Test of a modified Shuttleworthâ
 ${\ensuremath{\mathfrak{E}}}^{\ensuremath{\mathsf{``Wallace}}}$ estimate of

Agricultural and Forest Meteorology 98-99, 605-619 DOI: 10.1016/s0168-1923(99)00127-6

Citation Report

#	Article	IF	CITATIONS
1	Continuous long-term measurements of soil-plant-atmosphere variables at a forest site. Agricultural and Forest Meteorology, 1999, 98-99, 53-73.	1.9	78
2	Energy, water and carbon exchange in a boreal forest landscape — NOPEX experiences. Agricultural and Forest Meteorology, 1999, 98-99, 5-29.	1.9	112
4	Calibration and application of FOREST-BGC in a Mediterranean area by the use of conventional and remote sensing data. Ecological Modelling, 2002, 154, 251-262.	1.2	42
5	Retrieval of bare soil and vegetation parameters from wind scatterometer measurements over three different climatic regions. Remote Sensing of Environment, 2003, 84, 16-24.	4.6	7
6	Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environmental Modelling and Software, 2005, 20, 783-796.	1.9	156
7	Forest categorization according to dry-canopy evaporation rates in the growing season: comparison of the Priestley-Taylor coefficient values from various observation sites. Hydrological Processes, 2005, 19, 3873-3896.	1.1	82
8	Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. Journal of Hydrology, 2006, 327, 151-173.	2.3	172
9	Modelling evapotranspiration in a Scots pine stand under Mediterranean mountain climate using the GLUE methodology. Agricultural and Forest Meteorology, 2007, 146, 13-28.	1.9	25
10	Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agricultural and Forest Meteorology, 2009, 149, 1410-1420.	1.9	227
11	Evapotranspiration information reporting: II. Recommended documentation. Agricultural Water Management, 2011, 98, 921-929.	2.4	114
12	Estimates of Evapotranspiration and Their Implication in the Mekong and Yellow River Basins. , O, , .		3
13	Modelling evapotranspiration in a Central Asian desert ecosystem. Ecological Modelling, 2011, 222, 3680-3691.	1.2	25
14	Modeling water table changes in boreal peatlands of Finland under changing climate conditions. Ecological Modelling, 2012, 244, 65-78.	1.2	58
15	Comparison of water-use by alien invasive pine trees growing in riparian and non-riparian zones in the Western Cape Province, South Africa. Forest Ecology and Management, 2013, 293, 92-102.	1.4	21
16	Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model. Journal of Hydrology, 2013, 501, 186-192.	2.3	61
17	Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach. Journal of Hydrology, 2013, 476, 42-51.	2.3	73
18	Measurement and modelling of evapotranspiration in three fynbos vegetation types. Water S A, 2014, 40, 189.	0.2	10
19	Adaptive Strategy to Drought Conditions: Diurnal Variation in Water Use of a Central Asian Desert Shrub. Polish Journal of Ecology, 2015, 63, 63-76.	0.2	0

CITATION REPORT

#	Article	IF	CITATIONS
20	Evapotranspiration Model of Maize Field with Ridge Culture Under Alternate Furrow Irrigation. Irrigation and Drainage, 2015, 64, 557-565.	0.8	3
21	Matching ecohydrological processes and scales of banded vegetation patterns in semiarid catchments. Water Resources Research, 2016, 52, 2259-2278.	1.7	18
24	Evapotranspiration of a Populus euphratica forest during the growing season in an extremely arid region of northwest China using the Shuttleworth–Wallace model. Journal of Forestry Research, 2016, 27, 879-887.	1.7	6
25	Modeling the effects of plant-interspace heterogeneity on water-energy balances in a semiarid ecosystem. Agricultural and Forest Meteorology, 2016, 221, 189-206.	1.9	15
26	Comparison of three evapotranspiration models with eddy covariance measurements for a Populus euphratica Oliv. forest in an arid region of northwestern China. Journal of Arid Land, 2016, 8, 146-156.	0.9	16
27	A proposed surface resistance model for the Penman-Monteith formula to estimate evapotranspiration in a solar greenhouse. Journal of Arid Land, 2017, 9, 530-546.	0.9	29
28	Predicting Forest Evapotranspiration by Coupling Carbon and Water Cycling Based on a Critical Stomatal Conductance Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 4469-4477.	2.3	9
29	Modeling and Partitioning of Regional Evapotranspiration Using a Satellite-Driven Water-Carbon Coupling Model. Remote Sensing, 2017, 9, 54.	1.8	33
30	Coupling evapotranspiration partitioning with root water uptake to identify the water consumption characteristics of winter wheat: A case study in the North China Plain. Agricultural and Forest Meteorology, 2018, 259, 296-304.	1.9	52
31	A Modified Surface Energy Balance to Estimate Crop Transpiration and Soil Evaporation in Micro-Irrigated Orchards. Water (Switzerland), 2019, 11, 1747.	1.2	8
32	Comparison of Shuttleworth-Wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse. Agricultural Water Management, 2019, 217, 141-153.	2.4	61
33	Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin. Journal of Environmental Management, 2020, 262, 110310.	3.8	33
34	Modeling maize evapotranspiration and associated processes under biodegradable film mulching in an arid dripped field. Agricultural and Forest Meteorology, 2021, 297, 108247.	1.9	7
35	Seasonal Changes in Transpiration and Soil Water Content in a Spruce Primeval Forest During a Dry Period. , 2009, , 197-206.		5
36	Estimation of beech tree transpiration in relation to their social status in forest stand. Journal of Forest Science, 2002, 48, 130-140.	0.5	9
37	Flexible Integrated Watershed Modeling with. , 2010, , 269-296.		4
38	Evaluation of the dual source model to simulate transpiration and evaporation of tomato plants cultivated in a solar greenhouse. European Journal of Horticultural Science, 2020, 85, 362-371.	0.3	5
39	Multi-model ensemble approaches for simulation of evapotranspiration of karst agroforestry ecosystems. Agricultural Water Management, 2022, 273, 107869.	2.4	5

		CITATION REPORT		
#	Article		IF	CITATIONS
40	Comparison of Shuttleworth–Wallace and Dual Crop Coefficient Method for Estimatin Evapotranspiration of a Tea Field in Southeast China. Agriculture (Switzerland), 2022, 12	g , 1392.	1.4	6
41	Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-so satellite earth observations. Journal of Hydrology, 2022, 613, 128444.	ource	2.3	25
42	Evaluating a Surface Energy Balance Model for Partially Wetted Surfaces: Drip and Micro Systems in Hazelnut Orchards (Corylus Avellana L.). Water (Switzerland), 2022, 14, 401	-Sprinkler 1.	1.2	2
43	Evaluation and verification of two evapotranspiration models based on precision screenir partitioning of field temperature data. Agricultural Water Management, 2023, 278, 1081	ng and .66.	2.4	2