The basal ganglia: a vertebrate solution to the selection

Neuroscience

89, 1009-1023

DOI: 10.1016/s0306-4522(98)00319-4

Citation Report

#	Article	IF	CITATIONS
1	The medial reticular formation: a brainstem substrate for simple action selection?., 0,, 300-329.		0
2	Central action selection using sensor fusion. , 0, , .		4
3	The Saticonâ,,¢ Color Television Camera Tube. SMPTE Journal, 1978, 87, 147-152.	0.0	10
4	Layered Control Architectures in Robots and Vertebrates. Adaptive Behavior, 1999, 7, 99-127.	1.9	224
5	Is the short-latency dopamine response too short to signal reward error?. Trends in Neurosciences, 1999, 22, 146-151.	8.6	509
6	Parallel analyses of nociceptive neurones in rat superior colliculus by using c-fos immunohistochemistry and electrophysiology under different conditions of anaesthesia. Journal of Comparative Neurology, 2000, 425, 599-615.	1.6	39
7	Computational models of the basal ganglia. Movement Disorders, 2000, 15, 762-770.	3.9	58
8	Evolution of the basal ganglia: new perspectives through a comparative approach. Journal of Anatomy, 2000, 196, 501-517.	1.5	200
9	Lesion of the subthalamic nucleus or globus pallidus does not cause chaotic firing patterns in basal ganglia neurons in rats. Brain Research, 2000, 873, 263-267.	2.2	1
10	Role of the Basal Ganglia in the Control of Purposive Saccadic Eye Movements. Physiological Reviews, 2000, 80, 953-978.	28.8	1,061
11	Multifunctional Neuron CC6 in Aplysia Exerts Actions Opposite to Those of Multifunctional Neuron CC5. Journal of Neurophysiology, 2000, 83, 2473-2481.	1.8	4
12	Regulation of Rat Cortex Function by D1 Dopamine Receptors in the Striatum. Journal of Neuroscience, 2000, 20, 5449-5460.	3.6	82
13	Corticostriatal Activity in Primary Motor Cortex of the Macaque. Journal of Neuroscience, 2000, 20, 7096-7108.	3.6	148
14	Visual object and visuospatial cognition in Huntington's disease: implications for information processing in corticostriatal circuits. Brain, 2000, 123, 1349-1364.	7.6	171
15	Limbic cortical-ventral striatal systems underlying appetitive conditioning. Progress in Brain Research, 2000, 126, 263-285.	1.4	121
16	Cerebellar output exerts spatially organized influence on neural responses in the rat superior colliculus. Neuroscience, 2000, 97, 565-573.	2.3	48
17	Role of the substantia nigra pars reticulata in sensorimotor gating, measured by prepulse inhibition of startle in rats. Behavioural Brain Research, 2000, 117, 153-162.	2.2	65
18	Error correction and the basal ganglia: similar computations for action, cognition and emotion?. Trends in Cognitive Sciences, 2000, 4, 365-367.	7.8	70

#	Article	IF	Citations
19	The glutamate hypothesis of reinforcement learning. Progress in Brain Research, 2000, 126, 231-253.	1.4	23
20	Perseverative Behavior Underlying Attentional Set-Shifting Deficits in Rats Chronically Treated with the Neurotoxin 3-Nitropropionic Acid. Experimental Neurology, 2001, 172, 172-181.	4.1	37
21	Identification of the source of the bilateral projection system from cortex to somatosensory neostriatum and an exploration of its physiological actions. Neuroscience, 2001, 103, 87-96.	2.3	50
22	Functional Imaging of Neural Responses to Expectancy and Experience of Monetary Gains and Losses. Neuron, 2001, 30, 619-639.	8.1	1,279
23	The Theory of Event Coding (TEC)'s framework may leave perception out of the picture. Behavioral and Brain Sciences, 2001, 24, 890-890.	0.7	1
24	Unifying by binding: Will binding really bind?. Behavioral and Brain Sciences, 2001, 24, 884-885.	0.7	0
25	Perception, action planning, and cognitive maps. Behavioral and Brain Sciences, 2001, 24, 882-882.	0.7	0
26	The TEC as a theory of embodied cognition. Behavioral and Brain Sciences, 2001, 24, 900-901.	0.7	1
27	Scaling up from atomic to complex events. Behavioral and Brain Sciences, 2001, 24, 909-910.	0.7	2
28	The CHREST model of active perception and its role in problem solving. Behavioral and Brain Sciences, 2001, 24, 892-893.	0.7	0
29	Multi-level sensorimotor interactions. Behavioral and Brain Sciences, 2001, 24, 906-907.	0.7	0
30	Anomalous processing in schizophrenia suggests adaptive event-action coding requires multiple executive brain mechanisms. Behavioral and Brain Sciences, 2001, 24, 895-896.	0.7	1
31	Event coding, executive control, and task-switching. Behavioral and Brain Sciences, 2001, 24, 893-894.	0.7	0
32	Computational motor planning and the theory of event coding. Behavioral and Brain Sciences, 2001, 24, 902-903.	0.7	1
33	Attending, intending, and the importance of task settings. Behavioral and Brain Sciences, 2001, 24, 889-890.	0.7	1
34	How specific and common is common coding?. Behavioral and Brain Sciences, 2001, 24, 903-905.	0.7	1
35	Explanatory burdens and natural law: Invoking a field description of perception-action. Behavioral and Brain Sciences, 2001, 24, 905-906.	0.7	32
36	How are events represented?. Behavioral and Brain Sciences, 2001, 24, 908-909.	0.7	1

#	Article	IF	Citations
37	A common framework for perception and action: Neuroimaging evidence. Behavioral and Brain Sciences, 2001, 24, 879-882.	0.7	13
38	Event coding as feature guessing: The lessons of the motor theory of speech perception. Behavioral and Brain Sciences, 2001, 24, 886-887.	0.7	59
39	Exploring the hyphen in ideo-motor action. Behavioral and Brain Sciences, 2001, 24, 891-892.	0.7	6
40	Theory of event coding: Interesting, but underspecified. Behavioral and Brain Sciences, 2001, 24, 897-898.	0.7	2
41	A common framework for language comprehension and language production?. Behavioral and Brain Sciences, 2001, 24, 887-888.	0.7	5
42	The role of feedforward control in motor planning. Behavioral and Brain Sciences, 2001, 24, 896-897.	0.7	2
43	Perception and action planning: Getting it together. Behavioral and Brain Sciences, 2001, 24, 907-908.	0.7	2
44	A theory of representation to complement TEC. Behavioral and Brain Sciences, 2001, 24, 894-895.	0.7	2
45	Modified action as a determinant of adult and age-related sensorimotor integration: Where does it begin?. Behavioral and Brain Sciences, 2001, 24, 885-886.	0.7	1
46	TEC: Integrated view of perception and action or framework for response selection?. Behavioral and Brain Sciences, 2001, 24, 899-900.	0.7	0
47	Ecological information and prospective control without mental representation. Behavioral and Brain Sciences, 2001, 24, 890-891.	0.7	0
48	Perception, action, and motor control: Interaction does not necessarily imply common structures. Behavioral and Brain Sciences, 2001, 24, 898-899.	0.7	1
49	TEC – Some problems and some prospects. Behavioral and Brain Sciences, 2001, 24, 888-889.	0.7	1
50	The event-code: Not the solution to a problem, but a problem to be solved. Behavioral and Brain Sciences, 2001, 24, 901-902.	0.7	2
51	Common codes for situated interaction. Behavioral and Brain Sciences, 2001, 24, 883-884.	0.7	363
52	Codes and their vicissitudes. Behavioral and Brain Sciences, 2001, 24, 910-926.	0.7	166
53	Behavioral Activation in Rats Requires Endogenous Ascorbate Release in Striatum. Journal of Neuroscience, 2001, 21, 668-675.	3.6	48
54	Intelligent control requires more structure than the Theory of Event Coding provides. Behavioral and Brain Sciences, 2001, 24, 878-879.	0.7	200

#	Article	IF	Citations
55	The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 2001, 24, 849-878.	0.7	2,945
56	Mechanisms of cognitive set flexibility in Parkinson's disease. Brain, 2001, 124, 2503-2512.	7.6	344
57	Procedural motor learning in Parkinson's disease. Experimental Brain Research, 2001, 141, 425-437.	1.5	111
58	Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. European Journal of Neuroscience, 2001, 13, 1609-1616.	2.6	106
59	Unilateral striatal dopamine depletion: time-dependent effects on cortical function and behavioural correlates. European Journal of Neuroscience, 2001, 14, 1390-1404.	2.6	56
60	Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. Journal of Comparative Neurology, 2001, 431, 198-216.	1.6	121
61	A pulsed neural network model of bursting in the basal ganglia. Neural Networks, 2001, 14, 845-863.	5.9	23
64	CONTROLLER-REGULATOR MODEL OF THE CENTRAL NERVOUS SYSTEM. Journal of Integrative Neuroscience, 2002, 01, 129-143.	1.7	19
65	Learning and Memory Mechanisms Involved in Compulsive Drug Use and Relapse., 2003, 79, 75-102.		20
66	Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 545-551.	2.6	105
67	Negative priming in patients with Parkinson's disease: Evidence for a role of the striatum in inhibitory attentional processes Neuropsychology, 2002, 16, 230-241.	1.3	39
68	Divergent findings regarding negative priming in Parkinson's disease: A comment of Filoteo et al. (2000) and Wylie and Stout (2000) Neuropsychology, 2002, 16, 251-253.	1.3	7
70	The role of intra-thalamic and thalamocortical circuits in action selection. Network: Computation in Neural Systems, 2002, 13, 131-156.	3.6	78
72	Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behavioural Brain Research, 2002, 137, 149-163.	2.2	258
73	Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 2002, 67, 53-83.	5.7	949
74	NOVELTY SEEKING AND HARM AVOIDANCE IN RELATION TO ALCOHOL DRINKING IN INTACT RATS AND FOLLOWING AXON-SPARING LESIONS TO THE AMYGDALA AND VENTRAL STRIATUM. Alcohol and Alcoholism, 2002, 37, 147-156.	1.6	12
75	Nigrostriatal Lesion and Dopamine Agonists Affect Firing Patterns of Rodent Entopeduncular Nucleus Neurons. Journal of Neurophysiology, 2002, 88, 487-496.	1.8	47
76	Inhibitory Interactions Between Spiny Projection Neurons in the Rat Striatum. Journal of Neurophysiology, 2002, 88, 1263-1269.	1.8	271

#	Article	IF	CITATIONS
77	Neurobiological measurements of cardinal utility: Hedonimeters or learning algorithms?. Social Choice and Welfare, 2002, 19, 477-488.	0.8	7
78	Substantia nigra pars reticulata neurons code initiation of a serial pattern: implications for natural action sequences and sequential disorders. European Journal of Neuroscience, 2002, 16, 1599-1608.	2.6	38
79	Animal models of neurological deficits: how relevant is the rat?. Nature Reviews Neuroscience, 2002, 3, 574-579.	10.2	404
80	Functional anatomy of thalamus and basal ganglia. Child's Nervous System, 2002, 18, 386-404.	1.1	533
81	The "two-headed" latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology, 2003, 169, 257-297.	3.1	370
82	Does an imbalance between the dorsal and ventral striatopallidal systems play a role in Tourette's syndrome? A neuronal circuit approach. Brain and Development, 2003, 25, S3-S14.	1.1	75
83	Impairment of individual finger movements in Parkinson's disease. Movement Disorders, 2003, 18, 560-565.	3.9	111
84	Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. European Journal of Neuroscience, 2003, 17, 751-762.	2.6	148
85	Opposing basal ganglia processes shape midbrain visuomotor activity bilaterally. Nature, 2003, 423, 982-986.	27.8	141
86	Mapping multiple features in the population response of visual cortex. Nature, 2003, 423, 986-990.	27.8	186
87	A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nature Neuroscience, 2003, 6, 974-980.	14.8	304
88	Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata. Neuroscience, 2003, 117, 931-938.	2.3	7 5
89	Single cns neurons link both central motor and cardiosympathetic systems: a double-virus tracing study. Neuroscience, 2003, 118, 853-866.	2.3	99
90	A biological mapping of a learned avoidance behavior model to the basal ganglia. , 0, , .		0
91	A BASAL GANGLIA INSPIRED MODEL OF ACTION SELECTION EVALUATED IN A ROBOTIC SURVIVAL TASK. Journal of Integrative Neuroscience, 2003, 02, 179-200.	1.7	31
92	NEUROSCIENCE: Gambling on Dopamine. Science, 2003, 299, 1856-1858.	12.6	40
93	Chronic bilateral thalamic stimulation: a new therapeutic approach in intractable Tourette syndrome. Journal of Neurosurgery, 2003, 99, 1094-1100.	1.6	244
94	Orienting of attention and Parkinson's disease: tactile inhibition of return and response inhibition. Brain, 2003, 126, 2081-2092.	7.6	47

