>2009</b> , 2532-4       | 5.8 | 28 |  |
| 1436 | Correlating phase behaviour and diffusion in mesopores: perspectives revealed by pulsed field gradient NMR. <b>2009</b> , 11, 2833-53                                                                 |     | 78 |  |
| 1435 | Controlled synthesis of core/shell magnetic iron oxide/carbon systems via a self-template method. <b>2009</b> , 19, 7710                                                                              |     | 28 |  |
| 1434 | Ultrastable Pt nanoparticles supported on sulfur-containing ordered mesoporous carbonvia strong metal-support interaction. <b>2009</b> , 19, 5934                                                     |     | 68 |  |
| 1433 | An easy co-casting method to synthesize mesostructured carbon composites with high magnetic separability and acid resistance. <b>2009</b> , 33, 1926                                                  |     | 17 |  |
| 1432 | Vapor phase synthesis of ultrathin carbon films with a mesoporous monolayer by a soft-templating method. <i>Chemical Communications</i> , <b>2009</b> , 1371-3                                        | 5.8 | 16 |  |
| 1431 | Molecular design of AEC tri-block anionic surfactant towards rational synthesis of targeted thick-walled mesoporous silica. <b>2009</b> , 19, 3404                                                    |     | 5  |  |
| 1430 | Pore structure and pore size controls of ordered mesoporous carbons prepared from resorcinol/formaldehyde/triblock polymers. <i>Microporous and Mesoporous Materials</i> , <b>2009</b> , 118, 218-223 | 5.3 | 77 |  |
| 1429 | Fabrication of hierarchical porous carbide-derived carbons by chlorination of mesoporous titanium carbides. <i>New Carbon Materials</i> , <b>2009</b> , 24, 243-250                                   | 4.4 | 13 |  |
| 1428 | Ordered Mesoporous Carbide Derived Carbons: Novel Materials for Catalysis and Adsorption. <b>2009</b> , 113, 7755-7761                                                                                |     | 93 |  |

| 1427 | Nanoporous colloids: building blocks for a new generation of structured materials. <b>2009</b> , 19, 6451                                                                            | 136 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1426 | Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons. <b>2009</b> , 21, 706-716                                                            | 457 |
| 1425 | A New Family of Mesoporous OxidesBynthesis, Characterisation and Applications of TUD-1. <b>2009</b> , 3-30                                                                           | 5   |
| 1424 | Nanotechnologies for Water Environment Applications. 2009,                                                                                                                           | 25  |
| 1423 | Ordered Microporous and Mesoporous Materials. <b>2009</b> , 243-329                                                                                                                  | 1   |
| 1422 | Effect of Carbon Source on the Textural and Electrochemical Properties of Novel Cage-type Mesoporous Carbon as a Replica of KIT-5 Mesoporous Silica. <b>2009</b> , 38, 918-919       | 12  |
| 1421 | Electrical Double-Layer Capacitors and Pseudocapacitors. <b>2009</b> , 329-375                                                                                                       | 10  |
| 1420 | Nanomaterials and structures for the fourth innovation of polymer electrolyte fuel cell. <b>2010</b> , 25, 2063-2071                                                                 | 15  |
| 1419 | Progress of the Application of Mesoporous Silica-Supported Heteropolyacids in Heterogeneous Catalysis and Preparation of Nanostructured Metal Oxides. <b>2010</b> , 3, 764-785       | 50  |
| 1418 | Silica-Based Mesoporous OrganicIhorganic Hybrid Materials. <b>2010</b> , 37-111                                                                                                      | 4   |
| 1417 | Facile Synthesis of Hierarchical Alumina Monoliths with Tubular Macropores and Ordered Mesoporous Walls. <b>2010</b> , 39, 980-982                                                   | 3   |
| 1416 | Synthesis of Mesoporous Carbon Using a Fullerenol-based Precursor Solution via Nanocasting with SBA-15. <b>2010</b> , 39, 777-779                                                    | 17  |
| 1415 | Mesoporous Non-Siliceous Materials and Their Functions. <b>2010</b> , 151-235                                                                                                        | 1   |
| 1414 | Hydrogen Storage on Carbon-Based Adsorbents and Storage at Ambient Temperature by Hydrogen Spillover. <i>Catalysis Reviews - Science and Engineering</i> , <b>2010</b> , 52, 411-461 | 119 |
| 1413 | A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid. <b>2010</b> , 396, 1755-62  | 47  |
| 1412 | Mesoporous materials in sensing: morphology and functionality at the meso-interface. <b>2010</b> , 398, 1565-73                                                                      | 100 |
| 1411 | Electrosynthesis and efficient electrocatalytic performance of poly(neutral red)/ordered mesoporous carbon composite. <b>2010</b> , 55, 4647-4652                                    | 16  |
| 1410 | How the adsorption properties get changed when going from SBA-15 to its CMK-3 carbon replica. <b>2010</b> , 75, 366-376                                                              | 60  |

## (2010-2010)

| 1409 | A family of ordered mesoporous carbons derived from mesophase pitch using ordered mesoporous silicas as templates. <b>2010</b> , 16, 465-472                                         | 11  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1408 | Template synthesis of three-dimensional cubic ordered mesoporous carbon with tunable pore sizes. <b>2009</b> , 5, 103-7                                                              | 39  |
| 1407 | Synthesis, characterization, and evaluation of lubrication properties of composites of ordered mesoporous carbons and luminescent CePO4:Tb nanocrystals. <b>2010</b> , 45, 1595-1603 | 6   |
| 1406 | Synthesis and characterization of bimodal rod-like mesoporous carbons from raffinose by SBA-15 templates. <b>2010</b> , 45, 2958-2966                                                | 6   |
| 1405 | Structural and sorption properties of carbon replicas obtained by matrix carbonization of organic precursors in SBA-15 and KIT-6. <b>2010</b> , 46, 51-57                            | 5   |
| 1404 | Fabrication and Electrocatalytic Application of Nanoporous Carbon Material with Different Pore Diameters. <b>2010</b> , 53, 291-296                                                  | 5   |
| 1403 | Development of Microporosity in Mesoporous Carbons. <b>2010</b> , 53, 283-290                                                                                                        | 16  |
| 1402 | Electrical double-layer capacitor performance of nitrogen-doped ordered mesoporous carbon prepared by nanotemplating method. <b>2010</b> , 36, 703-713                               | 8   |
| 1401 | Facile synthesis of microporous carbon through a soft-template pathway and its performance in desulfurization and denitrogenation. <b>2010</b> , 19, 471-476                         | 23  |
| 1400 | Hierarchically porous Fe2O3/CuO composite monoliths: Synthesis and characterization. <b>2010</b> , 19, 589-592                                                                       | 2   |
| 1399 | Mesoporous carbon spheres with uniformly penetrating channels and their use as a supercapacitor electrode material. <b>2010</b> , 61, 31-38                                          | 31  |
| 1398 | Adsorption of vitamin E on mesoporous titania nanocrystals. <b>2010</b> , 45, 863-869                                                                                                | 3   |
| 1397 | Hierarchical porous carbon with designed pore architecture and study of its adsorptive properties. <b>2010</b> , 12, 15-25                                                           | 15  |
| 1396 | Templated Synthesis of Ordered Mesoporous Carbons with Tailored Structures and Morphologies. <b>2010</b> , 28, 858-862                                                               | 2   |
| 1395 | One-step hydrothermal synthesis of nitrogen-doped nanocarbons: albumine directing the carbonization of glucose. <b>2010</b> , 3, 246-53                                              | 107 |
| 1394 | Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. <b>2010</b> , 3, 136-68                                                             | 563 |
| 1393 | Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. <b>2010</b> , 3, 440-3                                                    | 208 |
| 1392 | Direct Electrochemistry of Glucose Oxidase on Nail-like Carbon and Its Biosensing for Glucose. <b>2010</b> , 22, 701-706                                                             | 11  |

| 1391 | Gold Nanoparticles Electrodeposited on Ordered Mesoporous Carbon as an Enhanced Material for Nonenzymatic Hydrogen Peroxide Sensor. <b>2010</b> , 22, 2536-2542                                                                         | 42  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1390 | Controlled Synthesis and Functionalization of Ordered Large-Pore Mesoporous Carbons. <b>2010</b> , 20, 3658-3665                                                                                                                        | 117 |
| 1389 | Nanoparticles and 3D Supported Nanomaterials. <b>2010</b> , 279-340                                                                                                                                                                     | 1   |
| 1388 | Physisorption in Porous Materials. <b>2010</b> , 39-62                                                                                                                                                                                  | 11  |
| 1387 | Nanostructured Materials for Selective Collection of Trace-Level Metals from Aqueous Systems. <b>2010</b> , 191-221                                                                                                                     | 3   |
| 1386 | ChemInform Abstract: Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation <b>2010</b> , 30, no-no                                                                                        | 1   |
| 1385 | Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. <b>2010</b> , 16, 11020-7                                                 | 126 |
| 1384 | A general strategy for the preparation of hollow carbon nanocages by NH4Cl-assisted low-temperature heat treatment. <b>2010</b> , 16, 13603-8                                                                                           | 7   |
| 1383 | Nanostructured carbons for solid phase extraction. <b>2010</b> , 256, 5216-5220                                                                                                                                                         | 11  |
| 1382 | Characterization and catalytic performance of porous carbon prepared using in situ-formed aluminophosphate framework as template. <b>2010</b> , 342, 467-73                                                                             | 20  |
| 1381 | Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. <b>2010</b> , 345, 402-9                                                                                                                    | 135 |
| 1380 | A one-pot route to synthesize highly ordered mesoporous carbons and silicas through organicIhorganic self-assembly of triblock copolymer, sucrose and silica. <i>Microporous and</i> 5.3  Mesoporous Materials, <b>2010</b> , 128, 1-11 | 39  |
| 1379 | Nanocasting fabrication of ordered mesoporous phenolformaldehyde resins with various structures and their adsorption performances for basic organic compounds. <i>Microporous and Mesoporous Materials</i> , <b>2010</b> , 128, 165-179 | 47  |
| 1378 | Preparation of hollow carbon nanocages by iodine-assisted heat treatment. <b>2010</b> , 195, 1065-1070                                                                                                                                  | 20  |
| 1377 | Synthesis of morphology-controllable mesoporous Co3O4 and CeO2. <b>2010</b> , 183, 277-284                                                                                                                                              | 25  |
| 1376 | The electrochemical performance of ordered mesoporous carbon/nickel compounds composite material for supercapacitor. <b>2010</b> , 183, 2932-2936                                                                                       | 19  |
| 1375 | Graphitized mesoporous carbon supported PtBnO2 nanoparticles as a catalyst for methanol oxidation. <b>2010</b> , 89, 372-377                                                                                                            | 37  |
| 1374 | Accidental extinction in powder XRD intensity of porous crystals: Mesoporous carbon crystal CMK-5 and layered zeolite-nanosheets. <i>Microporous and Mesoporous Materials</i> , <b>2010</b> , 128, 71-77                                | 33  |

# (2010-2010)

| 1373 | Carbon-coated mesoporous silica as an electrode material. <i>Microporous and Mesoporous Materials</i> , <b>2010</b> , 132, 421-427                                                                                      | 5.3  | 21  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 1372 | Enhanced sorption of cadmium ion on highly ordered nanoporous carbon by using different surfactant modification. <i>Microporous and Mesoporous Materials</i> , <b>2010</b> , 133, 45-53                                 | 5.3  | 25  |
| 1371 | Hierarchical porous carbon obtained using the template of NaOH-treated zeolite and its high performance as supercapacitor. <i>Microporous and Mesoporous Materials</i> , <b>2010</b> , 133, 106-114                     | 5.3  | 39  |
| 1370 | Mesoporous carbide-derived carbon for cytokine removal from blood plasma. <b>2010</b> , 31, 4789-94                                                                                                                     |      | 41  |
| 1369 | Microfabrication and chemoresistive characteristics of SBA-15-templated mesoporous carbon gas sensors with CMOS compatibility. <b>2010</b> , 143, 500-507                                                               |      | 8   |
| 1368 | Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol. <b>2010</b> , 100, 229-237 |      | 89  |
| 1367 | Adsorption and diffusion of argon confined in ordered and disordered microporous carbons. <b>2010</b> , 256, 5131-5136                                                                                                  |      | 43  |
| 1366 | Studies of adsorption equilibria and kinetics in the systems: Aqueous solution of dyeshesoporous carbons. <b>2010</b> , 256, 5164-5170                                                                                  |      | 59  |
| 1365 | Hydrogenation of chiral nitrile on highly ordered mesoporous carbon-supported Pd catalysts. <i>Catalysis Today</i> , <b>2010</b> , 150, 22-27                                                                           | 5.3  | 8   |
| 1364 | Properties of CMK-8 carbon replicas obtained from KIT-6 and pyrrole at various contents of ferric catalyst. <i>Catalysis Today</i> , <b>2010</b> , 150, 77-83                                                           | 5.3  | 14  |
| 1363 | Synthesis of carbon monolith with bimodal meso/macroscopic pore structure and its application in asymmetric catalysis. <i>Catalysis Today</i> , <b>2010</b> , 150, 91-99                                                | 5.3  | 33  |
| 1362 | Polymer-templated mesoporous carbons with nickel nanoparticles. <b>2010</b> , 362, 20-27                                                                                                                                |      | 12  |
| 1361 | MetalBrganic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. <i>Carbon</i> , <b>2010</b> , 48, 456-463                                                     | 10.4 | 537 |
| 1360 | Bimodal, templated mesoporous carbons for capacitor applications. <i>Carbon</i> , <b>2010</b> , 48, 1056-1063                                                                                                           | 10.4 | 51  |
| 1359 | Textural property tuning of ordered mesoporous carbon obtained by glycerol conversion using SBA-15 silica as template. <i>Carbon</i> , <b>2010</b> , 48, 1609-1618                                                      | 10.4 | 53  |
| 1358 | Partially embedded highly dispersed Pt nanoparticles in mesoporous carbon with enhanced leaching stability. <i>Carbon</i> , <b>2010</b> , 48, 1788-1798                                                                 | 10.4 | 21  |
| 1357 | KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties. <i>Carbon</i> , <b>2010</b> , 48, 1985-1989                                            | 10.4 | 100 |
| 1356 | A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure. <i>Carbon</i> , <b>2010</b> , 48, 2089-2099                                                                | 10.4 | 69  |

1355 A review of the control of pore structure in MgO-templated nanoporous carbons. *Carbon*, **2010**, 48, 2690£2.707 210

| 1354 | Polyhedral carbon nanofoams with minimum surface area partitions produced using silica nanofoams as templates. <i>Carbon</i> , <b>2010</b> , 48, 3121-3130                               | 10.4 | 2   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 1353 | Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template. <i>Carbon</i> , <b>2010</b> , 48, 3579-3591 | 10.4 | 95  |
| 1352 | Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells. <i>Carbon</i> , <b>2010</b> , 48, 3715-3720                       | 10.4 | 84  |
| 1351 | A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications. <i>Carbon</i> , <b>2010</b> , 48, 3987-3992                                                  | 10.4 | 130 |
| 1350 | Biological physics: Filaments band together. <b>2010</b> , 467, 33-4                                                                                                                     |      | 16  |
| 1349 | Materials chemistry: Thin films with a hidden twist. <b>2010</b> , 468, 387-8                                                                                                            |      | 4   |
| 1348 | Correction. <b>2010</b> , 468, 388-388                                                                                                                                                   |      |     |
| 1347 | Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. <b>2010</b> , 2, 286-93                                                                     |      | 405 |
| 1346 | Catalyst-free synthesis of transparent, mesoporous diamond monoliths from periodic mesoporous carbon CMK-8. <b>2010</b> , 107, 13593-6                                                   |      | 15  |
| 1345 | Porous Carbon Prepared by a Template-Like Method Using Non-Porous Pumice Mineral as Template. <b>2010</b> , 160-162, 1028-1031                                                           |      |     |
| 1344 | Direct electrochemistry and electrocatalysis of hemoglobin at mesoporous carbon modified electrode. <b>2010</b> , 10, 1279-90                                                            |      | 13  |
| 1343 | Controlled synthesis of polyaniline inside mesoporous carbon for electroanalytical sensors. <b>2010</b> , 20, 5123                                                                       |      | 15  |
| 1342 | Mesoporous Silicates. <b>2010</b> , 69-145                                                                                                                                               |      | 3   |
| 1341 | Properties of Nitrogen-Functionalized Ordered Mesoporous Carbon Prepared Using Polypyrrole Precursor. <b>2010</b> , 157, B1665                                                           |      | 110 |
| 1340 | Templated Porous Carbon Materials: Recent Developments. <b>2010</b> , 217-264                                                                                                            |      | 3   |
| 1339 | Sol-Gel Synthesis of Non-Silica Monolithic Materials. <b>2010</b> , 3, 2815-2833                                                                                                         |      | 67  |
| 1338 | Innovative preparation of Au/C by replication of gold-containing mesoporous silica catalysts. <b>2010</b> , 221-                                                                         | -224 | 8   |

| 1337 | Porous Silicas and Respective Carbon Replicates for Adsorption and Catalysis. <b>2010</b> , 28, 717-726                                                               |     | 4    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 1336 | Ordered mesoporous crystalline gamma-Al2O3 with variable architecture and porosity from a single hard template. <b>2010</b> , 132, 12042-50                           |     | 129  |
| 1335 | New developments in ordered mesoporous materials for drug delivery. <b>2010</b> , 20, 5593                                                                            |     | 301  |
| 1334 | Templated nanoscale porous carbons. <i>Nanoscale</i> , <b>2010</b> , 2, 639-59                                                                                        | 7.7 | 277  |
| 1333 | Improving the capacitive deionisation performance by optimising pore structures of the electrodes. <b>2010</b> , 61, 1227-33                                          |     | 9    |
| 1332 | SiC/C nanocomposites with inverse opal structure. <b>2010</b> , 21, 475604                                                                                            |     | 5    |
| 1331 | Highly Stable Pt/Ordered Graphitic Mesoporous Carbon Electrocatalysts for Oxygen Reduction. <b>2010</b> , 114, 10796-10805                                            |     | 83   |
| 1330 | Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. <b>2010</b> , 20, 4223 |     | 250  |
| 1329 | Template synthesis of ordered mesoporous organic polymeric materials using hydrophobic silylated KIT-6 mesoporous silica. <b>2010</b> , 20, 5544                      |     | 44   |
| 1328 | Catalytic effects of TiF3 on hydrogen spillover on Pt/carbon for hydrogen storage. <b>2010</b> , 26, 15394-8                                                          |     | 29   |
| 1327 | Advances in LiB batteries. <b>2010</b> , 20, 9821                                                                                                                     |     | 1574 |
| 1326 | Synthesis and Electrochemical Performance of Heteroatom-Incorporated Ordered Mesoporous Carbons. <b>2010</b> , 22, 5463-5473                                          |     | 197  |
| 1325 | Synthesis of Uniform Mesoporous Carbon Capsules by Carbonization of Organosilica Nanospheres. <b>2010</b> , 22, 2526-2533                                             |     | 82   |
| 1324 | Nanostructured Carbons Prepared by Ultrasonic Spray Pyrolysis. <b>2010</b> , 22, 1610-1612                                                                            |     | 45   |
| 1323 | Growth of Single-Crystal Mesoporous Carbons with Im3 m Symmetry. <b>2010</b> , 22, 4828-4833                                                                          |     | 66   |
| 1322 | Size-dependent hydrogen sorption in ultrasmall Pd clusters embedded in a mesoporous carbon template. <b>2010</b> , 132, 7720-9                                        |     | 83   |
| 1321 | Mesoporous Ferromagnetic [email´protected]/Carbon (M = Fe, Co, Ni) Composites As Advanced Bifunctional Catalysts. <b>2010</b> , 22, 1624-1632                         |     | 25   |
| 1320 | Artificial black opal fabricated from nanoporous carbon spheres. <b>2010</b> , 26, 10044-9                                                                            |     | 23   |

| 1319 | CTAB modified nanoporous carbon for the adsorption of chromate ions from industrial wastewater. <b>2010</b> , 21, 44-52                                                                                                      |     | 3   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1318 | Low-temperature dynamics of water confined in a hydrophobic mesoporous material. <b>2010</b> , 82, 020501                                                                                                                    |     | 19  |
| 1317 | Supercapacitor-Type Behavior of Carbon Composite and Replica Obtained from Hybrid Layered Double Hydroxide Active Container <b>2010</b> , 22, 974-987                                                                        |     | 95  |
| 1316 | Aerosol synthesis of porous particles using simple salts as a pore template. <b>2010</b> , 26, 8804-9                                                                                                                        |     | 42  |
| 1315 | Tailoring Adsorption and Framework Properties of Mesoporous Polymeric Composites and Carbons by Addition of Organosilanes during Soft-Templating Synthesis. <b>2010</b> , 114, 6298-6303                                     |     | 25  |
| 1314 | Hydrogen adsorption in metal-doped highly ordered mesoporous carbon molecular sieve. <b>2010</b> , 498, 168-171                                                                                                              |     | 19  |
| 1313 | Synthesis and magnetic properties of iron nanoparticles confined in highly ordered mesoporous carbons. <b>2010</b> , 508, 147-151                                                                                            |     | 19  |
| 1312 | Carbon composites and replicas from intercalated layered double hydroxides. <b>2010</b> , 50, 367-375                                                                                                                        |     | 17  |
| 1311 | In situ growth of copper sulfide nanoparticles on ordered mesoporous carbon and their application as nonenzymatic amperometric sensor of hydrogen peroxide. <b>2010</b> , 81, 339-45                                         |     | 109 |
| 1310 | Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. <b>2010</b> , 82, 85-91                                                                 |     | 96  |
| 1309 | Solvothermal syntheses of hollow carbon microspheres modified with NH2 and DH groups in one-step process. <i>Carbon</i> , <b>2010</b> , 48, 3145-3156                                                                        | 0.4 | 72  |
| 1308 | Preparation and characterization of iron oxide-silica composite particles using mesoporous SBA-15 silica as template and their internalization into mesenchymal stem cell and human bone cell lines. <b>2010</b> , 9, 165-70 |     | 6   |
| 1307 | Mesoporous silica nanoparticles: structural design and applications. <b>2010</b> , 20, 7924                                                                                                                                  |     | 327 |
| 1306 | Ordered Mesoporous Boron Carbide Based Materials via Precursor Nanocasting. <b>2010</b> , 22, 4660-4668                                                                                                                      |     | 22  |
| 1305 | Mesoporous In2O3 with Regular Morphology by Nanocasting: A Simple Relation between Defined Particle Shape and Growth Mechanism. <b>2010</b> , 114, 2075-2081                                                                 |     | 32  |
| 1304 | Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons. <b>2010</b> , 44, 3116-22                                                                                            |     | 245 |
| 1303 | One-Pot Synthesis of PtRu Nanoparticle Decorated Ordered Mesoporous Carbons with Improved Hydrogen Storage Capacity. <b>2010</b> , 114, 22012-22018                                                                          |     | 13  |
| 1302 | Optimal Single-Walled Carbon Nanotube Vessels for Short-Term Reversible Storage of Carbon Dioxide at Ambient Temperatures. <b>2010</b> , 114, 21465-21473                                                                    |     | 25  |

# (2011-2010)

| 1301 | Preparation of LiBH4@carbon microfhacrocellular foams: tuning hydrogen release through varying microporosity. <b>2010</b> , 3, 824                                                      |     | 72  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1300 | Nanocasting of Ordered Mesoporous Co3O4-Based Polyoxometalate Composite Frameworks. <b>2010</b> , 22, 5739-5746                                                                         |     | 48  |
| 1299 | Nanocasted mesoporous nanocrystalline ZnO thin films. <b>2010</b> , 20, 537-542                                                                                                         |     | 37  |
| 1298 | By what means should nanoscaled materials be constructed: molecule, medium, or human?. <i>Nanoscale</i> , <b>2010</b> , 2, 198-214                                                      | 7.7 | 43  |
| 1297 | Electrocatalytic reduction of oxygen at ordered mesoporous carbon functionalized with tetrathiafulvalene. <i>Analyst, The</i> , <b>2010</b> , 135, 621-9                                | 5   | 21  |
| 1296 | Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. <b>2010</b> , 20, 976-980                                                    |     | 91  |
| 1295 | Agitation induced loading of sulfur into carbon CMK-3 nanotubes: efficient scavenging of noble metals from aqueous solution. <i>Chemical Communications</i> , <b>2010</b> , 46, 1658-60 | 5.8 | 15  |
| 1294 | Synthesis of easily shaped ordered mesoporous titanium-containing silica. <b>2010</b> , 20, 4705                                                                                        |     | 14  |
| 1293 | Molecular sieve properties of mesoporous silica with intraporous nanocarbon. <i>Chemical Communications</i> , <b>2010</b> , 46, 928-30                                                  | 5.8 | 27  |
| 1292 | One step room temperature synthesis of ordered mesoporous silica SBA-15 mediated by cellulose nanoparticles. <b>2010</b> , 20, 320-325                                                  |     | 17  |
| 1291 | Morphology control of ordered mesoporous carbons by changing HCl concentration. <b>2011</b> , 21, 5345                                                                                  |     | 23  |
| 1290 | Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture. <b>2011</b> , 21, 16001                                                                   |     | 134 |
| 1289 | Understanding the mechanism of hydrogen uptake at low pressure in carbon/palladium nanostructured composites. <b>2011</b> , 21, 17765                                                   |     | 46  |
| 1288 | Ordered mesoporous carbon with tunable, unusually large pore size and well-controlled particle morphology. <b>2011</b> , 21, 7410                                                       |     | 32  |
| 1287 | Novel ice structures in carbon nanopores: pressure enhancement effect of confinement. <b>2011</b> , 13, 9008                                                                            | -13 | 19  |
| 1286 | Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts. <i>Chemical Communications</i> , <b>2011</b> , 47, 2366-8                                     | 5.8 | 145 |
| 1285 | The impact of carbon materials on the hydrogen storage properties of light metal hydrides. <b>2011</b> , 21, 2417-2427                                                                  |     | 141 |
| 1284 | Simple methods for tuning the pore diameter of mesoporous carbon. <i>Chemical Communications</i> , <b>2011</b> , 47, 10758-60                                                           | 5.8 | 18  |

| 1283 | Preparation and characterization of highly ordered mesoporous SiC nanoparticles with rod shaped morphology and tunable pore diameters. <b>2011</b> , 21, 8792           |    | 9   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 1282 | Advanced electron microscopy characterization for pore structure of mesoporous materials; a study of FDU-16 and FDU-18. <b>2011</b> , 21, 13664                         |    | 8   |
| 1281 | Modification of the hydrogen storage properties of Li3N by confinement into mesoporous carbons. <b>2011</b> , 4, 3625                                                   |    | 21  |
| 1280 | Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. <b>2011</b> , 13, 13486-91                                             |    | 85  |
| 1279 | Synthesis of small metallic Mg-based nanoparticles confined in porous carbon materials for hydrogen sorption. <b>2011</b> , 151, 117-31; discussion 199-212             |    | 47  |
| 1278 | Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates. <b>2011</b> , 21, 7434                                                       |    | 106 |
| 1277 | Mesoporous nickel/carbon nanotube hybrid material prepared by electroless deposition. <b>2011</b> , 21, 1984-19                                                         | 90 | 54  |
| 1276 | Preparation of Microporous Carbon Fibers through Carbonization of Al-Based Porous Coordination Polymer (Al-PCP) with Furfuryl Alcohol. <b>2011</b> , 23, 1225-1231      |    | 218 |
| 1275 | Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). <i>Chemical Communications</i> , <b>2011</b> , 47, 8124-6   | ;  | 137 |
| 1274 | Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study. <b>2011</b> , 13, 3985-96                                         |    | 60  |
| 1273 | Impact of film thickness on the morphology of mesoporous carbon films using organic-organic self-assembly. <b>2011</b> , 27, 5607-15                                    |    | 24  |
| 1272 | CeO2/Pt Catalyst Nanoparticle Containing Carbide-Derived Carbon Composites by a New In situ Functionalization Strategy. <b>2011</b> , 23, 57-66                         |    | 13  |
| 1271 | Electrochemical applications of platinumBalladium alloy nanoparticles/large mesoporous carbon.  Journal of Electroanalytical Chemistry, <b>2011</b> , 662, 281-287  4.1 | -  | 28  |
| 1270 | Chemical architectonics for complex inorganic materials. <b>2011</b> , 7,                                                                                               |    |     |
| 1269 | Supercapacitors Based on 3D Nanostructured Electrodes. <b>2011</b> , 477-521                                                                                            |    |     |
| 1268 | Microporous carbon adsorbents with high CO2 capacities for industrial applications. <b>2011</b> , 13, 16063-70                                                          |    | 46  |
| 1267 | Morphology and pore control in carbon materials via templating. <i>RSC Advances</i> , <b>2011</b> , 1, 1620                                                             | ,  | 70  |
| 1266 | Synthesis, Growth Mechanism, and Electrochemical Properties of Hollow Mesoporous Carbon Spheres with Controlled Diameter. <b>2011</b> , 115, 17717-17724                |    | 109 |

| 1265 | Direct imaging of the layer-by-layer growth and rod-unit repairing defects of mesoporous silica SBA-15 by cryo-SEM. <b>2011</b> , 21, 17371                                                       |     | 16  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1264 | Synthesis of ZnO coated activated carbon aerogel by simple solgel route. <b>2011</b> , 21, 330-333                                                                                                |     | 30  |
| 1263 | One-pot generation of mesoporous carbon supported nanocrystalline calcium oxides capable of efficient CO2 capture over a wide range of temperatures. <b>2011</b> , 13, 2495-503                   |     | 58  |
| 1262 | Hostguest Functional Materials. <b>2011</b> , 405-428                                                                                                                                             |     | 3   |
| 1261 | Comparative Electroadsorption Study of Mesoporous Carbon Electrodes with Various Pore Structures. <b>2011</b> , 115, 17068-17076                                                                  |     | 95  |
| 1260 | Preparation and Application of Carbon Aerogels. <b>2011</b> , 813-831                                                                                                                             |     | 7   |
| 1259 | Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery. <b>2011</b> , 23, 4420-4427                                                   |     | 76  |
| 1258 | Synthesis of ordered mesoporous MgO/carbon composites by a one-pot assembly of amphiphilic triblock copolymers. <b>2011</b> , 21, 795-800                                                         |     | 60  |
| 1257 | Ordered Carbohydrate-Derived Porous Carbons. <b>2011</b> , 23, 4882-4885                                                                                                                          |     | 117 |
| 1256 | Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. <b>2011</b> , 133, 15148-56                                                                    |     | 235 |
| 1255 | One-step-impregnation hard templating synthesis of high-surface-area nanostructured mixed metal oxides (NiFe2O4, CuFe2O4 and Cu/CeO2). <i>Chemical Communications</i> , <b>2011</b> , 47, 10473-5 | 5.8 | 89  |
| 1254 | Recent progress in the synthesis and applications of nanoporous carbon films. <b>2011</b> , 21, 313-323                                                                                           |     | 73  |
| 1253 | Hydrocarbons adsorption on templated mesoporous materials: effect of the pore size, geometry and surface chemistry. <b>2011</b> , 35, 407-416                                                     |     | 46  |
| 1252 | Controlled Synthesis of the Tricontinuous Mesoporous Material IBN-9 and Its Carbon and Platinum Derivatives. <b>2011</b> , 23, 3775-3786                                                          |     | 24  |
| 1251 | Ordered Mesoporous Carbon Composite Films Containing Cobalt Oxide and Vanadia for Electrochemical Applications. <b>2011</b> , 23, 2869-2878                                                       |     | 86  |
| 1250 | Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. <i>Chemical Communications</i> , <b>2011</b> , 47, 2101-3                         | 5.8 | 106 |
| 1249 | Aerogels Handbook. <b>2011</b> ,                                                                                                                                                                  |     | 316 |
| 1248 | Shape- and size-controlled synthesis in hard templates: sophisticated chemical reduction for mesoporous monocrystalline platinum nanoparticles. <b>2011</b> , 133, 14526-9                        |     | 336 |

| 1247 | Direct synthesis of flat cake-type ordered mesoporous carbon in a double surfactant system of P123/CTAB. <b>2011</b> , 21, 5576                                                                                | 17  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1246 | Ordered mesoporous NiMn2Ox with hematite or spinel structure: synthesis and application in electrochemical energy storage and catalytic conversion of N2O. <b>2011</b> , 13, 6955                              | 26  |
| 1245 | Polymeric Frameworks: Toward Porous Semiconductors. <b>2011</b> , 119-154                                                                                                                                      | 3   |
| 1244 | Fabrication of a Highly Conductive Ordered Porous Electrode by Carbon-Coating of a Continuous Mesoporous Silica Film. <b>2011</b> , 23, 3144-3151                                                              | 27  |
| 1243 | Integrative Chemistry Routes toward Advanced Functional Hierarchical Foams. 2011, 301-334                                                                                                                      |     |
| 1242 | Hierarchically Porous Materials in Catalysis. <b>2011</b> , 481-515                                                                                                                                            | 5   |
| 1241 | Remarkable effect of ordered mesoporous carbon support in tantalum oxide-catalyzed selective epoxidation of cyclooctene. <b>2011</b> , 12, 1228-1230                                                           | 10  |
| 1240 | Enhanced liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over mesoporous carbon supported Pd catalysts. <b>2011</b> , 12, 1405-1409                                                           | 41  |
| 1239 | Nanoconfined hydrides for energy storage. <i>Nanoscale</i> , <b>2011</b> , 3, 2086-98                                                                                                                          | 240 |
| 1238 | The chiral structure of porous chitin within the wing-scales of Callophrys rubi. <b>2011</b> , 174, 290-5                                                                                                      | 109 |
| 1237 | Bicontinuous gyroidal mesoporous carbon matrix for facilitating protein electrochemical and bioelectrocatalytic performances. <b>2011</b> , 83, 1507-14                                                        | 15  |
| 1236 | Simple synthesis of semi-graphitized ordered mesoporous carbons with tunable pore sizes. <i>New A-4</i>                                                                                                        | 15  |
| 1235 | Fabrication of the Tricontinuous Mesoporous IBN-9 Structure with Surfactant CTAB. <b>2011</b> , 23, 5250-5255                                                                                                  | 16  |
| 1234 | Electrocatalytic Activity and Stability of Pt clusters on State-of-the-Art Supports: A Review.  Catalysis Reviews - Science and Engineering, <b>2011</b> , 53, 256-336                                         | 103 |
| 1233 | Electric Double-Layer Capacitance of Inverse Opal Carbon Prepared Through Carbonization of Poly(Furfuryl Alcohol) in Contact with Polymer Gel Electrolyte Containing Ionic Liquid. <b>2011</b> , 22, 1254-1260 | 28  |
| 1232 | Synthetic Chemistry of the Inorganic Ordered Porous Materials. <b>2011</b> , 339-373                                                                                                                           | 6   |
| 1231 | Periodic Mesoporous Materials: Holes Filled with Opportunities. <b>2011</b> , 69-125                                                                                                                           | 3   |
| 1230 | Simple synthesis of graphitic ordered mesoporous carbon supports using natural seed fat. <b>2011</b> , 21, 14420                                                                                               | 33  |

