Multicriterion decision making in irrigation planning

Agricultural Systems 62, 117-129

DOI: 10.1016/s0308-521x(99)00060-8

Citation Report

#	Article	IF	CITATIONS
1	A framework to study nearly optimal solutions of linear programming models developed for agricultural land use exploration. Ecological Modelling, 2000, 131, 65-77.	2.5	36
2	Fuzzy Modeling for Performance Assessment of Irrigation Systems. , 0, , .		O
3	Modelo de decisão multicritério para priorização de sistemas de informação com base no método PROMETHEE. Gestão & Produção, 2002, 9, 201-214.	0.5	16
4	A non-linear model for farm optimization with adequate and limited water supplies. Agricultural Water Management, 2003, 62, 187-203.	5. 6	59
5	Integrative modeling of hydrological, ecological, and economical systems for water resources management at river basin scale., 2005, 5884, 47.		1
6	Fuzzy multicriterion decision making in irrigation planning. Irrigation and Drainage, 2005, 54, 455-465.	1.7	22
7	Analysis of an integrated model for assessing land and water policy options. Mathematics and Computers in Simulation, 2005, 69, 57-77.	4.4	19
8	Promethee Methods. , 2005, , 163-186.		394
9	Resource allocation tradeoffs in Manila's peri-urban vegetable production systems: An application of multiple objective programming. Agricultural Systems, 2006, 87, 147-168.	6.1	24
10	Modelo de decisão em grupo para gerenciar perdas de água. Pesquisa Operacional, 2006, 26, 567-584.	0.4	16
11	Artificial neural networks and multicriterion analysis for sustainable irrigation planning. Computers and Operations Research, 2006, 33, 1138-1153.	4.0	38
12	Ranking Irrigation Planning Alternatives Using Data Envelopment Analysis. Water Resources Management, 2006, 20, 553-566.	3.9	49
13	Group decision-making for leakage management strategy of water network. Resources, Conservation and Recycling, 2007, 52, 441-459.	10.8	83
14	A Review of Multiple Criteria Analysis for Water Resource Planning and Management. Water Resources Management, 2007, 21, 1553-1566.	3.9	536
15	A comparison of multiple criteria analysis techniques for water resource management. European Journal of Operational Research, 2008, 184, 255-265.	5.7	320
16	Operating Rules of an Irrigation Purposes Reservoir Using Multi-Objective Optimization. Water Resources Management, 2008, 22, 551-564.	3.9	28
17	An improved evolutionary algorithm for solving multi-objective crop planning models. Computers and Electronics in Agriculture, 2009, 68, 191-199.	7.7	100
18	Operation analysis of Eleviyan irrigation reservoir dam by optimization and stochastic simulation. Stochastic Environmental Research and Risk Assessment, 2009, 23, 1187-1201.	4.0	18

#	ARTICLE	IF	CITATIONS
19	Integrative assessment of hydrological, ecological, and economic systems for water resources management at river basin scale. Frontiers of Earth Science, 2009, 3, 198-207.	0.5	7
20	Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 2009, 196, 1-20.	5.7	674
21	MULTICRITERION DECISION MAKING: A BRIEF OVERVIEW. ISH Journal of Hydraulic Engineering, 2009, 15, 129-150.	2.1	1
22	PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 2010, 200, 198-215.	5.7	1,220
23	Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach. Water Resources Management, 2010, 24, 4639-4657.	3.9	84
24	Optimization of source–sink dynamics in plant growth for ideotype breeding: A case study on maize. Computers and Electronics in Agriculture, 2010, 71, 96-105.	7.7	33
25	Multiâ€Criteria Decision Analysis of Treated Wastewater Use for Agriculture in Water Deficit Regions ¹ . Journal of the American Water Resources Association, 2010, 46, 395-411.	2.4	17
26	Development of multi-objective reservoir operation rules for integrated water resources management. Journal of Hydroinformatics, 2010, 12, 185-200.	2.4	10
27	An inexact two-stage water management model for planning agricultural irrigation under uncertainty. Agricultural Water Management, 2010, 97, 1905-1914.	5 . 6	96
28	Fuzzy multi-objective linear programming applying to crop area planning. Agricultural Water Management, 2010, 98, 134-142.	5.6	100
29	A fuzzy multicriteria benefit–cost approach for irrigation projects evaluation. Agricultural Water Management, 2011, 98, 1409-1416.	5 . 6	23
30	WATER MANAGEMENT TO MEET PRESENT AND FUTURE FOOD DEMAND. Irrigation and Drainage, 2011, 60, 348-359.	1.7	24
31	A multicriteria analysis application for evaluating the possibility of reusing wastewater for irrigation purposes in a Greek region. Desalination and Water Treatment, 2012, 39, 262-270.	1.0	5
32	Strategic agricultural land-use planning in response to water-supplier variation in a China's rural region. Agricultural Systems, 2012, 108, 19-28.	6.1	21
33	Multi-objective differential evolution application to irrigation planning. ISH Journal of Hydraulic Engineering, 2012, 18, 54-64.	2.1	14
34	SIMULATION AND OPTIMIZATION FOR IRRIGATION AND CROP PLANNING. Irrigation and Drainage, 2012, 61, 178-188.	1.7	27
35	Optimization of parameters of the †Virtual Fruit' model to design peach genotype for sustainable production systems. European Journal of Agronomy, 2012, 42, 34-48.	4.1	37
36	Material selection using preferential ranking methods. Materials & Design, 2012, 35, 384-393.	5.1	193

