Fungal proteinase expression in the interaction of the p with its host

Gene 235, 121-129 DOI: 10.1016/s0378-1119(99)00201-2

Citation Report

#	Article	IF	CITATIONS
1	The role of cuticle-degrading proteases in fungal pathogenesis of insects. Canadian Journal of Botany, 1995, 73, 1119-1125.	1.1	176
2	Characterization of SNP1, a Cell Wall-Degrading Trypsin, Produced During Infection by Stagonospora nodorum. Molecular Plant-Microbe Interactions, 2000, 13, 538-550.	2.6	71
3	Epichloë endophytes: fungal symbionts of grasses. Current Opinion in Microbiology, 2001, 4, 393-398.	5.1	63
4	Molecular Characterization of a Subtilase from the Vascular Wilt Fungus Fusarium oxysporum. Molecular Plant-Microbe Interactions, 2001, 14, 653-662.	2.6	41
5	Involvement of Proteolytic Enzymes and Their Inhibitors in Plant Protection (Review). Applied Biochemistry and Microbiology, 2001, 37, 115-123.	0.9	33
6	aspSencoding an unusual aspartyl protease fromSclerotinia sclerotiorumis expressed during phytopathogenesis. FEMS Microbiology Letters, 2001, 194, 27-32.	1.8	56
7	Cell Biology of Fungal Infection of Plants. , 2001, , 91-123.		21
8	Trypsin-Like Proteinase Produced by Fusarium culmorum Grown on Grain Proteins. Journal of Agricultural and Food Chemistry, 2002, 50, 3849-3855.	5.2	32
9	Functional and Comparative Bioinformatic Analysis of Expressed Genes from Wheat Spikes Infected with Fusarium graminearum. Molecular Plant-Microbe Interactions, 2002, 15, 445-455.	2.6	93
10	Identification of a Putative Vacuolar Serine Protease Gene in the Rice Blast Fungus,Magnaporthe grisea. Bioscience, Biotechnology and Biochemistry, 2002, 66, 663-666.	1.3	10
11	Purification and properties of an alkaline proteinase of Fusarium culmorum. FEBS Journal, 2002, 269, 798-807.	0.2	47
12	The Extracellular Proteases Secreted in vitro and in planta by the Phytopathogenic Fungus Sclerotinia sclerotiorum. Journal of Phytopathology, 2002, 150, 507-511.	1.0	24
13	Deletion of the SNP1 trypsin protease from Stagonospora nodorum reveals another major protease expressed during infection. Fungal Genetics and Biology, 2003, 38, 43-53.	2.1	27
14	Disruption of the Subtilase Gene, albin1 , in Ophiostoma piliferum. Applied and Environmental Microbiology, 2004, 70, 3898-3903.	3.1	10
15	Gene expression during infection of wheat roots by the 'take-all' fungus Gaeumannomyces graminis. Molecular Plant Pathology, 2004, 5, 203-216.	4.2	28
16	Isolation of two aspartyl proteases fromTrichoderma asperellumexpressed during colonization of cucumber roots. FEMS Microbiology Letters, 2004, 238, 151-158.	1.8	66
17	Analysis of a Secreted Aspartic Peptidase Disruption Mutant of Glomerella cingulata. European Journal of Plant Pathology, 2004, 110, 265-274.	1.7	18
18	Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochemistry (Moscow), 2004, 69, 1305-1309.	1.5	83

CITATION REPORT

#	Article	IF	CITATIONS
19	Isolation of two aspartyl proteases from expressed during colonization of cucumber roots. FEMS Microbiology Letters, 2004, 238, 151-158.	1.8	83
20	Analysis of the distribution and regulation of three representative subtilase genes in sapstaining fungi. Fungal Genetics and Biology, 2004, 41, 274-283.	2.1	6
21	Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genetics and Biology, 2004, 41, 336-348.	2.1	125
22	Leptosphaeria maculans, a fungal pathogen of Brassica napus, secretes a subtilisin-like serine protease. European Journal of Plant Pathology, 2005, 112, 23-29.	1.7	8
23	Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genetics and Biology, 2006, 43, 605-617.	2.1	109
24	Cell Biology of Fungal and Oomycete Infection of Plants. , 2007, , 251-289.		5
25	Influence of autoclaved saprotrophic fungal mycelia on proteolytic activity in ectomycorrhizal fungi. Antonie Van Leeuwenhoek, 2007, 92, 137-142.	1.7	8
26	Analysis of protease activity in Aspergillus flavus and A. parasiticus on peanut seed infection and aflatoxin contamination. European Journal of Plant Pathology, 2009, 124, 391-403.	1.7	11
28	From Tools of Survival to Weapons of Destruction: The Role of Cell Wall-Degrading Enzymes in Plant Infection. , 2009, , 181-200.		9
29	New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evolutionary Biology, 2010, 10, 68.	3.2	64
30	Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genetics and Biology, 2010, 47, 608-618.	2.1	18
31	Independent Subtilases Expansions in Fungi Associated with Animals. Molecular Biology and Evolution, 2011, 28, 3395-3404.	8.9	51
32	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	4.7	595
33	Gene expression profiling of the plant pathogenic basidiomycetous fungus Rhizoctonia solani AG 4 reveals putative virulence factors. Mycologia, 2012, 104, 1020-1035.	1.9	22
34	1 Exploring the Genome of Glomeromycotan Fungi. , 2012, , 1-21.		4
35	Differential expression of the putative Kex2 processed and secreted aspartic proteinase gene family of Cryphonectria parasitica. Fungal Biology, 2012, 116, 363-378.	2.5	2
36	Development and application of a TaqMan real-time PCR assay for rapid detection of Magnaporthe poae. Mycologia, 2012, 104, 1250-1259.	1.9	15
37	Human Epididymis Protein-4 (HE-4): A Novel Cross-Class Protease Inhibitor. PLoS ONE, 2012, 7, e47672.	2.5	45