|                  | hly ordered macroporous carbon spheres and their catalytic application for methanol oxidation.<br><b>1</b> , 361, 503-8                                                 | 19  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1228 <b>Mo</b> l | phology Control of Ordered Mesoporous Carbon Using Organic-Templating Approach. <b>2011</b> ,                                                                           | 1   |
|                  | orption Properties of Micro-/Meso-Porous Carbons Obtained by Colloidal Templating and t-Synthesis KOH Activation. <b>2011</b> , 29, 457-465                             | 2   |
| 1226 <b>N</b> ar | no/Microporous Materials: Mesoporous and Surface-Functionalized Mesoporous Carbon. <b>2011</b> ,                                                                        |     |
| 1225 Рог         | ous Inorganic Materials. <b>2011</b> ,                                                                                                                                  | 2   |
|                  | ium Storage Properties of Porous Carbon Formed Through the Reaction of Supercritical Carbon xide with Alkali Metals. <b>2011</b> , 94, 3078-3083                        | 20  |
|                  | uchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified soporous carbon. <b>2011</b> , 192, 1046-55                              | 134 |
|                  | ovative Route to Prepare of Au/C Catalysts by Replication of Gold-containing Mesoporous<br>cas. <b>2011</b> , 21, 205-210                                               | О   |
|                  | rmo-responsive polymer-functionalized mesoporous carbon for controlled drug release. <b>2011</b> ,<br>, 357-363                                                         | 32  |
|                  | thesis of spheroidal ordered mesoporous carbon materials from silica/P123/butanol<br>posites. <b>2011</b> , 130, 1016-1021                                              | 9   |
| 1219 <b>Syn</b>  | thesis of ordered large-pore mesoporous carbon for Cr(VI) adsorption. <b>2011</b> , 46, 1424-1430                                                                       | 28  |
|                  | size modulation of hollow mesoporous carbon spheres synthesized by a simplified hard plate route. <b>2011</b> , 65, 1-3                                                 | 19  |
| 1217 Syn         | thesis of mesoporous magnesium silicate particles and their adsorption property. 2011, 6, 671                                                                           | 5   |
|                  | ra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous pons for nonenzymatic hydrogen peroxide detection. <b>2011</b> , 28, 77-83 | 66  |
| インイド             | templating synthesis of nitrogen-doped carbon materials with hierarchically porous structure their application for lysozyme adsorption. <b>2011</b> , 174, 452-460      | 10  |
|                  | tifunctional hybrids by combining ordered mesoporous materials and macromolecular building cks. <i>Chemical Society Reviews</i> , <b>2011</b> , 40, 1107-50             | 238 |
| 1213 Hyt         | orid foams, colloids and beyond: from design to applications. <i>Chemical Society Reviews</i> , <b>2011</b> , 40, 771- <b>§8</b> .5                                     | 183 |
| 1212 Ord         | ered mesoporous non-oxide materials. <i>Chemical Society Reviews</i> , <b>2011</b> , 40, 3854-78 58.5                                                                   | 296 |

| 1211 | Synthesis of mesoporous carbon capsules encapsulated with magnetite nanoparticles and their application in wastewater treatment. <b>2011</b> , 21, 3664                                                            | 163 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1210 | Iron oxide nanoparticles embedded onto 3D mesochannels of KIT-6 with different pore diameters and their excellent magnetic properties. <b>2011</b> , 6, 834-41                                                     | 9   |
| 1209 | Sophisticated crystal transformation of a coordination polymer into mesoporous monocrystalline Ti-Fe-based oxide with room-temperature ferromagnetic behavior. <b>2011</b> , 6, 3195-9                             | 17  |
| 1208 | Biofuel cells Based on the Immobilization of Photosynthetically Active Bioentities. <i>ChemCatChem</i> , <b>2011</b> , 3, 476-488                                                                                  | 36  |
| 1207 | Synthesis of a periodic SiC/C nanostructure. <b>2011</b> , 53, 1121-1125                                                                                                                                           | 4   |
| 1206 | Directing zeolite structures into hierarchically nanoporous architectures. <b>2011</b> , 333, 328-32                                                                                                               | 665 |
| 1205 | Conditions and features of matrix and bulk carbonization of the organic precursors. <b>2011</b> , 46, 4465-4470                                                                                                    | 5   |
| 1204 | Synthesis of Sulfonated Carbon Nanocage and Its Performance as Solid Acid Catalyst. <b>2011</b> , 141, 459-466                                                                                                     | 25  |
| 1203 | Mesoporous silica templated zirconia nanoparticles. <b>2011</b> , 13, 2743-2748                                                                                                                                    | 4   |
| 1202 | Electrochemical behavior of methyl parathion and its sensitive determination at a glassy carbon electrode modified with ordered mesoporous carbon. <b>2011</b> , 173, 215-221                                      | 53  |
| 1201 | Ordered Nanoporous Carbon-Based SPME and Determination by GC. <b>2011</b> , 73, 379-384                                                                                                                            | 18  |
| 1200 | Soft-templating synthesis and adsorption properties of mesoporous carbons with embedded silver nanoparticles. <b>2011</b> , 17, 461-466                                                                            | 12  |
| 1199 | One-pot synthesis of boron-doped mesoporous carbon with boric acid as a multifunction reagent.  Microporous and Mesoporous Materials, 2011, 142, 609-613  5:3                                                      | 61  |
| 1198 | Formation and development of micropores in carbon prepared via catalytic carbonization of phenolic resin containing Fe or Ni compounds. <i>Microporous and Mesoporous Materials</i> , <b>2011</b> , 143, 60-65 5.3 | 11  |
| 1197 | Preparation and application of chelating polymer-mesoporous silica composite for Europium-ion adsorption. <b>2011</b> , 19, 421-426                                                                                | 10  |
| 1196 | Nano-structured porous carbon materials for catalysis and energy storage. <b>2011</b> , 28, 731-743                                                                                                                | 42  |
| 1195 | Mesoporous structures confined in anodic alumina membranes. <b>2011</b> , 23, 2395-412                                                                                                                             | 94  |
| 1194 | Spontaneous phase separation mediated synthesis of 3D mesoporous carbon with controllable cage and window size. <b>2011</b> , 23, 2357-61                                                                          | 32  |

| 1193 | Carbon materials for chemical capacitive energy storage. <b>2011</b> , 23, 4828-50                                                                                                                                               | 2273 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1192 | Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon. <b>2011</b> , 30, 793-800                                                                                            | 24   |
| 1191 | Observation of Pore-Switching Behavior in Porous Layered Carbon through a Mesoscale Order <b>D</b> isorder Transformation. <b>2011</b> , 123, 4015-4019                                                                          | 6    |
| 1190 | Chiral Nematic Mesoporous Carbon Derived From Nanocrystalline Cellulose. <b>2011</b> , 123, 11183-11187                                                                                                                          | 37   |
| 1189 | Observation of pore-switching behavior in porous layered carbon through a mesoscale order-disorder transformation. <b>2011</b> , 50, 3929-33                                                                                     | 17   |
| 1188 | Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. <b>2011</b> , 50, 10991-5                                                                                                                               | 186  |
| 1187 | Cubic and hexagonal mesoporous carbon in the pores of anodic alumina membranes. <b>2011</b> , 17, 9463-70                                                                                                                        | 19   |
| 1186 | Functionalization of mesoporous carbon with superbasic MgO nanoparticles for the efficient synthesis of sulfinamides. <b>2011</b> , 17, 6673-82                                                                                  | 18   |
| 1185 | Development of high surface area mesoporous activated carbons from herb residues. <b>2011</b> , 167, 148-154                                                                                                                     | 78   |
| 1184 | Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor. <i>Carbon</i> , <b>2011</b> , 49, 154-16 $0^{0.4}$ | 111  |
| 1183 | Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area. <i>Carbon</i> , <b>2011</b> , 49, 545-555                                                                          | 133  |
| 1182 | One-pot preparation of functionalized nanostructured carbons. <i>Carbon</i> , <b>2011</b> , 49, 599-604                                                                                                                          | 12   |
| 1181 | A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties. <i>Carbon</i> , <b>2011</b> , 49, 844-853                          | 84   |
| 1180 | Well-dispersed Pd3Pt1 alloy nanoparticles in large pore sized mesocellular carbon foam for improved methanol-tolerant oxygen reduction reaction. <i>Carbon</i> , <b>2011</b> , 49, 1108-1117                                     | 45   |
| 1179 | An ordered hydrophobic P6mm mesoporous carbon with graphitic pore walls and its application in aqueous catalysis. <i>Carbon</i> , <b>2011</b> , 49, 1290-1298                                                                    | 38   |
| 1178 | One-pot synthesis of carbonaceous monolith with surface sulfonic groups and its carbonization/activation. <i>Carbon</i> , <b>2011</b> , 49, 1811-1820                                                                            | 77   |
| 1177 | Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine. <i>Carbon</i> , <b>2011</b> , 49, 2113-2119                                                                                            | 67   |
| 1176 | The synthesis of microporous carbon by the fluorination of titanium carbide. <i>Carbon</i> , <b>2011</b> , 49, 2998-300% 0.4                                                                                                     | 18   |

| 1175 | Preparation of ordered mesoporous carbon membranes by a soft-templating method. <i>Carbon</i> , <b>2011</b> , 49, 3184-3189                                                                                       | 10.4   | 43 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|
| 1174 | Fast production of monolithic carbide-derived carbons with secondary porosity produced by chlorination of carbides containing a free metal phase. <i>Carbon</i> , <b>2011</b> , 49, 4359-4367                     | 10.4   | 24 |
| 1173 | Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance. <i>Carbon</i> , <b>2011</b> , 49, 4580-4588                                                                         | 10.4   | 79 |
| 1172 | Phase control of ordered mesoporous carbon synthesized by a soft-templating method. <b>2011</b> , 384, 58-6                                                                                                       | 51     | 28 |
| 1171 | CMK-3 nanoporous carbon as a new fiber coating for solid-phase microextraction coupled to gas chromatography-mass spectrometry. <b>2011</b> , 695, 58-62                                                          |        | 44 |
| 1170 | Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials. <b>2011</b> , 510, 1-13                                                                          |        | 82 |
| 1169 | Comparative study on the electrocatalytic activities of ordered mesoporous carbons and graphene. <b>2011</b> , 56, 3042-3048                                                                                      |        | 28 |
| 1168 | A wormhole-structured mesoporous carbon with superior adsorption for dyes. <i>Carbon</i> , <b>2011</b> , 49, 1912-1                                                                                               | 191684 | 22 |
| 1167 | Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. <i>Carbon</i> , <b>2011</b> , 49, 3055-3064                                                  | 10.4   | 81 |
| 1166 | A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture. <b>2011</b> , 90, 1662-1667                                                                                                        | 7      | 85 |
| 1165 | Dynamics of water diffusion in mesoporous zeolites. <i>Microporous and Mesoporous Materials</i> , <b>2011</b> , 142, 236-244                                                                                      | 5.3    | 55 |
| 1164 | Preparation of ordered mesoporous silicon carbide monoliths via preceramic polymer nanocasting. <i>Microporous and Mesoporous Materials</i> , <b>2011</b> , 142, 754-758                                          | 5.3    | 32 |
| 1163 | Graphitic nanocrystals inside the pores of mesoporous silica: Synthesis, characterization and an adsorption study. <i>Microporous and Mesoporous Materials</i> , <b>2011</b> , 144, 120-133                       | 5.3    | 18 |
| 1162 | Synthesis, characterization and catalytic performance of metal-containing mesoporous carbons for styrene production. <b>2011</b> , 395, 53-63                                                                     |        | 11 |
| 1161 | Effect of Pt-loaded carbon support nanostructure on oxygen reduction catalysis. <b>2011</b> , 196, 5438-5445                                                                                                      |        | 46 |
| 1160 | Ordered mesoporous silicoboron carbonitride ceramics from boron-modified polysilazanes: Polymer synthesis, processing and properties. <i>Microporous and Mesoporous Materials</i> , <b>2011</b> , 140, 40-50      | 5.3    | 36 |
| 1159 | Cerium hexacyanoferrate/ordered mesoporous carbon electrode and its application in electrochemical determination of hydrous hydrazine. <i>Journal of Electroanalytical Chemistry</i> , <b>2011</b> , 650, 171-175 | 4.1    | 44 |
| 1158 | Voltammetric sensor based on ordered mesoporous carbon for folic acid determination. <i>Journal of Electroanalytical Chemistry</i> , <b>2011</b> , 660, 2-7                                                       | 4.1    | 25 |

| 1157 | electrode. <b>2011</b> , 155, 837-842                                                                                                                                                     | 56  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1156 | The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose. <b>2011</b> , 157, 662-668                                 | 99  |
| 1155 | Influence of Preparation Conditions on Structural Stability of Ordered Mesoporous Carbons Synthesized by Evaporation-induced Triconstituent Co-assembly Method. <b>2011</b> , 24, 365-372 | 2   |
| 1154 | A Porous Carbon Prepared by a Template Method Using a Clay Mineral as a Template. <b>2011</b> , 230-232, 1151-1154                                                                        |     |
| 1153 | Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors. <b>2011</b> , 12, 044602                                   | 44  |
| 1152 | Applications of chemically modified ordered mesoporous carbon as solid phase extraction sorbent for preconcentration of trace lead ion in water samples. <b>2011</b> , 17, 397-408        | 8   |
| 1151 | Excellent Rate Capability in H2SO4 of a Porous Carbon Prepared by Template Method Using a Mazzite Mineral as Template. <b>2011</b> , 230-232, 1173-1176                                   |     |
| 1150 | SOLID SULFONIC ACID CATALYSTS BASED ON POROUS CARBONS AND CARBONBILICA COMPOSITES. <b>2011</b> , 18, 229-239                                                                              | 5   |
| 1149 | From three-dimensional weavings to swollen corneocytes. <b>2011</b> , 8, 1274-80                                                                                                          | 14  |
| 1148 | Fabrication of Highly Ordered Carbon Networks as Catalyst Supports for Aerobic Oxidation of Glucose. <b>2012</b> , 476-478, 1186-1192                                                     | 2   |
| 1147 | Electrochemical Detection of Hydrazine Using Cobalt Hexacynoferrate Deposited Carbon Sphere Modified Glassy Carbon Electrode. <b>2012</b> , 584, 324-328                                  |     |
| 1146 | Structural characterisation of subcritical carbon dioxide confined in nanoporous carbon byin situneutron diffraction. <b>2012</b> , 340, 012046                                           | 1   |
| 1145 | Synthesis of Mesoporous Fullerene and its Platinum Composite: A Catalyst for PEMFc. <b>2012</b> , 159, K156-K160                                                                          | 5   |
| 1144 | A Mild Method Prepared Carboxy Carbon Nanocage. <b>2012</b> , 560-561, 742-746                                                                                                            |     |
| 1143 | Carbon Materials Electrodes: Electrochemical Analysis Applications. <b>2012</b> , 248, 262-267                                                                                            |     |
| 1142 | Metal silicate nanotubes with nanostructured walls as superb adsorbents for uranyl ions and lead ions in water. <b>2012</b> , 22, 17222                                                   | 114 |
| 1141 | Metal-oxide-modified nanostructured carbon application as novel adsorbents for chromate ion removal from water. <b>2012</b> , 103, 743-748                                                | 1   |
| 1140 | Synthesis and Modification of Ordered Mesoporous Carbons for Resorcinol Removal. 2012,                                                                                                    |     |

| 1139 | Nanoarchitectonics for Mesoporous Materials. <b>2012</b> , 85, 1-32                                                                                                                      |     | 602 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1138 | Template Synthesis of Nanoporous Carbons through Iodine Stabilization of Carboxymethylcellulose Sodium. <b>2012</b> , 41, 53-55                                                          |     | 6   |
| 1137 | Adsorption and desorption behavior of water and organic vapor of allophanic soilEemplated porous carbon materials. <b>2012</b> , 120, 603-608                                            |     | 2   |
| 1136 | Mesoporous titania: From synthesis to application. <b>2012</b> , 7, 344-366                                                                                                              |     | 230 |
| 1135 | Formation Mechanism of Cubic Mesoporous Carbon Monolith Synthesized by Evaporation-Induced Self-assembly. <b>2012</b> , 24, 383-392                                                      |     | 59  |
| 1134 | Ordered Mesoporous Materials as Catalysts. <b>2012</b> , 55, 127-239                                                                                                                     |     | 31  |
| 1133 | Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and COII capture performance. <b>2012</b> , 4, 5800-6                                              |     | 334 |
| 1132 | Synthesis of Superparamagnetic Nanoporous Iron Oxide Particles with Hollow Interiors by Using Prussian Blue Coordination Polymers. <b>2012</b> , 24, 2698-2707                           |     | 152 |
| 1131 | Synthesis of Hard Magnetic Ordered Mesoporous Co3O4/CoFe2O4 Nanocomposites. <b>2012</b> , 24, 2493-250                                                                                   | )0  | 81  |
| 1130 | Recent progress in soft-templating of porous carbon materials. <b>2012</b> , 8, 10801                                                                                                    |     | 178 |
| 1129 | Zeolite Synthesis Using Hierarchical Structure-Directing Surfactants: Retaining Porous Structure of Initial Synthesis Gel and Precursors. <b>2012</b> , 24, 2733-2738                    |     | 70  |
| 1128 | Carbon as a hard template for nano material catalysts. <b>2012</b> , 21, 215-232                                                                                                         |     | 37  |
| 1127 | Easy synthesis of iron doped ordered mesoporous carbon with tunable pore sizes. <b>2012</b> , 21, 275-281                                                                                |     | 5   |
| 1126 | Nitrogen-Doped Mesoporous Carbon for Carbon Capture 🖪 Molecular Simulation Study. <b>2012</b> , 116, 7106-7110                                                                           |     | 38  |
| 1125 | Pt nanoparticles entrapped in ordered mesoporous carbons for liquid-phase hydrogenation of unsaturated compounds. <b>2012</b> , 28, 147-151                                              |     | 18  |
| 1124 | Synthesis, characterization and electrocatalytic properties of nano-platinum-supported mesoporous carbon molecular sieves, Pt/NCCR-41. <i>Catalysis Today</i> , <b>2012</b> , 198, 85-91 | 5.3 | 13  |
| 1123 | Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic. <i>Chemosphere</i> , <b>2012</b> , 89, 1230-7                        | 8.4 | 68  |
| 1122 | Preparation of microporous pillared carbons from the silylated graphite oxide prepared by a two-step method. <b>2012</b> , 73, 1424-1427                                                 |     | 14  |

| 1121 | Synthesis of pure rod-like &i3N4 powder with in situ C/SBA-15 composite. <i>Ceramics International</i> , <b>2012</b> , 38, 6059-6062                                                                                      | 5.1 | 7   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1120 | Preparation of highly dispersed gold nanoparticles/mesoporous carbon nanofiber composites and their application toward detection of hydrazine. <b>2012</b> , 2, 2327                                                      |     | 9   |
| 1119 | Evaluation of porous carbon substrates as catalyst supports for the cathode of direct methanol fuel cells. <i>RSC Advances</i> , <b>2012</b> , 2, 1669-1674                                                               | 3.7 | 28  |
| 1118 | An Experimental Investigation of the Ion Storage/Transfer Behavior in an Electrical Double-Layer Capacitor by Using Monodisperse Carbon Spheres with Microporous Structure. <b>2012</b> , 116, 26791-26799                |     | 58  |
| 1117 | A new restriction effect of aging time on the shrinkage of ordered mesoporous carbon during carbonization. <i>RSC Advances</i> , <b>2012</b> , 2, 5071                                                                    | 3.7 | 10  |
| 1116 | Nano-graphite functionalized mesocellular carbon foam with enhanced intra-penetrating electrical percolation networks for high performance electrochemical energy storage electrode materials. <b>2012</b> , 14, 5695-704 |     | 21  |
| 1115 | A one-pot organicIhorganic co-assembling route to ordered mesoporous carbons with cubic and bimodal pore structures. <i>RSC Advances</i> , <b>2012</b> , 2, 2221                                                          | 3.7 | 5   |
| 1114 | Template-free synthesis of rectangular mesoporous carbon nanorods and their application as a support for Pt electrocatalysts. <b>2012</b> , 22, 5758                                                                      |     | 28  |
| 1113 | Hydrophilic porous carbon with tailored nanostructure and its sensitive hydrogen peroxide biosensor. <i>RSC Advances</i> , <b>2012</b> , 2, 1014-1020                                                                     | 3.7 | 12  |
| 1112 | Towards commercial products by nanocasting: characterization and lithium insertion properties of carbons with a macroporous, interconnected pore structure. <b>2012</b> , 22, 10787                                       |     | 26  |
| 1111 | A new hybrid architecture consisting of highly mesoporous CNT/carbon nanofibers from starch. <b>2012</b> , 22, 20554                                                                                                      |     | 24  |
| 1110 | Functional group-template integrated ABC copolymer silicone surfactant directing for highly hydrophobic mesoporous silica. <b>2012</b> , 22, 19076                                                                        |     | 5   |
| 1109 | Synthesis of corellhell structured TS-1@mesocarbon materials and their applications as a tandem catalyst. <b>2012</b> , 22, 14219                                                                                         |     | 24  |
| 1108 | Copper oxide activation of soft-templated mesoporous carbons and their electrochemical properties for capacitors. <b>2012</b> , 22, 1547-1555                                                                             |     | 17  |
| 1107 | Polymer/Ordered mesoporous carbon nanocomposite platelets as superior sensing materials for gas detection with surface acoustic wave devices. <b>2012</b> , 28, 11639-45                                                  |     | 22  |
| 1106 | Morphology-Controlled Synthesis of Nanocrystalline EAl2O3 Thin Films, Powders, Microbeads, and Nanofibers with Tunable Pore Sizes from Preformed Oligomeric Oxo-Hydroxo Building Blocks. <b>2012</b> , 24, 486-494        |     | 39  |
| 1105 | Synthesis, characterization and supercapacitive properties of hierarchical porous carbons. <b>2012</b> , 162, 85-88                                                                                                       |     | 20  |
| 1104 | Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. <b>2012</b> , 38, 79-97                                                          |     | 123 |

| 1103 | Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks. <i>Chemical Communications</i> , <b>2012</b> , 48, 7447-9                              | 3  | 171 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 1102 | Impact of Homopolymer Pore Expander on the Morphology of Mesoporous Carbon Films Using Organic Drganic Self-Assembly. <b>2012</b> , 116, 6038-6046                                         |    | 17  |
| 1101 | In situ SAXS study on a new mechanism for mesostructure formation of ordered mesoporous carbons: thermally induced self-assembly. <b>2012</b> , 134, 11136-45                              |    | 53  |
| 1100 | Supercapacitive properties of porous carbon nanofibers via the electrospinning of metal alkoxide-graphene in polyacrylonitrile. <b>2012</b> , 87, 157-161                                  |    | 31  |
| 1099 | Slow Release Kinetics of Mitoxantrone from Ordered Mesoporous Carbon Films. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 160, 143-150                                       | 3  | 13  |
| 1098 | Preparing microporous carbon from solid organic salt precursors using in situ templating and a fixed-bed reactor. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 160, 174-181 | 3  | 20  |
| 1097 | Nanostructured carbon for energy storage and conversion. <b>2012</b> , 1, 195-220                                                                                                          |    | 797 |
| 1096 | Low-cost shape-control synthesis of porous carbon film on all-alumina ceramics for Na-based battery application. <b>2012</b> , 219, 1-8                                                    |    | 22  |
| 1095 | Synthesis of polyelectrolyte-modified ordered nanoporous carbon for removal of aromatic organic acids from purified terephthalic acid wastewater. <b>2012</b> , 90, 975-983                |    | 27  |
| 1094 | Cathodic electrochemiluminescence of luminol using polyaniline/ordered mesoporous carbon (CMK-3) hybrid modified electrode for signal amplification. <b>2012</b> , 78, 508-514             |    | 39  |
| 1093 | Non-enzymatic acetylcholine sensor based on NiAl layered double hydroxides/ordered mesoporous carbon. <b>2012</b> , 78, 569-575                                                            |    | 33  |
| 1092 | Ordered mesoporous carbon for electrochemical sensing: a review. <b>2012</b> , 747, 19-28                                                                                                  |    | 153 |
| 1091 | Direct synthesis of ordered mesoporous polymer and carbon materials by a biosourced precursor. <b>2012</b> , 14, 313-316                                                                   |    | 65  |
| 1090 | Nanoporous Carbon as Anode Material of High Rate Capability for Lithium Ion Batteries. <b>2012</b> , 59, 1216-12                                                                           | 19 | 5   |
| 1089 | Nanocasting nanoporous inorganic and organic materials from polymeric bicontinuous microemulsion templates. <b>2012</b> , 44, 131-146                                                      |    | 40  |
| 1088 | Hybrid PolymerIhorganic Nanostructures. <b>2012</b> , 129-140                                                                                                                              |    |     |
| 1087 | Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. <i>Chemical Communications</i> , <b>2012</b> , 48, 7259-61              | 3  | 559 |
| 1086 | Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. <b>2012</b> , 134, 2864-7                                                                 |    | 538 |

| 1085 | Electrochemical performance of a novel ionic liquid derived mesoporous carbon. <i>Chemical Communications</i> , <b>2012</b> , 48, 2776-8                                                               | 5.8 | 26  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1084 | From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. <i>Chemical Communications</i> , <b>2012</b> , 48, 9254-6 | 5.8 | 217 |
| 1083 | Three-dimensional nanohybrids of Mn3O4/ordered mesoporous carbons for high performance anode materials for lithium-ion batteries. <b>2012</b> , 22, 16640                                              |     | 89  |
| 1082 | Carbon-based Catalyst Support in Fuel Cell Applications. <b>2012</b> , 549-581                                                                                                                         |     | 7   |
| 1081 | High capacity magnetic mesoporous carbon-cobalt composite adsorbents for removal of methylene green from aqueous solutions. <b>2012</b> , 387, 127-34                                                  |     | 26  |
| 1080 | Catalytic performance of sucrose-derived CMK-3 in oxidative dehydrogenation of propane to propene. <b>2012</b> , 445-446, 321-328                                                                      |     | 17  |
| 1079 | Production of l-theanine using glutaminase encapsulated in carbon-coated mesoporous silica with high pH stability. <b>2012</b> , 68, 207-214                                                           |     | 25  |
| 1078 | The electromagnetic properties and microwave absorption of mesoporous carbon. <b>2012</b> , 135, 884-891                                                                                               |     | 164 |
| 1077 | Pt/carbon materials as bi-functional catalysts for n-decane hydroisomerization. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 163, 21-28                                                 | 5.3 | 11  |
| 1076 | N2 and H2 adsorption behavior of KOH-activated ordered mesoporous carbon. <b>2012</b> , 554, 133-136                                                                                                   |     | 8   |
| 1075 | A crystal structure analysis and magnetic investigation on highly ordered mesoporous Cr2O3. <b>2012</b> , 51, 11745-52                                                                                 |     | 39  |
| 1074 | Highly porous chemically modified carbon cryogels and their coherent nanocomposites for energy applications. <b>2012</b> , 5, 5619-5637                                                                |     | 61  |
| 1073 | On the use of mesophase pitch for the preparation of hierarchical porous carbon monoliths by nanocasting. <b>2012</b> , 13, 015010                                                                     |     | 24  |
| 1072 | High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization. <b>2012</b> , 22, 6603                                                                    |     | 151 |
| 1071 | Mesoporous carbon/zirconia composites: a potential route to chemically functionalized electrically-conductive mesoporous materials. <b>2012</b> , 28, 3259-70                                          |     | 12  |
| 1070 | Preparation of Mo-Embedded Mesoporous Carbon Microspheres for Friedel@rafts Alkylation. <b>2012</b> , 116, 7767-7775                                                                                   |     | 39  |
| 1069 | Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. <b>2012</b> , 22, 11379                                         |     | 143 |
| 1068 | Formation of FexOy hollow nanospheres inside cage type mesoporous materials: a nanocasting pathway. <i>RSC Advances</i> , <b>2012</b> , 2, 12108                                                       | 3.7 | 7   |

| Fast and efficient removal of orthophenanthroline and 2,2?-bipyridine from aqueous solu adsorption on modified nanoporous carbon. <b>2012</b> , 19, 1573-1579                       | utions by            | <u>.</u> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 captur 22, 19726                                                                                   | re. <b>2012</b> ,    | -57      |
| 1065 Polysaccharide-Based Porous Materials. <b>2012</b> , 271-285                                                                                                                   | 1                    | -        |
| Efficient optical resolution of amino acid by alanine racemaze chiral analogue supported mesoporous carbon. <b>2012</b> , 40, 012024                                                | on 1                 | :        |
| Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, ar electrochemical properties. <b>2012</b> , 22, 8835                                         | nd 8                 | Во       |
| Design of Hierarchical Porous Carbonaceous Foams from a Dual-Template Approach and as Electrochemical Capacitor and Li Ion Battery Negative Electrodes. <b>2012</b> , 116, 1408-147 |                      | 25       |
| Zeolite-Templated Carbon 🛚 ts Unique Characteristics and Applications. <b>2012</b> , 295-322                                                                                        | 8                    | 3        |
| 1060 Adsorption by Soft-Templated Carbons. <b>2012</b> , 323-350                                                                                                                    | 1                    |          |
| 1059 Porous Texture Versus Surface Chemistry in Applications of Adsorption by Carbons. <b>2012</b>                                                                                  | <b>2</b> , 471-498 4 | ł        |
| 1058 Preparation and Photocatalytic Properties of TiO2/CMK-3 Composites. <b>2012</b> , 519, 240-24                                                                                  | 13 1                 | :        |
| Novel fiber coated with nanoporous carbons for headspace solid-phase microextraction chlorophenols from aqueous media. <b>2012</b> , 4, 2555                                        | of <sub>1.</sub>     | -5       |
| Effect of the addition of water on the preparation of pillared carbon from graphite oxide by a two-step method. <i>Tanso</i> , <b>2012</b> , 2012, 116-121                          | e silylated O.1 1    |          |
| 1055 Indoor formaldehyde removal over CMK-3. <b>2012</b> , 7, 7                                                                                                                     | 3.                   | 32       |
| High-temperature synthesis of strong acidic ionic liquids functionalized, ordered and stal mesoporous polymers with excellent catalytic activities. <b>2012</b> , 14, 1342          | ble<br>3:            | 9        |
| 1053 Inorganic Nanoarchitectonics for Biological Applications. <b>2012</b> , 24, 728-737                                                                                            | 1                    | 95       |
| Electrochemistry and Simultaneous Detection of Metabolites of Purine Nucleotide Based Mesoporous Carbon Modified Electrode. <b>2012</b> , 24, 1401-1408                             | d on Large           | -3       |
| 1051 Surface-Initiated Controlled Radical Polymerization in Ordered Mesoporous Silicas. <b>2012</b>                                                                                 | , 52, 246-255 2      | .2       |
| Preparation of Highly Ordered Nitrogen-Containing Mesoporous Carbon from a Gelatin Biomolecule and its Excellent Sensing of Acetic Acid. <b>2012</b> , 22, 3596-3604                | 1                    | -77      |