#	Article	IF	CITATIONS
96	Left and right basal ganglia and frontal activity during language generation: Contributions to lexical, semantic, and phonological processes. Journal of the International Neuropsychological Society, 2003, 9, 1061-1077.	1.8	157
97	Quantitative Assessment of the Timing and Tuning of Visual-Related, Saccade-Related, and Delay Period Activity in Primate Central Thalamus. Journal of Neurophysiology, 2003, 90, 2029-2052.	1.8	72
98	Dopaminergic Modulation of Axon Collaterals Interconnecting Spiny Neurons of the Rat Striatum. Journal of Neuroscience, 2003, 23, 8931-8940.	3.6	146
99	The Basal Ganglia and Motor Control. Neural Plasticity, 2003, 10, 107-120.	2.2	403
100	Dissociable Contributions of the Human Amygdala and Orbitofrontal Cortex to Incentive Motivation and Goal Selection. Journal of Neuroscience, 2003, 23, 9632-9638.	3.6	307
101	Engagement of Rat Striatal Neurons by Cortical Epileptiform Activity Investigated With Paired Recordings. Journal of Neurophysiology, 2004, 92, 2725-2737.	1.8	9
102	Direct Physiological Evidence for Synaptic Connectivity Between Medium-Sized Spiny Neurons in Rat Nucleus Accumbens In Situ. Journal of Neurophysiology, 2004, 91, 1111-1121.	1.8	117
103	A Possible Role of Midbrain Dopamine Neurons in Short- and Long-Term Adaptation of Saccades to Position-Reward Mapping. Journal of Neurophysiology, 2004, 92, 2520-2529.	1.8	70
104	Cue-Evoked Firing of Nucleus Accumbens Neurons Encodes Motivational Significance During a Discriminative Stimulus Task. Journal of Neurophysiology, 2004, 91, 1840-1865.	1.8	165
105	The Ventral Tegmental Area Is Required for the Behavioral and Nucleus Accumbens Neuronal Firing Responses to Incentive Cues. Journal of Neuroscience, 2004, 24, 2923-2933.	3.6	236
106	Differential Responses in Human Striatum and Prefrontal Cortex to Changes in Object and Rule Relevance. Journal of Neuroscience, 2004, 24, 1129-1135.	3.6	199
107	Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior. European Journal of Neuroscience, 2004, 20, 249-263.	2.6	82
108	Early development of subcortical regions involved in non-cued attention switching. Developmental Science, 2004, 7, 534-542.	2.4	60
109	Neurons in hippocampal afferent zones of rat striatum parse routes into multi-pace segments during maze navigation. European Journal of Neuroscience, 2004, 19, 1923-1932.	2.6	45
110	A model of short and long range selective processing in neostriatum. Neurocomputing, 2004, 58-60, 555-562.	5.9	3
111	Non-human primate models of neonatal brain injury. Seminars in Perinatology, 2004, 28, 396-404.	2.5	25
112	Integration of neural responses originating from different regions of the cortical somatosensory map. Brain Research, 2004, 1030, 284-293.	2.2	12
113	Brain Mechanisms for the Formation of New Movements during Learning: The Evolution of Classical Concepts. Neuroscience and Behavioral Physiology, 2004, 34, 5-18.	0.4	25

#	Article	IF	CITATIONS
114	Analysis of the Morphological Substrate for Information Processing in the Striatum Based on the Organizational Characteristics of Its Afferent Projections. Neuroscience and Behavioral Physiology, 2004, 34, 265-269.	0.4	0
115	Analysis of the Morphological Substrate for Information Processing in the Pallidal Nuclear Complex of the Dog Brain in Terms of the Organizational Characteristics of Its Afferent Projections. Neuroscience and Behavioral Physiology, 2004, 34, 271-276.	0.4	0
116	The role of response mechanisms in determining reaction time performance: Piéron's law revisited. Psychonomic Bulletin and Review, 2004, 11, 975-987.	2.8	34
117	Contrast enhancement: a physiological effect of striatal dopamine?. Cell and Tissue Research, 2004, 318, 93-106.	2.9	59
118	Afferent projections to nucleus reuniens of the thalamus. Journal of Comparative Neurology, 2004, 480, 115-142.	1.6	211
119	How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Networks, 2004, 17, 471-510.	5.9	247
120	Tetrodotoxin-dependent glutamate release in the rat nucleus accumbens during concurrent presentation of appetitive and conditioned aversive stimuli. Journal of Neuroscience Methods, 2004, 140, 15-21.	2.5	8
121	Models of the subthalamic nucleus. Medical Engineering and Physics, 2004, 26, 723-732.	1.7	46
122	Beyond memory: neuropsychologic features in differential diagnosis of dementia. Clinics in Geriatric Medicine, 2004, 20, 45-58.	2.6	9
123	Computational models of the basal ganglia: from robots to membranes. Trends in Neurosciences, 2004, 27, 453-459.	8.6	161
124	Oscillatory Entrainment of Striatal Neurons in Freely Moving Rats. Neuron, 2004, 43, 883-896.	8.1	452
125	Effects of medial prefrontal cortex and dorsal striatum lesions on retrieval processes in rats. Neuroscience, 2004, 129, 539-553.	2.3	16
126	Testing computational hypotheses of brain systems function: a case study with the basal ganglia. Network: Computation in Neural Systems, 2004, 15, 263-290.	3.6	32
127	Immediate Changes in Anticipatory Activity of Caudate Neurons Associated With Reversal of Position-Reward Contingency. Journal of Neurophysiology, 2005, 94, 1879-1887.	1.8	50
128	Training with Verbal Instructional Cues Results in Near-term Improvement of Gait in People with Parkinson Disease. Journal of Neurologic Physical Therapy, 2005, 29, 2-8.	1.4	70
129	Price, Placebo, and the Brain. Journal of Marketing Research, 2005, 42, 399-400.	4.8	24
130	Midbrain muscarinic receptor mechanisms underlying regulation of mesoaccumbens and nigrostriatal dopaminergic transmission in the rat. European Journal of Neuroscience, 2005, 21, 1837-1846.	2.6	75
131	Rethinking the thalamus. Nature Neuroscience, 2005, 8, 983-984.	14.8	9

#	Article	IF	Citations
132	The brain basis of piano performance. Neuropsychologia, 2005, 43, 199-215.	1.6	101
133	Spatial interference during bimanual coordination: Differential brain networks associated with control of movement amplitude and direction. Human Brain Mapping, 2005, 26, 286-300.	3.6	54
134	Tetrodotoxin-Dependent Glycine Release in the Rat Nucleus Accumbens During Correction of Feeding Behavior. Neuroscience and Behavioral Physiology, 2005, 35, 815-819.	0.4	3
135	Dopamine D1-Receptors Modulate Lateral Inhibition Between Principal Cells of the Nucleus Accumbens. Journal of Neurophysiology, 2005, 93, 1816-1819.	1.8	31
136	Rat Nucleus Accumbens Neurons Predominantly Respond to the Outcome-Related Properties of Conditioned Stimuli Rather Than Their Behavioral-Switching Properties. Journal of Neurophysiology, 2005, 94, 49-61.	1.8	49
137	Integration of Navigation and Action Selection Functionalities in a Computational Model of Cortico-Basal-Ganglia–Thalamo-Cortical Loops. Adaptive Behavior, 2005, 13, 115-130.	1.9	22
138	Is There an Integrative Center in the Vertebrate Brain-Stem? A Robotic Evaluation of a Model of the Reticular Formation Viewed as an Action Selection Device. Adaptive Behavior, 2005, 13, 97-113.	1.9	16
139	The simulation of action disorganisation in complex activities of daily living. Cognitive Neuropsychology, 2005, 22, 959-1004.	1.1	48
140	Neural Correlates of Reach Errors. Journal of Neuroscience, 2005, 25, 9919-9931.	3.6	550
141	Context-Dependent Modulation of Movement-Related Discharge in the Primate Globus Pallidus. Journal of Neuroscience, 2005, 25, 2965-2976.	3.6	91
142	Evolution of Neural Architecture Fitting Environmental Dynamics. Adaptive Behavior, 2005, 13, 53-66.	1.9	15
143	Intentional false responding shares neural substrates with response conflict and cognitive control. NeuroImage, 2005, 25, 267-277.	4.2	210
144	Neural circuitry of judgment and decision mechanisms. Brain Research Reviews, 2005, 48, 509-526.	9.0	76
145	Subcortical loops through the basal ganglia. Trends in Neurosciences, 2005, 28, 401-407.	8.6	394
146	Neurobiological Correlates of Social Conformity and Independence During Mental Rotation. Biological Psychiatry, 2005, 58, 245-253.	1.3	237
147	Increased Dopamine D2/D3 Receptor Binding After Recovery from Anorexia Nervosa Measured by Positron Emission Tomography and [11C]Raclopride. Biological Psychiatry, 2005, 58, 908-912.	1.3	314
149	Human striatal activation reflects degree of stimulus saliency. NeuroImage, 2006, 29, 977-983.	4.2	181
150	Stimulation of the Subthalamic Region Facilitates the Selection and Inhibition of Motor Responses in Parkinson's Disease. Journal of Cognitive Neuroscience, 2006, 18, 626-636.	2.3	243

#	Article	IF	Citations
151	Freudian Dream Theory, Dream Bizarreness, and the Disguise-Censor Controversy. Neuropsychoanalysis, 2006, 8, 5-16.	0.7	15
153	Effects of 7-OH-DPAT and U 99194 on the behavioral response to hot plate test, in rats. Physiology and Behavior, 2006, 89, 552-562.	2.1	19
155	A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol Behavioral Neuroscience, 2006, 120, 497-517.	1.2	411
156	Freudian Repression, the Common View, and Pathological Science. Review of General Psychology, 2006, 10, 74-86.	3.2	52
157	Excitatory GABAergic Effects in Striatal Projection Neurons. Journal of Neurophysiology, 2006, 95, 1285-1290.	1.8	67
158	The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 2006, 7, 464-476.	10.2	1,974
159	The short-latency dopamine signal: a role in discovering novel actions?. Nature Reviews Neuroscience, 2006, 7, 967-975.	10.2	733
160	Turning off cortical ensembles stops striatal Up states and elicits phase perturbations in cortical and striatal slow oscillations in ratin vivo. Journal of Physiology, 2006, 577, 97-113.	2.9	85
161	Neural mechanism for stochastic behaviour during a competitive game. Neural Networks, 2006, 19, 1075-1090.	5.9	72
162	A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Networks, 2006, 19, 31-61.	5.9	167
163	Possible Mechanisms of the Involvement of Dopaminergic Cells and Cholinergic Interneurons in the Striatum in the Conditioned-Reflex Selection of Motor Activity. Neuroscience and Behavioral Physiology, 2006, 36, 163-175.	0.4	3
164	Involvement of the Motor Cortex in the Bimanual Unloading Reaction: A Transcranial Magnetic Stimulation Study. Neuroscience and Behavioral Physiology, 2006, 36, 177-183.	0.4	2
165	Glutamate Release in the Nucleus Accumbens During Competitive Presentation of Aversive and Appetitive Stimuli. Neuroscience and Behavioral Physiology, 2006, 36, 247-252.	0.4	1
166	Supervised learning of postural tasks in patients with poststroke hemiparesis, Parkinson's disease or cerebellar ataxia. Experimental Brain Research, 2006, 168, 384-394.	1.5	42
167	A cognitive architecture that combines internal simulation with a global workspace. Consciousness and Cognition, 2006, 15, 433-449.	1.5	160
168	Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 2006, 96, 280-301.	1.6	725
169	Backward inhibition in Parkinson's disease. Neuropsychologia, 2006, 44, 1041-1049.	1.6	29
170	Unimpaired negative but enhanced positive priming in Parkinson's disease: Evidence from an identity and a location priming task. Neuropsychologia, 2006, 44, 1811-1821.	1.6	11

