Momentum and heat fluxes over lakes Tämnaren and bulk-aerodynamic and eddy-correlation methods

Agricultural and Forest Meteorology 98-99, 521-534

DOI: 10.1016/s0168-1923(99)00121-5

Citation Report

#	Article	IF	CITATIONS
1	The evaluation of flux aggregation methods using aircraft measurements in the surface layer. Agricultural and Forest Meteorology, 1999, 98-99, 121-143.	1.9	11
2	Introduction to the in situ airborne meteorological measurements in NOPEX. Agricultural and Forest Meteorology, 1999, 98-99, 181-204.	1.9	12
3	Airborne flux measurements in NOPEX: comparison with footprint estimated surface heat fluxes. Agricultural and Forest Meteorology, 1999, 98-99, 205-225.	1.9	20
4	Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest: implications for regional averaging. Agricultural and Forest Meteorology, 1999, 98-99, 535-546.	1.9	38
5	A new land-surface treatment for HIRLAM â€" comparisons with NOPEX measurements. Agricultural and Forest Meteorology, 1999, 98-99, 239-256.	1.9	13
6	Multi-temporal analysis of ERS-1 and EMISAR C-band VV backscattering properties of forest and lake surfaces in the NOPEX region. Agricultural and Forest Meteorology, 1999, 98-99, 363-374.	1.9	5
7	Momentum and heat fluxes over lakes Tännaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods. Agricultural and Forest Meteorology, 1999, 98-99, 521-534.	1.9	48
8	System of information in NOPEX — retrieval, use, and query of climate data. Agricultural and Forest Meteorology, 1999, 98-99, 31-51.	1.9	11
9	Energy, water and carbon exchange in a boreal forest landscape â€" NOPEX experiences. Agricultural and Forest Meteorology, 1999, 98-99, 5-29.	1.9	112
10	Calculation of Area-Averaged Fluxes: Application to BOREAS. Journal of Applied Meteorology and Climatology, 2001, 40, 915-920.	1.7	15
12	Enhancement of Evaporation from a Large Northern Lake by the Entrainment of Warm, Dry Air. Journal of Hydrometeorology, 2003, 4, 680-693.	0.7	72
13	Estimating evapotranspiration from a reed bed using the Bowen ratio energy balance method. Hydrological Processes, 2004, 18, 247-260.	1.1	85
14	Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. Journal of Geophysical Research, 2006, 111, .	3.3	105
15	Surface-to-Atmosphere Exchange in a River Valley Environment. Journal of Applied Meteorology and Climatology, 2007, 46, 1169-1181.	0.6	11
16	Gas transfer rate and CO ₂ flux between an unproductive lake and the atmosphere in northern Sweden. Journal of Geophysical Research, 2008, 113, .	3.3	77
17	Convectively driven transport in temperate lakes. Limnology and Oceanography, 2008, 53, 2321-2332.	1.6	54
18	Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. Journal of Geophysical Research, 2011, 116, .	3.3	168
19	Diurnal surface temperature difference index derived from ground-based meteorological measurements for assessment of moisture availability. Journal of Arid Environments, 2011, 75, 156-163.	1.2	4

#	Article	IF	Citations
20	Environmental Controls on the Surface Energy Budget over a Large Southern Inland Water in the United States: An Analysis of One-Year Eddy Covariance Flux Data. Journal of Hydrometeorology, 2012, 13, 1893-1910.	0.7	64
21	Longâ€ŧerm heat exchanges over a Mediterranean lagoon. Journal of Geophysical Research, 2012, 117, .	3.3	32
22	Preconditioning of an underflow during ice-breakup in a subarctic lake. Aquatic Sciences, 2012, 74, 361-374.	0.6	3
23	Transfer Coefficients of Momentum, Heat and Water Vapour in the Atmospheric Surface Layer of a Large Freshwater Lake. Boundary-Layer Meteorology, 2013, 148, 479-494.	1.2	46
24	Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake*. Journal of Hydrometeorology, 2013, 14, 636-649.	0.7	44
25	Seasonal changes in physical processes controlling evaporation over inland water. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9779-9792.	1.2	23
26	A model of energy budgets over water, snow, and ice surfaces. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6034-6051.	1.2	24
27	Applicability of the Bulk-Transfer Approach to Estimate Evapotranspiration from Boreal Peatlands. Journal of Hydrometeorology, 2015, 16, 1521-1539.	0.7	5
28	Does the creation of a boreal hydroelectric reservoir result in a net change in evaporation?. Journal of Hydrology, 2016, 540, 886-899.	2.3	27
29	Drag and Bulk Transfer Coefficients Over Water Surfaces in Light Winds. Boundary-Layer Meteorology, 2016, 160, 319-346.	1.2	18
30	Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan Plateau. Theoretical and Applied Climatology, 2016, 124, 723-735.	1.3	21
31	Physical controls on halfâ€hourly, daily, and monthly turbulent flux and energy budget over a highâ€altitude small lake on the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2289-2303.	1.2	44
32	Profound daily vertical stratification and mixing in a small, shallow, wind-exposed lake with submerged macrophytes. Aquatic Sciences, 2017, 79, 395-406.	0.6	52
33	The effects of small water surfaces on turbulent flow in the atmospheric boundary layer: URANS approach implemented in OpenFOAM. Environmental Modelling and Software, 2018, 101, 268-288.	1.9	4
34	Observed Key Surface Parameters for Characterizing Land–Atmospheric Interactions in the Northern Marginal Zone of the Taklimakan Desert, China. Atmosphere, 2018, 9, 458.	1.0	5
35	Improving surface heat flux estimation for a large lake through model optimization and twoâ€point calibration: The case of Lake Geneva. Limnology and Oceanography: Methods, 2018, 16, 576-593.	1.0	14
36	Evaluation of the WRF-Lake Model over Two Major Freshwater Lakes in China. Journal of Meteorological Research, 2019, 33, 219-235.	0.9	9
37	Spatial variability of the surface energy balance of Lake Kasumigaura and implications for flux measurements. Hydrological Sciences Journal, 2020, 65, 401-414.	1.2	5

#	Article	IF	CITATIONS
38	A parameterization strategy for hydrodynamic modelling of a cascade of poorly monitored reservoirs in Brazil. Environmental Modelling and Software, 2020, 134, 104803.	1.9	15
39	Factors controlling the latent and sensible heat fluxes over Erhai Lake under different atmospheric surface layer stability conditions. Atmospheric and Oceanic Science Letters, 2020, 13, 400-406.	0.5	3
40	Evaporation from boreal reservoirs: A comparison between eddy covariance observations and estimates relying on limited data. Hydrological Processes, 2021, 35, e14335.	1.1	5
42	Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large shallow freshwater lake: A case study of Lake Taihu. Hupo Kexue/Journal of Lake Sciences, 2012, 24, 932-942.	0.3	3
43	Intra-Seasonal and Intra-Annual Variation of the Latent Heat Flux Transfer Coefficient for a Freshwater Lake. Atmosphere, 2022, 13, 352.	1.0	3
45	Evaporation over a glacial lake in Antarctica. Cryosphere, 2022, 16, 3101-3121.	1.5	0
46	Bulk Transfer Coefficients Estimated From Eddyâ€Covariance Measurements Over Lakes and Reservoirs. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	2
47	Characteristic time scales of evaporation from a subarctic reservoir. Hydrological Processes, 2023, 37, .	1.1	O