| 1049 | Templated nanocarbons for energy storage. <b>2012</b> , 24, 4473-98                                                                                                                                  | 588 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1048 | A Topotactic Synthetic Methodology for Highly Fluorine-Doped Mesoporous Metal Oxides. <b>2012</b> , 124, 2942-2947                                                                                   | 7   |
| 1047 | Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for LithiumBulfur Batteries. <b>2012</b> , 124, 3651-3655                                                                       | 152 |
| 1046 | Hard Templating of Nanocrystalline Titanium Dioxide with Chiral Nematic Ordering. <b>2012</b> , 124, 6992-6996                                                                                       | 23  |
| 1045 | A topotactic synthetic methodology for highly fluorine-doped mesoporous metal oxides. <b>2012</b> , 51, 2888-93                                                                                      | 12  |
| 1044 | Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. <b>2012</b> , 51, 3591-5                                                                          | 940 |
| 1043 | Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. 2012, 51, 6886-90                                                                                                  | 132 |
| 1042 | Ordered mesoporous carbons with various pore sizes: Preparation and naphthalene adsorption performance. <b>2012</b> , 125, 3368-3375                                                                 | 21  |
| 1041 | Synthesis of olive-shaped mesoporous platinum nanoparticles (MPNs) with a hard-templating method using mesoporous silica (SBA-15). <b>2012</b> , 7, 802-8                                            | 26  |
| 1040 | Ordered Mesoporous Carbon Supported Colloidal Pd Nanoparticle Based Model Catalysts for Suzuki Coupling Reactions: Impact of Organic Capping Agents. <i>ChemCatChem</i> , <b>2012</b> , 4, 1587-1594 | 52  |
| 1039 | A nano-fibrillated mesoporous carbon as an effective support for palladium nanoparticles in the aerobic oxidation of alcohols "on pure water". <b>2012</b> , 18, 8634-40                             | 50  |
| 1038 | Resin-derived hierarchical porous carbon spheres with high catalytic performance in the oxidative dehydrogenation of ethylbenzene. <b>2012</b> , 5, 687-93                                           | 20  |
| 1037 | Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils. <b>2012</b> , 5, 727-33                                                                                          | 81  |
| 1036 | Mesoporous materials in the field of nuclear industry: applications and perspectives. <b>2012</b> , 36, 531-541                                                                                      | 63  |
| 1035 | Ordered mesoporous metal oxides: synthesis and applications. <i>Chemical Society Reviews</i> , <b>2012</b> , 41, 4909-37.5                                                                           | 604 |
| 1034 | Development of novel porous carbon frameworks through hydrogen-bonding interaction and its ethylene adsorption activity. <i>Journal of Porous Materials</i> , <b>2012</b> , 19, 519-527              | 6   |
| 1033 | Fabrication and characterization of carbon nanofibers with a multiple tubular porous structure via electrospinning. <b>2012</b> , 19, 1                                                              | 9   |
| 1032 | The examination of surface chemistry and porosity of carbon nanostructured adsorbents for 1-naphthol removal from petrochemical wastewater streams. <b>2012</b> , 29, 743-749                        | 7   |

| 1031 | Electrochemical sensor for lead(II) ion using a carbon ionic-liquid electrode modified with a composite consisting of mesoporous carbon, an ionic liquid, and chitosan. <b>2012</b> , 177, 373-380                      | 13  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1030 | Well-defined mesoporosity on lignocellulosic-derived activated carbons. <i>Carbon</i> , <b>2012</b> , 50, 66-72                                                                                                         | 32  |
| 1029 | A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid. <i>Carbon</i> , <b>2012</b> , 50, 107-114                        | 100 |
| 1028 | One-pot aqueous route to synthesize highly ordered cubic and hexagonal mesoporous carbons from resorcinol and hexamine. <i>Carbon</i> , <b>2012</b> , 50, 476-487                                                       | 89  |
| 1027 | A two-step synthesis of ordered mesoporous resorcinolformaldehyde polymer and carbon. <i>Carbon</i> , <b>2012</b> , 50, 1807-1816                                                                                       | 68  |
| 1026 | Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties. <i>Carbon</i> , <b>2012</b> , 50, 1861-1870                                                                                 | 49  |
| 1025 | Porous concrete as a template for the synthesis of porous carbon materials. <i>Carbon</i> , <b>2012</b> , 50, 3096-309&o.4                                                                                              | 15  |
| 1024 | Ordered mesoporous carbide-derived carbons prepared by soft templating. <i>Carbon</i> , <b>2012</b> , 50, 3987-3994.o.4                                                                                                 | 45  |
| 1023 | Avoiding structure degradation during activation of ordered mesoporous carbons. <i>Carbon</i> , <b>2012</b> , 50, 3826-3835                                                                                             | 22  |
| 1022 | Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene. <i>Catalysis Today</i> , <b>2012</b> , 186, 35-41                                          | 37  |
| 1021 | Adsorption of tannic acid and phenol on mesoporous carbon activated by CO2. <b>2012</b> , 183, 244-252                                                                                                                  | 29  |
| 1020 | Ordered mesoporous phenolic resins: highly versatile and ultra stable support materials. <b>2012</b> , 175, 39-51                                                                                                       | 99  |
| 1019 | A novel catalyst containing palladium nanoparticles supported on poly(2-hydroxyethyl methacrylate)/CMK-1: Synthesis, characterization and comparison with mesoporous silica nanocomposite. <b>2012</b> , 423-424, 78-90 | 18  |
| 1018 | Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property. <b>2012</b> , 377, 368-74                        | 34  |
| 1017 | Efficient synthesis and sulfonation of ordered mesoporous carbon materials. 2012, 377, 18-26                                                                                                                            | 22  |
| 1016 | Mesoporous carbon nanofibers as advanced electrode materials for electrocatalytic applications. <b>2012</b> , 65, 115-121                                                                                               | 11  |
| 1015 | Preparation of a Carbon-Silica Mesoporous Composite Functionalized with Sulfonic Acid Groups and Its Application to the Production of Biodiesel. <b>2012</b> , 33, 114-122                                              | 21  |
| 1014 | Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal. <b>2012</b> , 132, 1053-1059                                                             | 28  |

| 1013 | Support materials for PEMFC and DMFC electrocatalysts review. 2012, 208, 96-119                                                                                                                                                                    |       | 894 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 1012 | Electrochemical capacitive behaviors of ordered mesoporous carbons with controllable pore sizes. <b>2012</b> , 209, 243-250                                                                                                                        |       | 55  |
| 1011 | Synthesis of ordered mesoporous silicon oxycarbide monoliths via preceramic polymer nanocasting. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 147, 252-258                                                                          | 5.3   | 18  |
| 1010 | Ultra-low-cost route to mesocellular siliceous foam from steel slag and mesocellular carbon foam as catalyst support in fuel cell. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 151, 450-456                                        | 5.3   | 10  |
| 1009 | Synthesis of ordered microfhesoporous carbons by activation of SBA-15 carbon replicas. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 151, 390-396                                                                                    | 5.3   | 44  |
| 1008 | A facile one-pot synthesis of mesoporous graphite-like carbon through the organic@rganic co-assembly. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 151, 287-292                                                                     | 5.3   | 18  |
| 1007 | Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 151, 107-112                                                                                                   | 5.3   | 92  |
| 1006 | Synthesis and characterisation of nanoporous carbonfhetal composites for hydrogen storage. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 154, 74-81                                                                                  | 5.3   | 17  |
| 1005 | Pore properties of hierarchically porous carbon monoliths with high surface area obtained from bridged polysilsesquioxanes. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 155, 265-273                                               | 5.3   | 18  |
| 1004 | Soft-templating synthesis of ordered mesoporous carbons in the presence of tetraethyl orthosilicate and silver salt. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 156, 121-126                                                      | 5.3   | 16  |
| 1003 | A rapid hard template method for the synthesis of N-doped mesoporous carbon replicated from TUD-1. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 158, 99-107                                                                         | 5.3   | 31  |
| 1002 | Naphthalene-based periodic nanoporous organosilicas: I. Synthesis and structural characterization. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 158, 324-331                                                                        | 5.3   | 6   |
| 1001 | Oxidovanadium(IV) acetylacetonate immobilized onto CMK-3 for heterogeneous epoxidation of geraniol. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 160, 67-74                                                                         | 5.3   | 34  |
| 1000 | Preparation of highly-ordered mesoporous carbons by organic-organic self-assembly using the reverse amphiphilic triblock copolymer PPOBEOBPO with a long hydrophilic chain. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 159, 81-86 | 5.3   | 21  |
| 999  | Electrochemical double-layer capacitor performance of novel carbons derived from SAPO zeolite templates. <i>Microporous and Mesoporous Materials</i> , <b>2012</b> , 160, 25-31                                                                    | 5.3   | 15  |
| 998  | Low temperature nanocasting of hematite nanoparticles using mesoporous silica molds. <b>2012</b> , 217, 269                                                                                                                                        | 9-273 | 5   |
| 997  | General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. <b>2012</b> , 24, 485-91                                                                                             |       | 283 |
| 996  | Preparation of porous spherical ZrO2BiO2 composite particles using templating and its solid acidity by H2SO4 treatment. <b>2012</b> , 47, 341-349                                                                                                  |       | 10  |

| 995                             | Influence of template on the structure of mesoporous carbon prepared with novalac resin as carbon precursor. <i>Journal of Porous Materials</i> , <b>2013</b> , 20, 1247-1255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4  | 7                          |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------|
| 994                             | One-pot generation of mesoporous carbon supported nanocrystalline H3PW12O40 heteropoly acid with high performance in microwave esterification of acetic acid and isoamyl alcohol. <i>Journal of Porous Materials</i> , <b>2013</b> , 20, 1225-1230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4  | 12                         |
| 993                             | A simple method to synthesize graphitic mesoporous carbon materials with different structures.<br>Journal of Porous Materials, <b>2013</b> , 20, 983-988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4  | 6                          |
| 992                             | The role of the support properties in the catalytic performance of an anchored copper(II) aza-bis(oxazoline) in mesoporous silicas and their carbon replicas. <b>2013</b> , 3, 659-672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 9                          |
| 991                             | A hydrogen sorption study on a Pd-doped CMK-3 type ordered mesoporous carbon. <b>2013</b> , 19, 803-811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 9                          |
| 990                             | Ordered mesoporous materials based on interfacial assembly and engineering. <b>2013</b> , 25, 5129-52, 5128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 226                        |
| 989                             | A new family of fluidic precursors for the self-templated synthesis of hierarchical nanoporous carbons. <i>Chemical Communications</i> , <b>2013</b> , 49, 7289-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8  | 28                         |
| 988                             | Morphology control in mesoporous carbon films using solvent vapor annealing. <b>2013</b> , 29, 3428-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 23                         |
| 987                             | Enzymatic glucose biosensors based on nanomaterials. <b>2014</b> , 140, 203-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                            |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                            |
| 986                             | Synthetic chemistry with periodic mesostructures at high pressure. <b>2013</b> , 46, 2536-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 14                         |
| 986<br>985                      | Synthetic chemistry with periodic mesostructures at high pressure. <b>2013</b> , 46, 2536-44  Synthesis, characterization and catalytic activity of a novel mesoporous ZSM-5 zeolite. <b>2013</b> , 48, 1881-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 884  | 14                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.4 | 18                         |
| 985                             | Synthesis, characterization and catalytic activity of a novel mesoporous ZSM-5 zeolite. <b>2013</b> , 48, 1881-18.  A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 18                         |
| 985<br>984                      | Synthesis, characterization and catalytic activity of a novel mesoporous ZSM-5 zeolite. <b>2013</b> , 48, 1881-18. A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of furfuryl alcohol in SBA-15 pore system. <i>Carbon</i> , <b>2013</b> , 64, 252-261  Synthesis and catalytic application in isobutane dehydrogenation of the mesoporous chromia/alumina catalysts based on a metalBrganic framework. <i>Microporous and Mesoporous</i>                                                                                                                                                                                                                                                                                     | 10.4 | 18                         |
| 985<br>984<br>983               | Synthesis, characterization and catalytic activity of a novel mesoporous ZSM-5 zeolite. <b>2013</b> , 48, 1881-18.  A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of furfuryl alcohol in SBA-15 pore system. <i>Carbon</i> , <b>2013</b> , 64, 252-261  Synthesis and catalytic application in isobutane dehydrogenation of the mesoporous chromia/alumina catalysts based on a metalBrganic framework. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 181, 182-191  A Review on the Synthesis and Applications of Mesostructured Transition Metal Phosphates. <b>2013</b> ,                                                                                                                                    | 10.4 | 18<br>40<br>22             |
| 985<br>984<br>983               | Synthesis, characterization and catalytic activity of a novel mesoporous ZSM-5 zeolite. <b>2013</b> , 48, 1881-18.  A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of furfuryl alcohol in SBA-15 pore system. <i>Carbon</i> , <b>2013</b> , 64, 252-261  Synthesis and catalytic application in isobutane dehydrogenation of the mesoporous chromia/alumina catalysts based on a metalBrganic framework. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 181, 182-191  A Review on the Synthesis and Applications of Mesostructured Transition Metal Phosphates. <b>2013</b> , 6, 217-243  Asymmetric benzoylation of hydrobenzoin by copper(II) bis(oxazoline) anchored onto ordered                             | 10.4 | 18<br>40<br>22<br>66       |
| 985<br>984<br>983<br>982<br>981 | Synthesis, characterization and catalytic activity of a novel mesoporous ZSM-5 zeolite. 2013, 48, 1881-18.  A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of furfuryl alcohol in SBA-15 pore system. <i>Carbon</i> , 2013, 64, 252-261  Synthesis and catalytic application in isobutane dehydrogenation of the mesoporous chromia/alumina catalysts based on a metalBrganic framework. <i>Microporous and Mesoporous Materials</i> , 2013, 181, 182-191  A Review on the Synthesis and Applications of Mesostructured Transition Metal Phosphates. 2013, 6, 217-243  Asymmetric benzoylation of hydrobenzoin by copper(II) bis(oxazoline) anchored onto ordered mesoporous silicas and their carbon replicas. 2013, 3, 2415 | 10.4 | 18<br>40<br>22<br>66<br>14 |

| 977 | Electrocatalysis in Fuel Cells. 2013,                                                                                                                                                                                                                                  |                 | 63  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|
| 976 | Mesoporous Oxide-Diluted Magnetic Semiconductors Prepared by Co Implantation in Nanocast 3D-Ordered In2O3 Materials. <b>2013</b> , 117, 17084-17091                                                                                                                    |                 | 14  |
| 975 | Hydrogen storage in cobalt-embedded ordered mesoporous carbon. <b>2013</b> , 38, 3994-4002                                                                                                                                                                             |                 | 29  |
| 974 | Nanocomposites of SnO2@ordered mesoporous carbon (OMC) as anode materials for lithium-ion batteries with improved electrochemical performance. <b>2013</b> , 15, 7589                                                                                                  |                 | 34  |
| 973 | Facile synthesis and application of a carbon foam with large mesopores. 2013, 15, 19134-7                                                                                                                                                                              |                 | 7   |
| 972 | Synthesis, characterization and magnetic behavior of Co/MCM-41 nano-composites. <b>2013</b> , 205, 91-96                                                                                                                                                               |                 | 12  |
| 971 | A carbon foam with a bimodal microfhesoporous structure prepared from larch sawdust for the gas-phase toluene adsorption. <b>2013</b> , 48, 2437-2441                                                                                                                  |                 | 22  |
| 970 | Simple synthesis of hierarchically structured partially graphitized carbon by emulsion/block-copolymer co-template method for high power supercapacitors. <i>Carbon</i> , <b>2013</b> , 64, 391-40                                                                     | 2 <sup>.4</sup> | 81  |
| 969 | Synthesis of mesoporous carbon fibers with a high adsorption capacity for bulky dye molecules.  Journal of Materials Chemistry A, <b>2013</b> , 1, 7391                                                                                                                | 3               | 69  |
| 968 | New Synthesis of MCM-48 Nanospheres and Facile Replication to Mesoporous Platinum Nanospheres as Highly Active Electrocatalysts for the Oxygen Reduction Reaction. <b>2013</b> , 25, 4269-4277                                                                         |                 | 51  |
| 967 | Enhanced Electrosorption Capacitance of Porous Carbon Particles Synthesized by Spray Pyrolysis. <b>2013</b> , 160, E84-E89                                                                                                                                             |                 | 4   |
| 966 | Hierarchically Porous Carbon Monoliths with High Surface Area from Arylene-Bridged Polysilsesquioxanes Without Thermal Activation Process. <b>2013</b> , 163-179                                                                                                       |                 |     |
| 965 | Combining nitrogen, argon, and water adsorption for advanced characterization of ordered mesoporous carbons (CMKs) and periodic mesoporous organosilicas (PMOs). <b>2013</b> , 29, 14893-902                                                                           |                 | 115 |
| 964 | Hydrothermal nanocasting: Synthesis of hierarchically porous carbon monoliths and their application in lithiumBulfur batteries. <i>Carbon</i> , <b>2013</b> , 61, 245-253                                                                                              | 0.4             | 115 |
| 963 | A simple method for the production of highly ordered porous carbon materials with increased hydrogen uptake capacities. <b>2013</b> , 38, 5039-5052                                                                                                                    |                 | 18  |
| 962 | Improvement of electric double-layer capacitance of ordered mesoporous carbon CMK-3 by partial graphitization using metal oxide catalysts. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 179, 136-143                                                    | .3              | 27  |
| 961 | Homogeneously dispersed gold nanoparticles stabilized on the walls of ordered mesoporous carbon via a simple and repeatable method with enhanced hydrogenation properties for 5. nitro-group. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 173, 189-196 | .3              | 7   |
| 960 | Synthesis of texturally biphasic mesoporous carbon-silica composites and carbons. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 173, 53-63                                                                                                               | .3              | 10  |

| 959 | Easy synthesis of ordered mesoporous carbon containing nickel nanoparticles by a low temperature hydrothermal method. <i>Carbon</i> , <b>2013</b> , 51, 410-418                         | 10.4              | 31   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
| 958 | Influence of pore structures on the electrochemical performance of asphaltene-based ordered mesoporous carbons. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 174, 67-73  | 5.3               | 28   |
| 957 | Synthesis and surface functional group modifications of ordered mesoporous carbons for resorcinol removal. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 175, 141-146     | 5.3               | 35   |
| 956 | Silicone surfactant templated mesoporous silica. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 172, 30-                                                                   | 3 <del>5</del> .3 | 6    |
| 955 | Porous Hydrothermal Carbons. <b>2013</b> , 37-73                                                                                                                                        |                   | 1    |
| 954 | Nitrogen-Doped Porous Carbon Spheres Derived from Polyacrylamide. <b>2013</b> , 52, 12025-12031                                                                                         |                   | 46   |
| 953 | Microporous and mesoporous carbon nanostructures with the inverse opal lattice. <b>2013</b> , 55, 1105-1110                                                                             |                   | 7    |
| 952 | Transparent, flexible, and solid-state supercapacitors based on graphene electrodes. <b>2013</b> , 1, 012101                                                                            |                   | 83   |
| 951 | Facile control of long range orientation in mesoporous carbon films with thermal zone annealing velocity. <i>Nanoscale</i> , <b>2013</b> , 5, 12440-7                                   | 7.7               | 21   |
| 950 | Unidirectional self-assembly of soft templated mesoporous carbons by zone annealing. <i>Nanoscale</i> , <b>2013</b> , 5, 7928-35                                                        | 7.7               | 26   |
| 949 | Fluorination of Brick and mortarBoft-templated graphitic ordered mesoporous carbons for high power lithium-ion battery. <i>Journal of Materials Chemistry A</i> , <b>2013</b> , 1, 9414 | 13                | 18   |
| 948 | Ordered nanoporous carbon for increasing CO2 capture. <b>2013</b> , 197, 361-365                                                                                                        |                   | 38   |
| 947 | Synthesis and Characterisation of Carbon Nanocomposites. <b>2013</b> , 33-47                                                                                                            |                   | 9    |
| 946 | Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. <i>Chemical Society Reviews</i> , <b>2013</b> , 42, 4054-70                           | 58.5              | 341  |
| 945 | An overview of the synthesis of ordered mesoporous materials. <i>Chemical Communications</i> , <b>2013</b> , 49, 943-6                                                                  | 5.8               | 221  |
| 944 | Mass transport and electrolyte accessibility through hexagonally ordered channels of self-assembled mesoporous carbons. <b>2013</b> , 228, 24-31                                        |                   | 20   |
| 943 | A new approach for mesoporous carbon organofunctionalization with maleic anhydride. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 165, 168-176                            | 5.3               | 9    |
| 942 | 3D carbon based nanostructures for advanced supercapacitors. <b>2013</b> , 6, 41-53                                                                                                     |                   | 1255 |

## (2013-2013)

| 941 | Porous materials in catalysis: challenges for mesoporous materials. <i>Chemical Society Reviews</i> , <b>2013</b> , 42, 3956-76                                                                     | 58.5 | 463 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 940 | Direct synthesis of ordered mesoporous carbons. <i>Chemical Society Reviews</i> , <b>2013</b> , 42, 3977-4003                                                                                       | 58.5 | 457 |
| 939 | New trends in the synthesis of crystalline microporous materials. <b>2013</b> , 3, 833-857                                                                                                          |      | 86  |
| 938 | Preparation and photocatalytic activity of porous spherical TiO2 particles comprised of H3PW12O40 in hydrophobic nanopores. <b>2013</b> , 48, 2290-2298                                             |      | 5   |
| 937 | Ordered mesoporous carbon prepared from triblock copolymer/novolac composites. <i>Journal of Porous Materials</i> , <b>2013</b> , 20, 107-113                                                       | 2.4  | 11  |
| 936 | Recent advances in the synthesis of hierarchically nanoporous zeolites. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 166, 3-19                                                       | 5.3  | 370 |
| 935 | Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes. <b>2013</b> , 240, 544-550        |      | 87  |
| 934 | Rapid carbon activation via microwave irradiation of nongraphitic carbon doped with metallic potassium and tetrahydrofuran (THF). <b>2013</b> , 240, 306-313                                        |      | 4   |
| 933 | Hydrogen storage in hybrid nanostructured carbon/palladium materials: Influence of particle size and surface chemistry. <b>2013</b> , 38, 952-965                                                   |      | 83  |
| 932 | Synthesis of ordered mesoporous CoFe2O4-containing silica by self-assembly process. <b>2013</b> , 331, 198-2                                                                                        | 203  | 6   |
| 931 | Three-dimensional micro/mesoporous carbon composites with carbon nanotube networks for capacitive deionization. <b>2013</b> , 282, 965-973                                                          |      | 81  |
| 930 | The production of high surface area porous carbonaceous materials from polysiloxane. <i>New Carbon Materials</i> , <b>2013</b> , 28, 235-240                                                        | 4.4  | 14  |
| 929 | Novel nitrogen-containing mesoporous carbons prepared from chitosan. <i>Journal of Materials Chemistry A</i> , <b>2013</b> , 1, 8961                                                                | 13   | 64  |
| 928 | Adsorption of CO2 on chitosan modified CMK-3 at ambient temperature. <b>2013</b> , 44, 89-94                                                                                                        |      | 18  |
| 927 | Electrosorptive removal of copper ions from wastewater by using ordered mesoporous carbon electrodes. <b>2013</b> , 221, 469-475                                                                    |      | 62  |
| 926 | Preparation and gases storage capacities of N-doped porous activated carbon materials derived from mesoporous polymer. <b>2013</b> , 141, 318-323                                                   |      | 22  |
| 925 | Effects of heat treatment temperature on microstructure and electromagnetic properties of ordered mesoporous carbon. <b>2013</b> , 23, 1652-1660                                                    |      | 15  |
| 924 | Facile synthesis of dual micro/macroporous carbonaceous foams by templating in highly concentrated water-in-oil emulsions. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 182, 102-108 | 5.3  | 11  |

| 923 | A comparative study of hierarchically micro-meso-macroporous solid-acid catalysts constructed by zeolites nanocrystals synthesized via a quasi-solid-state crystallization process. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 182, 122-135 | 5.3  | 14  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 922 | Ethanol-based synthesis of hierarchically porous carbon using nanocrystalline beta zeolite template for high-rate electrical double layer capacitor. <i>Carbon</i> , <b>2013</b> , 60, 175-185                                                               | 10.4 | 51  |
| 921 | Preparation and gaseous acetaldehyde decomposition of porous spherical Co-doped SiO2/TiO2 hybrid particles. <b>2013</b> , 107, 185-188                                                                                                                       |      | 5   |
| 920 | Tunable synthesis of (MgNi)-based hydrides nanoconfined in templated carbon studied by in situ synchrotron diffraction. <b>2013</b> , 2, 12-20                                                                                                               |      | 57  |
| 919 | Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. <i>Carbon</i> , <b>2013</b> , 51, 52-58                                                                                                                                   | 10.4 | 211 |
| 918 | Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction. <b>2013</b> , 108, 404-411                                                                                                                                  |      | 110 |
| 917 | Mesoporous materials and electrochemistry. <i>Chemical Society Reviews</i> , <b>2013</b> , 42, 4098-140                                                                                                                                                      | 58.5 | 450 |
| 916 | One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries. <b>2013</b> , 24, 025602                                                                                              |      | 37  |
| 915 | Crystallizable diluent-templated polyacrylonitrile foams for macroporous carbon monoliths. <b>2013</b> , 54, 284-291                                                                                                                                         |      | 20  |
| 914 | Synthesis of L-Cysteine grafted nanoporous carbon (CMK-3) and its use as a new cadmium sorbent. <b>2013</b> , 223, 899-907                                                                                                                                   |      | 17  |
| 913 | General Properties of Electrochemical Capacitors. <b>2013</b> , 69-109                                                                                                                                                                                       |      | 26  |
| 912 | A zinc oxide-coated nanoporous carbon adsorbent for lead removal from water: Optimization, equilibrium modeling, and kinetics studies. <b>2013</b> , 10, 325-340                                                                                             |      | 29  |
| 911 | Adsorption of indole on KOH-activated mesoporous carbon. <b>2013</b> , 424, 89-95                                                                                                                                                                            |      | 26  |
| 910 | Nanomaterials from Renewable Resources. <b>2013</b> , 335-356                                                                                                                                                                                                |      | 2   |
| 909 | Electropolymerized toluidine blue O functionalized ordered mesoporous carbon-ionic liquid gel-modified electrode and its low-potential detection of NADH. <b>2013</b> , 178, 169-175                                                                         |      | 23  |
| 908 | Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. <i>Chemical Communications</i> , <b>2013</b> , 49, 2521-3                                                                     | 5.8  | 408 |
| 907 | A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. <i>Journal of Materials Chemistry A</i> , <b>2013</b> , 1, 14-19                                                                             | 13   | 670 |
| 906 | Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. <i>Nanoscale</i> , <b>2013</b> , 5, 4584-605                                                                                                                | 7.7  | 100 |

| 905 | The Use of Ordered Porous Solids as Support Materials in Palladium-Catalyzed Cross-Coupling Reactions. <b>2013</b> , 79-139                                                                                                                   |      | 2   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 904 | Morphology Control. <b>2013</b> , 243-292                                                                                                                                                                                                     |      |     |
| 903 | Synthesis Approach of Mesoporous Molecular Sieves. <b>2013</b> , 5-54                                                                                                                                                                         |      | 1   |
| 902 | Mechanisms for Formation of Mesoporous Materials. <b>2013</b> , 55-116                                                                                                                                                                        |      | 1   |
| 901 | Mesoporous Nonsilica Materials. <b>2013</b> , 293-428                                                                                                                                                                                         |      | 5   |
| 900 | Organic acid-assisted soft-templating synthesis of ordered mesoporous carbons. <b>2013</b> , 19, 563-569                                                                                                                                      |      | 13  |
| 899 | Functionalization of porous carbons for catalytic applications. <i>Journal of Materials Chemistry A</i> , <b>2013</b> , 1, 9351                                                                                                               | 13   | 177 |
| 898 | Progress in enzyme immobilization in ordered mesoporous materials and related applications. <i>Chemical Society Reviews</i> , <b>2013</b> , 42, 3894-912                                                                                      | 58.5 | 432 |
| 897 | Pore size control of monodispersed starburst carbon spheres. <i>Carbon</i> , <b>2013</b> , 51, 27-35                                                                                                                                          | 10.4 | 12  |
| 896 | One-pot endo/exotemplating of hierarchical micro-mesoporous carbons. <i>Carbon</i> , <b>2013</b> , 54, 365-377                                                                                                                                | 10.4 | 12  |
| 895 | Ordered mesoporous SnO2 with a highly crystalline state as an anode material for lithium ion batteries with enhanced electrochemical performance. <b>2013</b> , 15, 3696                                                                      |      | 49  |
| 894 | Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids. <b>2013</b> , 189-190, 21-41                                                                             |      | 183 |
| 893 | Generalized and high temperature synthesis of a series of crystalline mesoporous metal oxides based nanocomposites with enhanced catalytic activities for benzene combustion. <i>Journal of Materials Chemistry A</i> , <b>2013</b> , 1, 4089 | 13   | 29  |
| 892 | Facile preparation of ordered mesoporous silica-carbon composite nanoparticles for glycan enrichment. <i>Chemical Communications</i> , <b>2013</b> , 49, 5162-4                                                                               | 5.8  | 46  |
| 891 | Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. <i>Journal of Materials Chemistry A</i> , <b>2013</b> , 1, 7920                                                        | 13   | 110 |
| 890 | Promises and Challenges of Unconventional Electrocatalyst Supports. <b>2013</b> , 689-728                                                                                                                                                     |      | 2   |
| 889 | Nanoporous carbon-templated silica nanoparticles: Preparation, effect of different carbon precursors, and their hydrogen storage adsorption. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 173, 139-146                         | 5.3  | 24  |
| 888 | Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis. <b>2013</b> , 7, 341-355                                                                                                |      | 19  |

| 887 | Tailoring nanohybrids and nanocomposites for catalytic applications. 2013, 15, 1398                                                                                                                                     |                              | 75   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|
| 886 | Sustainable mesoporous carbons as storage and controlled-delivery media for functional molecules. <b>2013</b> , 5, 5868-74                                                                                              |                              | 62   |
| 885 | Fabrication of Hierarchical Macroporous/Mesoporous Carbons via the Dual-Template Method and the Restriction Effect of Hard Template on Shrinkage of Mesoporous Polymers. <b>2013</b> , 117, 8784-8792                   |                              | 22   |
| 884 | Development of new drug delivery system based on ordered mesoporous carbons: characterisation and cytocompatibility studies. <b>2013</b> , 1, 3167-3174                                                                 |                              | 32   |
| 883 | Nanocarbons for the development of advanced catalysts. <b>2013</b> , 113, 5782-816                                                                                                                                      |                              | 1005 |
| 882 | General Introduction. <b>2013</b> , 1-11                                                                                                                                                                                |                              |      |
| 881 | Correlation between the capacitor performance and pore structure of ordered mesoporous carbons. <b>2013</b> , 24, 737-742                                                                                               |                              | 17   |
| 880 | Advances in Hydrogen Storage in Carbon Materials. <b>2013</b> , 269-291                                                                                                                                                 |                              | 7    |
| 879 | NO2 adsorption at ambient temperature on urea-modified ordered mesoporous carbon. <i>Carbon</i> , <b>2013</b> , 63, 283-293                                                                                             | 10.4                         | 30   |
| 878 | Direct tri-constituent co-assembly of highly ordered mesoporous carbon counter electrode for dye-sensitized solar cells. <i>Nanoscale</i> , <b>2013</b> , 5, 337-41                                                     | 7.7                          | 52   |
| 877 | Functional porous carbon-based composite electrode materials for lithium secondary batteries. <b>2013</b> , 22, 214-225                                                                                                 |                              | 40   |
| 876 | Ordered mesoporous carbon nanochannel reactors for high-performance Fischer-Tropsch synthesis. <i>Chemical Communications</i> , <b>2013</b> , 49, 5141-3                                                                | 5.8                          | 52   |
| 875 | Effect of transition metal on catalytic graphitization of ordered mesoporous carbon and Pt/metal oxide synergistic electrocatalytic performance. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 177, 105-1 | <del>1</del> 52 <sup>3</sup> | 61   |
| 874 | Advanced porous carbon electrodes for electrochemical capacitors. <i>Journal of Materials Chemistry A</i> , <b>2013</b> , 1, 9395                                                                                       | 13                           | 141  |
| 873 | Towards the selective modification of soft-templated mesoporous carbon materials by elemental fluorine for energy storage devices. <i>Journal of Materials Chemistry A</i> , <b>2013</b> , 1, 9327                      | 13                           | 19   |
| 872 | Advanced Carbon Materials. 2013, 25-60                                                                                                                                                                                  |                              | 3    |
| 871 | Synthesis and adsorption properties of micro/mesoporous carbon-foams prepared from foam-shaped sacrificial templates. <b>2013</b> , 138, 877-885                                                                        |                              | 14   |
| 870 | Supercritical CO2 mediated incorporation of Pd onto templated carbons: a route to optimizing the Pd particle size and hydrogen uptake density. <b>2013</b> , 5, 5639-47                                                 |                              | 24   |

| 869 | Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides. <b>2013</b> , 265, 214-221                                                                                    |                 | 18  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|--|
| 868 | Synthesis and Electrochemical Characterization of N-Doped Partially Graphitized Ordered Mesoporous Carbon©o Composite. <b>2013</b> , 117, 16896-16906                                                                                           |                 | 93  |  |
| 867 | Preparation Method of Co3O4 Nanoparticles Using Ordered Mesoporous Carbons as a Template and Their Application for Fischer Tropsch Synthesis. <b>2013</b> , 117, 1773-1779                                                                      |                 | 33  |  |
| 866 | A novel route for preparing graphitic ordered mesoporous carbon as electrochemical energy storage material. <i>RSC Advances</i> , <b>2013</b> , 3, 5570                                                                                         | 3.7             | 34  |  |
| 865 | Self-assembly synthesis of ordered mesoporous carbon thin film by a dip-coating technique. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 170, 287-292                                                                             | 5.3             | 11  |  |
| 864 | Synthesis of hierarchical fiberlike ordered mesoporous carbons with excellent electrochemical capacitance performance by a strongly acidic aqueous cooperative assembly route. <i>Journal of Materials Chemistry A</i> , <b>2013</b> , 1, 15447 | 13              | 29  |  |
| 863 | The influence of the acid source on the structural and anti-oxidation properties of ordered mesoporous carbons. <i>RSC Advances</i> , <b>2013</b> , 3, 25050                                                                                    | 3.7             | 3   |  |
| 862 | Templated synthesis of nanostructured materials. <i>Chemical Society Reviews</i> , <b>2013</b> , 42, 2610-53                                                                                                                                    | 58.5            | 699 |  |
| 861 | Diffraction analysis of mesostructured mesoporous materials. <i>Chemical Society Reviews</i> , <b>2013</b> , 42, 3708                                                                                                                           | 8 <b>-38</b> .5 | 21  |  |
| 860 | Real-Time Monitoring of Anthocyanidin-Zeolite Complex Exposed to Skin Cells. <b>2013</b> , 339, 742-747                                                                                                                                         |                 |     |  |
| 859 | Formic Acid Oxidation over Hierarchical Porous Carbon Containing PtPd Catalysts. 2013, 3, 902-913                                                                                                                                               |                 | 6   |  |
| 858 | Synthesis and electromagnetic interference shielding effectiveness of ordered mesoporous carbon filled poly(methyl methacrylate) composite films. <i>RSC Advances</i> , <b>2013</b> , 3, 23715                                                  | 3.7             | 24  |  |
| 857 | Yttrium Oxide-Assisted CRN Synthesis of Silicon Oxynitride Powders with Controlled Morphology. <b>2013</b> , 96, 3650-3655                                                                                                                      |                 | 3   |  |
| 856 | Alternative etching methods to expand nanocasting, and use in the synthesis of hierarchically porous nickel oxide, zinc oxide, and copper monoliths. <b>2013</b> , 28, 2483-2489                                                                |                 | 2   |  |
| 855 | Carbon Materials and Their Energy Conversion and Storage Applications. 2013, 59-94                                                                                                                                                              |                 | 2   |  |
| 854 | Ordered Porous Nanomaterials: The Merit of Small. <b>2013</b> , 2013, 1-29                                                                                                                                                                      |                 | 8   |  |
| 853 | Synthesis, immobilization and catalytic activity of a copper(II) complex with a chiral bis(oxazoline). <b>2014</b> , 19, 11988-98                                                                                                               |                 | 4   |  |
| 852 | Three-Dimensional Porous CarbonBilicon Frameworks as High-Performance Anodes for Lithium-Ion Batteries. <b>2014</b> , 1, 2124-2130                                                                                                              |                 | 31  |  |