#	Article	IF	Citations
171	The pedunculopontine tegmental nucleus and responding for sucrose reward Behavioral Neuroscience, 2006, 120, 563-570.	1.2	14
172	A neural network model of inhibitory processes in subliminal priming. Visual Cognition, 2006, 13, 401-480.	1.6	63
173	A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia. Journal of Neuroscience, 2006, 26, 12921-12942.	3 . 6	317
174	Integrated Neural Processes for Defining Potential Actions and Deciding between Them: A Computational Model. Journal of Neuroscience, 2006, 26, 9761-9770.	3.6	289
175	THE ROLE OF THE BASAL GANGLIA IN EXPLORATION IN A NEURAL MODEL BASED ON REINFORCEMENT LEARNING. International Journal of Neural Systems, 2006, 16, 111-124.	5.2	54
176	Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1573-1583.	4.0	176
177	Consciousness is more than wakefulness. Behavioral and Brain Sciences, 2007, 30, 99-99.	0.7	7
178	L-DOPA Disrupts Activity in the Nucleus Accumbens during Reversal Learning in Parkinson's Disease. Neuropsychopharmacology, 2007, 32, 180-189.	5.4	262
179	Real Processes' and the Explanatory Status of Repression and Inhibition. Philosophical Psychology, 2007, 20, 375-392.	0.9	9
180	A parallel framework for interactive behavior. Progress in Brain Research, 2007, 165, 475-492.	1.4	13
181	Consciousness, cortical function, and pain perception in nonverbal humans. Behavioral and Brain Sciences, 2007, 30, 82-83.	0.7	9
182	The mesencephalon as a source of preattentive consciousness. Behavioral and Brain Sciences, 2007, 30, 81-82.	0.7	25
183	Cortical mechanisms of action selection: the affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1585-1599.	4.0	856
184	The ecology of action selection: insights from artificial life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1545-1558.	4.0	52
185	Introduction. Modelling natural action selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1521-1529.	4.0	46
186	Is there a brainstem substrate for action selection?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1627-1639.	4.0	52
187	Biologically constrained action selection improves cognitive control in a model of the Stroop task. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1671-1684.	4.0	26
188	Subcortical consciousness: Implications for fetal anesthesia and analgesia. Behavioral and Brain Sciences, 2007, 30, 86-87.	0.7	10

#	Article	IF	CITATIONS
189	Emotional feelings originate below the neocortex: Toward a neurobiology of the soul. Behavioral and Brain Sciences, 2007, 30, 101-103.	0.7	50
190	Multilevel structure in behaviour and in the brain: a model of Fuster's hierarchy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1615-1626.	4.0	86
191	Grounding consciousness: The mesodiencephalon as thalamocortical base. Behavioral and Brain Sciences, 2007, 30, 110-120.	0.7	5
192	Whiskerbot: A Robotic Active Touch System Modeled on the Rat Whisker Sensory System. Adaptive Behavior, 2007, 15, 223-240.	1.9	77
193	The Basal Ganglia and Cortex Implement Optimal Decision Making Between Alternative Actions. Neural Computation, 2007, 19, 442-477.	2.2	338
194	Roles of allocortex and centrencephalon in intentionality and consciousness. Behavioral and Brain Sciences, 2007, 30, 92-93.	0.7	2
195	Theoretical sequelae of a chronic neglect and unawareness of prefrontotectal pathways in the human brain. Behavioral and Brain Sciences, 2007, 30, 83-85.	0.7	1
196	A brain for all seasons. Behavioral and Brain Sciences, 2007, 30, 93-94.	0.7	0
197	Who dominates who in the dark basements of the brain?. Behavioral and Brain Sciences, 2007, 30, 104-105.	0.7	0
198	Subcortical regions and the self. Behavioral and Brain Sciences, 2007, 30, 100-101.	0.7	2
199	Target selection, attention, and the superior colliculus. Behavioral and Brain Sciences, 2007, 30, 98-99.	0.7	0
200	The ontology of creature consciousness: A challenge for philosophy. Behavioral and Brain Sciences, 2007, 30, 103-104.	0.7	2
201	Raw feeling: A model for affective consciousness. Behavioral and Brain Sciences, 2007, 30, 107-108.	0.7	2
202	Supracortical consciousness: Insights from temporal dynamics, processing-content, and olfaction. Behavioral and Brain Sciences, 2007, 30, 100-100.	0.7	4
203	Consciousness without a cortex, but what kind of consciousness is this?. Behavioral and Brain Sciences, 2007, 30, 87-88.	0.7	6
204	The functional utility of consciousness depends on content as well as on state. Behavioral and Brain Sciences, 2007, 30, 106-106.	0.7	3
205	The hypthalamo-tectoperiaqueductal system: Unconscious underpinnings of conscious behaviour. Behavioral and Brain Sciences, 2007, 30, 85-86.	0.7	3
206	Do multiple cortical–subcortical interactions support different aspects of consciousness?. Behavioral and Brain Sciences, 2007, 30, 88-89.	0.7	1

#	Article	IF	Citations
207	Pain, cortex, and consciousness. Behavioral and Brain Sciences, 2007, 30, 89-90.	0.7	6
208	Corticothalamic necessity, qualia, and consciousness. Behavioral and Brain Sciences, 2007, 30, 90-91.	0.7	3
209	Consciousness without corticocentrism: Beating an evolutionary path. Behavioral and Brain Sciences, 2007, 30, 91-92.	0.7	2
210	I Promethean, bound deeply and fluidly among the brain's associative robotic networks. Behavioral and Brain Sciences, 2007, 30, 95-96.	0.7	0
211	Should the superficial superior colliculus be part of Merker's mesodiencephalic system?. Behavioral and Brain Sciences, 2007, 30, 105-106.	0.7	1
212	The human superior colliculus: Neither necessary, nor sufficient for consciousness?. Behavioral and Brain Sciences, 2007, 30, 108-108.	0.7	3
213	Affirmative-action for the brainstem in the neuroscience of consciousness: The zeitgeist of the brainstem as a "dumb arousal―system. Behavioral and Brain Sciences, 2007, 30, 108-110.	0.7	3
214	Cognitive achievements with a miniature brain: The lesson of jumping spiders. Behavioral and Brain Sciences, 2007, 30, 94-95.	0.7	0
215	Forced Moves or Good Tricks in Design Space? Landmarks in the Evolution of Neural Mechanisms for Action Selection. Adaptive Behavior, 2007, 15, 9-31.	1.9	40
216	Effects of Methamphetamine on Single Unit Activity in Rat Medial Prefrontal Cortex In Vivo. Neural Plasticity, 2007, 2007, 1-9.	2.2	6
217	Reconciling reinforcement learning models with behavioral extinction and renewal: Implications for addiction, relapse, and problem gambling Psychological Review, 2007, 114, 784-805.	3.8	318
218	Optimal decision-making theories: linking neurobiology with behaviour. Trends in Cognitive Sciences, 2007, 11, 118-125.	7.8	317
219	Neurotoxic lesions of the caudate-putamen on a reaching for food task in the rat: Acute sensorimotor neglect and chronic qualitative motor impairment follow lateral lesions and improved success follows medial lesions. Neuroscience, 2007, 146, 86-97.	2.3	30
220	Levels of emotion and levels of consciousness. Behavioral and Brain Sciences, 2007, 30, 96-98.	0.7	16
221	Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. NeuroImage, 2007, 36, 793-803.	4.2	67
222	Brainstem interactions with the basal ganglia. Parkinsonism and Related Disorders, 2007, 13, S301-S305.	2.2	11
224	Encoding of Action History in the Rat Ventral Striatum. Journal of Neurophysiology, 2007, 98, 3548-3556.	1.8	39
225	Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. Journal of Comparative Neurology, 2007, 500, 1034-1049.	1.6	34

#	Article	IF	CITATIONS
226	Cueâ€evoked encoding of movement planning and execution in the rat nucleus accumbens. Journal of Physiology, 2007, 584, 801-818.	2.9	43
227	Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats. European Journal of Neuroscience, 2007, 25, 2791-2804.	2.6	23
228	Dysregulation of gene induction in corticostriatal circuits after repeated methylphenidate treatment in adolescent rats: differential effects onzifa \in f268andhomerâ \in f1a. European Journal of Neuroscience, 2007, 25, 3617-3628.	2.6	20
229	Distinct changes in evoked and resting globus pallidus activity in early and late Parkinson's disease experimental models. European Journal of Neuroscience, 2007, 26, 1267-1279.	2.6	26
230	Signaling patterns of globus pallidus internal segment neurons during forearm rotation. Brain Research, 2007, 1155, 56-69.	2.2	10
231	Using TD learning to simulate working memory performance in a model of the prefrontal cortex and basal ganglia. Cognitive Systems Research, 2007, 8, 262-281.	2.7	23
232	GABAergic excitation in striatal projection neurons: Simulations and experiments. Neurocomputing, 2007, 70, 1870-1876.	5.9	0
233	Consciousness without a cerebral cortex: A challenge for neuroscience and medicine. Behavioral and Brain Sciences, 2007, 30, 63-81.	0.7	663
234	Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology, 2007, 191, 507-520.	3.1	969
235	The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology, 2007, 191, 521-550.	3.1	299
236	Perceptual factors contribute to akinesia in Parkinson's disease. Experimental Brain Research, 2007, 179, 245-253.	1.5	8
237	Enhanced cognitive control in Tourette Syndrome during task uncertainty. Experimental Brain Research, 2007, 182, 357-364.	1.5	92
238	A model of reward choice based on the theory of reinforcement learning. Neuroscience and Behavioral Physiology, 2008, 38, 269-278.	0.4	2
239	Making economic sense of brain models: a survey and interpretation of the literature. Journal of Bioeconomics, 2008, 10, 165-192.	3.3	7
240	Cellular substrates of action selection: a cluster of higher-order descending neurons shapes body posture and locomotion. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 469-481.	1.6	21
241	d-Amphetamine depresses visual responses in the rat superior colliculus: a possible mechanism for amphetamine-induced decreases in distractibility. Journal of Neural Transmission, 2008, 115, 377-387.	2.8	15
242	A spiking neuron model of cortical broadcast and competition. Consciousness and Cognition, 2008, 17, 288-303.	1.5	34
243	Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection. Neural Networks, 2008, 21, 628-641.	5.9	43