#	Article	IF	CITATIONS
37	Multiobjective fireworks optimization for variable-rate fertilization in oil crop production. Applied Soft Computing Journal, 2013, 13, 4253-4263.	7.2	106
38	A NONâ€LINEAR MODEL FOR OPTIMAL ALLOCATION OF IRRIGATION WATER AND LAND UNDER ADEQUATE AND LIMITED WATER SUPPLIES: A CASE STUDY IN SOUTHERN ITALY. Irrigation and Drainage, 2013, 62, 145-155.	1.7	4
39	Selection of boron based tribological hard coatings using multi-criteria decision making methods. Materials & Design, 2013, 50, 742-749.	5.1	59
40	Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Materials & Design, 2013, 45, 473-479.	5.1	167
41	Estimation of Optimal Land Use Allocation Among Small Holder (A1) Farmer Households in Zimbabwe. A Case Study of Long Croft Farm, in Mazowe District. Journal of Agricultural Science, 2014, 6, .	0.2	2
42	Flexible manufacturing system selection using preference ranking methods: A comparative study. International Journal of Industrial Engineering Computations, 2014, 5, 315-338.	0.7	39
43	A comparative study of preference dominance-based approaches for selection of industrial robots. Advances in Production Engineering and Management, 2014, 9, 5-20.	1.2	11
44	A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties. Applied Mathematical Modelling, 2014, 38, 4897-4911.	4.2	80
45	Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. European Journal of Operational Research, 2014, 233, 432-447.	5.7	567
46	Materials Ranking by Means of Multi Attribute Decision Making. Applied Mechanics and Materials, 0, 760, 135-140.	0.2	О
47	Landscape irrigation management for maintaining an aquifer and economic returns. Journal of Environmental Management, 2015, 160, 271-282.	7.8	4
48	A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China. Agricultural Water Management, 2015, 155, 53-66.	5.6	46
49	Analyzing the drivers of green manufacturing with fuzzy approach. Journal of Cleaner Production, 2015, 96, 182-193.	9.3	232
50	Route prioritisation in a multi-agent transportation environment via multi-attribute decision making. International Journal of Data Analysis Techniques and Strategies, 2016, 8, 47.	0.2	2
51	An inexact risk management model for agricultural land-use planning under water shortage. Frontiers of Earth Science, 2016, 10, 419-431.	2.1	5
52	Integrating expert weighting and multi-criteria decision making into eco-efficiency analysis: the case of US manufacturing. Journal of the Operational Research Society, 2016, 67, 616-628.	3.4	37
53	Evaluating the suitability of different parameters for qualitative analysis of groundwater based on analytical hierarchy process. Desalination and Water Treatment, 2016, 57, 13175-13182.	1.0	7
54	Spatially explicit methodology for coordinated manure management in shared watersheds. Journal of Environmental Management, 2017, 192, 48-56.	7.8	24