| 851 | Anode Catalysts for Low-Temperature Direct Alcohol Fuel Cells. <b>2014</b> , 69-110                                                                                                      |     | O  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 850 | Preparation of activated carbon monolith by application of phenolic resins as carbon precursors. <b>2014</b> , 07, 1450035                                                               |     | 1  |
| 849 | Nanocasting Process to Pore-Expanded Ordered Mesoporous Carbons with 2D Hexagonal Mesostructure. <b>2014</b> , 2014, 1-4                                                                 |     | 3  |
| 848 | Silica Supported Mesoporous Titania: A Green Catalyst for Removing Environmental Pollutants and Generating Green Energy. <b>2014</b> , 925, 694-698                                      |     | 1  |
| 847 | Carbon Materials for Fuel Cells. <b>2014</b> , 231-270                                                                                                                                   |     | 3  |
| 846 | Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries. <b>2014</b> , 2, 113302                                               |     | 15 |
| 845 | Controlling the Optical, Electrical and Chemical Properties of Carbon Inverse Opal by Nitrogen Doping. <b>2014</b> , 24, 2612-2619                                                       |     | 20 |
| 844 | One-Pot Solvothermal Coating of Carbon Spheres with ZnS Nanocrystallites and Their Use in the Photodegradation of Dyes. <b>2014</b> , 2014, 499-505                                      |     | 7  |
| 843 | Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 20030-20037 | 13  | 34 |
| 842 | Large-scale synthesis of mesoporous carbon microspheres with controllable structure and nitrogen doping using a spray drying method. <i>RSC Advances</i> , <b>2014</b> , 4, 62662-62665  | 3.7 | 18 |
| 841 | Structural Control in Block Copolymer-Templated Nanoporous Carbon Films. <b>2014</b> , 35-60                                                                                             |     |    |
| 840 | Soft-Templated Mesoporous Carbons: Chemistry and Structural Characteristics. <b>2014</b> , 61-83                                                                                         |     | 7  |
| 839 | High Throughput Printing of Nanostructured Carbon Electrodes for Supercapacitors. <i>Advanced Materials Interfaces</i> , <b>2014</b> , 1, 1300014                                        | 4.6 | 33 |
| 838 | Engineering and Applications of Carbon Materials. <b>2014</b> , 219-525                                                                                                                  |     | 8  |
| 837 | Direct Alcohol Fuel Cells. 2014,                                                                                                                                                         |     | 33 |
| 836 | Aminated Ordered Mesoporous Carbons: Preparation and Catalytic Performance for Knoevenagel Condensation Reactions. <b>2014</b> , 61, 1093-1100                                           |     | 5  |
| 835 | Preparation, characterization, and luminescence of (SBA-15) immobilized pepsin. <b>2014</b> , 88, 2243-2251                                                                              |     | 1  |
| 834 | One step synthesis of ordered mesoporous carbons with two-dimensional mesostructure by soft templating method using mixed triblock copolymers. <b>2014</b> , 18, 108-111                 |     | 3  |

| Fructose as a Precursor for Mesoporous Carbon: Straightforward Solvent-Free Synthesis by Nanocasting. <b>2014</b> , 3-12                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrode Materials (Bulk Materials and Modification). <b>2014</b> , 403-495                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mesoporous Solid Carrier Particles in Controlled Delivery and Release. <b>2014</b> , 299-319                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Adsorption by Ordered Mesoporous Materials. <b>2014</b> , 529-564                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hierarchical micro-mesoporous carbons by direct replication of bimodal aluminosilicate templates. <i>Microporous and Mesoporous Materials</i> , <b>2014</b> , 190, 156-164                              | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. <i>Carbon</i> , <b>2014</b> , 75, 95-103                                            | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Well-dispersed Pt nanoparticles on polydopamine-coated ordered mesoporous carbons and their electrocatalytic application. <b>2014</b> , 120, 304-11                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Phosphine- and ammonium-functionalized ordered mesoporous carbons as supports for cluster-derived metal nanoparticles. <i>Catalysis Today</i> , <b>2014</b> , 235, 112-126                              | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mesoporous phenolic resin and mesoporous carbon for the removal of S-Metolachlor and Bentazon herbicides. <b>2014</b> , 251, 92-101                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Enhanced electrical capacitance of tetraethyl orthosilicate-derived porous carbon nanofibers produced via electrospinning. <i>Journal of Electroanalytical Chemistry</i> , <b>2014</b> , 714-715, 92-96 | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Synthesis of non-siliceous mesoporous oxides. <i>Chemical Society Reviews</i> , <b>2014</b> , 43, 313-44                                                                                                | 58.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. <i>Catalysis Today</i> , <b>2014</b> , 238, 103                                                                                  | - <del>1,</del> 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Porous silica and carbon derived materials from rice husk pyrolysis char. <i>Microporous and Mesoporous Materials</i> , <b>2014</b> , 188, 46-76                                                        | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 5915                                                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Synthesis of ordered mesoporous carbon films with a 3D pore structure and the electrochemical performance of electrochemical double layer capacitors. <b>2014</b> , 449, 51-56                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tin oxide - mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction. <b>2014</b> , 121, 421-427                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mesoporous carbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support. <i>Carbon</i> , <b>2014</b> , 70, 295-307                        | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. <i>Advanced Energy Materials</i> , <b>2014</b> , 4, 1300816                                    | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                         | Resoporous Solid Carrier Particles in Controlled Delivery and Release. 2014, 299-319  Mesoporous Solid Carrier Particles in Controlled Delivery and Release. 2014, 299-319  Adsorption by Ordered Mesoporous Materials. 2014, 529-564  Hierarchical micro-mesoporous carbons by direct replication of bimodal aluminosilicate templates. Microporous and Mesoporous Materials, 2014, 190, 156-164  Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon, 2014, 75, 95-103  Well-dispersed Pt nanoparticles on polydopamine-coated ordered mesoporous carbons and their electrocatalytic application. 2014, 120, 304-11  Phosphine- and ammonium-functionalized ordered mesoporous carbons as supports for cluster-derived metal nanoparticles. Catalysis Today, 2014, 235, 112-126  Mesoporous phenolic resin and mesoporous carbon for the removal of S-Metolachlor and Bentazon herbicides. 2014, 251, 92-101  Enhanced electrical capacitance of tetraethyl orthosilicate-derived porous carbon nanofibers produced via electrospinning. Journal of Electroanalytical Chemistry, 2014, 714-715, 92-96  Synthesis of non-siliceous mesoporous oxides. Chemical Society Reviews, 2014, 43, 313-44  Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catalysis Today, 2014, 238, 103  Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous and Mesoporous Materials, 2014, 188, 46-76  Mesoporous mitrogen-doped carbon from nanocrystalline chitin assemblies. Journal of Materials Chemistry A, 2014, 2, 5915  Synthesis of ordered mesoporous carbon films with a 3D pore structure and the electrochemical performance of electrochemical double layer capacitors. 2014, 449, 51-56  Tin oxide - mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction. 2014, 121, 421-427  Mesoporous carbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support. Carbon, 2014, 70, 295-307 | Electrode Materials (Bulk Materials and Modification). 2014, 403-495  Mesoporous Solid Carrier Particles in Controlled Delivery and Release. 2014, 299-319  Adsorption by Ordered Mesoporous Materials. 2014, 529-564  Hierarchical micro-mesoporous carbons by direct replication of bimodal aluminosilicate templates. Microporous and Mesoporous Materials, 2014, 190, 156-164  5ynthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon, 2014, 75, 95-103  Well-dispersed Pt nanoparticles on polydopamine-coated ordered mesoporous carbons and their electrocatalytic application. 2014, 120, 304-11  Phosphine- and ammonium-functionalized ordered mesoporous carbons as supports for cluster-derived metal nanoparticles. Catalysis Today, 2014, 235, 112-126  Mesoporous phenolic resin and mesoporous carbon for the removal of S-Metolachlor and Bentazon herbicides. 2014, 251, 92-101  Enhanced electrical capacitance of tetraethyl orthosilicate-derived porous carbon nanofibers produced via electrospining. Journal of Electroanalytical Chemistry, 2014, 714-715, 92-96  Synthesis of non-siliceous mesoporous oxides. Chemical Society Reviews, 2014, 43, 313-44  58.5  Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catalysis Today, 2014, 238, 103-149  Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous and Mesoporous Materials, 2014, 188, 46-76  Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies. Journal of Materials Chemistry A, 2014, 2, 5915  Synthesis of ordered mesoporous carbon films with a 3D pore structure and the electrochemical performance of electrochemical double layer capacitors. 2014, 449, 51-56  Tin oxide - mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction. 2014, 121, 421-427.  Mesoporous rarbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support. Carbon, 2014, 70, 295-307 |

| 815 | Mesoporous carbons modified with lanthanum(III) chloride for methyl orange adsorption. <b>2014</b> , 247, 258-264                                                                                                     |      | 93  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 814 | Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer. <b>2014</b> , 450, 469-477                                                                        |      | 42  |
| 813 | Carbon as catalyst and support for electrochemical energy conversion. <i>Carbon</i> , <b>2014</b> , 75, 5-42                                                                                                          | 10.4 | 359 |
| 812 | Templated Fabrication of CoreBhell Magnetic Mesoporous Carbon Microspheres in 3-Dimensional Ordered Macroporous Silicas. <b>2014</b> , 26, 3316-3321                                                                  |      | 48  |
| 811 | A natural template approach to mesoporous carbon spheres for use as green chromatographic stationary phases. <i>RSC Advances</i> , <b>2014</b> , 4, 222-228                                                           | 3.7  | 25  |
| 810 | Complex electrochemical investigation of ordered mesoporous carbon synthesized by soft-templating method: charge storage and electrocatalytical or Pt-electrocatalyst supporting behavior. <b>2014</b> , 125, 606-614 |      | 19  |
| 809 | A study on the growth of CrDIn ordered mesoporous silica and its replication. <b>2014</b> , 20, 7692-7                                                                                                                |      | 11  |
| 808 | Synthesis of a new ordered mesoporous NiMoO4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane. <b>2014</b> , 23, 171-178                                                |      | 17  |
| 807 | Fabrication of ordered mesoporous carbon hollow fiber membranes via a confined soft templating approach. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 4144-4149                                         | 13   | 17  |
| 806 | Large area, flexible ordered mesoporous carbon films from soft templating on polymer substrates. <i>RSC Advances</i> , <b>2014</b> , 4, 3669-3677                                                                     | 3.7  | 7   |
| 805 | Synthesis of ordered mesoporous carbon doped with carbon nanotubes and a new strategy to use it as a support for Pt electrocatalysts. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 3072                 | 13   | 14  |
| 804 | Water and small organic molecules as probes for geometric confinement in well-ordered mesoporous carbon materials. <b>2014</b> , 16, 9327-36                                                                          |      | 32  |
| 803 | Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage. <b>2014</b> , 31, 515-539                                                                                                  |      | 73  |
| 802 | Zeolites and mesoporous materials in fuel cell applications. <i>Catalysis Today</i> , <b>2014</b> , 236, 182-205                                                                                                      | 5.3  | 55  |
| 801 | Electrochemical determination of toxic ractopamine at an ordered mesoporous carbon modified electrode. <b>2014</b> , 145, 619-24                                                                                      |      | 59  |
| 800 | Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions. <b>2014</b> , 289, 592-600                                                                   |      | 27  |
| 799 | Synthesis and characterization of gyroidal mesoporous carbons and carbon monoliths with tunable ultralarge pore size. <b>2014</b> , 8, 731-43                                                                         |      | 75  |
| 798 | Template Carbonization: Morphology and Pore Control. <b>2014</b> , 133-163                                                                                                                                            |      | 2   |

| 797              | Biosensors Based on Aptamers and Enzymes. <b>2014</b> ,                                                                                                                                                      |                      | 6           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|
| 796              | Remarkable enhancement of pyrolytic carbon deposition on ordered mesoporous silicas by their trimethylsilylation. <i>Carbon</i> , <b>2014</b> , 67, 156-167                                                  | 10.4                 | 12          |
| 795              | Sulfur-doped porous carbons: Synthesis and applications. <i>Carbon</i> , <b>2014</b> , 68, 1-32                                                                                                              | 10.4                 | 423         |
| 794              | Nanocasting of carbon films with interdigitated bimodal three-dimensionally ordered mesopores by template-replica coassembly. <b>2014</b> , 30, 12411-20                                                     |                      | 11          |
| 793              | Facile synthesis of three-dimensional porous carbon with high surface area by calcining metalorganic framework for lithium-ion batteries anode materials. <i>RSC Advances</i> , <b>2014</b> , 4, 61604-61610 | 3.7                  | 42          |
| 792              | Mesoporous carbon-vanadium oxide films by resol-assisted, triblock copolymer-templated cooperative self-assembly. <b>2014</b> , 6, 19288-98                                                                  |                      | 12          |
| 791              | Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions. <i>Microporous and Mesoporous Materials</i> , <b>2014</b> , 200, 235-244                           | 5.3                  | 74          |
| 790              | A new approach to preparing porous carbons with controllable pore structure and morphology. <i>Chemical Communications</i> , <b>2014</b> , 50, 14824-7                                                       | 5.8                  | 15          |
| 789              | A non-micellar synthesis of mesoporous carbon via spinodal decomposition. RSC Advances, 2014, 4, 2370                                                                                                        | 03. <del>7</del> 237 | <b>7</b> 06 |
| 788              | Catalyst free silica templated porous carbon nanoparticles from bio-waste materials. <i>Chemical Communications</i> , <b>2014</b> , 50, 12702-5                                                              | 5.8                  | 66          |
| 787              | Relationship between crosslinking and ordering kinetics for the fabrication of soft templated (FDU-16) mesoporous carbon thin films. <i>RSC Advances</i> , <b>2014</b> , 4, 44858-44867                      | 3.7                  | 16          |
| 786              | Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. <i>Nanoscale</i> , <b>2014</b> , 6, 14657-61                                           | 7.7                  | 84          |
| 785              | Synthesis of novel carbon nano-chains and their application as supercapacitors. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 16268-16275                                                       | 13                   | 12          |
| 7 <sup>8</sup> 4 | The effect of different sources of porous carbon on the synthesis of nanostructured boron carbide by magnesiothermic reduction. <i>Ceramics International</i> , <b>2014</b> , 40, 16399-16408                | 5.1                  | 21          |
| 783              | Fundamental Science of Carbon Materials. <b>2014</b> , 17-217                                                                                                                                                |                      | 9           |
| 782              | Catalyst-free soft-template synthesis of ordered mesoporous carbon tailored using phloroglucinol/glyoxylic acid environmentally friendly precursors. <b>2014</b> , 16, 3079                                  |                      | 59          |
| 781              | Nanocasted synthesis of ordered mesoporous cerium iron mixed oxide and its excellent performances for As(V) and Cr(VI) removal from aqueous solutions. <b>2014</b> , 43, 10767-77                            |                      | 49          |
| 780              | Adsorption of aniline on template-synthesized porous carbons. <i>Microporous and Mesoporous Materials</i> , <b>2014</b> , 200, 174-181                                                                       | 5.3                  | 19          |

| 779               | Organic amine-functionalized silica-based mesoporous materials: an update of syntheses and catalytic applications. <i>RSC Advances</i> , <b>2014</b> , 4, 57111-57124                                                                                                                                                                                                                                                                                                                                      | 3.7              | 32             |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|
| 778               | Preparation of mesoporous carbon nanofibers from the electrospun poly(furfuryl alcohol)/poly(vinyl acetate)/silica composites. <i>RSC Advances</i> , <b>2014</b> , 4, 21089                                                                                                                                                                                                                                                                                                                                | 3.7              | 8              |
| 777               | Highly ordered mesoporous CdxZn1⊠Se ternary compound semiconductors with controlled band gap energies. <b>2014</b> , 38, 3729-3736                                                                                                                                                                                                                                                                                                                                                                         |                  | 10             |
| 776               | A direct novel synthesis of highly uniform dispersed ruthenium nanoparticles over P6mm ordered mesoporous carbon by hostiguest complexes. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 6641-6648                                                                                                                                                                                                                                                                                             | 13               | 11             |
| 775               | N-doped ordered mesoporous carbons with improved charge storage capacity by tailoring N-dopant density with solvent-assisted synthesis. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 15181-1519                                                                                                                                                                                                                                                                                              | 90 <sup>13</sup> | 45             |
| 774               | Father of Mesoporous Materials: Galen D. Stucky. <b>2014</b> , 26, 5819-5820                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1              |
| 773               | Dynamics of Water in Hierarchical Mesoporous H-ZSM-5 by Fast Field-Cycling NMR Relaxometry. <b>2014</b> , 118, 20481-20487                                                                                                                                                                                                                                                                                                                                                                                 |                  | 1              |
| 772               | Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine. <b>2014</b> , 136, 271-273                                                                                                                                                                                                                                                                                                                                                       |                  | 45             |
| 771               | Highly Improved Electrooxidation of Captopril on Copper Hexacyanoferrate/Ordered Mesoporous Carbon-Modified Glassy Carbon Electrode. <b>2014</b> , 67, 851                                                                                                                                                                                                                                                                                                                                                 |                  | 4              |
| 770               | Porous inorganic nanostructures with colloidal dimensions: synthesis and applications in electrochemical energy devices. <i>Chemical Communications</i> , <b>2014</b> , 50, 2077-88                                                                                                                                                                                                                                                                                                                        | 5.8              | 22             |
| 769               | One hundred years of the Max-Planck-Institut fl Kohlenforschung. 2014, 53, 8562-86                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 5              |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                |
| 768               | 100 Jahre Max-Planck-Institut f⊞Kohlenforschung. <b>2014</b> , 126, 8702-8727                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 1              |
| 768<br>767        | 100 Jahre Max-Planck-Institut fil Kohlenforschung. <b>2014</b> , 126, 8702-8727  Nanoconfinement degradation in NaAlH4/CMK-1. <b>2014</b> , 39, 11103-11109                                                                                                                                                                                                                                                                                                                                                |                  | 29             |
| •                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.3              |                |
| 767               | Nanoconfinement degradation in NaAlH4/CMK-1. <b>2014</b> , 39, 11103-11109  Synthesis of ordered mesoporous carbons with tunable pore size by varying carbon precursors via                                                                                                                                                                                                                                                                                                                                | 5-3              | 29             |
| 767<br>766        | Nanoconfinement degradation in NaAlH4/CMK-1. <b>2014</b> , 39, 11103-11109  Synthesis of ordered mesoporous carbons with tunable pore size by varying carbon precursors via soft-template method. <i>Microporous and Mesoporous Materials</i> , <b>2014</b> , 197, 109-115  Attempts to design porous carbon monoliths using porous concrete as a template. <i>Microporous and</i>                                                                                                                         |                  | 29             |
| 767<br>766<br>765 | Nanoconfinement degradation in NaAlH4/CMK-1. 2014, 39, 11103-11109  Synthesis of ordered mesoporous carbons with tunable pore size by varying carbon precursors via soft-template method. <i>Microporous and Mesoporous Materials</i> , 2014, 197, 109-115  Attempts to design porous carbon monoliths using porous concrete as a template. <i>Microporous and Mesoporous Materials</i> , 2014, 197, 58-62  Hard templating of symmetric and asymmetric carbon thin films with three-dimensionally ordered |                  | 29<br>19<br>18 |

| 761             | Nanoporous nonwoven fibril-like morphology by cooperative self-assembly of poly(ethylene oxide)-block-poly(ethyl acrylate)-block-polystyrene and phenolic resin. <b>2014</b> , 30, 2530-40               | 16    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 760             | The Potential Applications of Nanoporous Materials for the Adsorption, Separation, and Catalytic Conversion of Carbon Dioxide. <i>Advanced Energy Materials</i> , <b>2014</b> , 4, 1301873               | 3 127 |
| 759             | Carbon Molecular Sieves: Reconstruction of Atomistic Structural Models with Experimental Constraints. <b>2014</b> , 118, 12996-13007                                                                     | 17    |
| 758             | Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. <b>2014</b> , 8, 7571-612                                                                  | 128   |
| 757             | Systematic changes in pore size distribution of template carbon obtained via chemical reaction between different cellulose precursors and halogens. <i>Carbon</i> , <b>2014</b> , 77, 1191-1194          | 4 2   |
| 756             | Synthesis of microcellular polypyrrole in a unidirectional freeze-dried polystyrene template and the conversion to microcellular carbon via morphology-retaining carbonization. <b>2014</b> , 196, 33-37 | 6     |
| 755             | Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. <b>2014</b> , 30, 900-10                                                                                   | 289   |
| 754             | Highly Selective Two-Electron Oxygen Reduction Catalyzed by Mesoporous Nitrogen-Doped Carbon. <b>2014</b> , 4, 3749-3754                                                                                 | 256   |
| 753             | An Efficient Way To Introduce Hierarchical Structure into Biomass-Based Hydrothermal Carbonaceous Materials. <b>2014</b> , 2, 2435-2441                                                                  | 77    |
| 75 <sup>2</sup> | Highly reversible and large lithium storage in mesoporous si/c nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. <b>2014</b> , 26, 6749-55                                 | 234   |
| 751             | High-surface-area ordered mesoporous oxides for continuous operation in high temperature energy applications. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 3134                            | 17    |
| 75°             | Porous Inorganic Materials as Potential Supports for Ionic Liquids. <b>2014</b> , 37-74                                                                                                                  |       |
| 749             | Hierarchically Nanostructured Porous Boron Nitride. <b>2014</b> , 267-290                                                                                                                                | O     |
| 748             | Preparation and characterization of helical carbon/silica nanofibers with lamellar mesopores on the surfaces. Chinese Chemical Letters, <b>2014</b> , 25, 253-256 $8.1$                                  | 5     |
| 747             | Fructose and Urea as Precursors for N-/O-Modified Mesoporous Carbon with Enhanced Sorption Capacity for Heavy Metal Ions. <b>2014</b> , 2014, 2787-2792                                                  | 11    |
| 746             | Functionalized CMK-3 mesoporous carbon with 2-amino-5-mercapto-1,3,4-thiadiazole for Hg(II) removal from aqueous media. <b>2014</b> , 26, 1541-8                                                         | 26    |
| 745             | Tailored design of functional nanoporous carbon materials toward fuel cell applications. <b>2014</b> , 9, 305-323                                                                                        | 230   |
| 744             | Aerosol synthesis of self-organized nanostructured hollow and porous carbon particles using a dual polymer system. <b>2014</b> , 30, 11257-62                                                            | 29    |

| 743                             | Synthesis of mesoporous carbons using a triblock copolymer containing sulfonic acid groups and their capacitance property. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 10104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13   | 9                         |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------|
| 742                             | Effect of surface chemistry on the double layer capacitance of polypyrrole-derived ordered mesoporous carbon. <i>RSC Advances</i> , <b>2014</b> , 4, 47039-47046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7  | 10                        |
| 741                             | Hydrothermal Nanocarbons. <b>2014</b> , 351-406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                           |
| 740                             | Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC). <b>2014</b> , 317, 26-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 17                        |
| 739                             | Fabrication of 2D ordered mesoporous carbon nitride and its use as electrochemical sensing platform for H2O2, nitrobenzene, and NADH detection. <b>2014</b> , 53, 250-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 131                       |
| 738                             | Silica-pillared graphene sheets with ironflitrogen units as an oxygen reduction catalyst. <i>Carbon</i> , <b>2014</b> , 66, 327-333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.4 | 12                        |
| 737                             | Direct Synthesis of Nitrogen-Doped Carbon Materials from Protic Ionic Liquids and Protic Salts: Structural and Physicochemical Correlations between Precursor and Carbon. <b>2014</b> , 26, 2915-2926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 130                       |
| 736                             | Optimization of mesoporous carbons for efficient adsorption of berberine hydrochloride from aqueous solutions. <b>2014</b> , 424, 104-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 17                        |
| 735                             | Synthesis of high surface area silica gel templated carbon for hydrogen storage application. <b>2014</b> , 107, 224-232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 15                        |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                           |
| 734                             | In situ synthesis of ceria nanoparticles in the ordered mesoporous carbon as a novel electrochemical sensor for the determination of hydrazine. <b>2014</b> , 819, 26-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 53                        |
| 734<br>733                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.1  | 53                        |
|                                 | electrochemical sensor for the determination of hydrazine. <b>2014</b> , 819, 26-33  Characterization of single-handed, coiled, carbonaceous, tubular nanoribbons. <i>Chinese Chemical</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1  |                           |
| 733                             | electrochemical sensor for the determination of hydrazine. <b>2014</b> , 819, 26-33  Characterization of single-handed, coiled, carbonaceous, tubular nanoribbons. <i>Chinese Chemical Letters</i> , <b>2014</b> , 25, 879-882  Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.1  | 1                         |
| 733<br>732                      | electrochemical sensor for the determination of hydrazine. 2014, 819, 26-33  Characterization of single-handed, coiled, carbonaceous, tubular nanoribbons. <i>Chinese Chemical Letters</i> , 2014, 25, 879-882  Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution. 2014, 290, 260-266  Large surface area sucrose-based carbons via template-assisted routes: Preparation,                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.1  | 1 20                      |
| 733<br>732<br>731               | electrochemical sensor for the determination of hydrazine. 2014, 819, 26-33  Characterization of single-handed, coiled, carbonaceous, tubular nanoribbons. <i>Chinese Chemical Letters</i> , 2014, 25, 879-882  Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution. 2014, 290, 260-266  Large surface area sucrose-based carbons via template-assisted routes: Preparation, microstructure, and hydrogen adsorption properties. 2014, 444, 240-245  Oxidation and EDX elemental mapping characterization of an ordered mesoporous carbon: Pb(II)                                                                                                                                                                                                                                                                                     | 8.1  | 1<br>20<br>22<br>43       |
| 733<br>732<br>731<br>730        | electrochemical sensor for the determination of hydrazine. 2014, 819, 26-33  Characterization of single-handed, coiled, carbonaceous, tubular nanoribbons. <i>Chinese Chemical Letters</i> , 2014, 25, 879-882  Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution. 2014, 290, 260-266  Large surface area sucrose-based carbons via template-assisted routes: Preparation, microstructure, and hydrogen adsorption properties. 2014, 444, 240-245  Oxidation and EDX elemental mapping characterization of an ordered mesoporous carbon: Pb(II) and Cd(II) removal. 2014, 303, 373-380  One-pot synthesis of silver nanoparticle catalysts supported on N-doped ordered mesoporous                                                                                                                                                  |      | 1<br>20<br>22<br>43       |
| 733<br>732<br>731<br>730<br>729 | characterization of single-handed, coiled, carbonaceous, tubular nanoribbons. <i>Chinese Chemical Letters</i> , <b>2014</b> , 25, 879-882  Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution. <b>2014</b> , 290, 260-266  Large surface area sucrose-based carbons via template-assisted routes: Preparation, microstructure, and hydrogen adsorption properties. <b>2014</b> , 444, 240-245  Oxidation and EDX elemental mapping characterization of an ordered mesoporous carbon: Pb(II) and Cd(II) removal. <b>2014</b> , 303, 373-380  One-pot synthesis of silver nanoparticle catalysts supported on N-doped ordered mesoporous carbon and application in the detection of nitrobenzene. <i>Carbon</i> , <b>2014</b> , 69, 481-489  A simple organicfhorganic co-assembling route to pore-expanded ordered mesoporous carbons | 10.4 | 1<br>20<br>22<br>43<br>35 |

| 725 | Enlargement of uniform micropores in hierarchically ordered microthesoporous carbon for high level decontamination of bisphenol A. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 8534 | 13  | 62  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 724 | Structure and sorption properties of a zeolite-templated carbon with the EMT structure type. <b>2014</b> , 30, 297-307                                                                             |     | 18  |
| 723 | Carbonaceous multiscale-cellular foams as novel electrodes for stable, efficient lithium ulfur batteries. <i>RSC Advances</i> , <b>2014</b> , 4, 23971-23976                                       | 3.7 | 24  |
| 722 | Heterogeneous Catalysis with OrganicIhorganic Hybrid Materials. <b>2014</b> , 85-110                                                                                                               |     |     |
| 721 | Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase. <b>2014</b> , 35, 842-855                                         |     | 23  |
| 720 | Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation. <b>2014</b> , 61, 519-25                                   |     | 114 |
| 719 | Bimodal Mesoporous Carbon Nanofibers with High Porosity: Freestanding and Embedded in Membranes for LithiumBulfur Batteries. <b>2014</b> , 26, 3879-3886                                           |     | 77  |
| 718 | Enantioselective cyclopropanation and aziridination catalyzed by copper(II) bis(oxazoline) anchored onto mesoporous materials. <b>2014</b> , 79, 315-323                                           |     | 8   |
| 717 | Electrochemical properties of boron-doped ordered mesoporous carbon as electrocatalyst and Pt catalyst support. <b>2014</b> , 428, 133-40                                                          |     | 33  |
| 716 | Highly nanoporous carbon derived from potassium biphthalate by a template carbonization method. <b>2014</b> , 125, 652-658                                                                         |     | 3   |
| 715 | Microwave assisted preparation of sodium dodecyl sulphate (SDS) modified ordered nanoporous carbon and its adsorption for MB dye. <b>2014</b> , 20, 208-215                                        |     | 24  |
| 714 | Surface modification of carbon nanomaterials by aminopropyltriethoxysilane. <b>2014</b> , 2, 245-252                                                                                               |     | 7   |
| 713 | Mesoporous Materials as Potential Absorbents for Water Purification. <b>2014</b> , 269-284                                                                                                         |     | 1   |
| 712 | Paramagnetic muon states in mesoporous carbon materials. <b>2014</b> , 551, 012040                                                                                                                 |     |     |
| 711 | Thiol-Functionalized Mesoporous Carbons as Adsorbents of Heavy-Metal Ions. <b>2015</b> , 33, 663-668                                                                                               |     | O   |
| 710 | Industrial Perspectives for Mesoporous Zeolites. <b>2015</b> , 541-564                                                                                                                             |     | 2   |
| 709 | Nanofabrication of Hierarchical Zeolites in Confined Space. <b>2015</b> , 227-258                                                                                                                  |     | 1   |
| 708 | Ordered Mesoporous Carbon: Fabrication, Characterization, and Application as Adsorbents. <b>2015</b> , 1-14                                                                                        |     | 1   |

| 707 | Integrative Sol <b>©</b> el Chemistry. <b>2015</b> , 71-120                                                                                                                                           |      | 1           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| 706 | The Synthetic Strategy for Developing Mesoporous Materials through Nanocasting Route. <b>2015</b> , 59-125                                                                                            |      |             |
| 705 | Waste-Glycerol-Directed Synthesis of Mesoporous Silica and Carbon with Superior Performance in Room-Temperature Hydrogen Production from Formic Acid. <b>2015</b> , 5, 15931                          |      | 11          |
| 704 | Templated Synthesis for Nanoarchitectured Porous Materials. <b>2015</b> , 88, 1171-1200                                                                                                               |      | 479         |
| 703 | Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. <i>ChemCatChem</i> , <b>2015</b> , 7, 2744-2764                                                  |      | 51          |
| 702 | Systematically Controlled Pore System of Ordered Mesoporous Carbons Using Phosphoric Acid as the In situ Generated Catalysts for Carbonization and Activation. <b>2015</b> , 36, 2062-2067            |      | 4           |
| 701 | Synthesis of Ordered Mesoporous Carbon Materials by Dry Etching. <b>2015</b> , 21, 14753-7                                                                                                            |      | 16          |
| 700 | Synthese von porßen Kohlenstoffmonolithen unter Verwendung von Porenbeton als Templat. Teil<br>II: Untersuchungen mechanischer Eigenschaften. <b>2015</b> , 87, 998-1002                              |      | 2           |
| 699 | Mesoporous Materials-Based Electrochemical Enzymatic Biosensors. <b>2015</b> , 27, 2028-2054                                                                                                          |      | 40          |
| 698 | Metal-Free Carbonaceous Materials as Promising Heterogeneous Catalysts. <i>ChemCatChem</i> , <b>2015</b> , 7, 2765-2                                                                                  | .787 | <b>7</b> 98 |
| 697 | Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions.<br>ChemCatChem, <b>2015</b> , 7, 2788-2805                                                                        |      | 67          |
| 696 | Vapor Infiltration Synthesis of Nitrogen-Containing Ordered Mesoporous Carbon Films and the Electrochemical Properties. <b>2015</b> , 48, 245-251                                                     |      |             |
| 695 | Ceramic Nanocomposites from Tailor-Made Preceramic Polymers. <i>Nanomaterials</i> , <b>2015</b> , 5, 468-540 5.4                                                                                      | -    | 122         |
| 694 | Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications. <b>2015</b> , 2015, 1-14                                                                                                    |      | 56          |
| 693 | . 2015,                                                                                                                                                                                               |      | 3           |
| 692 | . 2015,                                                                                                                                                                                               |      | 39          |
| 691 | Natural-gel derived, N-doped, ordered and interconnected 1D nanocarbon threads as efficient supercapacitor electrode materials. <i>RSC Advances</i> , <b>2015</b> , 5, 51382-51391                    |      | 11          |
| 690 | Ionic liquid-derived nano-fibrillated mesoporous carbon based on solid-phase microextraction fiber for the analysis of volatile organic compounds from aqueous solutions. <b>2015</b> , 39, 6085-6091 |      | 11          |