#	Article	IF	CITATIONS
244	Evidence for a direct subthalamoâ€cortical loop circuit in the rat. European Journal of Neuroscience, 2008, 27, 2599-2610.	2.6	92
245	Anticipatory reward signals in ventral striatal neurons of behaving rats. European Journal of Neuroscience, 2008, 28, 1849-1866.	2.6	40
246	Sensory Processing Disorder in a Primate Model: Evidence From a Longitudinal Study of Prenatal Alcohol and Prenatal Stress Effects. Child Development, 2008, 79, 100-113.	3.0	54
247	What is reinforced by phasic dopamine signals?. Brain Research Reviews, 2008, 58, 322-339.	9.0	221
248	Supervisory and Routine Processes in Noun and Verb Generation in Nondemented Patients with Parkinson's Disease. Neuropsychologia, 2008, 46, 434-447.	1.6	77
249	Response inhibition in Huntington's diseaseâ€"A study using ERPs and sLORETA. Neuropsychologia, 2008, 46, 1290-1297.	1.6	84
250	Collicular dysfunction in attention deficit hyperactivity disorder. Medical Hypotheses, 2008, 70, 1121-1127.	1.5	42
251	Accurate timing but increased impulsivity following excitotoxic lesions of the subthalamic nucleus. Neuroscience Letters, 2008, 440, 176-180.	2.1	19
252	Experimental studies of pedunculopontine functions: Are they motor, sensory or integrative?. Parkinsonism and Related Disorders, 2008, 14, S194-S198.	2.2	62
253	The cognitive functions of the caudate nucleus. Progress in Neurobiology, 2008, 86, 141-155.	5.7	716
254	Is dystonic posturing during temporal lobe epileptic seizures the expression of an endogenous anticonvulsant system?. Epilepsy and Behavior, 2008, 12, 39-48.	1.7	16
255	A central circuit of the mind. Trends in Cognitive Sciences, 2008, 12, 136-143.	7.8	115
256	Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease. Brain Research Bulletin, 2008, 77, 42-48.	3.0	13
257	Everyday cognitive failures and memory problems in Parkinson's patients without dementia. Brain and Cognition, 2008, 67, 340-350.	1.8	32
258	A left basal ganglia case of dynamic aphasia or impairment of extra-language cognitive processes?. Neurocase, 2008, 14, 184-203.	0.6	27
260	Uncoordinated Firing Rate Changes of Striatal Fast-Spiking Interneurons during Behavioral Task Performance. Journal of Neuroscience, 2008, 28, 10075-10080.	3.6	136
261	New and Expanded Concepts in Neurophysiology, Psychology, and Sociology Complementary to Llorens' Developmental Theory: Achieving Growth and Development through Occupation for Neonatal Infants and their Families. Occupational Therapy in Mental Health, 2008, 24, 201-349.	0.3	1
262	Basal Ganglia Play a Unique Role in Task Switching within the Frontal-Subcortical Circuits: Evidence from Patients with Focal Lesions. Journal of Cognitive Neuroscience, 2008, 20, 1079-1093.	2.3	54

#	ARTICLE	IF	CITATIONS
263	Recurrent Collateral Connections of Striatal Medium Spiny Neurons Are Disrupted in Models of Parkinson's Disease. Journal of Neuroscience, 2008, 28, 5504-5512.	3.6	351
264	A Neuroimaging Study of Premotor Lateralization and Cerebellar Involvement in the Production of Phonemes and Syllables. Journal of Speech, Language, and Hearing Research, 2008, 51, 1183-1202.	1.6	140
265	Laminar cortical dynamics of cognitive and motor working memory, sequence learning and performance: Toward a unified theory of how the cerebral cortex works Psychological Review, 2008, 115, 677-732.	3.8	136
266	Optimal decision-making theories. , 2009, , 373-397.		9
267	Appetitive Systems: Amygdala and Striatum. , 2009, , 539-545.		1
268	The ventral striatum., 2009, , 51-77.		17
269	Computational implications of microcircuit specializations in forebrain circuits for motivated action selection. , 2009, , .		0
270	Ventral Striatal Neurons Encode the Value of the Chosen Action in Rats Deciding between Differently Delayed or Sized Rewards. Journal of Neuroscience, 2009, 29, 13365-13376.	3.6	176
271	Role of Striatum in Updating Values of Chosen Actions. Journal of Neuroscience, 2009, 29, 14701-14712.	3.6	179
272	Brain Hemispheres Selectively Track the Expected Value of Contralateral Options. Journal of Neuroscience, 2009, 29, 13465-13472.	3.6	57
273	Interaction of Stimulus-Driven Reorienting and Expectation in Ventral and Dorsal Frontoparietal and Basal Ganglia-Cortical Networks. Journal of Neuroscience, 2009, 29, 4392-4407.	3.6	342
274	The neurophysiological correlates of motor tics following focal striatal disinhibition. Brain, 2009, 132, 2125-2138.	7.6	137
275	Short-Latency Activation of Striatal Spiny Neurons via Subcortical Visual Pathways. Journal of Neuroscience, 2009, 29, 6336-6347.	3.6	63
276	Impaired visual processing preceding image recognition in Parkinson's disease patients with visual hallucinations. Brain, 2009, 132, 2980-2993.	7.6	163
277	Short-Latency Visual Input to the Subthalamic Nucleus Is Provided by the Midbrain Superior Colliculus. Journal of Neuroscience, 2009, 29, 5701-5709.	3.6	65
278	The effect of Parkinson's disease on interference control during action selection. Neuropsychologia, 2009, 47, 145-157.	1.6	119
279	Switching between abstract rules reflects disease severity but not dopaminergic status in Parkinson's disease. Neuropsychologia, 2009, 47, 1117-1127.	1.6	55
280	Cognitive bias as an indicator of animal emotion and welfare: Emerging evidence and underlying mechanisms. Applied Animal Behaviour Science, 2009, 118, 161-181.	1.9	544

#	Article	IF	CITATIONS
281	Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurology, The, 2009, 8, 1128-1139.	10.2	700
282	Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychological Research, 2009, 73, 559-577.	1.7	138
284	A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson's disease. Journal of Computational Neuroscience, 2009, 26, 91-107.	1.0	64
285	Reverse Engineering the Vertebrate Brain: Methodological Principles for a Biologically Grounded Programme of Cognitive Modelling. Cognitive Computation, 2009, 1, 29-41.	5.2	21
286	A neurocomputational account of catalepsy sensitization induced by D2 receptor blockade in rats: context dependency, extinction, and renewal. Psychopharmacology, 2009, 204, 265-277.	3.1	40
287	Effects of stimulus–response compatibility on inhibitory processes in Parkinson's disease. European Journal of Neuroscience, 2009, 29, 855-860.	2.6	74
288	Involvement of the subthalamic nucleus in engagement with behaviourally relevant stimuli. European Journal of Neuroscience, 2009, 29, 931-942.	2.6	25
289	Role of the basal ganglia in switching a planned response. European Journal of Neuroscience, 2009, 29, 2413-2425.	2.6	28
290	Neural correlates of conflict resolution between automatic and volitional actions by basal ganglia. European Journal of Neuroscience, 2009, 30, 2165-2176.	2.6	36
291	Computational perspectives on forebrain microcircuits implicated in reinforcement learning, action selection, and cognitive control. Neural Networks, 2009, 22, 757-765.	5.9	16
292	Learning processing in the basal ganglia: A mosaic of broken mirrors. Behavioural Brain Research, 2009, 199, 157-170.	2.2	47
293	The role of the basal ganglia in learning and memory: Neuropsychological studies. Behavioural Brain Research, 2009, 199, 53-60.	2.2	217
294	Expression of c-fos mRNA in the basal ganglia associated with contingent tolerance to amphetamine-induced hypophagia. Behavioural Brain Research, 2009, 198, 388-396.	2.2	4
295	The free-energy principle: a rough guide to the brain?. Trends in Cognitive Sciences, 2009, 13, 293-301.	7.8	1,419
296	Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons. Neuroscience, 2009, 160, 744-754.	2.3	38
297	Drug therapies for attentional disorders alter the signal-to-noise ratio in the superior colliculus. Neuroscience, 2009, 164, 1369-1376.	2.3	23
298	Nonâ€motor Function of the Midbrain Dopaminergic Neurons. , 2009, , 147-160.		2
300	From Real-World Events to Psychosis: The Emerging Neuropharmacology of Delusions. Schizophrenia Bulletin, 2009, 35, 668-674.	4.3	43

#	Article	IF	CITATIONS
301	Neuroscientific Investigations of Musical Rhythm: Recent Advances and Future Challenges. Contemporary Music Review, 2009, 28, 251-277.	0.3	18
302	When doing nothing is an option: The neural correlates of deciding whether to act or not. Neurolmage, 2009, 46, 1187-1193.	4.2	40
303	Technical integration of hippocampus, basal ganglia and physical models for spatial navigation. Frontiers in Neuroinformatics, 2009, 3, 6.	2.5	8
304	Cognition: Basal Ganglia Role. , 2009, , 1069-1077.		32
305	Psychopathic traits and deception: functional magnetic resonance imaging study. British Journal of Psychiatry, 2009, 194, 229-235.	2.8	67
306	Dopaminergic Modulation of Cognitive Control: Distinct Roles for the Prefrontal Cortex and the Basal Ganglia. Current Pharmaceutical Design, 2010, 16, 2026-2032.	1.9	94
307	Response Competition in the Primary Motor Cortex: Corticospinal Excitability Reflects Response Replacement During Simple Decisions. Journal of Neurophysiology, 2010, 104, 119-127.	1.8	75
308	An ethological analysis of barbering behavior. , 0, , 184-225.		7
309	TRoPICALS: A computational embodied neuroscience model of compatibility effects Psychological Review, 2010, 117, 1188-1228.	3.8	134
310	The effects of L-DOPA on glutamate dehydrogenase activity in the cerebral neurons of rats with different motor activities. Neurochemical Journal, 2010, 4, 25-29.	0.5	1
311	Het enigma van de nucleus subthalamicus: implicaties voor neurologische en psychiatrische ziektebeelden. Neuropraxis, 2010, 14, 184-191.	0.1	0
312	Action and behavior: a free-energy formulation. Biological Cybernetics, 2010, 102, 227-260.	1.3	686
313	What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 2010, 103, 237-253.	1.3	161
314	Cortico-basal ganglia circuitry: a review of key research and implications for functional connectivity studies of mood and anxiety disorders. Brain Structure and Function, 2010, 215, 73-96.	2.3	116
315	Adaptation, Expertise, and Giftedness: Towards an Understanding of Cortical, Subcortical, and Cerebellar Network Contributions. Cerebellum, 2010, 9, 499-529.	2.5	58
316	The Social Origins of Folk Epistemology. Review of Philosophy and Psychology, 2010, 1, 499-514.	1.8	12
317	Dopaminergic Modulation of Spiny Neurons in the Turtle Striatum. Cellular and Molecular Neurobiology, 2010, 30, 743-750.	3.3	11
318	Postnatal Development of Neurons, Interneurons and Glial Cells in the Substantia Nigra of Mice. Cellular and Molecular Neurobiology, 2010, 30, 917-928.	3.3	21