		CITATION REPORT		
#	Article		IF	CITATIONS
38	Thionins - Natureâ \in ™s Weapons of Mass Protection. ACS Symposium Series, 2012, , 415	-443.	0.5	1
39	Purification and Characterization of AsES Protein. Journal of Biological Chemistry, 2013, 2 14098-14113.	88,	3.4	43
40	Horizontal Transfer of a Subtilisin Gene from Plants into an Ancestor of the Plant Pathoge Genus Colletotrichum. PLoS ONE, 2013, 8, e59078.	nic Fungal	2.5	28
41	Serine protease identification (<i>in vitro</i>) and molecular structure predictions (<i>in from a phytopathogenic fungus, <i>Alternaria solani</i>. Journal of Basic Microbiology, 20 S210-8.</i>	silico) 014, 54,	3.3	7
42	Production, partial purification and characterization of protease from a phytopathogenic <i>Alternaria solani</i> (<scp>E</scp> ll. and Mart.) Sorauer. Journal of Basic Microbiology 763-774.	fungi 7, 2014, 54,	3.3	20
43	Expression and biochemical characterization of recombinant human epididymis protein 4. Expression and Purification, 2014, 102, 52-62.	Protein	1.3	25
44	<i>Leucoagaricus gongylophorus</i> uses leaf-cutting ants to vector proteolytic enzymes new plant substrate. ISME Journal, 2014, 8, 1032-1040.	; towards	9.8	21
45	Synergistic Action of a Metalloprotease and a Serine Protease from <i>Fusarium oxysporu <i>lycopersici</i> Cleaves Chitin-Binding Tomato Chitinases, Reduces Their Antifungal Ac Enhances Fungal Virulence. Molecular Plant-Microbe Interactions, 2015, 28, 996-1008.</i>	ım f. sp. :ivity, and	2.6	152
46	Genome analysis of Daldinia eschscholtzii strains UM 1400 and UM 1020, wood-decaying from human hosts. BMC Genomics, 2015, 16, 966.	; fungi isolated	2.8	16
47	Comparative analysis of the inÂvitro and in planta secretomes from Mycosphaerella fijien: Fungal Biology, 2015, 119, 447-470.	sis isolates.	2.5	12
48	Gene family expansions and contractions are associated with host range in plant pathoge genus Colletotrichum. BMC Genomics, 2016, 17, 555.	ns of the	2.8	151
49	Kingdom-Wide Analysis of Fungal Small Secreted Proteins (SSPs) Reveals their Potential R Association. Frontiers in Plant Science, 2016, 7, 186.	ole in Host	3.6	165
50	Proteases from phytopathogenic fungi and their importance in phytopathogenicity. Journ Plant Pathology, 2016, 82, 233-239.	al of General	1.0	41
51	Peltaster fructicola genome reveals evolution from an invasive phytopathogen to an ecto parasite. Scientific Reports, 2016, 6, 22926.	phytic	3.3	21
52	<i>Ex Vivo</i> Application of Secreted Metabolites Produced by Soil-Inhabiting Bacillus sp Controls Foliar Diseases Caused by Alternaria spp. Applied and Environmental Microbiolog 478-490.	ıp. Efficiently şy, 2016, 82,	3.1	49
53	<i>Magnaporthiopsis meyeri-festucae</i> , sp. nov., associated with a summer patch-like of fescue turfgrasses. Mycologia, 2017, 109, 1-10.	lisease of fine	1.9	10
54	SGE1 is involved in conidiation and pathogenicity of <i>Fusarium oxysporum</i> f.sp. <i>Canadian Journal of Microbiology, 2018, 64, 349-357.</i>	cubense.	1.7	13
55	Metarhizium robertsii ammonium permeases (MepC and Mep2) contribute to rhizoplane and modulates the transfer of insect derived nitrogen to plants. PLoS ONE, 2019, 14, e02	colonization 23718.	2.5	7

#	Article	IF	CITATIONS
56	Characterization of phytotoxin and secreted proteins identifies of Lasiodiplodia theobromae, causes of peach gummosis. Fungal Biology, 2019, 123, 51-58.	2.5	10
57	Aaprb1, a subtilsin-like protease, required for autophagy and virulence of the tangerine pathotype of Alternaria alternata. Microbiological Research, 2020, 240, 126537.	5.3	15
58	Major Plant Pathogens of the Magnaporthaceae Family. Soil Biology, 2013, , 45-88.	0.8	7
59	RNA-Seq Analysis of the Sclerotinia homoeocarpa – Creeping Bentgrass Pathosystem. PLoS ONE, 2012, 7, e41150.	2.5	33
60	Cell Wall Degradation and Fortification. Books in Soils, Plants, and the Environment, 2007, , .	0.1	0
61	Comparative Genomic Analysis of Xanthomonas campestris pv. campestris Isolates BJSJQ20200612 and GSXT20191014 Provides Novel Insights Into Their Genetic Variability and Virulence. Frontiers in Microbiology, 2022, 13, 833318.	3.5	3
62	Cloning and sequence analysis of a serine protease gene from <i>Rhizoctonia solani</i> Kühn AG5. Biotechnology and Applied Biochemistry, 2021, , .	3.1	0
63	A secreted fungal subtilase interferes with rice immunity via degradation of SUPPRESSOR OF G2 ALLELE OF <i>skp1</i> . Plant Physiology, 2022, 190, 1474-1489.	4.8	10

CITATION REPORT