## (2015-2015)

| 689 | Nanoporous carbon derived from a metal organic framework as a new kind of adsorbent for dispersive solid phase extraction of benzoylurea insecticides. <b>2015</b> , 182, 1903-1910                                                   |    | 57  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 688 | Development of Ionic Liquids Tethered to Coconut Shell Activated Carbon for Biogas Upgrading in a Packed Bed. <b>2015</b> , 3, 509-517                                                                                                |    | 3   |
| 687 | Magnetic studies of mesoporous nanostructured iron oxide materials synthesized by one-step soft-templating. <b>2015</b> , 44, 11943-53                                                                                                |    | 12  |
| 686 | Hydrogen-bonding supramolecular protic salt as an Ell-in-onelprecursor for nitrogen-doped mesoporous carbons for CO2 adsorption. <b>2015</b> , 13, 376-386                                                                            |    | 52  |
| 685 | Nanoporous Cathodes for High-Energy Li-S Batteries from Gyroid Block Copolymer Templates. <b>2015</b> , 9, 6147-57                                                                                                                    |    | 69  |
| 684 | Ordered arrays of hollow carbon nanospheres and nanotubules from polyacrylonitrile grafted on ordered mesoporous silicas using atom transfer radical polymerization. <b>2015</b> , 72, 356-360                                        |    | 12  |
| 683 | Pd(AcO)2 supported by 1,3,5-triazine functionalized nanoporous polymers: Efficient and recyclable heterogeneous catalysts for Suzuki™iyaura reaction. <b>2015</b> , 56, 703-711                                                       |    |     |
| 682 | Spherical nitrogen-doped hollow mesoporous carbon as an efficient bifunctional electrocatalyst for Zn-air batteries. <i>Nanoscale</i> , <b>2015</b> , 7, 20547-56                                                                     | ,  | 61  |
| 681 | Designed porous carbon materials for efficient CO2 adsorption and separation. <i>New Carbon Materials</i> , <b>2015</b> , 30, 481-501                                                                                                 | Ļ  | 60  |
| 68o | Hierarchal multi-lamellar silica vesicle clusters synthesized through self-assembly and mineralization. <i>RSC Advances</i> , <b>2015</b> , 5, 102256-102260                                                                          |    | 4   |
| 679 | Mesoporous materials as multifunctional tools in biosciences: principles and applications. <b>2015</b> , 49, 114-15                                                                                                                   | 1  | 121 |
| 678 | Mesoporous materials: versatile supports in heterogeneous catalysis for liquid phase catalytic transformations. <i>RSC Advances</i> , <b>2015</b> , 5, 24363-24391                                                                    |    | 106 |
| 677 | Porous Catalytic Systems in the Synthesis of Bioactive Heterocycles and Related Compounds. <b>2015</b> , 377-40                                                                                                                       | 8  | 4   |
| 676 | Ionic Liquid Cross-Linked Multifunctional Cationic Polymer Nanobeads via Dispersion<br>Polymerization: Applications in Anion Exchange, Templates for Palladium, and Fluorescent Carbon<br>Nanoparticles. <b>2015</b> , 119, 4324-4332 |    | 10  |
| 675 | Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates.  Chemical Society Reviews, <b>2015</b> , 44, 1974-2018                                                                                       | .5 | 159 |
| 674 | Synthesis and supercapacitive performance of three-dimensional cubic-ordered mesoporous carbons. <b>2015</b> , 163, 223-231                                                                                                           |    | 22  |
| 673 | Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides. <b>2015</b> , 870, 67-74                                                                 |    | 82  |
| 672 | Nitrogen/sulfur dual-doped mesoporous carbon with controllable morphology as a catalyst support for the methanol oxidation reaction. <i>Carbon</i> , <b>2015</b> , 87, 424-433                                                        | -4 | 32  |

| 671 | Efficient hydrochlorination of glycerol to dichlorohydrin over the COOH-functionalized mesoporous carbonBilica composites. <i>Journal of Porous Materials</i> , <b>2015</b> , 22, 57-64                                     | 2.4  | 1   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 670 | Preparation and characterization of activated CMK-1 with Zn and Ni species applied in hydrogen storage. <b>2015</b> , 39, 941-953                                                                                           |      | 10  |
| 669 | Tuning the Pore Geometry of Ordered Mesoporous Carbons for Enhanced Adsorption of Bisphenol-A. <b>2015</b> , 8, 1652-1665                                                                                                   |      | 43  |
| 668 | Glucose oxidase adsorption performance of carbonaceous mesocellular foams prepared with different carbon sources. <b>2015</b> , 120, 9-16                                                                                   |      | 5   |
| 667 | Capacitance behavior of ordered mesoporous carbon/Fe2O3 composites: Comparison between 1D cylindrical, 2D hexagonal, and 3D bicontinuous mesostructures. <i>Carbon</i> , <b>2015</b> , 93, 903-914                          | 10.4 | 35  |
| 666 | Hard-templating of Prussian blue analogues in mesoporous silica and organosilica. <b>2015</b> , 44, 14724-31                                                                                                                |      | 13  |
| 665 | Design of N-doped graphene-coated cobalt-based nanoparticles supported on ceria. <i>Journal of Materials Chemistry A</i> , <b>2015</b> , 3, 17728-17737                                                                     | 13   | 17  |
| 664 | Integrative Chemistry: Advanced functional cellular materials bearing multiscale porosity. <b>2015</b> , 224, 1655-1668                                                                                                     |      | 9   |
| 663 | Smart Sensors and Systems. <b>2015</b> ,                                                                                                                                                                                    |      | 8   |
| 662 | Three-dimensional hierarchical porous platinumdopper alloy networks with enhanced catalytic activity towards methanol and ethanol electro-oxidation. <b>2015</b> , 296, 282-289                                             |      | 40  |
| 661 | Preparation of amidoximated polymer composite based on CMK-3 for selective separation of uranium from aqueous solutions. <b>2015</b> , 306, 365-375                                                                         |      | 12  |
| 660 | Importance of Internal Porosity for Glucan Adsorption in Mesoporous Carbon Materials. <b>2015</b> , 31, 7288                                                                                                                | -95  | 23  |
| 659 | Covalent modification of ordered mesoporous carbon with glucose oxidase for fabrication of glucose biosensor. <i>Journal of Electroanalytical Chemistry</i> , <b>2015</b> , 752, 60-67                                      | 4.1  | 16  |
| 658 | Molecular-based design and emerging applications of nanoporous carbon spheres. <b>2015</b> , 14, 763-74                                                                                                                     |      | 712 |
| 657 | Uniform fibrous-structured hollow mesoporous carbon spheres for high-performance supercapacitor electrodes. <b>2015</b> , 176, 542-547                                                                                      |      | 36  |
| 656 | Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. <b>2015</b> , 115, 8896-943                                                          |      | 470 |
| 655 | Large-scale synthesis of high-quality zeolite-templated carbons without depositing external carbon layers. <b>2015</b> , 280, 597-605                                                                                       |      | 23  |
| 654 | Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst. <i>Journal of Electroanalytical Chemistry</i> , <b>2015</b> , 750, 65-73 | 4.1  | 24  |

653 Mesoporous Carbon for Energy. **2015**, 425-445

| 652 | CHAPTER 1:The Search for Functional Porous Carbons from Sustainable Precursors. <b>2015</b> , 3-49                                                                                          |      | 4   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 651 | CHAPTER 3:Porous Carbonaceous Materials in Catalytic Applications. <b>2015</b> , 82-102                                                                                                     |      | 2   |
| 650 | Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption. <b>2015</b> , 32, 238-48                                                      |      | 42  |
| 649 | Airflow-induced nanochannel orientation in mesoporous polymers and carbon films. <i>Microporous and Mesoporous Materials</i> , <b>2015</b> , 211, 152-157                                   | 5.3  | 4   |
| 648 | Hierarchical porous carbons fabricated from silica via flame synthesis as anode materials for high-performance lithium-ion batteries. <b>2015</b> , 21, 1881-1891                           |      | 12  |
| 647 | Insights into the effect of structure-directing agents on structural properties of mesoporous carbon for polymer electrolyte fuel cells. <b>2015</b> , 38, 451-459                          |      | 5   |
| 646 | Recent advancement of nanostructured carbon for energy applications. <b>2015</b> , 115, 5159-223                                                                                            |      | 598 |
| 645 | Coconut Shell Activated Carbon Supported Quaternary Ammonium for Continuous Cycloaddition of CO2 and Biogas Upgrading in a Packed Bed. <b>2015</b> , 54, 5894-5900                          |      | 9   |
| 644 | Insights on the reactivity of ordered porous carbons exposed to different fluorinating agents and conditions. <i>Carbon</i> , <b>2015</b> , 84, 567-583                                     | 10.4 | 18  |
| 643 | Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERS-Based Molecule Detection. <b>2015</b> , 3, 404-411                                                          |      | 51  |
| 642 | Biomass-Derived Porous Carbon Materials: Synthesis and Catalytic Applications. <i>ChemCatChem</i> , <b>2015</b> , 7, 1608-1629                                                              | 5.2  | 173 |
| 641 | Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. <i>Journal of Materials Chemistry A</i> , <b>2015</b> , 3, 13114-13188             | 13   | 156 |
| 640 | Strongly acidic mesoporous aluminosilicates prepared via hydrothermal restructuring of a crystalline layered silicate. <i>Journal of Materials Chemistry A</i> , <b>2015</b> , 3, 7799-7809 | 13   | 6   |
| 639 | Triple hierarchical microfhesofhacroporous carbonaceous foams bearing highly monodisperse macroporosity. <i>Carbon</i> , <b>2015</b> , 91, 311-320                                          | 10.4 | 29  |
| 638 | Recycle of U(VI) from aqueous solution by situ phosphorylation mesoporous carbon. <b>2015</b> , 306, 515-525                                                                                |      | 42  |
| 637 | The influence of formaldehyde/phenol molar ratio on microstructure of B-OMCs. <i>RSC Advances</i> , <b>2015</b> , 5, 20734-20740                                                            | 3.7  | 10  |
| 636 | Hydrogen Storage Properties of Nanoconfined LiBH4Mg2NiH4 Reactive Hydride Composites. <b>2015</b> , 119, 5819-5826                                                                          |      | 36  |

| 635 | Ordered mesoporous carbons as effective sorbents for removal of heavy metal ions. <i>Microporous and Mesoporous Materials</i> , <b>2015</b> , 211, 162-173                                               | 5.3 | 73  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 634 | Supercapacitors Based on Graphene and Related Materials. <b>2015</b> , 227-252                                                                                                                           |     | 2   |
| 633 | Synthesis, Nickel Decoration, and Hydrogen Adsorption of Silica-Templated Mesoporous Carbon Material with High Surface Area. <b>2015</b> , 119, 23430-23435                                              |     | 12  |
| 632 | Removal characteristics of Cd(II) ions from aqueous solution on ordered mesoporous carbon. <b>2015</b> , 32, 2161-2167                                                                                   |     | 4   |
| 631 | Evaluation of surface properties and pore structure of carbon on the activity of supported Ru catalysts in the aqueous-phase aerobic oxidation of HMF to FDCA. <b>2015</b> , 506, 206-219                |     | 49  |
| 630 | Simple synthesis of mesoporous FeNi/graphitic carbon nanocomposite catalysts and study on their activities in catalytic cracking of toluene. <b>2015</b> , 167, 347-353                                  |     | 7   |
| 629 | Wet oxidation of ordered mesoporous carbon FDU-15 by using (NH4)2S2O8 for fast adsorption of Sr(II): An investigation on surface chemistry and adsorption mechanism. <b>2015</b> , 357, 1578-1586        |     | 15  |
| 628 | Novel Ordered Mesoporous Carbon Based Sulfonic Acid as an Efficient Catalyst in the Selective Dehydration of Fructose into 5-HMF: the Role of Solvent and Surface Chemistry. <b>2015</b> , 7, 19050-9    |     | 47  |
| 627 | Facile one-pot synthesis of mesoporous carbon and N-doped carbon for CO2 capture by a novel melting-assisted solvent-free method. <i>Journal of Materials Chemistry A</i> , <b>2015</b> , 3, 23990-23999 | 13  | 38  |
| 626 | Facile preparation of carbon-functionalized ordered magnetic mesoporous silica composites for highly selective enrichment of N-glycans. <i>RSC Advances</i> , <b>2015</b> , 5, 68972-68980               | 3.7 | 17  |
| 625 | Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi. <b>2015</b> , 112, 12911-6                                                                                |     | 43  |
| 624 | Immobilizing and de-immobilizing enzymes on mesoporous silica. <i>RSC Advances</i> , <b>2015</b> , 5, 87706-87712                                                                                        | 3.7 | 9   |
| 623 | Enhanced capacitance of a nitrogen-containing carbon-based nanocomposite via noncovalent functionalization method. <b>2015</b> , 31, 343-351                                                             |     | 1   |
| 622 | Highly Ordered Mesoporous Cobalt-Containing Oxides: Structure, Catalytic Properties, and Active Sites in Oxidation of Carbon Monoxide. <b>2015</b> , 137, 11407-18                                       |     | 175 |
| 621 | Synthesis and characterization of mesoporous and superparamagnetic bilayered-shell around silica core particles. <i>Ceramics International</i> , <b>2015</b> , 41, 13480-13485                           | 5.1 | 2   |
| 620 | Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries. <b>2015</b> , 17, 91-103                                                                              |     | 118 |
| 619 | Rational design of nanomaterials for water treatment. <i>Nanoscale</i> , <b>2015</b> , 7, 17167-94                                                                                                       | 7.7 | 157 |
| 618 | Surface Modification of Graphitic Mesoporous Carbon Adsorbent by Chemical Oxidation for Removal of Basic Dye from Aqueous Solution. <b>2015</b> , 1107, 365-370                                          |     | 1   |

Mesoporous carbons: recent advances in synthesis and typical applications. *RSC Advances*, **2015**, 5, 83239-9328**5**19

| 616 | Evaluation of the Corrosion Resistance of Carbons for Use as PEM Fuel Cell Cathode Supports. <b>2015</b> , 162, F1333-F1341                                                                                                                         |      | 24  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 615 | Controllable synthesis and capacitive performance of nitrogen-doped porous carbon from carboxymethyl chitosan by template carbonization method. <b>2015</b> , 19, 3087-3096                                                                         |      | 11  |
| 614 | Rapidly reversible adsorption of methane with a high storage capacity on the zeolite templated carbons with glucose as carbon precursors. <b>2015</b> , 485, 11-17                                                                                  |      | 19  |
| 613 | High-Throughput Synthesis and Screening of Titania-Based Photocatalysts. <b>2015</b> , 17, 548-69                                                                                                                                                   |      | 44  |
| 612 | Control of porosity and composition of carbon based catalysts prepared by template assisted routes. <i>Catalysis Today</i> , <b>2015</b> , 249, 38-44                                                                                               | 5.3  | 12  |
| 611 | Functional materials from cellulose-derived liquid-crystal templates. <b>2015</b> , 54, 2888-910                                                                                                                                                    |      | 269 |
| 610 | □ight-assisted evaporation induced self-assembly□an efficient approach toward ordered carbon materials. <i>RSC Advances</i> , <b>2015</b> , 5, 2861-2868                                                                                            | 3.7  | 15  |
| 609 | Preparation of ordered mesoporous carbons with ammonia modification for Orange II adsorption. <b>2015</b> , 54, 255-264                                                                                                                             |      | 8   |
| 608 | Nanocatalysis I: Synthesis of Metal and Bimetallic Nanoparticles and Porous Oxides and Their Catalytic Reaction Studies. <b>2015</b> , 145, 233-248                                                                                                 |      | 95  |
| 607 | Funktionsmaterialien mit Cellulose-basierten Fl\( \bar{B}\)sigkristall-Templaten. <b>2015</b> , 127, 2930-2953                                                                                                                                      |      | 10  |
| 606 | Sorption of Acetaldehyde and Hexanal in Trace Concentrations on Carbon-Based Adsorbents. <b>2015</b> , 38, 125-130                                                                                                                                  |      | 2   |
| 605 | Highly aligned, large pore ordered mesoporous carbon films by solvent vapor annealing with soft shear. <i>Carbon</i> , <b>2015</b> , 82, 51-59                                                                                                      | 10.4 | 20  |
| 604 | Large mesoporous carbons decorated with silver and gold nanoparticles by a self-assembly method: enhanced electrocatalytic activity for H2O2 electroreduction and sodium nitrite electrooxidation. <i>RSC Advances</i> , <b>2015</b> , 5, 2956-2962 | 3.7  | 4   |
| 603 | Green and facile synthesis of an Au nanoparticles@polyoxometalate/ordered mesoporous carbon tri-component nanocomposite and its electrochemical applications. <b>2015</b> , 66, 191-7                                                               |      | 71  |
| 602 | Nitration and reduction route to surface groups of mesoporous carbons obtained from sucrose and phloroglucinol/formaldehyde precursors. <b>2015</b> , 149-150, 539-552                                                                              |      | 7   |
| 601 | ZnO Hard Templating for Synthesis of Hierarchical Porous Carbons with Tailored Porosity and High Performance in Lithium-Sulfur Battery. <b>2015</b> , 25, 287-297                                                                                   |      | 280 |
| 600 | Hierarchically Nanoporous Zeolites and Their Heterogeneous Catalysis: Current Status and Future Perspectives. <b>2015</b> , 145, 193-213                                                                                                            |      | 72  |

| 599 | Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites. <i>Analyst, The</i> , <b>2015</b> , 140, 644-53                                                                                                | 5    | 33  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 598 | Design and fabrication of hierarchically porous carbon with a template-free method. <b>2014</b> , 4, 6349                                                                                                                                                    |      | 65  |
| 597 | Block copolymer-nanoparticle hybrid self-assembly. <b>2015</b> , 40, 3-32                                                                                                                                                                                    |      | 107 |
| 596 | Sustainable carbon materials. Chemical Society Reviews, 2015, 44, 250-90                                                                                                                                                                                     | 58.5 | 826 |
| 595 | Efficient mesoporous carbon-based solid catalyst for the esterification of oleic acid. 2015, 140, 669-676                                                                                                                                                    |      | 73  |
| 594 | Synthesis of macroporous cristobalite using a hydroxyapatite template. <i>Ceramics International</i> , <b>2015</b> , 41, 3298-3300                                                                                                                           | 5.1  | 4   |
| 593 | Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor. <b>2015</b> , 64, 247-54 |      | 49  |
| 592 | Ordered mesoporous carbons originated from non-edible polyethylene glycol 400 (PEG-400) for chloramphenicol antibiotic recovery from liquid phase. <b>2015</b> , 260, 730-739                                                                                |      | 31  |
| 591 | Arabinogalactan hydrolysis and hydrolytic hydrogenation using functionalized carbon materials. <i>Catalysis Today</i> , <b>2015</b> , 257, 169-176                                                                                                           | 5.3  | 19  |
| 590 | Synthesis and characterization of Pt-CMK-3 hybrid nanocomposite for hydrogen storage. <b>2015</b> , 39, 128-1                                                                                                                                                | 139  | 17  |
| 589 | Removal of Hg (II) and Mn (II) from aqueous solution using nanoporous carbon impregnated with surfactants. <b>2016</b> , 9, S319-S325                                                                                                                        |      | 41  |
| 588 | Synthesis of Porous Carbon Monoliths Using Hard Templates. <b>2016</b> , 9,                                                                                                                                                                                  |      | 9   |
| 587 | The Detailed Evolution of Carbon Spheres by Hydrothermal Method. <b>2016</b> , 2016, 1-5                                                                                                                                                                     |      | 4   |
| 586 | Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures. <b>2016</b> , 9, 189                                                                                                                                                |      | 8   |
| 585 | Synthesis and Characterization of CMK Porous Carbons Modified with Metals Applied to Hydrogen Uptake and Storage. <b>2016</b> ,                                                                                                                              |      | 1   |
| 584 | Nickel Nanoparticles Supported on CMK-3 with Enhanced Catalytic Performance for Hydrogenation of Carbonyl Compounds. <b>2016</b> , 2016, 3469-3473                                                                                                           |      | 6   |
| 583 | Ordered Mesoporous Carbon/Titanium Carbide Composites as Support Materials for Platinum Catalysts. <b>2016</b> , 4, 1064-1070                                                                                                                                |      | 12  |
| 582 | Nanoarchitectures for Mesoporous Metals. <b>2016</b> , 28, 993-1010                                                                                                                                                                                          |      | 297 |

| 581 | Highly Ordered Dual Porosity Mesoporous Cobalt Oxide for Sodium-Ion Batteries. <i>Advanced Materials Interfaces</i> , <b>2016</b> , 3, 1500464                                                                                                | ó  | 54  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 580 | Catalytic graphitization of ordered mesoporous carbon CMK-3 with iron oxide catalysts: Evaluation of different synthesis pathways. <b>2016</b> , 213, 1395-1402                                                                               |    | 15  |
| 579 | Nanostructured mesoporous carbons: Tuning texture and surface chemistry. <i>Carbon</i> , <b>2016</b> , 108, 79-102 10                                                                                                                         | -4 | 106 |
| 578 | Ordered mesoporous carbon preparation by the in situ radical polymerization of acrylamide and its application for resorcinol removal. <b>2016</b> , 133, n/a-n/a                                                                              |    | 18  |
| 577 | Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products. <b>2016</b> , 408, 5199-210                                                                                                               |    | 31  |
| 576 | Sorption Behavior of Binary Gas CO2/CH4 on Ordered Mesoporous Carbon with the Presence of Water. <b>2016</b> , 61, 3341-3345                                                                                                                  |    | 7   |
| 575 | Worm-hole structured mesoporous carbon monoliths synthesized with amphiphilic triblock copolymer. <i>Journal of Porous Materials</i> , <b>2016</b> , 23, 1431-1438                                                                            | -  | 7   |
| 574 | Magnetic motive, ordered mesoporous carbons with partially graphitized framework and controllable surface wettability: preparation, characterization and their selective adsorption of organic pollutants in water. <b>2016</b> , 10, 147-156 |    | 3   |
| 573 | Nano-textured copper oxide nanofibers for efficient air cooling. <b>2016</b> , 119, 065306                                                                                                                                                    |    | 15  |
| 572 | In-Situ-Activated N-Doped Mesoporous Carbon from a Protic Salt and Its Performance in Supercapacitors. <b>2016</b> , 8, 35243-35252                                                                                                           |    | 29  |
| 571 | Electrochemical Sensors Based on Ordered Mesoporous Carbons. <b>2016</b> , 213-241                                                                                                                                                            |    | 1   |
| 570 | Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations. <b>2016</b> , 6, 39617                                                                                         |    | 21  |
| 569 | Self-arrangement of nanoparticles toward crystalline metal oxides with high surface areas and tunable 3D mesopores. <b>2016</b> , 6, 21496                                                                                                    |    | 3   |
| 568 | Hierarchisch strukturierte Nanomaterialien f∃die elektrochemische Energieumwandlung. <b>2016</b> , 128, 128-156                                                                                                                               |    | 16  |
| 567 | Mesoporous Spinel LiMn2O4 Cathode Material by a Soft-templating Route. <b>2016</b> , 199, 51-58                                                                                                                                               |    | 32  |
| 566 | Sulfur-doped ordered mesoporous carbons: A stability-improving sulfur host for lithium-sulfur battery cathodes. <b>2016</b> , 317, 112-119                                                                                                    |    | 40  |
| 565 | Constructing a multicomponent ordered mesoporous carbon for improved electrochemical performance induced by in-situ doping phosphorus. <i>Carbon</i> , <b>2016</b> , 104, 10-19                                                               | ·4 | 27  |
| 564 | Performance of mesoporous silicas (MCM-41 and SBA-15) and carbon (CMK-3) in the removal of gas-phase naphthalene: adsorption capacity, rate and regenerability. <i>RSC Advances</i> , <b>2016</b> , 6, 21193-21203 <sup>37</sup>              |    | 36  |

| 563 | Mesoporous Materials for Fuel Cells. <b>2016</b> , 313-369                                                                                                                                                  |     | 1   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 562 | Application of mesoporous carbon and modified mesoporous carbon for treatment of DMF sewage. <b>2016</b> , 18, 1                                                                                            |     | 1   |
| 561 | Synthesis and application of NB-doped mesoporous carbon obtained from nanocasting method using bone char as heteroatom precursor and template. <b>2016</b> , 300, 54-63                                     |     | 50  |
| 560 | Preparation and post-treatments of ordered mesoporous carbons (OMC) for resorcinol removal. <b>2016</b> , 13, 1505-1514                                                                                     |     | 16  |
| 559 | An insight into the removal of Cu (II) and Pb (II) by aminopropyl-modified mesoporous carbon CMK-3: Adsorption capacity and mechanism. <b>2016</b> , 178, 57-64                                             |     | 34  |
| 558 | Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. <b>2016</b> , 6, 3670-3693                                                  |     | 202 |
| 557 | Hierarchically Structured Nanomaterials for Electrochemical Energy Conversion. <b>2016</b> , 55, 122-48                                                                                                     |     | 170 |
| 556 | Synthesis and Electrochemical Performance of Ni/Ordered Mesoporous Carbon Composites with High Surface Areas. <b>2016</b> , 163, E179-E184                                                                  |     | 8   |
| 555 | Understanding adsorption of CO2, N2, CH4 and their mixtures in functionalized carbon nanopipe arrays. <b>2016</b> , 18, 14007-16                                                                            |     | 18  |
| 554 | Nitrogen-doped mesoporous carbons for high performance supercapacitors. <b>2016</b> , 379, 132-139                                                                                                          |     | 39  |
| 553 | Oxidative Dehydrogenation of Ethylbenzene Over Poly(furfuryl alcohol)-Derived CMK-1 Carbon Replica. <b>2016</b> , 146, 1231-1241                                                                            |     | 5   |
| 552 | Functionalization of mesoporous materials for lanthanide and actinide extraction. <b>2016</b> , 45, 14832-54                                                                                                |     | 105 |
| 551 | Increasing mesoporosity by a silica hard template in a covalent organic polymer for enhanced amine loading and CO2 capture capacity. <i>Microporous and Mesoporous Materials</i> , <b>2016</b> , 229, 44-50 | 5.3 | 13  |
| 550 | Glassy carbon electrode modified with an ordered mesoporous carbon/Ag nanoparticle nanocomposite for the selective detection of iodate. <b>2016</b> , 8, 4406-4412                                          |     | 4   |
| 549 | Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics. <b>2016</b> , 101, 187-194                                                                |     | 46  |
| 548 | ZrO2 nanoparticles confined in CMK-3 as highly effective sorbent for phosphate adsorption. <i>Microporous and Mesoporous Materials</i> , <b>2016</b> , 230, 188-195                                         | 5.3 | 36  |
| 547 | Free-Standing, Ordered Mesoporous Few-Layer Graphene Framework Films Derived from Nanocrystal Superlattices Self-Assembled at the Solidibr Liquid Interface. <b>2016</b> , 28, 3823-3830                    |     | 18  |
| 546 | The evolution of hierarchical porosity in self-templated nitrogen-doped carbons and its effect on oxygen reduction electrocatalysis. <i>RSC Advances</i> , <b>2016</b> , 6, 80398-80407                     | 3.7 | 33  |

## (2016-2016)

| 545 | Potential prospects for carbon dots as a fluorescence sensing probe for metal ions. <i>RSC Advances</i> , <b>2016</b> , 6, 90526-90536                                                                      | 3.7  | 37 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 544 | Removal of methylene blue by mesoporous CMK-3: Kinetics, isotherms and thermodynamics. <b>2016</b> , 223, 763-770                                                                                           |      | 40 |
| 543 | Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells. <i>Journal of Materials Chemistry A</i> , <b>2016</b> , 4, 16272-16287           | 13   | 45 |
| 542 | Fischer-Trospch Synthesis on Ordered Mesoporous Cobalt-Based Catalysts with Compact Multichannel Fixed-Bed Reactor Application: A Review. <b>2016</b> , 20, 210-230                                         |      | 10 |
| 541 | Manganese oxides nanocrystals supported on mesoporous carbon microspheres for energy storage application. <b>2016</b> , 33, 3029-3034                                                                       |      | 11 |
| 540 | Microwave-assisted route for the preparation of Pd anchored on surfactant functionalized ordered mesoporous carbon and its electrochemical applications. <i>RSC Advances</i> , <b>2016</b> , 6, 70810-70815 | 3.7  | 5  |
| 539 | Mesoporous Carbon Nanomaterials. <b>2016</b> , 505-540                                                                                                                                                      |      |    |
| 538 | Efficient biodiesel production via solid superacid catalysis: a critical review on recent breakthrough. <i>RSC Advances</i> , <b>2016</b> , 6, 78351-78368                                                  | 3.7  | 56 |
| 537 | Nitrogen-doped flower-like porous carbon materials directed by in situ hydrolysed MgO: Promising support for Ru nanoparticles in catalytic hydrogenations. <b>2016</b> , 9, 3129-3140                       |      | 18 |
| 536 | Simultaneous micropore development and nitrogen doping of ordered mesoporous carbons for enhanced supercapacitor and Li-S cathode performance. <b>2016</b> , 214, 231-240                                   |      | 19 |
| 535 | Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste. <b>2016</b> , 320, 241-251                            |      | 28 |
| 534 | Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions. <b>2016</b> , 236, 113-41                                                                                         |      | 20 |
| 533 | Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. <i>Microporous and Mesoporous Materials</i> , <b>2016</b> , 236, 28-37                   | 5.3  | 67 |
| 532 | Insights on the synthesis mechanism of green phenolic resin derived porous carbons via a salt-soft templating approach. <i>Carbon</i> , <b>2016</b> , 109, 227-238                                          | 10.4 | 40 |
| 531 | Electrochemical performance of rod-type ordered mesoporous carbons with different rod lengths for electric double-layer capacitors. <i>New Carbon Materials</i> , <b>2016</b> , 31, 328-335                 | 4.4  | 3  |
| 530 | Hierarchically porous materials: Synthesis strategies and emerging applications. <b>2016</b> , 10, 301-347                                                                                                  |      | 47 |
| 529 | Deriving hierarchical complexity from simplistic colloidal templates. <b>2016</b> , 41, 683-688                                                                                                             |      | 3  |
| 528 | Selective extraction of endogenous peptides from human serum with magnetic mesoporous carbon composites. <b>2016</b> , 161, 647-654                                                                         |      | 15 |

| 527 | Polyoxometalates-mediated facile synthesis of Pt nanoparticles anchored on an ordered mesoporous carbon for electrochemical applications. <i>RSC Advances</i> , <b>2016</b> , 6, 93469-93475       | 3.7  | 10  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 526 | Nanocomposites: an overview. <b>2016</b> , 5, 5-43                                                                                                                                                 |      | 19  |
| 525 | Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. <b>2016</b> , 6, 5887-5903                                                                                          |      | 810 |
| 524 | Oxidation-Resistant and Elastic Mesoporous Carbon with Single-Layer Graphene Walls. <b>2016</b> , 26, 6418-                                                                                        | 6427 | 70  |
| 523 | Direct Heating Amino Acids with Silica: A Universal Solvent-Free Assembly Approach to Highly Nitrogen-Doped Mesoporous Carbon Materials. <b>2016</b> , 26, 6649-6661                               |      | 60  |
| 522 | Direct Synthesis and Catalytic Application of Ordered Mesoporous Ru/C Composites with Homogeneously Dispersed Ruthenium Nanoclusters. <b>2016</b> , 81, 908-912                                    |      | 4   |
| 521 | Bioinspired Polydopamine (PDA) Chemistry Meets Ordered Mesoporous Carbons (OMCs): A Benign Surface Modification Strategy for Versatile Functionalization. <b>2016</b> , 28, 5013-5021              |      | 71  |
| 520 | Synthesis of mesoporous carbons with narrow pore size distribution from metal-organic framework MIL-100(Fe). <i>Microporous and Mesoporous Materials</i> , <b>2016</b> , 234, 162-165              | 5.3  | 14  |
| 519 | Polyelectrolyte-Brush-Derived Nitrogen-Doped Porous Carbon. <b>2016</b> , 2, 1028-1032                                                                                                             |      | 8   |
| 518 | Gas-Adsorbing Nanoporous Carbons. <b>2016</b> , 465-486                                                                                                                                            |      |     |
| 517 | From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications. <b>2016</b> , 8, 31231-31238                                       |      | 35  |
| 516 | Synthesis of Silica Nanoparticles for the Manufacture of Porous Carbon Membrane and Particle Size Analysis by Sedimentation Field-Flow Fractionation. <b>2016</b> , 37, 1831-1837                  |      | 2   |
| 515 | Mesoporous Carbons from Nanostructured Phenolic Thermosets Containing Poly(styrene-alt-maleic anhydride)-block-polystyrene Diblock Copolymer. <b>2016</b> , 55, 11502-11511                        |      | 2   |
| 514 | Single-step synthesis of hierarchical BxCN: a metal-free catalyst for low-temperature oxidative dehydrogenation of propane. <i>Journal of Materials Chemistry A</i> , <b>2016</b> , 4, 18559-18569 | 13   | 34  |
| 513 | Ceria-Containing Ordered Mesoporous Silica: Synthesis, Properties, and Applications. <i>ChemCatChem</i> , <b>2016</b> , 8, 285-303                                                                 | 5.2  | 19  |
| 512 | Synthesis of polyaniline/mesoporous carbon nanocomposites and their application for CO2 sorption. <b>2016</b> , 23, 1                                                                              |      | 13  |
| 511 | Templated mesoporous carbons: Synthesis and applications. <i>Carbon</i> , <b>2016</b> , 107, 448-473                                                                                               | 10.4 | 163 |
| 510 | An ultrasensitive aptasensor for chlorpyrifos based on ordered mesoporous carbon/ferrocene hybrid multiwalled carbon nanotubes. <i>RSC Advances</i> , <b>2016</b> , 6, 58541-58548                 | 3.7  | 45  |