#	Article	IF	CITATIONS
319	Response times for visually guided saccades in persons with Parkinson's disease: A meta-analytic review. Neuropsychologia, 2010, 48, 887-899.	1.6	68
320	Visuo-motor and cognitive procedural learning in children with basal ganglia pathology. Neuropsychologia, 2010, 48, 2009-2017.	1.6	22
321	Optimal decision making with biologically realistic neural signals. BMC Neuroscience, 2010, $11,.$	1.9	3
322	A Key Role of the Basal Ganglia in Pain and Analgesia - Insights Gained through Human Functional Imaging. Molecular Pain, 2010, 6, 1744-8069-6-27.	2.1	256
323	Computational models of cognitive control. Current Opinion in Neurobiology, 2010, 20, 257-261.	4.2	79
324	Neural computations associated with goal-directed choice. Current Opinion in Neurobiology, 2010, 20, 262-270.	4.2	473
325	Basal ganglia contributions to motor control: a vigorous tutor. Current Opinion in Neurobiology, 2010, 20, 704-716.	4.2	376
326	The development of the basal ganglia in Capuchin monkeys (Cebus apella). Brain Research, 2010, 1329, 82-88.	2.2	4
327	ACE (Actor–Critic–Explorer) paradigm for reinforcement learning in basal ganglia: Highlighting the role of subthalamic and pallidal nuclei. Neurocomputing, 2010, 74, 205-218.	5.9	8
328	Initiation and termination of integration in a decision process. Neural Networks, 2010, 23, 322-333.	5.9	8
329	Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nature Reviews Neuroscience, 2010, 11, 760-772.	10.2	869
330	Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)â€induced gene regulation in the adolescent striatum. European Journal of Neuroscience, 2010, 32, 435-447.	2.6	30
331	What the brain teaches us about latent inhibition (LI): the neural substrates of the expression and prevention of LI., 0 ,, $372-416$.		6
332	Interactions between the midbrain superior colliculus and the basal ganglia. Frontiers in Neuroanatomy, 2010, 4, .	1.7	84
333	Tonic Dopamine Modulates Exploitation of Reward Learning. Frontiers in Behavioral Neuroscience, 2010, 4, 170.	2.0	144
334	Human fronto-tectal and fronto-striatal-tectal pathways activate differently during anti-saccades. Frontiers in Human Neuroscience, 2010, 4, 41.	2.0	12
335	Integrating early results on ventral striatal gamma oscillations in the rat. Frontiers in Neuroscience, 2010, 4, 300.	2.8	58
336	Organization of Prefrontal-Striatal Connections. Handbook of Behavioral Neuroscience, 2010, , 353-365.	0.7	11

#	Article	IF	CITATIONS
337	The interplay of Pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat., 2010,, 93-113.		23
338	Psychostimulant-Induced Gene Regulation in Corticostriatal Circuits. Handbook of Behavioral Neuroscience, 2010, , 501-525.	0.7	5
339	Phasic Dopamine Signaling and Basal Ganglia Function. Handbook of Behavioral Neuroscience, 2010, , 549-559.	0.7	3
340	Selection of Prime Actor in Humans during Bimanual Object Manipulation. Journal of Neuroscience, 2010, 30, 10448-10459.	3.6	11
341	Learning Affordances of Consummatory Behaviors: Motivation-Driven Adaptive Perception. Adaptive Behavior, 2010, 18, 285-314.	1.9	27
342	The Human Basal Ganglia Modulate Frontal-Posterior Connectivity during Attention Shifting. Journal of Neuroscience, 2010, 30, 9910-9918.	3.6	142
343	Decision Threshold Modulation in the Human Brain. Journal of Neuroscience, 2010, 30, 14305-14317.	3.6	97
344	The Flexible Approach Hypothesis: Unification of Effort and Cue-Responding Hypotheses for the Role of Nucleus Accumbens Dopamine in the Activation of Reward-Seeking Behavior. Journal of Neuroscience, 2010, 30, 16585-16600.	3.6	208
345	Cortical and Thalamic Innervation of Direct and Indirect Pathway Medium-Sized Spiny Neurons in Mouse Striatum. Journal of Neuroscience, 2010, 30, 14610-14618.	3.6	194
346	Variations in the <i>TNF-</i> letten (TNF-letter) -308Gât'A) Affect Attention and Action Selection Mechanisms in a Dissociated Fashion. Journal of Neurophysiology, 2010, 104, 2523-2531.	1.8	59
347	Reconstructing the Three-Dimensional GABAergic Microcircuit of the Striatum. PLoS Computational Biology, 2010, 6, e1001011.	3.2	44
348	Facilitation of Corticostriatal Plasticity by the Amygdala Requires Ca ²⁺ -Induced Ca ²⁺ Release in the Ventral Striatum. Journal of Neurophysiology, 2010, 104, 1673-1680.	1.8	8
349	Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson's disease. Brain, 2010, 133, 3611-3624.	7.6	148
350	Top–Down Attentional Control in Parkinson's Disease: Salient Considerations. Journal of Cognitive Neuroscience, 2010, 22, 848-859.	2.3	68
351	Item Retrieval and Competition in Noun and Verb Generation: An fMRI Study. Journal of Cognitive Neuroscience, 2010, 22, 1140-1157.	2.3	88
352	The Effect of Parkinson's Disease on the Dynamics of On-line and Proactive Cognitive Control during Action Selection. Journal of Cognitive Neuroscience, 2010, 22, 2058-2073.	2.3	111
353	Importing the computational neuroscience toolbox into neuro-evolution-application to basal ganglia. , 2010, , .		10
354	Neural Representations and Mechanisms for the Performance of Simple Speech Sequences. Journal of Cognitive Neuroscience, 2010, 22, 1504-1529.	2.3	259

#	Article	IF	Citations
355	Neural Mechanisms for Interacting with a World Full of Action Choices. Annual Review of Neuroscience, 2010, 33, 269-298.	10.7	1,305
356	Stomatognathic adaptive motor syndrome is the correct diagnosis for temporomandibular disorders. Medical Hypotheses, 2010, 74, 710-718.	1.5	36
357	A case of foreign accent syndrome: Acoustic analyses and an empirical test of accent perception. Journal of Neurolinguistics, 2010, 23, 580-598.	1.1	17
358	The uncertainty processing theory of motivation. Behavioural Brain Research, 2010, 208, 291-310.	2.2	60
359	The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward Progress in Neurobiology, 2010, 90, 385-417.	5.7	326
360	Nucleus accumbens and impulsivity. Progress in Neurobiology, 2010, 92, 533-557.	5.7	219
361	Selective Activation of Striatal Fast-Spiking Interneurons during Choice Execution. Neuron, 2010, 67, 466-479.	8.1	221
362	The neural basis of the speed–accuracy tradeoff. Trends in Neurosciences, 2010, 33, 10-16.	8.6	574
363	Differential modulations of response control processes by 5-HT1A gene variation. NeuroImage, 2010, 50, 764-771.	4.2	18
364	Cortico-Basal Ganglia Reward Network: Microcircuitry. Neuropsychopharmacology, 2010, 35, 27-47.	5.4	820
365	Subcortical Connections of the Basal Ganglia. Handbook of Behavioral Neuroscience, 2010, , 397-408.	0.7	6
366	Conditional routing of information to the cortex: A model of the basal ganglia's role in cognitive coordination Psychological Review, 2010, 117, 541-574.	3.8	308
367	Serial order in an acting system: A multidimensional dynamic neural fields implementation. , 2010, , .		9
368	Spatial and Temporal Properties of Tic-Related Neuronal Activity in the Cortico-Basal Ganglia Loop. Journal of Neuroscience, 2011, 31, 8713-8721.	3.6	55
369	Reinforcement learning and dimensionality reduction: A model in computational neuroscience. , 2011 , , .		1
370	Subcortical structures and the neurobiology of infant attachment disorganization: A longitudinal ultrasound imaging study. Social Neuroscience, 2011, 6, 336-347.	1.3	23
371	The Visuomotor Mental Rotation Task: Visuomotor Transformation Times Are Reduced for Small and Perceptually Familiar Angles. Journal of Motor Behavior, 2011, 43, 393-402.	0.9	8
372	Cyclic Adenosine Monophosphate–Independent Tyrosine Phosphorylation of NR2B Mediates Cocaine-Induced Extracellular Signal-Regulated Kinase Activation. Biological Psychiatry, 2011, 69, 218-227.	1.3	110

#	Article	IF	CITATIONS
373	Human striatal activation during adjustment of the response criterion in visual word recognition. Neurolmage, 2011, 54, 2412-2417.	4.2	12
374	Modeling Basal Ganglia for Understanding Parkinsonian Reaching Movements. Neural Computation, 2011, 23, 477-516.	2.2	49
376	Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex, 2011, 47, 117-127.	2.4	222
377	Object affordance and spatial-compatibility effects in Parkinson's disease. Cortex, 2011, 47, 332-341.	2.4	17
378	Reverse-translational biomarker validation of Abnormal Repetitive Behaviors in mice: An illustration of the 4P's modeling approach. Behavioural Brain Research, 2011, 219, 189-196.	2.2	50
379	Executive control in chronic schizophrenia: A perspective from manual stimulus-response compatibility task performance. Behavioural Brain Research, 2011, 223, 24-29.	2.2	17
380	Effects of aging, Parkinson's disease, and dopaminergic medication on response selection and control. Neurobiology of Aging, 2011, 32, 327-335.	3.1	61
381	Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement. Neuroscience, 2011, 198, 138-151.	2.3	139
382	Investigating striatal function through cell-type-specific manipulations. Neuroscience, 2011, 198, 19-26.	2.3	45
383	Dopaminergic modulation of striatal neurons, circuits, and assemblies. Neuroscience, 2011, 198, 3-18.	2.3	118
384	Six questions on the subthalamic nucleus: lessons from animal models and from stimulated patients. Neuroscience, 2011, 198, 193-204.	2.3	40
385	Functional Anatomy, Physiology and Clinical Aspects of Basal Ganglia. , 2011, , .		3
386	Action selection and refinement in subcortical loops through basal ganglia and cerebellum. , 0, , 176-207.		4
387	Introduction to Part II: computational neuroscience models. , 0, , 169-175.		0
388	Toward an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system., 0,, 239-263.		1
389	Optimised agent-based modelling of action selection. , 2011, , 37-60.		1
390	Cortical mechanisms of action selection: the affordance competition hypothesis., 0,, 208-238.		5
391	Biologically constrained action selection improves cognitive control in a model of the Stroop task. , 0, , 363-389.		0

#	Article	IF	CITATIONS
392	Mechanisms of choice in the primate brain: a quick look at positive feedback., 0,, 390-418.		5
393	Paradoxes in Parkinson's disease and other movement disorders. , 0, , 189-203.		4
394	Biomimetic robots as scientific models: a view from the whisker tip., 2011,, 23-57.		15
395	Robotic Control Based On The Human Nervous System. International Journal of Artificial Intelligence & Applications, 2011, 2, 107-122.	0.5	4
396	DARPP-32, Jack of All Trades? Master of Which?. Frontiers in Behavioral Neuroscience, 2011, 5, 56.	2.0	96
397	A Compositionality Machine Realized by a Hierarchic Architecture of Synfire Chains. Frontiers in Computational Neuroscience, 2011, 4, 154.	2.1	18
398	Motor Planning under Unpredictable Reward: Modulations of Movement Vigor and Primate Striatum Activity. Frontiers in Neuroscience, 2011, 5, 61.	2.8	79
399	Impact of Size and Delay on Neural Activity in the Rat Limbic Corticostriatal System. Frontiers in Neuroscience, 2011, 5, 130.	2.8	28
400	Under Pressure: Response Urgency Modulates Striatal and Insula Activity during Decision-Making under Risk. PLoS ONE, 2011, 6, e20942.	2.5	36
401	Impact of expected value on neural activity in rat substantia nigra pars reticulata. European Journal of Neuroscience, 2011, 33, 2308-2317.	2.6	29
402	PiÃ@ron's Law Holds During Stroop Conflict: Insights Into the Architecture of Decision Making. Cognitive Science, 2011, 35, 1553-1566.	1.7	12
403	Physiological evidence for a transâ€basal ganglia pathway linking extrastriate visual cortex and the superior colliculus. Journal of Physiology, 2011, 589, 5785-5799.	2.9	9
404	Modeling the role of basal ganglia in saccade generation: Is the indirect pathway the explorer?. Neural Networks, 2011, 24, 801-813.	5.9	30
405	On the role of fronto-striatal neural synchronization processes for response inhibition—Evidence from ERP phase-synchronization analyses in pre-manifest Huntington's disease gene mutation carriers. Neuropsychologia, 2011, 49, 3484-3493.	1.6	66
406	Computational models of motivated action selection in corticostriatal circuits. Current Opinion in Neurobiology, 2011, 21, 381-386.	4.2	162
407	Evolutionary Conservation of the Basal Ganglia as a Common Vertebrate Mechanism for Action Selection. Current Biology, 2011, 21, 1081-1091.	3.9	266
408	A gamma band specific role of the subthalamic nucleus in switching during verbal fluency tasks in Parkinson's disease. Experimental Neurology, 2011, 232, 136-142.	4.1	37
409	Modulation of Striatal Projection Systems by Dopamine. Annual Review of Neuroscience, 2011, 34, 441-466.	10.7	1,334