#	Article	IF	Citations
55	Fuzzy Logic in Multi-Objective Decision Making and Hydrological Modelling., 2017, , 119-163.		0
56	Measuring and improving customer retention at authorised automobile workshops after free services. Journal of Retailing and Consumer Services, 2017, 39, 93-102.	9.4	39
57	Applying uncertain programming model to improve regional farming economic benefits and water productivity. Agricultural Water Management, 2017, 179, 352-365.	5.6	19
58	Multicriteria Decision Making Based on a Set of Optimization Methods. Cybernetics and Systems Analysis, 2018, 54, 594-599.	0.7	1
59	Comparative study of hydraulic structures alternatives using promethee II complete ranking method. Water Resources Management, 2018, 32, 3457-3471.	3.9	10
60	The nexus of water, ecosystems and agriculture in arid areas: A multiobjective optimization study on system efficiencies. Agricultural Water Management, 2019, 223, 105697.	5.6	32
61	Resource allocation based on overall equipment effectiveness using cooperative game. Kybernetes, 2019, 49, 819-834.	2.2	2
62	Multi-criteria evolutionary algorithm optimization for horticulture crop management. Agricultural Systems, 2019, 173, 469-481.	6.1	7
63	A trasilient decision making tool for vendor selection: a hybrid-MCDM algorithm. Management Decision, 2019, 57, 372-395.	3.9	27
64	Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making. Applied Soft Computing Journal, 2020, 86, 105893.	7.2	124
65	Prioritization of adaptation measures for improved agricultural water management in Northwest Bangladesh. Climatic Change, 2020, 163, 431-450.	3.6	6
66	Evaluation of Nexus-Sustainability and Conventional Approaches for Optimal Water-Energy-Land-Crop Planning in an Irrigated Canal Command. Water Resources Management, 2020, 34, 2329-2351.	3.9	9
67	RMCriteria: a decision making support system package for R. Communications in Statistics Part B: Simulation and Computation, 2022, 51, 3259-3271.	1.2	0
68	ICT as "Knowledge Management―for Assessing Sustainable Consumption and Production in Supply Chains. Journal of Global Information Management, 2021, 29, 164-198.	2.8	30
69	Transition towards circular supplier selection in petrochemical industry: A hybrid approach to achieve sustainable development goals. Journal of Cleaner Production, 2021, 286, 125273.	9.3	84
70	A Hybrid MCDM Approach towards Resilient Sourcing. Sustainability, 2021, 13, 2695.	3.2	34
71	Short and Medium Range Irrigation Scheduling Using Stochastic Simulationâ€Optimization Framework With Farmâ€Scale Ecohydrological Model and Weather Forecasts. Water Resources Research, 2021, 57, e2020WR029004.	4.2	7
72	Building supply-chain resilience: an artificial intelligence-based technique and decision-making framework. International Journal of Production Research, 2022, 60, 4487-4507.	7.5	78

#	Article	IF	CITATIONS
73	Evaluating the eco-efficiency of loading transport vehicles: A Brazilian case study. Case Studies on Transport Policy, 2021, 9, 1688-1695.	2.5	5
74	A multi-objective algorithm for crop pattern optimization in agriculture. Applied Soft Computing Journal, 2021, 112, 107772.	7.2	21
75	Selection of Green Suppliers Based on GSCM Practices. Advances in Business Strategy and Competitive Advantage Book Series, 2017, , 355-375.	0.3	4
76	Genetic Algorithms in Irrigation Planning: A Case Study of Sri Ram Sagar Project, India. Studies in Fuzziness and Soft Computing, 2004, , 431-443.	0.8	0
77	FWA for Multiobjective Optimization. , 2015, , 165-188.		0
78	Personal subjectivity impact reduction in choice of sour cherry varieties for orchard establishment using fuzzy system. Ekonomika Poljoprivrede (1979), 2018, 65, 545-554.	0.7	3
79	ICT as "Knowledge Management―for Assessing Sustainable Consumption and Production in Supply Chains. , 2022, , 889-925.		0
80	How Does Psychological Empowerment Affect Knowledge Management Improvement in Organizations? A Study of Cause-and-Effect Relationship Using the Fuzzy DEMATEL Method. IEEE Transactions on Engineering Management, 2024, 71, 426-439.	3.5	2
82	Selection of Suitable General Circulation Model Outputs of Precipitation for a Humid Tropical Basin. Lecture Notes in Civil Engineering, 2022, , 417-431.	0.4	2
83	Fuzzy cluster analysis and decision-making algorithms for optimal water distribution network design. ISH Journal of Hydraulic Engineering, 2023, 29, 341-350.	2.1	0
85	Evaluation of irrigation methods in \tilde{SAq} ke Plain with HF-AHP-PROMETHEE II hybrid MCDM method. Agricultural Water Management, 2022, 271, 107810.	5.6	14
86	BWM ve CoCoSo Yöntemleri ile Kentlerin Ulaşım Performanslarının Karşılaştırmalı Analizi. İde 13, 824-856.	ealkent, 20	022,
87	Integrating optimization and damage estimation to increase economic benefit and ensure food security under seasonal land variability. Journal of Environmental Management, 2022, 320, 115872.	7.8	4
88	Farming systems research: Concepts, design and methodology. Advances in Agronomy, 2022, , .	5.2	1
89	An interval-valued neutrosophic based MAIRCA method for sustainable material selection. Engineering Applications of Artificial Intelligence, 2023, 123, 106177.	8.1	11
90	Research on the optimal allocation of agricultural water and soil resources in the Heihe River Basin based on SWAT and intelligent optimization. Agricultural Water Management, 2023, 279, 108177.	5.6	7
91	An Extended EDAS Based on Multi-Attribute Group Decision Making to Evaluate Mathematics Teachers With Single-Valued Trapezoidal Neutrosophic Numbers. Advances in Data Mining and Database Management Book Series, 2023, , 40-67.	0.5	3
93	Integrated data envelopment analysis, multi-criteria decision making, and cluster analysis methods: Trends and perspectives. Decision Analytics Journal, 2023, 8, 100271.	4.8	9