| 509 | Influence of thermal treatment conditions on efficiency of PFA/MCM-48 composite and CMK-1 carbon replica in adsorption of volatile organic compounds. <b>2016</b> , 126, 1313-1322                                         |      | 7  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 508 | Size-control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework. <b>2016</b> , 37, 61-72                                                                                  |      | 6  |
| 507 | Controlled pore size of 3D mesoporous Cu-Ce based catalysts and influence of surface textures on the CO catalytic oxidation. <i>Microporous and Mesoporous Materials</i> , <b>2016</b> , 231, 9-20                         | 5.3  | 17 |
| 506 | Adsorption and Desorption of Isoflurane on Carbonaceous Adsorbents and Zeolites at Low Concentrations in Gas Phase. <b>2016</b> , 61, 686-692                                                                              |      | 10 |
| 505 | The preparation and application of mesoporous materials for energy storage. <b>2016</b> , 83, 230-249                                                                                                                      |      | 30 |
| 504 | Mesoporous carbon derived from a biopolymer and a clay: Preparation, characterization and application for an organochlorine pesticide adsorption. <i>Microporous and Mesoporous Materials</i> , <b>2016</b> , 225, 342-354 | 5.3  | 29 |
| 503 | A sensitive electrochemical sensor for the determination of carvedilol based on a modified glassy carbon electrode with ordered mesoporous carbon. <i>RSC Advances</i> , <b>2016</b> , 6, 13160-13167                      | 3.7  | 21 |
| 502 | Enhanced removal of Cd(II) and Pb(II) by composites of mesoporous carbon stabilized alumina. <b>2016</b> , 369, 215-223                                                                                                    |      | 43 |
| 501 | Desorption of Polycyclic Aromatic Hydrocarbons on Mesoporous Sorbents: Thermogravimetric Experiments and Kinetics Study. <b>2016</b> , 55, 1183-1191                                                                       |      | 10 |
| 500 | Integrative chemistry: Positioning chemical reactors within the geometric space as a tool for the design of advanced functional materials. <b>2016</b> , 19, 216-230                                                       |      | 2  |
| 499 | One-step solgel synthesis of hierarchically porous, flow-through carbon/silica monoliths. <i>RSC Advances</i> , <b>2016</b> , 6, 12298-12310                                                                               | 3.7  | 16 |
| 498 | Advanced strategies for improving the analytical performance of Pt-based nonenzymatic electrochemical glucose sensors: a minireview. <b>2016</b> , 8, 1755-1764                                                            |      | 38 |
| 497 | Preparation of N-doped microporous carbon nanospheres by direct carbonization of as-prepared mesoporous silica nanospheres containing cetylpyridinium bromide template. <i>Carbon</i> , <b>2016</b> , 99, 8-16             | 10.4 | 18 |
| 496 | Surface area characteristics of furfuryl-alcohol-derived inverse opal carbons produced from silica inverse opal templates. <b>2016</b> , 51, 2573-2584                                                                     |      | 3  |
| 495 | Highly ordered mesoporous spinel ZnCo2O4 as a high-performance anode material for lithium-ion batteries. <b>2016</b> , 197, 58-67                                                                                          |      | 63 |
| 494 | Stability analysis of functionalized mesoporous carbon materials in aqueous solution. <b>2016</b> , 290, 209-21                                                                                                            | 9    | 28 |
| 493 | Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor. <b>2016</b> , 3, 140-148                                                                                                        |      | 50 |
| 492 | Silica-templated ordered mesoporous carbon thin films as electrodes for micro-capacitors. <i>Journal of Materials Chemistry A</i> , <b>2016</b> , 4, 4570-4579                                                             | 13   | 36 |

| 491                      | Quartz crystal microbalance sensor based on molecularly imprinted polymer membrane and three-dimensional Au nanoparticles@mesoporous carbon CMK-3 functional composite for ultrasensitive and specific determination of citrinin. <b>2016</b> , 230, 272-280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 50                                                              |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------|
| 490                      | Effects of tailoring and dehydrated cross-linking on morphology evolution of ordered mesoporous carbons. <i>RSC Advances</i> , <b>2016</b> , 6, 19515-19521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.7        | 8                                                               |
| 489                      | Easy and eco-friendly synthesis of ordered mesoporous carbons by self-assembly of tannin with a block copolymer. <b>2016</b> , 18, 3265-3271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 44                                                              |
| 488                      | Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries. <b>2016</b> , 380, 151-158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 38                                                              |
| 487                      | Zirconium-promoted hydrothermal synthesis of hierarchical porous carbons with ordered cubic mesostructures under acidic aqueous conditions. <i>RSC Advances</i> , <b>2016</b> , 6, 4343-4353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.7        |                                                                 |
| 486                      | Self-Templated Synthesis of Mesoporous Carbon from Carbon Tetrachloride Precursor for Supercapacitor Electrodes. <b>2016</b> , 8, 6779-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 62                                                              |
| 485                      | Variation in Crystalline Phases: Controlling the Selectivity between Silicon and Silicon Carbide via Magnesiothermic Reduction using Silica/Carbon Composites. <b>2016</b> , 28, 1526-1536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 35                                                              |
| 484                      | Cycloparaphenylene as a molecular porous carbon solid with uniform pores exhibiting adsorption-induced softness. <i>Chemical Science</i> , <b>2016</b> , 7, 4204-4210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.4        | 44                                                              |
| 483                      | Template assisted synthesis of porous carbons revisited IWhere does the porosity come from?. <i>Microporous and Mesoporous Materials</i> , <b>2016</b> , 224, 163-167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.3        | 7                                                               |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                 |
| 482                      | The effect of surface modification of mesoporous carbons on Auramine-O dye removal from water. <b>2016</b> , 22, 531-540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 21                                                              |
| 482                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 203                                                             |
|                          | 2016, 22, 531-540  Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. 2016,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                 |
| 481                      | 2016, 22, 531-540  Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. 2016, 57, 103-152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7        | 203                                                             |
| 481<br>480               | 2016, 22, 531-540  Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. 2016, 57, 103-152  Template-directed metal oxides for electrochemical energy storage. 2016, 3, 1-17  A new strategy of spray pyrolysis to prepare porous carbon nanosheets with enhanced ionic                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.7        | 203                                                             |
| 481<br>480<br>479        | Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. 2016, 57, 103-152  Template-directed metal oxides for electrochemical energy storage. 2016, 3, 1-17  A new strategy of spray pyrolysis to prepare porous carbon nanosheets with enhanced ionic sorption capacity. RSC Advances, 2016, 6, 1686-1693  Preparation of a novel starch-derived three-dimensional ordered macroporous carbon for                                                                                                                                                                                                                                                                                                         | 3.7        | <ul><li>203</li><li>43</li><li>7</li></ul>                      |
| 481<br>480<br>479<br>478 | Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. 2016, 57, 103-152  Template-directed metal oxides for electrochemical energy storage. 2016, 3, 1-17  A new strategy of spray pyrolysis to prepare porous carbon nanosheets with enhanced ionic sorption capacity. RSC Advances, 2016, 6, 1686-1693  Preparation of a novel starch-derived three-dimensional ordered macroporous carbon for improving the dissolution rate and oral bioavailability of water-insoluble drugs. 2016, 118, 267-275                                                                                                                                                                                                    | 3·7<br>5·3 | <ul><li>203</li><li>43</li><li>7</li><li>9</li></ul>            |
| 481<br>480<br>479<br>478 | Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. 2016, 57, 103-152  Template-directed metal oxides for electrochemical energy storage. 2016, 3, 1-17  A new strategy of spray pyrolysis to prepare porous carbon nanosheets with enhanced ionic sorption capacity. RSC Advances, 2016, 6, 1686-1693  Preparation of a novel starch-derived three-dimensional ordered macroporous carbon for improving the dissolution rate and oral bioavailability of water-insoluble drugs. 2016, 118, 267-275  Kinetics of protein adsorption by nanoporous carbons with different pore size. 2016, 22, 541-552  Catalytic hydroxylation enables phenol to efficient assembly of ordered mesoporous carbon under |            | <ul><li>203</li><li>43</li><li>7</li><li>9</li><li>12</li></ul> |

## (2017-2016)

| 473 | Comparing hydrogen sorption in different Pd-doped pristine and surface-modified nanoporous carbons. <i>Carbon</i> , <b>2016</b> , 98, 1-14                                                                          | 10.4 | 9   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 472 | Phosphorus-doped ordered mesoporous carbons embedded with Pd/Fe bimetal nanoparticles for the dechlorination of 2,4-dichlorophenol. <b>2016</b> , 6, 1930-1939                                                      |      | 60  |
| 471 | Crystalline ordered mesoporous Cu0.25Co2.75O4 prepared with selected mesoporous silica templates and their performances as DeN2O catalysts. <i>Microporous and Mesoporous Materials</i> , <b>2016</b> , 221, 91-100 | 5.3  | 6   |
| 470 | €Cyclodextrin incorporated nanoporous carbon: Host@uest inclusion for removal of p-Nitrophenol and pesticides from aqueous solutions. <b>2016</b> , 283, 1424-1434                                                  |      | 42  |
| 469 | Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides. <b>2016</b> , 146, 272-8                                                                        |      | 17  |
| 468 | Mesostructured Zeolites. <b>2016</b> , 101-148                                                                                                                                                                      |      | 3   |
| 467 | Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing. <b>2017</b> , 13, 1603107                                                                                          |      | 30  |
| 466 | Miniature structures meticulously replicated in carbon. <b>2017</b> , 9, e339-e339                                                                                                                                  |      |     |
| 465 | Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. <b>2017</b> , 7, 40259                                                                  |      | 51  |
| 464 | Ordered mesoporous materials for lithium-ion batteries. <i>Microporous and Mesoporous Materials</i> , <b>2017</b> , 243, 355-369                                                                                    | 5.3  | 48  |
| 463 | Functionalization of Mesoporous Carbon Materials for Selective Separation of Lanthanides under Acidic Conditions. <b>2017</b> , 9, 12003-12012                                                                      |      | 47  |
| 462 | Synthesis of wrinkled mesoporous carbon. <b>2017</b> , 195, 139-142                                                                                                                                                 |      | 12  |
| 461 | Vanadium-containing mesoporous carbon and mesoporous carbon nanoparticles as catalysts for benzene hydroxylation reaction. <b>2017</b> , 11, 61-67                                                                  |      | 8   |
| 460 | Molecular Modeling and Adsorption Properties of Ordered Silica-Templated CMK Mesoporous Carbons. <b>2017</b> , 33, 2109-2121                                                                                        |      | 13  |
| 459 | Soft templated mesoporous carbons: Tuning the porosity for the adsorption of large organic pollutants. <i>Carbon</i> , <b>2017</b> , 116, 528-546                                                                   | 10.4 | 92  |
| 458 | Cyclodextrin-based Mesoporous N-Doped Carbon Hybrids with High Heterocatalytic Activity. <b>2017</b> , 6, 1195-1200                                                                                                 |      | 1   |
| 457 | Nanoconfined NaAlH Conversion Electrodes for Li Batteries. <b>2017</b> , 2, 1956-1967                                                                                                                               |      | 11  |
| 456 | Adsorption of VOCs onto engineered carbon materials: A review. <b>2017</b> , 338, 102-123                                                                                                                           |      | 672 |

| 455             | Effect of carbon precursors and pore expanding reagent on ordered mesoporous carbon for resorcinol removal. <b>2017</b> , 17, 256-263                                                                                                                   |      | 18  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 454             | Production of furfural from xylose and corn stover catalyzed by a novel porous carbon solid acid in Evalerolactone. <i>RSC Advances</i> , <b>2017</b> , 7, 29916-29924                                                                                  | 3.7  | 45  |
| 453             | Enhancing Mixed-Matrix Membrane Performance with Metal Drganic Framework Additives. <b>2017</b> , 17, 4467-4488                                                                                                                                         |      | 92  |
| 452             | Facile large-scale synthesis of three-dimensional graphene-like ordered microporous carbon via ethylene carbonization in CaX zeolite template. <i>Carbon</i> , <b>2017</b> , 118, 517-523                                                               | 10.4 | 26  |
| 451             | Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes. <b>2017</b> , 7, 45147                                                                                                      |      | 52  |
| 45 <sup>0</sup> | Hypercrosslinked polyHIPEs as precursors to designable, hierarchically porous carbon foams. <b>2017</b> , 115, 146-153                                                                                                                                  |      | 37  |
| 449             | Adsorption thermodynamics and desorption properties of gaseous polycyclic aromatic hydrocarbons on mesoporous adsorbents. <b>2017</b> , 23, 361-371                                                                                                     |      | 18  |
| 448             | Novel Preparation of Titania-Modified CMK-3 Nanostructured Material as Support for Ir Catalyst Applied in Hydrodenitrogenation of Indole. <b>2017</b> , 147, 1029-1039                                                                                  |      | 10  |
| 447             | Performance and Mechanism of Uranium Adsorption from Seawater to Poly(dopamine)-Inspired Sorbents. <b>2017</b> , 51, 4606-4614                                                                                                                          |      | 110 |
| 446             | Synthesis and catalytic performance in the propene epoxidation of a vanadium catalyst supported on mesoporous silica obtained with the aid of sucrose. <b>2017</b> , 41, 2955-2963                                                                      |      | 2   |
| 445             | A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. <i>Advanced Energy Materials</i> , <b>2017</b> , 7, 1601424                                                  | 21.8 | 389 |
| 444             | Block copolymer templated carbonization of nitrogen containing polymer to create fine and mesoporous carbon for oxygen reduction catalyst. <b>2017</b> , 55, 464-470                                                                                    |      | 14  |
| 443             | Mesoporous carbon nanoshells for high hydrophobic drug loading, multimodal optical imaging, controlled drug release, and synergistic therapy. <i>Nanoscale</i> , <b>2017</b> , 9, 1434-1442                                                             | 7.7  | 31  |
| 442             | Ni-catalyzed carbonization of furfuryl alcohol polymer in ordered mesoporous silica MCM-48 giving ordered mesoporous carbon CMK-1 with high electric double-layer capacitance. <i>Microporous and Mesoporous Materials</i> , <b>2017</b> , 241, 123-131 | 5.3  | 11  |
| 441             | Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. <b>2017</b> , 1, 1001-1027                                                                                                                            |      | 130 |
| 440             | Impact of pore size of ordered mesoporous carbon FDU-15-supported platinum catalysts on oxygen reduction reaction. <b>2017</b> , 42, 3325-3334                                                                                                          |      | 21  |
| 439             | Sustainable synthesis of alkaline metal oxide-mesoporous carbons via mechanochemical coordination self-assembly. <i>Journal of Materials Chemistry A</i> , <b>2017</b> , 5, 23446-23452                                                                 | 13   | 15  |
| 438             | One-pot synthesis of Ni nanoparticle/ordered mesoporous carbon composite electrode materials for electrocatalytic reduction of aromatic ketones. <i>Nanoscale</i> , <b>2017</b> , 9, 17807-17813                                                        | 7.7  | 9   |

| 437                             | Synthesis of pseudo-CMK-3 carbon replicas by precipitation polycondensation of furfuryl alcohol in the pore system of SBA-15 detemplated using KMnO4. <b>2017</b> , 13, 6-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                        |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 436                             | Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking. <b>2017</b> , 8, 15020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 134                       |
| 435                             | Effect of Embedding Platinum Clusters in Alumina on Sintering, Coking, and Activity. <b>2017</b> , 121, 21527-21534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                         |
| 434                             | Activated Carbon and Ordered Mesoporous Carbon-Based Catalysts for Biomass Conversion. <b>2017</b> , 17-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                         |
| 433                             | Preparation of nitrogen and sulfur co-doped ordered mesoporous carbon for enhanced microwave absorption performance. <b>2017</b> , 28, 375705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                        |
| 432                             | Adsorption of Three Flavonoids from Aqueous Solutions onto Mesoporous Carbon. <b>2017</b> , 62, 3178-3186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                         |
| 431                             | Oxidative esterification of furfural by Au nanoparticles supported CMK-3 mesoporous catalysts. <b>2017</b> , 545, 33-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32                        |
| 430                             | Self-Assembly Synthesis of Large-Pore Fe/N-Codoped Ordered Mesoporous Carbon for Supercapacitor Electrode Materials. <b>2017</b> , 164, A2328-A2334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                        |
| 429                             | Rational Design of Nanostructured Carbon Materials: Contribution to Cellulose Processing. <b>2017</b> , 627-654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O                         |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| 428                             | Application of Nanocarbon Materials to Catalysis. <b>2017</b> , 37-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                         |
| 428<br>427                      | Application of Nanocarbon Materials to Catalysis. 2017, 37-56  Ex-situ decoration of ordered mesoporous carbon with palladium nanoparticles via polyoxometalates and for sensitive detection of acetaminophen in pharmaceutical products. 2017, 505, 615-621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 27                      |
| <u> </u>                        | Ex-situ decoration of ordered mesoporous carbon with palladium nanoparticles via polyoxometalates and for sensitive detection of acetaminophen in pharmaceutical products. <b>2017</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| 427                             | Ex-situ decoration of ordered mesoporous carbon with palladium nanoparticles via polyoxometalates and for sensitive detection of acetaminophen in pharmaceutical products. <b>2017</b> , 505, 615-621  ZnO Nanoparticle Fortified Highly Permeable Carbon/Silica Monoliths as a Flow-Through Media.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>2</sup> 7            |
| 427<br>426                      | Ex-situ decoration of ordered mesoporous carbon with palladium nanoparticles via polyoxometalates and for sensitive detection of acetaminophen in pharmaceutical products. <b>2017</b> , 505, 615-621  ZnO Nanoparticle Fortified Highly Permeable Carbon/Silica Monoliths as a Flow-Through Media. <b>2017</b> , 33, 7692-7700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>2</sup> 7            |
| 427<br>426<br>425               | Ex-situ decoration of ordered mesoporous carbon with palladium nanoparticles via polyoxometalates and for sensitive detection of acetaminophen in pharmaceutical products. 2017, 505, 615-621  ZnO Nanoparticle Fortified Highly Permeable Carbon/Silica Monoliths as a Flow-Through Media. 2017, 33, 7692-7700  Mechanochemical synthesis of porous organic materials. <i>Journal of Materials Chemistry A</i> , 2017, 5, 16118-1612  Direct synthesis of ordered mesoporous hydrothermal carbon materials via a modified                                                                                                                                                                                                                                                                                                        | 27<br>5<br>2 <b>7</b> 9   |
| 427<br>426<br>425<br>424        | Ex-situ decoration of ordered mesoporous carbon with palladium nanoparticles via polyoxometalates and for sensitive detection of acetaminophen in pharmaceutical products. 2017, 505, 615-621  ZnO Nanoparticle Fortified Highly Permeable Carbon/Silica Monoliths as a Flow-Through Media. 2017, 33, 7692-7700  Mechanochemical synthesis of porous organic materials. <i>Journal of Materials Chemistry A</i> , 2017, 5, 16118£3612  Direct synthesis of ordered mesoporous hydrothermal carbon materials via a modified soft-templating method. <i>Microporous and Mesoporous Materials</i> , 2017, 253, 215-222  Enhanced hydrogen production of PbTe-PbS/TNAs electrodes modified with ordered mesoporous                                                                                                                    | 27<br>5<br>2 <b>7</b> 9   |
| 427<br>426<br>425<br>424<br>423 | Ex-situ decoration of ordered mesoporous carbon with palladium nanoparticles via polyoxometalates and for sensitive detection of acetaminophen in pharmaceutical products. 2017, 505, 615-621  ZnO Nanoparticle Fortified Highly Permeable Carbon/Silica Monoliths as a Flow-Through Media. 2017, 33, 7692-7700  Mechanochemical synthesis of porous organic materials. <i>Journal of Materials Chemistry A</i> , 2017, 5, 16118±1612  Direct synthesis of ordered mesoporous hydrothermal carbon materials via a modified soft-templating method. <i>Microporous and Mesoporous Materials</i> , 2017, 253, 215-222  Enhanced hydrogen production of PbTe-PbS/TNAs electrodes modified with ordered mesoporous carbon. 2017, 504, 652-659  Comprehensive Understanding of the Effects of Carbon Nanostructures on Redox Catalytic | 27<br>5<br>27<br>21<br>10 |

| 419 | Metallic cobalt nanoparticles imbedded into ordered mesoporous carbon: A non-precious metal catalyst with excellent hydrogenation performance. <b>2017</b> , 505, 789-795                                                   |      | 42  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 418 | Mesoporous carbon nitrides: synthesis, functionalization, and applications. <i>Chemical Society Reviews</i> , <b>2017</b> , 46, 72-101                                                                                      | 58.5 | 427 |
| 417 | Nanomanufacturing for Aerospace Applications. <i>Indian Institute of Metals Series</i> , <b>2017</b> , 85-101                                                                                                               | 0.3  | 3   |
| 416 | Development of a novel carbon-coating strategy for producing core-shell structured carbon coated LiFePO for an improved Li-ion battery performance. <b>2016</b> , 19, 175-188                                               |      | 16  |
| 415 | Mesoporous Carbon Materials with Functional Compositions. <b>2017</b> , 23, 1986-1998                                                                                                                                       |      | 44  |
| 414 | A reusable electrochemical biosensor for highly sensitive detection of mercury ions with an anionic intercalator supported on ordered mesoporous carbon/self-doped polyaniline nanofibers platform. <b>2017</b> , 117, 7-14 |      | 40  |
| 413 | Performance of mesoporous silicas and carbon in adsorptive removal of phenanthrene as a typical gaseous polycyclic aromatic hydrocarbon. <i>Microporous and Mesoporous Materials</i> , <b>2017</b> , 239, 9-18              | 5.3  | 22  |
| 412 | Pt/CN-doped electrocatalysts: Superior electrocatalytic activity for methanol oxidation reaction and mechanistic insight into interfacial enhancement. <b>2017</b> , 203, 541-548                                           |      | 128 |
| 411 | Synthesis of ordered mesoporous carbon using m-Diethynylbenzene as a new precursor. <b>2017</b> , 189, 317-                                                                                                                 | -320 | 5   |
| 410 | Nitrogen-doped porous carbon derived from surface-attached polymer layers for oxygen reduction reaction under acidic conditions. <b>2017</b> , 32, 1287-1292                                                                |      |     |
| 409 | . 2017,                                                                                                                                                                                                                     |      |     |
| 408 | High drug-loading nanomedicines: progress, current status, and prospects. <b>2017</b> , 12, 4085-4109                                                                                                                       |      | 230 |
| 407 | Templated Synthesis for Nanostructured Materials. 2017, 201-232                                                                                                                                                             |      | 1   |
| 406 | Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. <b>2017</b> , 17,                                                                                                                              |      | 48  |
| 405 | Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors. <b>2017</b> , 13, 1332-1341                                                                                                  |      | 19  |
| 404 | Self-Assembly for Mesoporous Carbon. <b>2017</b> , 75-87                                                                                                                                                                    |      |     |
| 403 | Synthetic Chemistry of the Inorganic Ordered Porous Materials. 2017, 389-428                                                                                                                                                |      | 2   |
| 402 | Removal of copper ions from an aqueous solution containing a chelating agent by electrosorption on mesoporous carbon electrodes. <b>2018</b> , 85, 29-39                                                                    |      | 11  |

| 401 | Mesoporous manganese phthalocyanine-based materials for electrochemical water oxidation via tailored templating. <b>2018</b> , 8, 1517-1521                                                                      |      | 9   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 400 | Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core-Shell Materials. <b>2018</b> , 30, e1704439                                                                             |      | 75  |
| 399 | Synthesis and characterisation of Ag-nanoparticles immobilised on ordered mesoporous carbon as an efficient sensing platform: application to electrocatalytic determination of hydrazine. <b>2018</b> , 98, 156- | 170  | 7   |
| 398 | High surface area black TiO2 templated from ordered mesoporous carbon for solar driven hydrogen evolution. <i>Microporous and Mesoporous Materials</i> , <b>2018</b> , 268, 162-169                              | 5.3  | 14  |
| 397 | Zeolite-templated carbons - three-dimensional microporous graphene frameworks. <i>Chemical Communications</i> , <b>2018</b> , 54, 5648-5673                                                                      | 5.8  | 95  |
| 396 | Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR. <i>Carbon</i> , <b>2018</b> , 131, 102-110                                                       | 10.4 | 9   |
| 395 | Synthesis of N-Doped Mesoporous Carbon Nanorods through Nano-Confined Reaction: High-Performance Catalyst Support for Hydrogenation of Phenol Derivatives. <b>2018</b> , 13, 822-829                             |      | 7   |
| 394 | Oxidized template-synthesized mesoporous carbon with pH-dependent adsorption activity: A promising adsorbent for removal of hydrophilic ionic liquid. <b>2018</b> , 440, 821-829                                 |      | 10  |
| 393 | Wood Nanotechnology for Strong, Mesoporous, and Hydrophobic Biocomposites for Selective Separation of Oil/Water Mixtures. <b>2018</b> , 12, 2222-2230                                                            |      | 156 |
| 392 | Template-Derived Submicrometric Carbon Spheres for LithiumBulfur and Sodium-Ion Battery Electrodes. <b>2018</b> , 6, 1797-1804                                                                                   |      | 11  |
| 391 | Study on the preparation of ordered mesoporous carbon-based catalyst from waste microalgal biomass for the synthesis of biokerosene. <i>Journal of Porous Materials</i> , <b>2018</b> , 25, 1567-1576            | 2.4  | 4   |
| 390 | Study of the performance of amino-functionalized ordered mesoporous carbon in the transesterification of soybean oil. <b>2018</b> , 124, 247-264                                                                 |      | 4   |
| 389 | Physicochemical characterization of ordered mesoporous carbons functionalized by wet oxidation. <b>2018</b> , 53, 5997-6007                                                                                      |      | 9   |
| 388 | Design of novel order mesostructured superacid catalyst from rice husk for the conversion of linseed oil to methyl esters. <i>Chemical Papers</i> , <b>2018</b> , 72, 119-128                                    | 1.9  | 3   |
| 387 | Molecular simulation and experimental validation of resorcinol adsorption on Ordered Mesoporous Carbon (OMC). <b>2018</b> , 354, 258-265                                                                         |      | 35  |
| 386 | Green Nanotechnology for Biofuel Production. 2018,                                                                                                                                                               |      | 3   |
| 385 | Facile synthesis of hierarchically porous carbonaceous materials derived from olefin/aldehyde precursors using silica as templates <i>RSC Advances</i> , <b>2018</b> , 8, 11462-11468                            | 3.7  | 7   |
| 384 | Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. <i>Chemical Society Reviews</i> , <b>2018</b> , 47, 2680-2721                                               | 58.5 | 522 |

| 383         | Synthesis of large pore sized ordered mesoporous carbons using triconstituent self-assembly strategy under different acidic conditions and ratios of carbon precursor to structure directing agent. <b>2018</b> , 296, 799-807                         |     | 1   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 382         | Adsorption of Pb2+on Thiol-functionalized Mesoporous Silica, SH-MCM-48. <b>2018</b> , 979, 012058                                                                                                                                                      |     | 1   |
| 381         | Potassium-incorporated mesoporous carbons: strong solid bases with enhanced catalytic activity and stability. <b>2018</b> , 8, 2794-2801                                                                                                               |     | 7   |
| <b>3</b> 80 | Hydrothermal synthesis of mesoporous carbons for adsorption of two alkaloids. <i>Journal of Porous Materials</i> , <b>2018</b> , 25, 95-105                                                                                                            | 2.4 | 7   |
| 379         | Wrinkled mesoporous carbon supported Pd nanoparticles for hydrogenation and aerobic oxidation reactions. <i>Journal of Porous Materials</i> , <b>2018</b> , 25, 15-21                                                                                  | 2.4 | 4   |
| 378         | Porous carbon monoliths with pore sizes adjustable between 10 nm and 2 fn prepared by phase separation linew insights in the relation between synthesis composition and resulting structure.  Microporous and Mesoporous Materials, 2018, 255, 271-280 | 5.3 | 13  |
| 377         | Microporous zeolite-templated carbon as an adsorbent for the removal of long alkyl-chained imidazolium-based ionic liquid from aqueous media. <i>Microporous and Mesoporous Materials</i> , <b>2018</b> , 260, 59-69                                   | 5.3 | 8   |
| 376         | Facile synthesis of metal-organic frameworks/ordered mesoporous carbon composites with enhanced electrocatalytic ability for hydrazine. <b>2018</b> , 512, 127-133                                                                                     |     | 67  |
| 375         | An efficient carbon catalyst supports with mesoporous graphene-like morphology. <i>Journal of Porous Materials</i> , <b>2018</b> , 25, 913-921                                                                                                         | 2.4 | 2   |
| 374         | Modification and application of mesoporous carbon adsorbent for removal of endocrine disruptor bisphenol A in aqueous solutions. <b>2018</b> , 53, 2337-2350                                                                                           |     | 17  |
| 373         | Monolithic mesoporous graphitic composites as super capacitors: from Starbons to Starenes .<br>Journal of Materials Chemistry A, <b>2018</b> , 6, 1119-1127                                                                                            | 13  | 11  |
| 372         | Advanced Biomass-Derived Electrocatalysts for the Oxygen Reduction Reaction. <b>2018</b> , 30, e1703691                                                                                                                                                |     | 202 |
| 371         | Analytical Understanding of the Materials Design with Well-Described Shrinkages on Multiscale. <b>2018</b> , 24, 6886-6904                                                                                                                             |     | 10  |
| 370         | Contrastive study on porphyrinic iron metal-organic framework supported on various carbon matrices as efficient electrocatalysts. <b>2018</b> , 513, 438-447                                                                                           |     | 10  |
| 369         | . 2018,                                                                                                                                                                                                                                                |     | 6   |
| 368         | 4. Materials. <b>2018</b> , 167-272                                                                                                                                                                                                                    |     |     |
| 367         | Hydrogen Sorption Characteristics of Ordered Mesoporous Carbons: Experimental and Modeling View Point. <b>2018</b> ,                                                                                                                                   |     | 1   |
| 366         | Crucial Factors for the Application of Functional Nanoporous Carbon-Based Materials in Energy and Environmental Applications. <b>2018</b> , 4, 56                                                                                                      |     | 6   |

| 365 | Application of Novel Carbonaceous Materials as Support for Fuel Cell Electrocatalysts. 2018, 175-213                                                                                                                                  | 1    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 364 | Nanocasting and Direct Synthesis Strategies for Mesoporous Carbons as Supercapacitor Electrodes. <b>2018</b> , 30, 7391-7412                                                                                                          | 65   |
| 363 | A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor. <i>Carbon</i> , <b>2018</b> , 140, 404-412                                                                                                             | 4 67 |
| 362 | Novel and simple one-pot method for the synthesis of TiO2 modified-CMK-3 applied in oxidative desulfurization of refractory organosulfur compounds. <b>2018</b> , 226, 498-507                                                        | 11   |
| 361 | Synthesis and characterization of tungstophosphoric acid-modified mesoporous sponge-like TUD-1 materials. <b>2018</b> , 87, 204-215                                                                                                   | 3    |
| 360 | High surface area nanoporous carbon derived from high quality jute from Bangladesh. <b>2018</b> , 216, 491-495                                                                                                                        | 18   |
| 359 | Sulfonated mesoporous carbon and silica-carbon nanocomposites for biomass conversion. <b>2018</b> , 236, 518-545                                                                                                                      | 65   |
| 358 | Hard-template synthesis of micro-mesoporous organic frameworks with controlled hierarchicity.  Chemical Communications, <b>2018</b> , 54, 8335-8338                                                                                   | 9    |
| 357 | High-throughput fabrication of porous carbon by chemical foaming strategy for high performance supercapacitor. <b>2018</b> , 352, 459-468                                                                                             | 50   |
| 356 | Solvent-free synthesis and KOH activation of mesoporous carbons using resorcinol/Pluronic F127/hexamethylenetetramine mixture and their application to EDLC. <i>Microporous and Mesoporous Materials</i> , <b>2018</b> , 272, 217-221 | 19   |
| 355 | Facile synthesis of soft-templated carbon monoliths with hierarchical porosity for fast adsorption from liquid media. <i>Microporous and Mesoporous Materials</i> , <b>2018</b> , 272, 155-165                                        | 11   |
| 354 | Microporous Humins Synthesized in Concentrated Sulfuric Acid Using 5-Hydroxymethyl Furfural. <b>2018</b> , 3, 8537-8545                                                                                                               | 9    |
| 353 | Highly Graphitic Mesoporous Fe,N-Doped Carbon Materials for Oxygen Reduction Electrochemical Catalysts. <b>2018</b> , 10, 25337-25349                                                                                                 | 33   |
| 352 | WITHDRAWN: Preparation of mesoporous magnetic Fe3O4/C nanomaterial and its excellent adsorption properties. <b>2018</b> ,                                                                                                             |      |
| 351 | Polymer-Derived Ceramics with engineered mesoporosity: From design to application in catalysis. <b>2018</b> , 350, 569-586                                                                                                            | 34   |
| 350 | Nanostructured porous carbons for electrochemical energy conversion and storage. <b>2018</b> , 350, 307-312                                                                                                                           | 13   |
| 349 | Bimetallic Nanoframes and Nanoporous Structures. <b>2018</b> , 172-246                                                                                                                                                                | 1    |
| 348 | A vesicle-aggregation-assembly approach to highly ordered mesoporous Edumina microspheres with shifted double-diamond networks. <i>Chemical Science</i> , <b>2018</b> , 9, 7705-7714                                                  | 14   |