#	Article	IF	Citations
410	Human cognitive flexibility depends on dopamine D2 receptor signaling. Psychopharmacology, 2011, 218, 567-578.	3.1	109
411	Impaired conflict monitoring in Parkinson's disease patients during an oculomotor redirect task. Experimental Brain Research, 2011, 208, 1-10.	1.5	17
412	Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson's disease. Experimental Brain Research, 2011, 212, 371-384.	1.5	180
413	Abnormal air righting behaviour in the spontaneously hypertensive rat model of ADHD. Experimental Brain Research, 2011, 215, 45-52.	1.5	6
414	Sensory Integration, Sensory Processing, and Sensory Modulation Disorders: Putative Functional Neuroanatomic Underpinnings. Cerebellum, 2011, 10, 770-792.	2.5	78
415	A computational model of interconnected basal ganglia-thalamocortical loops for goal directed action sequences. BMC Neuroscience, 2011, 12, .	1.9	2
416	An abstract model of the basal ganglia, reward learning and action selection. BMC Neuroscience, 2011 , 12 , .	1.9	0
417	Inhibitory control during smooth pursuit in Parkinson's disease and Huntington's disease. Movement Disorders, 2011, 26, 1893-1899.	3.9	19
418	Thalamic Contributions to Basal Ganglia-Related Behavioral Switching and Reinforcement. Journal of Neuroscience, 2011, 31, 16102-16106.	3.6	94
419	Bifurcation analysis points towards the source of beta neuronal oscillations in Parkinson's disease. , 2011, , .		5
420	Neural processing of imminent collision in humans. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1476-1481.	2.6	80
421	Integration of Reinforcement Learning and Optimal Decision-Making Theories of the Basal Ganglia. Neural Computation, 2011, 23, 817-851.	2.2	72
422	Dopamine-Mediated Reinforcement Learning Signals in the Striatum and Ventromedial Prefrontal Cortex Underlie Value-Based Choices. Journal of Neuroscience, 2011, 31, 1606-1613.	3.6	244
423	Opioidergic Interactions between Striatal Projection Neurons. Journal of Neuroscience, 2011, 31, 13346-13356.	3.6	35
424	Event-Related Potentials Elicited by Errors during the Stop-Signal Task. I. Macaque Monkeys. Journal of Neuroscience, 2011, 31, 15640-15649.	3.6	63
425	Neural Correlates of Biased Competition in Premotor Cortex. Journal of Neuroscience, 2011, 31, 7083-7088.	3.6	159
426	Functional Connectivity and Coactivation of the Nucleus Accumbens: A Combined Functional Connectivity and Structure-Based Meta-analysis. Journal of Cognitive Neuroscience, 2011, 23, 2864-2877.	2.3	190
427	How paradoxical is the brain?. Brain, 2011, 134, 3417-3420.	7.6	O

#	Article	IF	CITATIONS
428	The contribution of the putamen to sensory aspects of pain: insights from structural connectivity and brain lesions. Brain, 2011, 134, 1987-2004.	7.6	119
429	The Contribution of NMDA Receptor Signaling in the Corticobasal Ganglia Reward Network to Appetitive Pavlovian Learning. Journal of Neuroscience, 2011, 31, 11362-11369.	3.6	33
430	Neuroscience, virtual reality and neurorehabilitation: Brain repair as a validation of brain theory. , 2011, 2011, 2254-7.		15
431	Orbitofrontal cortical activity during repeated free choice. Journal of Neurophysiology, 2012, 107, 3246-3255.	1.8	1
432	Partly Separated Activations in the Spatial Distribution between <i>de-qi</i> and Sharp Pain during Acupuncture Stimulation: An fMRI-Based Study. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-11.	1.2	13
433	Robust Representation of Stable Object Values in the Oculomotor Basal Ganglia. Journal of Neuroscience, 2012, 32, 16917-16932.	3.6	97
434	Signaling in Striatal Neurons. Progress in Molecular Biology and Translational Science, 2012, 106, 33-62.	1.7	44
435	Neuronal Activity in the Human Subthalamic Nucleus Encodes Decision Conflict during Action Selection. Journal of Neuroscience, 2012, 32, 2453-2460.	3.6	99
436	Motor Control Abnormalities in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009282-a009282.	6.2	181
437	Human Violence and Evolutionary Consciousness. Review of General Psychology, 2012, 16, 343-356.	3.2	9
439	The effects of antiorthostatic hypodynamia and overload on discriminant learning and monoamine exchange in the brain structures of mice. Neurochemical Journal, 2012, 6, 291-298.	0.5	1
440	Action Selection and Action Value in Frontal-Striatal Circuits. Neuron, 2012, 74, 947-960.	8.1	140
441	Attention and visual dysfunction in Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, 742-747.	2.2	45
442	Neural systems analysis of decision making during goal-directed navigation. Progress in Neurobiology, 2012, 96, 96-135.	5.7	70
443	Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson's disease. Progress in Neurobiology, 2012, 96, 69-86.	5.7	160
444	Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nature Neuroscience, 2012, 15, 1281-1289.	14.8	329
445	The brain's connective core and its role in animal cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2704-2714.	4.0	81
446	Integrating Neurotransmission in Striatal Medium Spiny Neurons. Advances in Experimental Medicine and Biology, 2012, 970, 407-429.	1.6	79

#	Article	IF	CITATIONS
447	Amphetamine stereotypy, the basal ganglia, and the "selection problem― Behavioural Brain Research, 2012, 231, 297-308.	2.2	22
448	Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions. Frontiers in Neural Circuits, 2012, 6, 38.	2.8	32
449	Serotonin inhibits lowâ€threshold spike interneurons in the striatum. Journal of Physiology, 2012, 590, 2241-2252.	2.9	7
450	Chaotic Exploration and Learning of Locomotion Behaviors. Neural Computation, 2012, 24, 2185-2222.	2.2	26
451	Mechanisms of Action Selection and Timing in Substantia Nigra Neurons. Journal of Neuroscience, 2012, 32, 5534-5548.	3.6	76
452	Reinforcement learning in young adults with developmental language impairment. Brain and Language, 2012, 123, 154-163.	1.6	24
453	Distributed Adaptive Control: A theory of the Mind, Brain, Body Nexus. Biologically Inspired Cognitive Architectures, 2012, 1, 55-72.	0.9	88
454	Mechanisms mediating parallel action monitoring in fronto-striatal circuits. Neurolmage, 2012, 62, 137-146.	4.2	86
455	Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Frontiers in Behavioral Neuroscience, 2012, 6, 79.	2.0	72
456	Attention deficits without cortical neuronal deficits. Nature, 2012, 489, 434-437.	27.8	206
457	The role of the striatum in sentence processing: Disentangling syntax from working memory in Huntington's disease. Neuropsychologia, 2012, 50, 2625-2635.	1.6	32
458	The Complex Mind., 2012, , .		1
459	Biomimetic and Biohybrid Systems. Lecture Notes in Computer Science, 2012, , .	1.3	5
460	The Basal Ganglia Optimize Decision Making over General Perceptual Hypotheses. Neural Computation, 2012, 24, 2924-2945.	2.2	44
461	Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis. Biology of Sex Differences, 2012, 3, 14.	4.1	249
462	How Prediction Errors Shape Perception, Attention, and Motivation. Frontiers in Psychology, 2012, 3, 548.	2.1	341
463	Segregated Anatomical Input to Sub-Regions of the Rodent Superior Colliculus Associated with Approach and Defense. Frontiers in Neuroanatomy, 2012, 6, 9.	1.7	127
464	Action selection performance of a reconfigurable basal ganglia inspired model with Hebbian–Bayesian Go-NoGo connectivity. Frontiers in Behavioral Neuroscience, 2012, 6, 65.	2.0	18

#	Article	IF	Citations
465	Learning to Select Actions with Spiking Neurons in the Basal Ganglia. Frontiers in Neuroscience, 2012, 6, 2.	2.8	53
466	Dopaminergic control of the exploration-exploitation trade-off via the basal ganglia. Frontiers in Neuroscience, 2012, 6, 9.	2.8	137
467	Acetylcholine-Based Entropy in Response Selection: A Model of How Striatal Interneurons Modulate Exploration, Exploitation, and Response Variability in Decision-Making. Frontiers in Neuroscience, 2012, 6, 18.	2.8	25
468	Building Bridges between Perceptual and Economic Decision-Making: Neural and Computational Mechanisms. Frontiers in Neuroscience, 2012, 6, 70.	2.8	129
469	Thorndike's Law 2.0: Dopamine and the Regulation of Thrift. Frontiers in Neuroscience, 2012, 6, 116.	2.8	29
470	Response inhibition signals and miscoding of direction in dorsomedial striatum. Frontiers in Integrative Neuroscience, 2012, 6, 69.	2.1	32
471	Impulsive personality and the ability to resist immediate reward: An fMRI study examining interindividual differences in the neural mechanisms underlying self ontrol. Human Brain Mapping, 2012, 33, 2768-2784.	3.6	53
472	Dopamine Agonists and the Suppression of Impulsive Motor Actions in Parkinson Disease. Journal of Cognitive Neuroscience, 2012, 24, 1709-1724.	2.3	66
473	Evolution of the basal ganglia: Dualâ€output pathways conserved throughout vertebrate phylogeny. Journal of Comparative Neurology, 2012, 520, 2957-2973.	1.6	106
474	Preserved and impaired taskâ€switching abilities in nonâ€demented patients with Parkinson's disease. Journal of Neuropsychology, 2012, 6, 94-118.	1.4	7
475	Neural Mechanisms of Rhythm Perception: Current Findings and Future Perspectives. Topics in Cognitive Science, 2012, 4, 585-606.	1.9	187
476	Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output. European Journal of Neuroscience, 2012, 36, 2240-2251.	2.6	46
477	Improved conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network. European Journal of Neuroscience, 2012, 36, 2229-2239.	2.6	75
478	Reduction of Influence of Task Difficulty on Perceptual Decision Making by STN Deep Brain Stimulation. Current Biology, 2013, 23, 1681-1684.	3.9	66
479	Powerful inhibitory action of mu opioid receptors (MOR) on cholinergic interneuron excitability in the dorsal striatum. Neuropharmacology, 2013, 75, 78-85.	4.1	43
480	Molecular and cellular mechanisms of dopamine-mediated behavioral plasticity in the striatum. Neurobiology of Learning and Memory, 2013, 105, 63-80.	1.9	54
481	How affordances associated with a distractor object affect compatibility effects: A study with the computational model TRoPICALS. Psychological Research, 2013, 77, 7-19.	1.7	37
482	Identification of neuronal loci involved with displays of affective aggression in NC900 mice. Brain Structure and Function, 2013, 218, 1033-1049.	2.3	12

#	Article	IF	Citations
483	The Basal Ganglia's Contributions to Perceptual Decision Making. Neuron, 2013, 79, 640-649.	8.1	149
484	The role of the striatum in goal activation of cascaded actions. Neuropsychologia, 2013, 51, 2562-2571.	1.6	27
485	The effect of <scp>P</scp> arkinson's disease and <scp>H</scp> untington's disease on human visuomotor learning. European Journal of Neuroscience, 2013, 38, 2933-2940.	2.6	41
486	Intrinsically Motivated Learning in Natural and Artificial Systems. , 2013, , .		105
487	Basal ganglia output to the thalamus: still a paradox. Trends in Neurosciences, 2013, 36, 695-705.	8.6	84
488	Danger Signals Inhibit Nitrergic Activation of the Nucleus Accumbens Induced by Exploratory Behavior. Neuroscience and Behavioral Physiology, 2013, 43, 1076-1083.	0.4	0
489	Functions and Mechanisms of Intrinsic Motivations. , 2013, , 49-72.		32
490	Intrinsically motivated action–outcome learning and goal-based action recall: A system-level bio-constrained computational model. Neural Networks, 2013, 41, 168-187.	5.9	75
491	ADHD as a Model of Brain-Behavior Relationships. SpringerBriefs in Neuroscience, 2013, , .	0.1	34
492	Stimulation of contacts in ventral but not dorsal subthalamic nucleus normalizes response switching in Parkinson's disease. Neuropsychologia, 2013, 51, 1302-1309.	1.6	32
493	Dual-task performance is differentially modulated by rewards and punishments. Behavioural Brain Research, 2013, 250, 304-307.	2.2	18
494	Time to get a move on: Overcoming bradykinetic movement in Parkinson's disease with artificial sensory guidance generated from biological motion. Behavioural Brain Research, 2013, 253, 113-120.	2.2	25
495	Enhanced visual responses in the superior colliculus and subthalamic nucleus in an animal model of Parkinson's disease. Neuroscience, 2013, 252, 277-288.	2.3	14
496	The path to learning: Action acquisition is impaired when visual reinforcement signals must first access cortex. Behavioural Brain Research, 2013, 243, 267-272.	2.2	10
497	The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities. Neuroscience and Biobehavioral Reviews, 2013, 37, 2504-2515.	6.1	98
498	A computational model of visually guided locomotion in lamprey. Biological Cybernetics, 2013, 107, 497-512.	1.3	22
499	The role of neuroplasticity in dopaminergic therapy for Parkinson disease. Nature Reviews Neurology, 2013, 9, 248-256.	10.1	67
500	Queuing of Concurrent Movement Plans by Basal Ganglia. Journal of Neuroscience, 2013, 33, 9985-9997.	3.6	29

#	Article	IF	CITATIONS
501	The Role of the Basal Ganglia in Discovering Novel Actions. , 2013, , 129-150.		12
502	Controlling working memory with learned instructions. Neural Networks, 2013, 41, 23-38.	5.9	18
503	Role of the striatum in language: Syntactic and conceptual sequencing. Brain and Language, 2013, 125, 283-294.	1.6	84
504	Disorders of Cognitive Control. , 2013, , 783-794.		0
505	Superior Colliculus and Visual Spatial Attention. Annual Review of Neuroscience, 2013, 36, 165-182.	10.7	508
506	Subthalamic nucleus gamma oscillations mediate a switch from automatic to controlled processing: A study of random number generation in Parkinson's disease. NeuroImage, 2013, 64, 284-289.	4.2	24
507	BDNF Val66Met polymorphism and goal-directed behavior in healthy elderly â€" evidence from auditory distraction. NeuroImage, 2013, 64, 290-298.	4.2	46
508	Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat. PLoS Computational Biology, 2013, 9, e1003236.	3.2	47
509	Hedonic value: enhancing adaptation for motivated agents. Adaptive Behavior, 2013, 21, 465-483.	1.9	57
510	Advances in Cognitive Neurodynamics (III)., 2013,,.		5
511	Independent circuits in the basal ganglia for the evaluation and selection of actions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3670-9.	7.1	93
512	The Enemy within: Propagation of Aberrant Corticostriatal Learning to Cortical Function in Parkinson's Disease. Frontiers in Neurology, 2013, 4, 134.	2.4	32
513	Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. Journal of Neurophysiology, 2013, 109, 3025-3040.	1.8	56
514	Dopamine Differentially Modulates the Excitability of Striatal Neurons of the Direct and Indirect Pathways in Lamprey. Journal of Neuroscience, 2013, 33, 8045-8054.	3.6	54
515	The Evolution of Motivated and Modulated Robot Selection. International Journal of Advanced Robotic Systems, 2013, 10, 125.	2.1	3
516	Movement Activation and Inhibition in Parkinson's Disease: A Functional Imaging Study. Journal of Parkinson's Disease, 2013, 3, 181-192.	2.8	20
517	Evaluation of D1 and D2 Dopamine Receptor Segregation in the Developing Striatum Using BAC Transgenic Mice. PLoS ONE, 2013, 8, e67219.	2.5	53
518	Do Basal Ganglia Amplify Willed Action by Stochastic Resonance? A Model. PLoS ONE, 2013, 8, e75657.	2.5	12

#	Article	IF	Citations
519	The Mixed Instrumental Controller: Using Value of Information to Combine Habitual Choice and Mental Simulation. Frontiers in Psychology, 2013, 4, 92.	2.1	125
520	The nucleus accumbens as a nexus between values and goals in goal-directed behavior: a review and a new hypothesis. Frontiers in Behavioral Neuroscience, 2013, 7, 135.	2.0	124
521	A biologically plausible embodied model of action discovery. Frontiers in Neurorobotics, 2013, 7, 4.	2.8	27
522	The basal ganglia, the ideal machinery for the cost-benefit analysis of action plans. Frontiers in Neural Circuits, 2013, 7, 121.	2.8	17
523	Interfacing sensory input with motor output: does the control architecture converge to a serial process along a single channel?. Frontiers in Computational Neuroscience, 2013, 7, 55.	2.1	8
524	Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways. Frontiers in Computational Neuroscience, 2013, 7, 76.	2.1	24
525	Speech serial control in healthy speakers and speakers with hypokinetic or ataxic dysarthria: effects of sequence length and practice. Frontiers in Human Neuroscience, 2013, 7, 665.	2.0	4
526	Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson's disease. Frontiers in Systems Neuroscience, 2013, 7, 118.	2.5	73
527	The Basal Ganglia. , 2013, , 653-676.		7
528	Behavior Modulates Effective Connectivity between Cortex and Striatum. PLoS ONE, 2014, 9, e89443.	2.5	26
529	Optogenetic Stimulation in a Computational Model of the Basal Ganglia Biases Action Selection and Reward Prediction Error. PLoS ONE, 2014, 9, e90578.	2.5	1
530	Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot. Frontiers in Psychology, 2014, 5, 124.	2.1	32
531	The intralaminar thalamusââ,¬â€an expressway linking visual stimuli to circuits determining agency and action selection. Frontiers in Behavioral Neuroscience, 2014, 8, 115.	2.0	16
532	Transient and steady-state selection in the striatal microcircuit. Frontiers in Computational Neuroscience, 2013, 7, 192.	2.1	35
533	Saccade learning with concurrent cortical and subcortical basal ganglia loops. Frontiers in Computational Neuroscience, 2014, 8, 48.	2.1	10
534	Delegation to automaticity: the driving force for cognitive evolution?. Frontiers in Neuroscience, 2014, 8, 90.	2.8	21
535	The thalamostriatal system in normal and diseased states. Frontiers in Systems Neuroscience, 2014, 8, 5.	2.5	193
537	Cortical regulation of dopaminergic neurons: role of the midbrain superior colliculus. Journal of Neurophysiology, 2014, 111, 755-767.	1.8	9

#	Article	IF	CITATIONS
538	Positive emotions and reward: Appetitive systems – Amygdala and striatum⯆. , 2014, , .		0
539	The subthalamic nucleus and inhibitory control: impact of subthalamotomy in Parkinson's disease. Brain, 2014, 137, 1470-1480.	7.6	86
540	Large-Scale Brain Systems and Subcortical Relationships: The Vertically Organized Brain. Applied Neuropsychology: Child, 2014, 3, 253-263.	1.4	11
541	Integrating reinforcement learning, equilibrium points, and minimum variance to understand the development of reaching: A computational model Psychological Review, 2014, 121, 389-421.	3.8	57
542	Speed pressure in conflict situations impedes inhibitory action control in Parkinson's disease. Biological Psychology, 2014, 101, 44-60.	2.2	26
543	Psychophysiological Mechanisms of Interindividual Differences in Goal Activation Modes During Action Cascading. Cerebral Cortex, 2014, 24, 2120-2129.	2.9	135
544	Modelling Individual Differences in the Form of Pavlovian Conditioned Approach Responses: A Dual Learning Systems Approach with Factored Representations. PLoS Computational Biology, 2014, 10, e1003466.	3.2	74
545	A Two-Layered Diffusion Model Traces the Dynamics of Information Processing in the Valuation-and-Choice Circuit of Decision Making. Computational Intelligence and Neuroscience, 2014, 2014, 1-12.	1.7	0
546	Deficits in motor performance after pedunculopontine lesions in rats – impairment depends on demands of task. European Journal of Neuroscience, 2014, 40, 3224-3236.	2.6	49
547	Dysfunctional and compensatory synaptic plasticity in <scp>P</scp> arkinson's disease. European Journal of Neuroscience, 2014, 39, 688-702.	2.6	52
548	Feeling safe in the plane: Neural mechanisms underlying superior action control in airplane pilot trainees—A combined EEG/MRS study. Human Brain Mapping, 2014, 35, 5040-5051.	3.6	52
549	Revisiting the effects of Parkinson's disease and frontal lobe lesions on task switching: The role of rule reconfiguration. Journal of Neuropsychology, 2014, 8, 53-74.	1.4	9
550	Phase offset between slow oscillatory cortical inputs influences competition in a model of the basal ganglia. , 2014, , .		3
551	Electrophysiological characterization of entopeduncular nucleus neurons in anesthetized and freely moving rats. Frontiers in Systems Neuroscience, 2014, 8, 7.	2.5	20
552	Control effects of stimulus paradigms on characteristic firings of parkinsonism. Chaos, 2014, 24, 033134.	2.5	13
553	Auditory observation of stepping actions can cue both spatial and temporal components of gait in Parkinson×3s disease patients. Neuropsychologia, 2014, 57, 140-153.	1.6	74
554	Dissociable effects of dopamine on learning and performance within sensorimotor striatum. Basal Ganglia, 2014, 4, 43-54.	0.3	30
555	Dopaminergic basis of salience dysregulation in psychosis. Trends in Neurosciences, 2014, 37, 85-94.	8.6	204

#	Article	IF	CITATIONS
556	Neurobiology of pain, interoception and emotional response: lessons from nerve growth factorâ€dependent neurons. European Journal of Neuroscience, 2014, 39, 375-391.	2.6	32
557	Intermittent control models of human standing: similarities and differences. Biological Cybernetics, 2014, 108, 159-168.	1.3	60
558	Effects of binge drinking on action cascading processes: an EEG study. Archives of Toxicology, 2014, 88, 475-488.	4.2	33
559	A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. Journal of Computational Neuroscience, 2014, 36, 445-468.	1.0	25
560	Large-Scale Synthesis of Functional Spiking Neural Circuits. Proceedings of the IEEE, 2014, 102, 881-898.	21.3	53
561	From conflict management to reward-based decision making: Actors and critics in primate medial frontal cortex. Neuroscience and Biobehavioral Reviews, 2014, 46, 44-57.	6.1	95
562	A spiking neural model applied to the study of human performance and cognitive decline on Raven's Advanced Progressive Matrices. Intelligence, 2014, 42, 53-82.	3.0	26
563	The why, what, where, when and how of goal-directed choice: neuronal and computational principles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130483.	4.0	105
564	Short latency cerebellar modulation of the basal ganglia. Nature Neuroscience, 2014, 17, 1767-1775.	14.8	246
565	Estimates of Projection Overlap and Zones of Convergence within Frontal-Striatal Circuits. Journal of Neuroscience, 2014, 34, 9497-9505.	3. 6	140
566	Deep Brain Stimulation Abolishes Slowing of Reactions to Unlikely Stimuli. Journal of Neuroscience, 2014, 34, 10844-10852.	3.6	22
567	On the challenges and mechanisms of embodied decisions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130479.	4.0	132
568	Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia, 2014, 62, 403-423.	1.6	201
569	Inhibitory synapses between striatal projection neurons support efficient enhancement of cortical signals: A computational model. Journal of Computational Neuroscience, 2014, 37, 65-80.	1.0	3
570	Calcium signaling in Parkinson's disease. Cell and Tissue Research, 2014, 357, 439-454.	2.9	100
571	Action, time and the basal ganglia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120473.	4.0	76
572	Attention as an effect not a cause. Trends in Cognitive Sciences, 2014, 18, 457-464.	7.8	153
573	Functional implications of dopamine D1 vs. D2 receptors: A â€~prepare and select' model of the striatal direct vs. indirect pathways. Neuroscience, 2014, 282, 156-175.	2.3	111