| 347 | Template, surfactant, stabilizer free controllable synthesis of various morphologies platinum decorated ordered mesoporous carbon nano architecture for highperformance electrochemical 4 sensing. <i>Journal of Electroanalytical Chemistry</i> , <b>2018</b> , 825, 40-50 | 1   | 1   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 346 | Ultramicroporous Carbon Synthesis Using Lithium-Ion Effect in ZSM-5 Zeolite Template. <b>2018</b> , 30, 6513-6                                                                                                                                                              | 520 | 7   |
| 345 | Synthesis and functionalization of ordered mesoporous carbons supported Pt nanoparticles for hydroconversion of n-heptane. <b>2018</b> , 42, 14517-14529                                                                                                                    |     | 6   |
| 344 | Solid-state nanocasting synthesis of ordered mesoporous CoN-carbon catalysts for highly efficient hydrogenation of nitro compounds. <i>Nanoscale</i> , <b>2018</b> , 10, 16839-16847                                                                                        | -7  | 22  |
| 343 | A 3D Organically Synthesized Porous Carbon Material for Lithium-Ion Batteries. <b>2018</b> , 57, 11952-11956                                                                                                                                                                |     | 47  |
| 342 | One-Pot Soft-Template Synthesis of Nanostructured Copper-Supported Mesoporous Carbon FDU-15 Electrocatalysts for Efficient CO Reduction. <b>2018</b> , 19, 1371-1381                                                                                                        |     | 13  |
| 341 | A 3D Organically Synthesized Porous Carbon Material for Lithium-Ion Batteries. <b>2018</b> , 130, 12128-12132                                                                                                                                                               |     | 3   |
| 340 | Oxidative dehydrogenation of ethylbenzene over CMK-1 and CMK-3 carbon replicas with various mesopore architectures. <i>Microporous and Mesoporous Materials</i> , <b>2018</b> , 271, 262-272                                                                                | -3  | 11  |
| 339 | History of OrganicIhorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. <b>2018</b> , 28, 1704158                                                                                                                                                |     | 167 |
| 338 | Synthesis of Nanoporous Carbon and Their Application to Fuel Cell and Capacitor. <b>2019</b> , 135-158                                                                                                                                                                      |     |     |
| 337 | Metal- and halogen-free synthesis of ordered mesoporous carbon materials. <i>Microporous and Mesoporous Materials</i> , <b>2019</b> , 289, 109622                                                                                                                           | -3  | 7   |
| 336 | One-Step Synthesis of Nitrogen-Doped Hydrophilic Mesoporous Carbons from Chitosan-Based Triconstituent System for Drug Release. <b>2019</b> , 14, 259                                                                                                                       |     | 10  |
| 335 | Near-Room-Temperature Synthesis of Sulfonated Carbon Nanoplates and Their Catalytic Application. <b>2019</b> , 7, 12707-12717                                                                                                                                               |     | 9   |
| 334 | Superior Mesoporosity of Lipid-Free Spent Coffee Ground Residues. <b>2019</b> , 12, 4074-4081                                                                                                                                                                               |     | 1   |
| 333 | THE EFFECT OF OXYGEN AND NITROGEN FUNCTIONAL GROUPS ON THE ELECTROCHEMICAL PERFORMANCE OF ORDERED CARBON. <b>2019</b> , 81,                                                                                                                                                 |     |     |
| 332 | A simple method for synthesis of ordered mesoporous carbon. <b>2019</b> , 98, 107480                                                                                                                                                                                        |     | 15  |
| 331 | The effect of crystal facets and induced porosity on the performance of monoclinic BiVO4 for the enhanced visible-light driven photocatalytic abatement of methylene blue. <i>Journal of Environmental Chemical Engineering</i> , <b>2019</b> , 7, 103265                   | 5.8 | 22  |
| 330 | Birth of a class of nanomaterial. <b>2019</b> , 575, 40-41                                                                                                                                                                                                                  |     | 22  |

| 329                             | Anchoring ultrafine Co3O4 grains on reduced oxide graphene by dual-template nanocasting strategy for high-energy solid state supercapacitor. <b>2019</b> , 326, 134965                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                 |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 328                             | Actinide and Lanthanide Adsorption onto Hierarchically Porous Carbons Beads: A High Surface Affinity for Pu. <i>Nanomaterials</i> , <b>2019</b> , 9,  5-4                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                  |
| 327                             | An Assembly and Interfacial Templating Route to Carbon Supercapacitors with Simultaneously Tailored Meso- and Microstructures. <b>2019</b> , 11, 43509-43519                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                  |
| 326                             | High benzene adsorption capacity of micro-mesoporous carbon spheres prepared from XAD-4 resin beads with pores protected effectively by silica. <b>2019</b> , 54, 13892-13900                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                  |
| 325                             | Rich and Stable Interlayer Porous Bamboo Carbon Sulfonic Acids Constructed by Silica Intercalation as Cheap and Robust Acid Catalysts. <b>2019</b> , 92, 1824-1833                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                  |
| 324                             | Carbon-Based Nanomaterials in Sensors for Food Safety. <i>Nanomaterials</i> , <b>2019</b> , 9, 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36                 |
| 323                             | Pore shape-reflecting morphosynthesis of lithium niobium oxide via mixed chloride flux growth in the presence of mesoporous silica. <b>2019</b> , 1, 1726-1730                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                  |
| 322                             | Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review. <b>2019</b> , 130, 105384                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103                |
| 321                             | Electroanalysis of isoniazid and rifampicin: Role of nanomaterial electrode modifiers. 2019, 146, 111731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                 |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
| 320                             | Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. <b>2019</b> , 103, 180-234                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 229                |
| 320                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 229                |
|                                 | Designing and Fabricating Ordered Mesoporous Metal Oxides for COlCatalytic Conversion: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| 319                             | Designing and Fabricating Ordered Mesoporous Metal Oxides for COlCatalytic Conversion: A Review and Prospect. <b>2019</b> , 12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                 |
| 319                             | Designing and Fabricating Ordered Mesoporous Metal Oxides for COlCatalytic Conversion: A Review and Prospect. 2019, 12,  Casting Nanoporous Platinum in Metal-Organic Frameworks. 2019, 31, e1807553                                                                                                                                                                                                                                                                                                                                                                                                    | 21<br>8<br>4       |
| 319<br>318<br>317               | Designing and Fabricating Ordered Mesoporous Metal Oxides for COlCatalytic Conversion: A Review and Prospect. 2019, 12,  Casting Nanoporous Platinum in Metal-Organic Frameworks. 2019, 31, e1807553  Design and Fabrication of Porous Nanostructures and Their Applications. 2019, 265-294  Tailored synthesis from rhombic dodecahedron to spherical ordered mesoporous carbon                                                                                                                                                                                                                        | 21<br>8<br>4       |
| 319<br>318<br>317<br>316        | Designing and Fabricating Ordered Mesoporous Metal Oxides for COlCatalytic Conversion: A Review and Prospect. 2019, 12,  Casting Nanoporous Platinum in Metal-Organic Frameworks. 2019, 31, e1807553  Design and Fabrication of Porous Nanostructures and Their Applications. 2019, 265-294  Tailored synthesis from rhombic dodecahedron to spherical ordered mesoporous carbon nanoparticles via one-step strategy. Carbon, 2019, 152, 295-304  Detection of Cigarette Smoke Using a Surface-Acoustic-Wave Gas Sensor with Non-Polymer-Based                                                          | 21<br>8<br>4       |
| 319<br>318<br>317<br>316<br>315 | Designing and Fabricating Ordered Mesoporous Metal Oxides for COICatalytic Conversion: A Review and Prospect. 2019, 12,  Casting Nanoporous Platinum in Metal-Organic Frameworks. 2019, 31, e1807553  Design and Fabrication of Porous Nanostructures and Their Applications. 2019, 265-294  Tailored synthesis from rhombic dodecahedron to spherical ordered mesoporous carbon nanoparticles via one-step strategy. Carbon, 2019, 152, 295-304  Detection of Cigarette Smoke Using a Surface-Acoustic-Wave Gas Sensor with Non-Polymer-Based Oxidized Hollow Mesoporous Carbon Nanospheres. 2019, 10, | 21<br>8<br>4<br>11 |

| 311 | Electrochemical study of hydrazine oxidation by leaf-shaped copper oxide loaded on highly ordered mesoporous carbon composite. <b>2019</b> , 549, 98-104                                                                       |      | 38 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 310 | Enhancement-mode CdS nanobelts field effect transistors and phototransistors with HfO2 passivation. <b>2019</b> , 114, 111103                                                                                                  |      | 5  |
| 309 | Catalytic Carbonization of Acenaphthene for the Preparation of Ordered Mesoporous Carbon CMK-1 toward Application as Electrochemical Double-layer Capacitor Electrode with Ionic Liquid Electrolyte. <b>2019</b> , 48, 521-524 |      | 1  |
| 308 | Performance evaluation of activated carbon with different pore sizes and functional groups for VOC adsorption by molecular simulation. <i>Chemosphere</i> , <b>2019</b> , 227, 9-16                                            | 8.4  | 47 |
| 307 | Effects of pore structure of MgO-templated mesoporous carbon on its supported Pt catalysts for reductive alkylation of p-aminodiphenylamine with methyl isobutyl ketone. <b>2019</b> , 43, 5109-5115                           |      |    |
| 306 | Applications of Nanotechnology in Daily Life. <b>2019</b> , 113-143                                                                                                                                                            |      | 46 |
| 305 | Polyacrylonitrile-derived nanostructured carbon materials. <b>2019</b> , 92, 89-134                                                                                                                                            |      | 50 |
| 304 | The Enhanced Catalytic Performance and Stability of Ordered Mesoporous Carbon Supported Nano-Gold with High Structural Integrity for Glycerol Oxidation. <b>2019</b> , 19, 1913-1925                                           |      | 8  |
| 303 | A novel geopolymer route to porous carbon: high CO adsorption capacity. <i>Chemical Communications</i> , <b>2019</b> , 55, 3266-3269                                                                                           | 5.8  | 17 |
| 302 | Attempts to design porous carbon monoliths using porous concrete as a template - Part II: Some aspects of the pore formation mechanism. <i>Microporous and Mesoporous Materials</i> , <b>2019</b> , 280, 243-247               | 5.3  | 3  |
| 301 | A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. <b>2019</b> , 186, 191    |      | 31 |
| 300 | Tailoring the porosity of a mesoporous carbon by a solvent-free mechanochemical approach. <i>Carbon</i> , <b>2019</b> , 147, 43-50                                                                                             | 10.4 | 12 |
| 299 | Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors. <b>2019</b> , 30, 202001                                                                                                            |      | 42 |
| 298 | Silver Decorated Mesoporous Carbons for the Treatment of Acute and Chronic Wounds, in a Tissue Regeneration Context. <b>2019</b> , 14, 10147-10164                                                                             |      | 6  |
| 297 | Synthesis of high surface area porous carbon from anaerobic digestate and it's electrochemical study as an electrode material for ultracapacitors <i>RSC Advances</i> , <b>2019</b> , 9, 36343-36350                           | 3.7  | 8  |
| 296 | Ordered micro-mesoporous carbon from palm oil cooking waste via nanocasting in HZSM-5/SBA-15 composite: Preparation and adsorption studies. <b>2019</b> , 362, 53-61                                                           |      | 32 |
| 295 | Synergistic impact of Nitu hybrid oxides deposited on ordered mesoporous carbon scaffolds as non-noble catalyst for methanol oxidation. <b>2019</b> , 54, 1502-1519                                                            |      | 13 |
| 294 | Immobilization of horseradish peroxidase on electrospun magnetic nanofibers for phenol removal. <b>2019</b> , 170, 716-721                                                                                                     |      | 49 |

| 293 | Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. <b>2019</b> , 102, 1-71                                                                   |     | 74 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 292 | Synthesis and photocatalytic activity of nano-cobalt ferrite catalyst for the photo-degradation various dyes under simulated sunlight irradiation. <b>2019</b> , 91, 367-376                                |     | 32 |
| 291 | Mesoporous Carbon Based Composites for Removal of Recalcitrant Pollutants From Water. <b>2019</b> , 31-61                                                                                                   |     | 1  |
| 290 | Microwave synthesis and characterization Mg(OH)2/Gr nanocomposites in the presence of sodium dodecyl sulfate (SDS) as a stabilizer agent. <b>2019</b> , 4, 100028                                           |     | 1  |
| 289 | General Synthesis and Physico-chemical Properties of Mesoporous Materials. 2019, 15-85                                                                                                                      |     | 2  |
| 288 | Fabrication of ordered mesoporous carbons with tunable pore architecture by the cosolvent.<br>Journal of Porous Materials, <b>2019</b> , 26, 1131-1135                                                      | 2.4 | 2  |
| 287 | Surface chemical modification of macroporous and mesoporous carbon materials: Effect on their textural and catalytic properties. <i>Microporous and Mesoporous Materials</i> , <b>2019</b> , 279, 334-344   | 5.3 | 11 |
| 286 | Sulfur Cathodes. <b>2019</b> , 33-69                                                                                                                                                                        |     |    |
| 285 | Uniform mesoporous carbon hollow microspheres imparted with surface-enriched gold nanoparticles enable fast flow adsorption and catalytic reduction of nitrophenols. <b>2019</b> , 537, 112-122             |     | 10 |
| 284 | Smart construction of mesoporous carbon templated hierarchical Mg-Al and Ni-Al layered double hydroxides for remarkably enhanced U(VI) management. <b>2019</b> , 359, 1550-1562                             |     | 58 |
| 283 | Mesoporous Carbon-Based Composites for Adsorption of Heavy Metals. <b>2019</b> , 63-102                                                                                                                     |     | 3  |
| 282 | Facile synthesis of nitrogen-enriched nanoporous carbon materials for high performance supercapacitors. <b>2019</b> , 538, 199-208                                                                          |     | 34 |
| 281 | Bimodal mesoporous hard carbons from stabilized resorcinol-formaldehyde resin and silica template with enhanced adsorption capacity. <b>2019</b> , 360, 631-644                                             |     | 16 |
| 280 | A label-free electrochemical biosensor for ultra-sensitively detecting telomerase activity based on the enhanced catalytic currents of acetaminophen catalyzed by Au nanorods. <b>2019</b> , 124-125, 53-58 |     | 50 |
| 279 | Adsorptive removal of resorcinol onto surface modified ordered mesoporous carbon: Kinetics and equilibrium study. <b>2019</b> , 38, S386-S397                                                               |     | 12 |
| 278 | Nanostructuring of carbon materials by means of a calcium phosphate template. <i>Journal of Porous Materials</i> , <b>2019</b> , 26, 747-754                                                                | 2.4 | 3  |
| 277 | Carbon gels with tuned properties for catalysis and energy storage. <b>2019</b> , 89, 12-20                                                                                                                 |     | 5  |
| 276 | Adsorptive removal of resorcinol on a novel ordered mesoporous carbon (OMC) employing COK-19 silica scaffold: Kinetics and equilibrium study. <b>2019</b> , 75, 307-317                                     |     | 21 |

| 275               | Highly dispersed PtCo nanoparticles on micro/nano-structured pyrolytic carbon from refined sugar for methanol electro-oxidation in acid media. <i>Catalysis Today</i> , <b>2020</b> , 349, 159-167                                                                                                                                                                                                                                                                                                                                                                                            | 5.3             | 6             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 274               | Short time synthesis of titania modified-CMK-3 carbon mesostructure as support for Ir-catalyst applied in catalytic hydrotreating. <i>Catalysis Today</i> , <b>2020</b> , 349, 210-216                                                                                                                                                                                                                                                                                                                                                                                                        | 5.3             | 4             |
| 273               | Iron-modified mesoporous materials as catalysts for ODS of sulfur compounds. <i>Catalysis Today</i> , <b>2020</b> , 349, 98-105                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3             | 7             |
| 272               | Three-dimensional printing of porous carbon structures with tailorable pore sizes. <i>Catalysis Today</i> , <b>2020</b> , 347, 2-9                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.3             | 14            |
| 271               | Tannin-derived micro-mesoporous carbons prepared by one-step activation with potassium oxalate and CO. <b>2020</b> , 558, 55-67                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 19            |
| 270               | Preparation and characterization of metal organic framework-derived nanoporous carbons for highly efficient removal of vanadium from aqueous solution. <b>2020</b> , 812, 152051                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 18            |
| 269               | Development of modified mesoporous carbon (CMK-3) for improved adsorption of bisphenol-A. <i>Chemosphere</i> , <b>2020</b> , 238, 124559                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.4             | 20            |
| 268               | An enzyme-free electrochemical biosensor based on well monodisperse Au nanorods for ultra-sensitive detection of telomerase activity. <b>2020</b> , 148, 111834                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 49            |
| 267               | Supported ruthenium nanoparticles on ordered mesoporous carbons using a cyclodextrin-assisted hard-template approach and their applications as hydrogenation catalysts. <b>2020</b> , 383, 343-356                                                                                                                                                                                                                                                                                                                                                                                            |                 | 9             |
| 266               | Ultrasensitive electrochemical sensor for determination of trace carbadox with ordered mesoporous carbon/GCE. <i>Journal of Electroanalytical Chemistry</i> , <b>2020</b> , 857, 113736                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1             | 2             |
| 265               | Top-down synthesis of polyoxometalate-like sub-nanometer molybdenum-oxo clusters as high-performance electrocatalysts. <i>Chemical Science</i> , <b>2019</b> , 11, 1043-1051                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.4             | 13            |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 <del>.4</del> |               |
| 264               | Morphology control of metallic nanoparticles supported on carbon substrates in catalytic conditions. <i>Carbon</i> , <b>2020</b> , 159, 504-511                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.4            | 5             |
| 264               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 5             |
|                   | conditions. <i>Carbon</i> , <b>2020</b> , 159, 504-511  Preparation and characterization of mesoporous activated carbons from nonporous hard carbon via                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |               |
| 263               | conditions. <i>Carbon</i> , <b>2020</b> , 159, 504-511  Preparation and characterization of mesoporous activated carbons from nonporous hard carbon via enhanced steam activation strategy. <b>2020</b> , 242, 122454  Adsorption and catalytic degradation of sulfamethazine by mesoporous carbon loaded nano zero                                                                                                                                                                                                                                                                           |                 | 11            |
| 263               | conditions. <i>Carbon</i> , <b>2020</b> , 159, 504-511  Preparation and characterization of mesoporous activated carbons from nonporous hard carbon via enhanced steam activation strategy. <b>2020</b> , 242, 122454  Adsorption and catalytic degradation of sulfamethazine by mesoporous carbon loaded nano zero valent iron. <b>2020</b> , 83, 123-135  Fabrication of highly ordered mesoporous titania via micelle fusion-aggregation assembly route by synergistic interactions among titanium precursor, block copolymer templates and solvent. <b>2020</b> ,                         |                 | 11            |
| 263<br>262<br>261 | Preparation and characterization of mesoporous activated carbons from nonporous hard carbon via enhanced steam activation strategy. 2020, 242, 122454  Adsorption and catalytic degradation of sulfamethazine by mesoporous carbon loaded nano zero valent iron. 2020, 83, 123-135  Fabrication of highly ordered mesoporous titania via micelle fusion-aggregation assembly route by synergistic interactions among titanium precursor, block copolymer templates and solvent. 2020, 388, 112205  Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by |                 | 11<br>17<br>0 |

## (2020-2020)

| 257 | Enhanced Densification of CO2 Confined in the Pores of a Carbon Material: an in Situ Total Neutron Scattering Study. <b>2020</b> , 14, S221-S224                                                                    |      | 1   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 256 | Mesoporous Crystalline Niobium Oxide with a High Surface Area: A Solid Acid Catalyst for Alkyne Hydration. <b>2020</b> , 12, 47389-47396                                                                            |      | 5   |
| 255 | Strategies for development of nanoporous materials with 2D building units. <i>Chemical Society Reviews</i> , <b>2020</b> ,                                                                                          | 58.5 | 16  |
| 254 | Production techniques of functional solid catalysts. <b>2020</b> , 39-75                                                                                                                                            |      |     |
| 253 | Nitrogen-Doped Mesoporous Carbon Microspheres by Spray Drying-Vapor Deposition for High-Performance Supercapacitor. <b>2020</b> , 8, 592904                                                                         |      | 0   |
| 252 | Porous carbons synthesized by templating approach from fluid precursors and their applications in environment and energy storage: A review. <i>Carbon</i> , <b>2020</b> , 170, 100-118                              | 10.4 | 17  |
| 251 | Block Copolymer Self-Assembly-Directed and Transient Laser Heating-Enabled Nanostructures toward Phononic and Photonic Quantum Materials. <b>2020</b> , 14, 11273-11282                                             |      | 7   |
| 250 | Recent advances in the development and applications of biomass-derived carbons with uniform porosity. <i>Journal of Materials Chemistry A</i> , <b>2020</b> , 8, 18464-18491                                        | 13   | 27  |
| 249 | Activity of microporous lignin-derived carbon-based solid catalysts used in biodiesel production. <b>2020</b> , 164, 1840-1846                                                                                      |      | 12  |
| 248 | Electrochemical Denitrification and Oxidative Dehydrogenation of Ethylbenzene over N-doped Mesoporous Carbon: Atomic Level Understanding of Catalytic Activity by 15N NMR Spectroscopy. <b>2020</b> , 32, 7263-7273 |      | 14  |
| 247 | Template Synthesis of Well-Defined Rutile Nanoparticles by Solid-State Reaction at Room Temperature. <b>2020</b> , 59, 7934-7938                                                                                    |      | 6   |
| 246 | Total neutron scattering study of supercooled CO2 confined in an ordered mesoporous carbon. <i>Carbon</i> , <b>2020</b> , 167, 296-306                                                                              | 10.4 | 1   |
| 245 | Carbon templated strategies of mesoporous silica applied for water desalination: A review. <b>2020</b> , 38, 101520                                                                                                 |      | 14  |
| 244 | The Influence of Structural Properties on the Electrochemical Performance of Surface-Modified Ordered Carbon. <b>2020</b> , 307, 131-135                                                                            |      |     |
| 243 | Hierarchically Structured Zeolites: From Design to Application. <b>2020</b> , 120, 11194-11294                                                                                                                      |      | 112 |
| 242 | Simple and effective strategy to synthesize porous carbon with controlled structures for supercapacitor. <b>2020</b> , 22, 1                                                                                        |      | Ο   |
| 241 | Extremely fast electrochromic supercapacitors based on mesoporous WO3 prepared by an evaporation-induced self-assembly. <b>2020</b> , 12,                                                                           |      | 30  |
| 240 | Metal Nanoparticles Supported on Mesoporous Polymers: Realizing the Synergetic Effect to Achieve Superior Catalytic Performance. <b>2020</b> , 483-511                                                              |      | Ο   |

| 239 | Understanding porous structure of SBA-15 upon pseudomorphic transformation into MCM-41: Non-direct investigation by carbon replication. <b>2020</b> , 92, 131-144                                                                                          |     | 6   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 238 | Recent advances on the synthesis of mesoporous metals for electrocatalytic methanol oxidation. <b>2020</b> , 3, 291-306                                                                                                                                    |     | 2   |
| 237 | Three-dimensional carbon nanotube networks from beta zeolite templates: Thermal stability and mechanical properties. <b>2020</b> , 182, 109781                                                                                                             |     | 3   |
| 236 | Major advances in the development of ordered mesoporous materials. <i>Chemical Communications</i> , <b>2020</b> , 56, 7836-7848                                                                                                                            | 5.8 | 41  |
| 235 | Ordered Mesoporous Ni-P Amorphous Alloy Nanowire Arrays: High-Efficiency Catalyst for Production of Polyol from Sugar. <b>2020</b> , 12, 26101-26112                                                                                                       |     | 18  |
| 234 | Preparation of boron carbide nanosheets with high neutron-shielding properties based on reduced graphene oxide aerogel. <i>Ceramics International</i> , <b>2020</b> , 46, 18131-18141                                                                      | 5.1 | 3   |
| 233 | Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources. <b>2020</b> , 130, 109944                                                                                                              |     | 59  |
| 232 | Li-S Batteries. <b>2020</b> , 425-440                                                                                                                                                                                                                      |     |     |
| 231 | Recent Advances in Nanocasting Cobalt-Based Mesoporous Materials for Energy Storage and Conversion. <b>2020</b> , 11, 465-484                                                                                                                              |     | 6   |
| 230 | Porous Carbon Monoliths Made from Cellulose and Starch. <b>2020</b> , 6, 32                                                                                                                                                                                |     | 3   |
| 229 | Ordered Mesoporous Carbon with Chitosan for Disinfection of Water via Capacitive Deionization. <i>Nanomaterials</i> , <b>2020</b> , 10,                                                                                                                    | 5.4 | 0   |
| 228 | Engineered pH-Responsive Mesoporous Carbon Nanoparticles for Drug Delivery. <b>2020</b> , 12, 14946-1495                                                                                                                                                   | 7   | 27  |
| 227 | Understanding the effect of the mesopore volume of ordered mesoporous carbons on their electrochemical behavior as Li-ion battery anodes. <i>Microporous and Mesoporous Materials</i> , <b>2020</b> , 306, 110417                                          | 5.3 | 4   |
| 226 | Preparation and excellent adsorption of water pollution dyes over magnetic Fe3O4/C nanoparticles with hollow grape cluster morphology. <b>2020</b> , 22, 1                                                                                                 |     | 4   |
| 225 | Development of recoverable magnetic mesoporous carbon adsorbent for removal of methyl blue and methyl orange from wastewater. <i>Journal of Environmental Chemical Engineering</i> , <b>2020</b> , 8, 104220                                               | 6.8 | 37  |
| 224 | Recent advances in carbon-based supercapacitors. <i>Materials Advances</i> , <b>2020</b> , 1, 945-966                                                                                                                                                      | 3.3 | 101 |
| 223 | Synthesis of Ordered Mesoporous Carbon from Vietnam Natural Kaolin Clay for Supercapacitor Application. <b>2020</b> , 985, 124-136                                                                                                                         |     | 1   |
| 222 | On mechanism of formation of SBA-15/furfuryl alcohol-derived mesoporous carbon replicas and its relationship with catalytic activity in oxidative dehydrogenation of ethylbenzene. <i>Microporous and Mesoporous Materials</i> , <b>2020</b> , 299, 110118 | 5.3 | 10  |

| 221 | Preparation of Pt anchored on cerium oxide and ordered mesoporous carbon tri-component composite for electrocatalytic oxidation of adrenaline. <b>2020</b> , 110, 110747                                                                                                                         |     | 10 |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|
| 220 | Gas sorption and supercapacitive properties of hierarchical porous graphitic carbons prepared from the hard-templating of mesoporous ZnO/Zn(OH) composite spheres. <b>2020</b> , 564, 193-203                                                                                                    |     | 14 |  |
| 219 | A Universal Lab-on-Salt-Particle Approach to 2D Single-Layer Ordered Mesoporous Materials. <b>2020</b> , 32, e1906653                                                                                                                                                                            |     | 19 |  |
| 218 | Pd nanoparticles confined in mesoporous N-doped carbon silica supports: a synergistic effect between catalyst and support. <b>2020</b> , 10, 1385-1394                                                                                                                                           |     | 16 |  |
| 217 | Pre-deposition layers for alleviating ultrafiltration membrane fouling by organic matter: Role of hexagonally and cubically ordered mesoporous carbons. <b>2020</b> , 240, 116599                                                                                                                |     | 15 |  |
| 216 | Development of a DNA biosensor based on MCM41 modified screen-printed graphite electrode for the study of the short sequence of the p53 tumor suppressor gene in hybridization and its interaction with the flutamide drug using hemin as the electrochemical label. <b>2020</b> , 44, 2016-2021 |     | 9  |  |
| 215 | SO3H@carbon powder derived from waste orange peel: An efficient, nano-sized greener catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. <b>2020</b> , 31, 1516-1528                                                                                                          |     | 24 |  |
| 214 | Simple and controllable preparation of SBA-15 microspheres by poly(vinyl alcohol)-assisted P123 templating system. <i>Microporous and Mesoporous Materials</i> , <b>2020</b> , 302, 110211                                                                                                       | 5.3 | 5  |  |
| 213 | Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications. <i>Nanomaterials</i> , <b>2020</b> , 10,                                                                                                                                                                      | 5.4 | 26 |  |
| 212 | Fabrication of helical SiO2@FeN doped C nanofibers and their applications as stable lithium ion battery anodes and superior oxygen reduction reaction catalysts. <b>2020</b> , 342, 136107                                                                                                       |     | 12 |  |
| 211 | Template Synthesis of Mesoporous Carbon Materials for Electrochemical Capacitors. <b>2020</b> , 56, 93-99                                                                                                                                                                                        |     | 1  |  |
| 210 | Tailoring Surface Chemistry of Sugar-Derived Ordered Mesoporous Carbons Towards Efficient Removal of Diclofenac From Aquatic Environments. <b>2020</b> , 13,                                                                                                                                     |     | 10 |  |
| 209 | Nanotechnology for a sustainable future. <b>2020</b> , 465-492                                                                                                                                                                                                                                   |     | 6  |  |
| 208 | Electrochemical reduction of europium(III) using tetra-n-octyl diglycolamide functionalized ordered mesoporous carbon microelectrodes. <b>2020</b> , 8, 6689-6700                                                                                                                                |     | 8  |  |
| 207 | Template-Free Synthesis of N-Doped Porous Carbon Materials From Furfuryl Amine-Based Protic Salts. <b>2020</b> , 8, 196                                                                                                                                                                          |     | 4  |  |
| 206 | Modeling of gyroidal mesoporous CMK-8 and CMK-9 carbon nanostructures and their X-Ray diffraction patterns. <i>Microporous and Mesoporous Materials</i> , <b>2021</b> , 310, 110330                                                                                                              | 5.3 | 1  |  |
| 205 | Application of Magnetic ordered mesoporous carbon Nanocomposite for the Removal of Ponceau 4R Using Factorial Experimental Design. <b>2021</b> , 13, 1561-1573                                                                                                                                   |     | 3  |  |
| 204 | Engineered/designer hierarchical porous carbon materials for organic pollutant removal from water and wastewater: A critical review. <b>2021</b> , 51, 2295-2328                                                                                                                                 |     | 6  |  |

| 203 | Removal of AV 90 dye using ordered mesoporous carbon materials prepared via nanocasting of KIT-6: Adsorption isotherms, kinetics and thermodynamic analysis. <b>2021</b> , 257, 117657                                                | 18 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 202 | A review of adsorptive remediation of environmental pollutants from aqueous phase by ordered mesoporous carbon. <b>2021</b> , 403, 126286                                                                                             | 41 |
| 201 | Control of porous size distribution on solvent-free mesoporous carbon and their use as a superadsorbent for 17\text{\text{\text{E}}}thinylestradiol removal. <b>2021</b> , 407, 127219                                                | 4  |
| 200 | Improved photocurrent response, photostability and photocatalytic hydrogen generation ability of CdS nanoparticles in presence of mesoporous carbon. <b>2021</b> , 134, 111085                                                        | 11 |
| 199 | Ordered Mesoporous Carbons with Graphitic Tubular Frameworks by Dual Templating for Efficient Electrocatalysis and Energy Storage. <b>2021</b> , 133, 1461-1469                                                                       | O  |
| 198 | Ordered Mesoporous Carbons with Graphitic Tubular Frameworks by Dual Templating for Efficient Electrocatalysis and Energy Storage. <b>2021</b> , 60, 1441-1449                                                                        | 18 |
| 197 | Selective Modification of Hierarchical Pores and Surfaces in Nanoporous Materials. <i>Advanced Materials Interfaces</i> , <b>2021</b> , 8, 2001153                                                                                    | 7  |
| 196 | Hard template-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction. <b>2021</b> , 56, 2385-2398                                                                                  | 13 |
| 195 | Synthesis, characterization and catalytic study of mesoporous carbon materials prepared via mesoporous silica using non-surfactant templating agents. <i>Journal of Porous Materials</i> , <b>2021</b> , 28, 423-43 <sup>3</sup> ·4   | 1  |
| 194 | Pore size characterization of micro-mesoporous carbons using CO2 adsorption. <i>Carbon</i> , <b>2021</b> , 173, 842-848.4                                                                                                             | 10 |
| 193 | Emerging carbon nanostructures in electrochemical processes. <b>2021</b> , 353-388                                                                                                                                                    | 3  |
| 192 | MgO-Template Synthesis of Extremely High Capacity Hard Carbon for Na-Ion Battery. <b>2021</b> , 60, 5114-5120                                                                                                                         | 54 |
| 191 | MgO-Template Synthesis of Extremely High Capacity Hard Carbon for Na-Ion Battery. <b>2021</b> , 133, 5174-5180                                                                                                                        | 2  |
| 190 | Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges. <i>Chemosphere</i> , <b>2021</b> , 269, 129325                                                      | 16 |
| 189 | Polymer-inspired covalent triazine frameworks from the carbonaceous side Influence of unexpected surface functionalisation on liquid-phase adsorption processes. <i>Journal of Materials Chemistry A</i> , <b>2021</b> , 9, 5390-5403 | 4  |
| 188 | Functional Carbon Electrodes from Phyllanthus acidus Leaves as High Performance of Supercapacitors. <b>2021</b> , 813-829                                                                                                             |    |
| 187 | Porous catalytic systems in the synthesis of bioactive heterocycles and related compounds. <b>2021</b> , 97-164                                                                                                                       | 0  |
| 186 | Mesoporous Carbon-supported Iron Catalyst for Fischer-Tropsch Synthesis. <b>2021</b> , 64, 17-21                                                                                                                                      | O  |

| 185 | Direct one-pot synthesis of ordered mesoporous carbons from lignin with metal coordinated self-assembly.                                                            |       | 1  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| 184 | Nanostructured Materials for Glycan Based Applications. <b>2021</b> , 473-505                                                                                       |       |    |
| 183 | Mesostructured materials. 2021,                                                                                                                                     |       | 1  |
| 182 | Fused sphere carbon monoliths with honeycomb-like porosity from cellulose nanofibers for oil and water separation <i>RSC Advances</i> , <b>2021</b> , 11, 2202-2212 | 3.7   | 2  |
| 181 | Adsorption of congo red dyes using mesoporous silica MCM-48. <b>2021</b> ,                                                                                          |       |    |
| 180 | Controllable synthesis of multilayered porous carbon by ice templating with graphene addition for supercapacitors. <b>2021</b> , 56, 7533-7546                      |       | 4  |
| 179 | Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts <i>RSC Advances</i> , <b>2021</b> , 11, 23725-23778                                    | 3.7   | 3  |
| 178 | Structural, morphological and magnetic properties investigation of magnetically separable mesoporous carbon. <b>2021</b> , 257, 123694                              |       | 1  |
| 177 | Probe on hard carbon electrode derived from orange peel for energy storage application. <b>2021</b> , 31, 1033                                                      | 3-103 | 93 |
| 176 | Unified mechanistic interpretation of amine-assisted silica synthesis methods to enable design of more complex materials. <b>2021</b> , 6, 170-196                  |       | 9  |
| 175 | Storage and separation of methane and carbon dioxide using platinum- decorated activated carbons treated with ammonia. <b>2021</b> , 8, 025503                      |       | 2  |
| 174 | Structurally Asymmetric Porous Carbon Materials with Ordered Top Surface Layers from Nonequilibrium Block Copolymer Self-Assembly. <b>2021</b> , 54, 2979-2991      |       | 4  |
| 173 | Mesoporous Carbons of Well-Organized Structure in the Removal of Dyes from Aqueous Solutions. <b>2021</b> , 26,                                                     |       |    |
| 172 | Connecting theory and simulation with experiment for the study of diffusion in nanoporous solids. <b>2021</b> , 27, 683-760                                         |       | 25 |
| 171 | Reassessing the Physicochemical Properties of Ordered Mesoporous Polymer and Copolymer Nanocasts . <b>2021</b> , 93, 916-928                                        |       | 1  |
| 170 | Mesoporous Carbon: A Versatile Material for Scientific Applications. <b>2021</b> , 22,                                                                              |       | 11 |
| 169 | Microfluidics for flexible electronics. <b>2021</b> , 44, 105-135                                                                                                   |       | 26 |
| 168 | Synthesis of ordered mesoporous carbon by soft template method. <b>2021</b> ,                                                                                       |       | 1  |

Influence of Ti Incorporation to Bimetallic Mesoporous Carbon in the Production of 2,5-Dimethylfuran from Biomass Derivatives. 1

| 166 | Adsorptive removal of different pollutants using metal-organic framework adsorbents. <b>2021</b> , 333, 115593                                                                                              | 25 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 165 | Development of an on-spot and rapid recombinase polymerase amplification assay for Aspergillus flavus detection in grains. <b>2021</b> , 125, 107957                                                        | 2  |
| 164 | Ordered mesoporous carbons with body centred cubic pore structure. <b>2021</b> , 4, 100051                                                                                                                  | 1  |
| 163 | Ordered Mesoporous Silica Pyrolyzed from Single-Source Self-Assembled Organic-Inorganic Giant Surfactants. <b>2021</b> , 143, 12935-12942                                                                   | 8  |
| 162 | Porous nanomaterials: Main vein of agricultural nanotechnology. <b>2021</b> , 121, 100812                                                                                                                   | 10 |
| 161 | Redox catalysts based on amorphous porous carbons. <i>Microporous and Mesoporous Materials</i> , <b>2021</b> , 323, 111257                                                                                  | О  |
| 160 | Quantitative Distinction between Noble Metals Located in Mesopores from Those on the External Surface. <b>2021</b> , 27, 17012-17023                                                                        | 3  |
| 159 | Laser-assisted synthesis of carbon coatings with cobalt oxide nanoparticles embedded in gradient of composition and sizes. <b>2021</b> , 419, 127301                                                        | 2  |
| 158 | N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. <b>2021</b> , | 3  |
| 157 | Rapid Access to Ordered Mesoporous Carbons for Chemical Hydrogen Storage. <b>2021</b> , 133, 22652-22660                                                                                                    | 2  |
| 156 | Rapid Access to Ordered Mesoporous Carbons for Chemical Hydrogen Storage. <b>2021</b> , 60, 22478-22486                                                                                                     | 11 |
| 155 | Porous polymer-derived ceramics: Flexible morphological and compositional controls through solgel chemistry.                                                                                                | 1  |
| 154 | Adsorption and desorption of gaseous naphthalene on carbonaceous sorbents: Insights into advantageous pore sizes and morphologies. <b>2021</b> , 314, 127905                                                | 3  |
| 153 | Development of hierarchically porous LaVO4 for efficient visible-light-driven photocatalytic desulfurization of diesel. <b>2021</b> , 420, 130529                                                           | 13 |
| 152 | Understanding the Operating Mechanism of Aqueous Pentyl Viologen/Bromide Redox-Enhanced Electrochemical Capacitors with Ordered Mesoporous Carbon Electrodes. <b>2021</b> ,                                 | O  |
| 151 | One-Pot Structure Direction of Large-Pore Co-Continuous Carbon Monoliths from Ultralarge Linear Diblock Copolymers.                                                                                         | О  |
| 150 | One-step direct synthesis of ordered mesoporous carbon supported tungsten trioxide for photocatalytic degradation of Rhodamine B. <b>2021</b> , 301, 130324                                                 | O  |

| 149 | Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. <b>2021</b> , 87, 100929                                                                                                          |     | 8 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 148 | Renewable banana-peel-derived activated carbon as an inexpensive and efficient electrode material showing fascinating supercapacitive performance. <i>Journal of Environmental Chemical Engineering</i> , <b>2021</b> , 9, 106398 | 6.8 | 3 |
| 147 | Novel materials structures and compositions for alcohol oxidation reaction. 2021, 209-249                                                                                                                                         |     | О |
| 146 | Supramolecular Chemistry at the Mesoscale. 11-36                                                                                                                                                                                  |     | 1 |
| 145 | Synthesis and Characterization of Nanoporous Carbon and its Electrochemical Application to Electrode Material for Supercapacitors. <b>2007</b> , 139-195                                                                          |     | 8 |
| 144 | Simulations of the Structural and Chemical Properties of Nanoporous Carbon. <b>2010</b> , 79-128                                                                                                                                  |     | 1 |
| 143 | Exotic Carbon Phases: Structure and Properties. <b>2010</b> , 207-240                                                                                                                                                             |     | 1 |
| 142 | Handheld Gas Sensing System. <b>2015</b> , 155-190                                                                                                                                                                                |     | 3 |
| 141 | Strategies of Porous Carbon Materials for Future Energy. <b>2018</b> , 79-92                                                                                                                                                      |     | 2 |
| 140 | Fine Chemicals Synthesis Through Heterogenized Catalysts: Scopes, Challenges and Needs. <b>2010</b> , 1-35                                                                                                                        |     | 5 |
| 139 | New Approaches to Creation of Micro- and Mesoporous Functional Materials. 2017, 53, 327-337                                                                                                                                       |     | 1 |
| 138 | CHAPTER 4:Application of Carbonaceous Materials in Separation Science. <b>2015</b> , 103-126                                                                                                                                      |     | 3 |
| 137 | Improved porosity and ionic sorption capacity of carbon particles prepared by spray pyrolysis from an aqueous sucrose/NaHCO3/TEOS solution. <i>RSC Advances</i> , <b>2017</b> , 7, 21314-21322                                    | 3.7 | 8 |
| 136 | Carbide-Derived Carbons and Templated Carbons. <b>2009</b> , 77-113                                                                                                                                                               |     | 3 |
| 135 | Ordered mesoporous carbon-supported nano-platinum catalysts: application in direct methanol fuel cells. <b>2015</b> , 131-157                                                                                                     |     | 1 |
| 134 | Synthesis of Hollow Carbon Microspheres with Mesoporous Shell and Vacant Core Structure and Their Electrochemical Properties. <b>2016</b> , 27, 449-454                                                                           |     | 1 |
| 133 | Catalytic Removal of Volatile Organic Compounds over Porous Catalysts. <b>2015</b> , 2, 1-14                                                                                                                                      |     | 4 |
| 132 | Soft-templating synthesis of nanoporous carbons with incorporated alumina nanoparticles. <b>2009</b> , 64,                                                                                                                        |     | 1 |

| 131 | Nano-magnesium oxide as hard template synthesis of lignin carbonbased solid acids and its application for cellulose hydrolysis. <b>2019</b> , 18, 67-71                                                           | 1  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 130 | Ordered Mesoporous Carbon as a Support for Palladium-Based Hydrodechlorination Catalysts. <b>2021</b> , 11, 23                                                                                                    | 3  |
| 129 | Understanding the Pathway of Gas Hydrate Formation with Porous Materials for Enhanced Gas Separation. <b>2019</b> , 2019, 3206024                                                                                 | 9  |
| 128 | Synthesis of SiC Nanoparticles by Template Confined Method. <b>2009</b> , 24, 285-290                                                                                                                             | 1  |
| 127 | Preparation of Mesoporous SiCBN Ceramic Templated by Mesoporous Carbon. 2007, 44, 358-361                                                                                                                         | 1  |
| 126 | Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems. <b>2005</b> , 26, 1653-1668                                                                                   | 31 |
| 125 | Highly Efficient MCM-48-based Template Synthesis of Osmium and Platinum 3-D Nanonetworks. <b>2006</b> , 27, 130-132                                                                                               | 6  |
| 124 | Synthesis of Polycrystalline Cristobalite Balls through Reversible Replication of Colloid-Imprinted Carbon. <b>2011</b> , 32, 3483-3485                                                                           | 3  |
| 123 | Preparation of Micro-/Macroporous Carbons and Their Gas Sorption Properties. 2014, 35, 377-382                                                                                                                    | 5  |
| 122 | Fabrication of Meso/Macroporous Carbon Monolith and its Application as a Support for Adsorptive Separation of D-Amino Acid from Racemates. <b>2014</b> , 35, 1720-1726                                            | 2  |
| 121 | Effect of acid catalysts on carbonization temperatures for ordered mesoporous carbon materials. <b>2016</b> , 20, 66-71                                                                                           | 9  |
| 120 | Pore structure and application of MgO-templated carbons. <i>Tanso</i> , <b>2010</b> , 2010, 60-68 0.1                                                                                                             | 18 |
| 119 | Preparation of nitrogen-enriched carbon materials and their application for electrochemical capacitors. <i>Tanso</i> , <b>2013</b> , 2013, 171-178                                                                | 3  |
| 118 | Effect of the amount of iodine introduced and the Na content of carbon precursors on the preparation of porous carbons from iodine-treated carboxymethylcellulose. <i>Tanso</i> , <b>2017</b> , 2017, 133-138 O.1 | 2  |
| 117 | H2 storage using Zr-CMK-3 developed by a new synthesis method.                                                                                                                                                    | 0  |
| 116 | Hierarchically porous zeolites synthesized with carbon materials as templates. <b>2021</b> , 15, 1444                                                                                                             | O  |
| 115 | Carbon Nanostructures as Electrocatalyst Supports for Polymer Electrolyte Fuel Cells. 1-46                                                                                                                        |    |
| 114 | Mesoporous Carbon Structure Directed by Mesostructured Cellular Foam Silica. <b>2002</b> , 70, 953-955                                                                                                            |    |

| 113 | Fabrication of Mesoporous Polycarbosilane from SBA-15 Templated Polymethylsilane. <b>2004</b> , 25, 21-22                                                         |     |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 112 | Microporous and Mesoporous Catalysts. <b>2006</b> , 95-140                                                                                                        |     |   |
| 111 | Synthesis of nitrogen-doped mesoporous carbon using templating technique. <b>2007</b> , 32, 1003-1005                                                             |     | 1 |
| 110 | Synthesis and Characterization of Microporous Carbon Material with High Surface Area. <b>2007</b> , 32, 999-10                                                    | 001 |   |
| 109 | Effects of Synthesis Conditions and Starting Materials' Properties on Porosity of Template Carbons. <b>2008</b> , 33, 1-8                                         |     | 1 |
| 108 | Fabrication and Function of Biohybrid Nanomaterials Prepared via Supramolecular Approaches. <b>2008</b> , 335-366                                                 |     |   |
| 107 | Synthesis of Ordered Mesoporous Carbons Using Resorcinol-Formaldehyde Sol as the Carbon Source and As-synthesized MCM-48 as the Template. <b>2009</b> , 24, 23-28 |     |   |
| 106 | Supramolecular Chemistry Meets Hybrid (Nano)Materials: A Brief Look Ahead. 689-700                                                                                |     |   |
| 105 | Nanostructured Porous Materials: Building Matter from the Bottom Up. 47-71                                                                                        |     |   |
| 104 | Synthesis and Electrochemical Performance of Porous TiO2. <b>2011</b> , 25, 1335-1339                                                                             |     |   |
| 103 | Template synthesis of carbon-based uniform nanoporous materials and their applications for energy storage. <i>Tanso</i> , <b>2011</b> , 2011, 89-95               | 0.1 | 5 |
| 102 | Microstructural control of carbon nano fibers. <i>Tanso</i> , <b>2012</b> , 2012, 254-265                                                                         | 0.1 |   |
| 101 | Recent Advances in Nanoporous Carbon Materials. <b>2012</b> , 841-854                                                                                             |     |   |
| 100 | Mesoporous ASD: Fundamentals. <b>2014</b> , 637-663                                                                                                               |     |   |
| 99  | Glucose Biosensor Based on Glucose Oxidase/Ordered Mesoporous Carbon Composite Material. <b>2015</b> , 03, 69-78                                                  |     |   |
| 98  | Synthesis of Zirconium Oxide Nanoballs Using Colloid-Imprinted Carbon and Their Electrical Properties. <b>2015</b> , 16, 86-89                                    |     | 1 |
| 97  | Industrial production of mesoporous carbon using a template method. <i>Tanso</i> , <b>2017</b> , 2017, 103-110                                                    | 0.1 | 1 |
| 96  | Carbon Replicas of Porous Concrete Obtained by Chemical Vapor DepositionBome Aspects of the Synthesis Mechanism. <b>2017</b> , 08, 614-627                        |     |   |

95 Nanocarbon Materials in Catalysis. 25-63

| 94 | Hydrogen storage in activated carbon materials. <b>2018</b> , 342-357                                                                                                                                                                                                                |                           |   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---|
| 93 | The activity of metal-containing catalysts based on mesoporous carbon in the conversion of n-hexane. <b>2020</b> , 140-147                                                                                                                                                           |                           |   |
| 92 | Carbon Ratio Controlled in-situ Synthesis of Ordered Mesoporous Hybrid Silica/Carbon Materials via Soft Template Method. 1                                                                                                                                                           |                           |   |
| 91 | Effect of solvent polarity in formation of perfectly ordered CMK-3 and CMK-5 carbon replicas by precipitation polycondensation of furfuryl alcohol. <i>Microporous and Mesoporous Materials</i> , <b>2021</b> , 11154                                                                | · <b>2</b> <sup>5·3</sup> | О |
| 90 | Recent Advances in Functionalized Micro and Mesoporous Carbon Nanostructures for Humidity Sensors. <b>2020</b> , 349-381                                                                                                                                                             |                           |   |
| 89 | Nanoporous carbon materials: from char to sophisticated 3-D graphene-like structures. <b>2020</b> , 45-64                                                                                                                                                                            |                           | 1 |
| 88 | Template synthesis of porous carbon in amorphous silica. <b>2020</b> ,                                                                                                                                                                                                               |                           |   |
| 87 | Polymerization with Mesoporous Silicates. <b>2005</b> , 231-255                                                                                                                                                                                                                      |                           |   |
| 86 | Progress of nanotechnology for lithium-sulfur batteries. <b>2021</b> , 19, 137-164                                                                                                                                                                                                   |                           |   |
| 85 | Solid-Phase Synthesis of Porous Carbon using Zinc Oxide Template. <b>2021</b> , 58, 497-504                                                                                                                                                                                          |                           |   |
| 84 | Natural resources for dye-sensitized solar cells <b>2021</b> , 7, e08436                                                                                                                                                                                                             |                           | 2 |
| 83 | Advanced Ordered Nanoporous Materials. Engineering Materials, 2022, 259-317                                                                                                                                                                                                          | 0.4                       | О |
| 82 | Biodistribution of Mesoporous Carbon Nanoparticles via Technetium-99m Radiolabelling after Oral Administration to Mice <i>Nanomaterials</i> , <b>2021</b> , 11,                                                                                                                      | 5.4                       | O |
| 81 | Synthesis of Mesoporous Materials. <i>Engineering Materials</i> , <b>2022</b> , 113-173                                                                                                                                                                                              | 0.4                       |   |
| 80 | Carbon research approached from a molecular level. <i>Tanso</i> , <b>2021</b> , 2021, 161-172                                                                                                                                                                                        | 0.1                       |   |
| 79 | Synthesis Strategies and Applications of Metallic Foams and Hollow Structured Materials. <i>Indian Institute of Metals Series</i> , <b>2022</b> , 325-376                                                                                                                            | 0.3                       |   |
| 78 | Molecular fluorinated cobalt phthalocyanine immobilized on ordered mesoporous carbon as an electrochemical sensing platform for sensitive detection of hydrogen peroxide and hydrazine in alkaline medium. <i>Journal of Electroanalytical Chemistry</i> , <b>2022</b> , 906, 116019 | 4.1                       | O |

| 77 | Synthesis of carbon microspheres via hydrothermal carbonization of Sabal palms (Sabal palmetto) biomass for adsorption of methylene blue. <i>Biomass Conversion and Biorefinery</i> , 1                                    | 2.3  | 1 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| 76 | Modulating the porosity of carbons for improved adsorption of hydrogen, carbon dioxide, and methane: a review. <i>Materials Advances</i> ,                                                                                 | 3.3  | 1 |
| 75 | Graphitic-Carbon Nitride for Hydrogen Storage. <b>2022</b> , 487-514                                                                                                                                                       |      |   |
| 74 | Frontiers in Mesoscale Materials Design. <i>NIMS Monographs</i> , <b>2022</b> , 51-70                                                                                                                                      | 0.3  |   |
| 73 | Silicon carbide in catalysis: from inert bed filler to catalytic support and multifunctional material. <i>Catalysis Reviews - Science and Engineering</i> , 1-64                                                           | 12.6 | 2 |
| 72 | Recent progress in the development of porous carbon-based electrodes for sensing applications <i>Analyst, The</i> , <b>2022</b> ,                                                                                          | 5    | 1 |
| 71 | Biocompatible Composite Microspheres of Chitin/Ordered Mesoporous Carbon CMK3 for Bilirubin Adsorption and Cell Microcarrier Culture <i>Macromolecular Bioscience</i> , <b>2022</b> , e2100412                             | 5.5  | 0 |
| 70 | Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review. <i>Journal of Materials Chemistry A</i> , <b>2022</b> , 10, 1047-1085                                                  | 13   | 8 |
| 69 | Syntheses of porous carbons. <b>2022</b> , 31-238                                                                                                                                                                          |      |   |
| 68 | Highly Stable Co Single Atom Confined in Hierarchical Carbon Molecular Sieve as Efficient Electrocatalysts in Metal Air Batteries. <i>Advanced Energy Materials</i> , 2103097                                              | 21.8 | 3 |
| 67 | New analytical strategies amplified with carbon-based nanomaterial for sensing food pollutants <i>Chemosphere</i> , <b>2022</b> , 295, 133847                                                                              | 8.4  | 4 |
| 66 | Helically aligned fused carbon hollow nanospheres with chiral discrimination ability <i>Nanoscale</i> , <b>2022</b> ,                                                                                                      | 7.7  |   |
| 65 | Porous materials for hydrogen storage. <i>CheM</i> , <b>2022</b> ,                                                                                                                                                         | 16.2 | 8 |
| 64 | Interfacial Assembly of Functional Mesoporous Carbon-Based Materials into Films for Batteries and Electrocatalysis. <i>Advanced Materials Interfaces</i> , 2101998                                                         | 4.6  | 4 |
| 63 | Construction of mesoporous lanthanum orthovanadate/carbon nitride heterojunction photocatalyst for the mineralization of trichloroethylene. <i>Ceramics International</i> , <b>2022</b> ,                                  | 5.1  | 1 |
| 62 | A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation. <i>Journal of Environmental Chemical Engineering</i> , <b>2022</b> , 10, 107325 | 6.8  | 3 |
| 61 | Templated synthesis of microparticles with carbonaceous skeletal structures using polymer cubosomes as templates <i>RSC Advances</i> , <b>2022</b> , 12, 8429-8434                                                         | 3.7  | 0 |
| 60 | Recent advancement of biomass-derived porous carbon based materials for energy and                                                                                                                                         | 13   | 5 |

| 59                         | Ordered carbonaceous frameworks: a new class of carbon materials with molecular-level design <i>Chemical Communications</i> , <b>2022</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8                                  | 2           |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------|
| 58                         | Recent progress of mesoporous carbons applied in electrochemical catalysis. <i>New Carbon Materials</i> , <b>2022</b> , 37, 152-179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4                                  | 2           |
| 57                         | Glycine-derived nitrogen-doped ordered mesoporous carbons with a bimodal mesopore size distribution for supercapacitors and oxygen reduction. <i>New Carbon Materials</i> , <b>2022</b> , 37, 259-276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.4                                  | 1           |
| 56                         | The journey from Porous Materials to Metal-Organic Frameworks and Their Catalytic Applications-A review <i>Current Organic Synthesis</i> , <b>2022</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.9                                  |             |
| 55                         | Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications. <i>New Carbon Materials</i> , <b>2022</b> , 37, 196-222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.4                                  | 2           |
| 54                         | A review on recent advances in hydrogen peroxide electrochemical sensors for applications in cell detection. <i>Chinese Chemical Letters</i> , <b>2022</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.1                                  | 1           |
| 53                         | From Deep Eutectic Solvents to Nitrogen-rich Ordered Mesoporous Carbons: A Powerful Host for the Immobilization of Palladium Nanoparticles in the Aerobic Oxidation of Alcohols. <i>ChemCatChem</i> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.2                                  |             |
| 52                         | Unusual ordered mesoporous carbon material with short channels and big pore size: Synthesis and effective adsorption of Cr(VI). <i>Journal of Porous Materials</i> , 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4                                  | О           |
| 51                         | Observation of Cobalt Species Evolution in Mesoporous Carbon by In-Situ STEM-HAADF Imaging and Related Hydrogenation Process. <i>ChemistrySelect</i> , <b>2022</b> , 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8                                  |             |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |             |
| 50                         | Starbon[] . <b>2022</b> , 47-71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |             |
| 50<br>49                   | Starbon . 2022, 47-71  Facile synthesis of flower-like carbon microspheres for carbon dioxide capture. <i>Microporous and Mesoporous Materials</i> , 2022, 335, 111801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.3                                  | 0           |
|                            | Facile synthesis of flower-like carbon microspheres for carbon dioxide capture. <i>Microporous and</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5·3<br>5·3                           | 0           |
| 49                         | Facile synthesis of flower-like carbon microspheres for carbon dioxide capture. <i>Microporous and Mesoporous Materials</i> , <b>2022</b> , 335, 111801  Conversion of cellulose to glucose and further transformation into fuels over solid acid catalysts: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.3                                  |             |
| 49                         | Facile synthesis of flower-like carbon microspheres for carbon dioxide capture. <i>Microporous and Mesoporous Materials</i> , <b>2022</b> , 335, 111801  Conversion of cellulose to glucose and further transformation into fuels over solid acid catalysts: A mini review. <i>Microporous and Mesoporous Materials</i> , <b>2022</b> , 336, 111846  Morphologically tunable nanoarchitectonics of mixed kaolin-halloysite derived nitrogen-doped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.3                                  | O           |
| 49<br>48<br>47             | Facile synthesis of flower-like carbon microspheres for carbon dioxide capture. <i>Microporous and Mesoporous Materials</i> , <b>2022</b> , 335, 111801  Conversion of cellulose to glucose and further transformation into fuels over solid acid catalysts: A mini review. <i>Microporous and Mesoporous Materials</i> , <b>2022</b> , 336, 111846  Morphologically tunable nanoarchitectonics of mixed kaolin-halloysite derived nitrogen-doped activated nanoporous carbons for supercapacitor and CO2 capture applications. <i>Carbon</i> , <b>2022</b> , 192, 133  Chronology of Global Success: 20 Years of Prof Vallet-Regisolving Questions <i>Pharmaceutics</i> , <b>2021</b> ,                                                                                                                                                                                                                                                                           | 5:3<br>- <del>1</del> 2 <del>4</del> | O<br>1<br>1 |
| 49<br>48<br>47<br>46       | Facile synthesis of flower-like carbon microspheres for carbon dioxide capture. <i>Microporous and Mesoporous Materials</i> , <b>2022</b> , 335, 111801  Conversion of cellulose to glucose and further transformation into fuels over solid acid catalysts: A mini review. <i>Microporous and Mesoporous Materials</i> , <b>2022</b> , 336, 111846  Morphologically tunable nanoarchitectonics of mixed kaolin-halloysite derived nitrogen-doped activated nanoporous carbons for supercapacitor and CO2 capture applications. <i>Carbon</i> , <b>2022</b> , 192, 133  Chronology of Global Success: 20 Years of Prof Vallet-Reglbolving Questions <i>Pharmaceutics</i> , <b>2021</b> , 13,  Deposition of poly(furfuryl alcohol) in mesoporous silica template controlled by solvent polarity: A cornerstone of facile and versatile synthesis of high-quality CMK-type carbon replicas. Nanocasting                                                             | 5·3<br>-184<br>6.4                   | O<br>1<br>1 |
| 49<br>48<br>47<br>46<br>45 | Facile synthesis of flower-like carbon microspheres for carbon dioxide capture. <i>Microporous and Mesoporous Materials</i> , <b>2022</b> , 335, 111801  Conversion of cellulose to glucose and further transformation into fuels over solid acid catalysts: A mini review. <i>Microporous and Mesoporous Materials</i> , <b>2022</b> , 336, 111846  Morphologically tunable nanoarchitectonics of mixed kaolin-halloysite derived nitrogen-doped activated nanoporous carbons for supercapacitor and CO2 capture applications. <i>Carbon</i> , <b>2022</b> , 192, 133  Chronology of Global Success: 20 Years of Prof Vallet-Reg[Solving Questions <i>Pharmaceutics</i> , <b>2021</b> , 13,  Deposition of poly(furfuryl alcohol) in mesoporous silica template controlled by solvent polarity: A cornerstone of facile and versatile synthesis of high-quality CMK-type carbon replicas. Nanocasting of SBA-15, SBA-16, and KIT-6. <i>Carbon</i> , <b>2022</b> , | 5·3<br>-184<br>6.4                   | O<br>1<br>1 |

| 41 | Active material and interphase structures governing performance in sodium and potassium ion batteries. <i>Chemical Science</i> ,                                                                                 | 9.4          | 2  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|
| 40 | Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?. <i>Chemical Society Reviews</i> ,                                                                                | 58.5         | 19 |
| 39 | One-step strategy for the synthesis of magnetic mesoporous carbon composite materials incorporating iron, cobalt and nickel nanoparticles. <i>Chemical Papers</i> ,                                              | 1.9          |    |
| 38 | Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor [A review. <i>Journal of Energy Storage</i> , <b>2022</b> , 52, 10493 | <b>7</b> 7.8 | 3  |
| 37 | Engineering functional mesoporous materials from plant polyphenol based coordination polymers. <i>Coordination Chemistry Reviews</i> , <b>2022</b> , 468, 214649                                                 | 23.2         | 2  |
| 36 | Optimization of the Activation Step in the Synthesis of an Efficient Mesoporous Carbon as Cobalt Adsorbent. SSRN Electronic Journal,                                                                             | 1            |    |
| 35 | Catalytic CII bond formation over Platinum nanoparticle catalyst on three-dimensional porous carbon. <i>Catalysis Today</i> , <b>2022</b> ,                                                                      | 5.3          |    |
| 34 | Coupling reactions induced by ionic palladium species deposited onto porous support materials. <i>Coordination Chemistry Reviews</i> , <b>2022</b> , 470, 214696                                                 | 23.2         | 0  |
| 33 | The Promise of Soft Matter Enabled Quantum Materials. 2203908                                                                                                                                                    |              |    |
| 32 | Biomass-Derived Advanced Carbon-Based Electrocatalysts for Oxygen Reduction Reaction. <b>2022</b> , 2, 15                                                                                                        | 5-177        | 1  |
| 31 | Non-siliceous ordered mesoporous materials via nanocasting for small molecule conversion electrocatalysis.                                                                                                       |              | 0  |
| 30 | Pressure-dependent self-template pyrolysis modulates the porosity and surface chemical configuration of carbon for potassium ion hybrid capacitors. <b>2023</b> , 451, 138579                                    |              | 1  |
| 29 | Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. <b>2022</b> , 76, 103729                                                                                                  |              | 5  |
| 28 | Tailored architectures of mesoporous carbon nanostructures: From synthesis to applications. <b>2022</b> , 46, 101607                                                                                             |              | 1  |
| 27 | Nanoscale advanced carbons as an anode for lithium-ion battery. <b>2022</b> , 16, 100290                                                                                                                         |              | 1  |
| 26 | Introduction to OrganicIhorganic Nanohybrids. <b>2022</b> , 1-27                                                                                                                                                 |              | O  |
| 25 | Creating hierarchical pores in metal®rganic frameworks via postsynthetic reactions.                                                                                                                              |              | 4  |
| 24 | Optimizing Ion Desolvation Process in Carbonate-Based Electrolytes for Enhanced Performance of Lithium-Ion Capacitors.                                                                                           |              | Ο  |

| 23 | Nanomaterials-modified electrochemical sensors for sensitive determination of alkaloids: Recent trends in the application to biological, pharmaceutical and agri-food samples. <b>2023</b> , 184, 108136                             | 0 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 22 | Sucrose-based activated carbon foams as an electrode active material for supercapacitors.                                                                                                                                            | Ο |
| 21 | Bottom-up Hydrothermal Carbonization for the Precise Engineering of Carbon Materials. 2022, 101048                                                                                                                                   | 1 |
| 20 | Synthesis and characterization of three-dimensional interconnected large-pore mesoporous cellular lignin carbon materials and their potential for CO2 capture. <b>2022</b> , 112334                                                  | O |
| 19 | Mesoporous carbon-alumina composites, aluminas and carbons prepared via a facile ball milling-assisted strategy. <b>2022</b> , 346, 112325                                                                                           | О |
| 18 | Mesoporous carbon-based materials and their applications as non-precious metal electrocatalysts in the oxygen reduction reaction. <b>2023</b> , 439, 141678                                                                          | 1 |
| 17 | A novel three-dimensional ordered mesoporous microspheres comprising N-doped graphitic carbon-coated Fe P nanoparticles as multifunctional interlayers to suppress polysulfide crossover in Liß batteries. <b>2023</b> , 612, 155892 | 0 |
| 16 | Well-Defined Single and Bundled Rutile Nanorods in Mesoporous Silica for Efficient Hydrogen Evolution Photocatalysis. <b>2022</b> , 5, 18004-18013                                                                                   | O |
| 15 | Monomicellar assembly to synthesize structured and functional mesoporous carbonaceous nanomaterials.                                                                                                                                 | O |
| 14 | Tannin-Derived Ordered Mesoporous Carbon Cathode for Zn-Ion Hybrid Supercapacitor with Remarkable Energy Density.                                                                                                                    | O |
| 13 | Experimental and modelling studies of carbon dioxide capture onto pristine, nitrogen-doped, and activated ordered mesoporous carbons. <b>2023</b> , 13, 973-989                                                                      | О |
| 12 | Synthetic porous carbons for clean energy storage and conversion. <b>2023</b> , 100099                                                                                                                                               | O |
| 11 | Solvent-Free Soft-Template Synthesis of Highly Ordered Mesoporous Carbons via Self-Assembly Promoted by Mg(NO3)2. <b>2023</b> , 39, 2036-2042                                                                                        | О |
| 10 | Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review. <b>2023</b> , 61, 106716                                                                                                   | 1 |
| 9  | Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials. <b>2023</b> , 229, 111904                                                                                                          | О |
| 8  | Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries. <b>2023</b> , 24, 7291                                                                                                                  | O |
| 7  | Methane Combustion over the Porous Oxides and Supported Noble Metal Catalysts. <b>2023</b> , 13, 427                                                                                                                                 | 1 |
| 6  | Unwanted Humins-Promising Precursors for Ordered Mesoporous Carbons. <b>2023</b> , 11, 3832-3840                                                                                                                                     | O |

## CITATION REPORT

| 5 | Carbon-Based Porous Materials in Biomedical Applications: Concept and Recent Advancements. <b>2023</b> , 815-839                                                                | O |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | Metal and Metal Oxide Supported on Ordered Mesoporous Carbon as Heterogeneous Catalysts. <b>2023</b> , 13, 4060-4090                                                            | 1 |
| 3 | Nitrogen-doped carbon dot/activated carbon nanotube-supported copper nanoparticles as an efficient electrocatalyst for the oxygen reduction reaction. <b>2023</b> , 937, 117423 | О |
| 2 | Application of a new electrochemical sensor for voltammetric determination of p-nitrophenol and betulin. <b>2023</b> , 89, 22-28                                                | O |
| 1 | Ordered porous carbon preparation by hard templating approach for hydrogen adsorption application.                                                                              | О |