#	Article	IF	CITATIONS
574	Model-based iterative learning control of Parkinsonian state in thalamic relay neuron. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 3255-3266.	3.3	18
575	Benign hereditary chorea as an experimental model to investigate the role of medium spiny neurons for response adaptation. Neuropsychologia, 2014, 59, 124-129.	1.6	5
576	The role of efference copy in striatal learning. Current Opinion in Neurobiology, 2014, 25, 194-200.	4.2	48
577	Latent Toxoplasma gondii infection leads to improved action control. Brain, Behavior, and Immunity, 2014, 37, 103-108.	4.1	49
578	The Misbehavior of Reinforcement Learning. Proceedings of the IEEE, 2014, 102, 528-541.	21.3	27
579	Enhanced visual responses in the superior colliculus in an animal model of attention-deficit hyperactivity disorder and their suppression by d-amphetamine. Neuroscience, 2014, 274, 289-298.	2.3	24
580	High-frequency electrical stimulation of the subthalamic nucleus excites target structures in a model using c-fos immunohistochemistry. Neuroscience, 2014, 270, 212-225.	2.3	19
581	Striatal disorders dissociate mechanisms of enhanced and impaired response selection — Evidence from cognitive neurophysiology and computational modelling. NeuroImage: Clinical, 2014, 4, 623-634.	2.7	20
582	Selection of cortical dynamics for motor behaviour by the basal ganglia. Biological Cybernetics, 2015, 109, 575-595.	1.3	65
584	Acute dystonia., 0,, 20-30.		1
585	Interrelation of resting state functional connectivity, striatal <scp>GABA</scp> levels, and cognitive control processes. Human Brain Mapping, 2015, 36, 4383-4393.	3.6	31
586	A perspective on neural and cognitive mechanisms of error commission. Frontiers in Behavioral Neuroscience, 2015, 9, 50.	2.0	31
587	Decision-making and action selection in insects: inspiration from vertebrate-based theories. Frontiers in Behavioral Neuroscience, 2015, 9, 216.	2.0	28
588	The basal ganglia select the expected sensory input used for predictive coding. Frontiers in Computational Neuroscience, 2015, 9, 119.	2.1	26
589	Action Selection and Operant Conditioning: A Neurorobotic Implementation. Journal of Robotics, 2015, 2015, 1-10.	0.9	2
590	Neural consequences of bilingualism for cortical and subcortical function., 2015,, 614-630.		40
592	On Curve Negotiation: From Driver Support to Automation. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2082-2093.	8.0	37
593	I control therefore I do: Judgments of agency influence action selection. Cognition, 2015, 138, 122-131.	2.2	77

#	Article	IF	CITATIONS
594	Computing rewardâ€prediction error: an integrated account of cortical timing and basalâ€ganglia pathways for appetitive and aversive learning. European Journal of Neuroscience, 2015, 42, 2003-2021.	2.6	12
595	Long-Latency Reductions in Gamma Power Predict Hemodynamic Changes That Underlie the Negative BOLD Signal. Journal of Neuroscience, 2015, 35, 4641-4656.	3.6	34
596	Activation of postsynaptic D2 dopamine receptors in the rat dorsolateral striatum prevents the amnestic effect of systemically administered neuroleptics. Behavioural Brain Research, 2015, 281, 283-289.	2.2	9
597	Between the primate and â€reptilian' brain: Rodent models demonstrate the role of corticostriatal circuits in decision making. Neuroscience, 2015, 296, 66-74.	2.3	34
598	Parallel and serial processing in dual-tasking differentially involves mechanisms in the striatum and the lateral prefrontal cortex. Brain Structure and Function, 2015, 220, 3131-3142.	2.3	35
599	GABA-Nitrergic Interactions in the Nucleus Accumbens during Inhibition of Exploratory Behavior by Danger Signals. Neuroscience and Behavioral Physiology, 2015, 45, 199-205.	0.4	0
600	The role of prediction and outcomes in adaptive cognitive control. Journal of Physiology (Paris), 2015, 109, 38-52.	2.1	28
602	Shaping action sequences in basal ganglia circuits. Current Opinion in Neurobiology, 2015, 33, 188-196.	4.2	143
603	A New Framework for Cortico-Striatal Plasticity: Behavioural Theory Meets In Vitro Data at the Reinforcement-Action Interface. PLoS Biology, 2015, 13, e1002034.	5.6	102
604	Toward a Model of Functional Brain Processes II: Central Nervous System Functional Macro-architecture. Axiomathes, 2015, 25, 377-407.	0.6	25
605	Altered visual processing in a rodent model of Attention-Deficit Hyperactivity Disorder. Neuroscience, 2015, 303, 364-377.	2.3	21
606	Neuropsychopharmacology of Cognitive Flexibility. , 2015, , 349-353.		8
607	Speech Production. , 2015, , 435-444.		6
608	The effect of high-energy protons in the Bragg Peak on the behavior of rats and the exchange of monoamines in some brain structures. Neurochemical Journal, 2015, 9, 66-72.	0.5	22
609	Vitamin C and Glutamate Uptake. , 2015, , 669-678.		0
610	Reward boosts working memory encoding over a brief temporal window. Visual Cognition, 2015, 23, 291-312.	1.6	22
612	Distinct Developmental Origins Manifest in the Specialized Encoding of Movement by Adult Neurons of the External Globus Pallidus. Neuron, 2015, 86, 501-513.	8.1	127
613	Delay Period Activity of the Substantia Nigra during Proactive Control of Response Selection as Determined by a Novel fMRI Localization Method. Journal of Cognitive Neuroscience, 2015, 27, 1238-1248.	2.3	3

#	Article	IF	CITATIONS
614	The quartet theory of human emotions: An integrative and neurofunctional model. Physics of Life Reviews, 2015, 13, 1-27.	2.8	159
615	A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nature Reviews Neuroscience, 2015, 16, 719-732.	10.2	427
616	Intact action segmentation in Parkinson's disease: Hypothesis testing using a novel computational approach. Neuropsychologia, 2015, 78, 29-40.	1.6	7
617	Auditory responses in a rodent model of Attention Deficit Hyperactivity Disorder. Brain Research, 2015, 1629, 10-25.	2.2	5
618	The neural basis of one's own conscious and unconscious emotional states. Neuroscience and Biobehavioral Reviews, 2015, 57, 1-29.	6.1	137
619	Sensorimotor Integration in the Whisker System. , 2015, , .		11
620	Complex sensorimotor transformation processes required for response selection are facilitated by the striatum. NeuroImage, 2015, 123, 33-41.	4.2	10
621	Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus. Journal of Neuroscience, 2015, 35, 6667-6688.	3.6	200
623	Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150053.	4.0	52
624	Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders. Journal of Neurophysiology, 2015, 114, 2090-2104.	1.8	10
625	Action control processes in autism spectrum disorder – Insights from a neurobiological and neuroanatomical perspective. Progress in Neurobiology, 2015, 124, 49-83.	5.7	36
626	The disrupted basal ganglia and behavioural control: An integrative cross-domain perspective of spontaneous stereotypy. Behavioural Brain Research, 2015, 276, 45-58.	2.2	46
627	The Avian Subpallium and Autonomic Nervous System., 2015,, 135-163.		6
628	The Role of Dopamine in Motor Flexibility. Journal of Cognitive Neuroscience, 2015, 27, 365-376.	2.3	26
629	Action selection in a possible model of striatal medium spiny neuron dysfunction: behavioral and EEG data in a patient with benign hereditary chorea. Brain Structure and Function, 2015, 220, 221-228.	2.3	30
630	Bridging the Gap between Perception and Cognition. , 2016, , 135-149.		1
631	Phasic Dopamine Signaling in Action Selection and Reinforcement Learning. Handbook of Behavioral Neuroscience, 2016, 24, 707-723.	0.7	4
632	Multi-alternative decision-making with non-stationary inputs. Royal Society Open Science, 2016, 3, 160376.	2.4	6

#	Article	IF	CITATIONS
633	Organization of Prefrontal-Striatal Connections. Handbook of Behavioral Neuroscience, 2016, 24, 423-438.	0.7	8
634	The Neuroanatomical Organization of the Basal Ganglia. Handbook of Behavioral Neuroscience, 2016, 24, 3-32.	0.7	23
635	Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model. Frontiers in Behavioral Neuroscience, 2016, 10, 181.	2.0	28
636	Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity. Frontiers in Neural Circuits, 2016, 10, 53.	2.8	16
637	Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework. Frontiers in Computational Neuroscience, 2016, 10, 62.	2.1	3
638	Reversal Learning in Humans and Gerbils: Dynamic Control Network Facilitates Learning. Frontiers in Neuroscience, 2016, 10, 535.	2.8	11
639	Untangling Cortico-Striatal Connectivity and Cross-Frequency Coupling in L-DOPA-Induced Dyskinesia. Frontiers in Systems Neuroscience, 2016, 10, 26.	2.5	38
640	Musical Synchronization, Social Interaction and the Brain. , 0, , 603-626.		1
642	Control feedback as the motivational force behind habitual behavior. Progress in Brain Research, 2016, 229, 49-68.	1.4	9
643	Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive. Scientific Reports, 2016, 6, 23327.	3.3	15
644	Optimized Mapping Spiking Neural Networks onto Network-on-Chip. Lecture Notes in Computer Science, 2016, , 38-52.	1.3	6
645	Decision making under uncertainty in a spiking neural network model of the basal ganglia. Journal of Integrative Neuroscience, 2016, 15, 515-538.	1.7	12
646	Effect of intermittent feedback control on robustness of human-like postural control system. Scientific Reports, 2016, 6, 22446.	3.3	18
647	What insects can tell us about the origins of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4900-4908.	7.1	208
648	Reinforcement learning with Marr. Current Opinion in Behavioral Sciences, 2016, 11, 67-73.	3.9	34
649	Navigating the Affordance Landscape: Feedback Control as a Process Model of Behavior and Cognition. Trends in Cognitive Sciences, 2016, 20, 414-424.	7.8	287
650	Large-Scale Brain Systems and Neuropsychological Testing. , 2016, , .		8
652	Bootstrapping agency: How control-relevant information affects motivation Journal of Experimental Psychology: General, 2016, 145, 1333-1350.	2.1	45

#	Article	IF	Citations
653	Basal Ganglia Output Controls Active Avoidance Behavior. Journal of Neuroscience, 2016, 36, 10274-10284.	3.6	54
654	<scp>T</scp> he pedunculopontine tegmental nucleusâ€" <scp>A</scp> functional hypothesis from the comparative literature. Movement Disorders, 2016, 31, 615-624.	3.9	74
655	Tradition and Innovation: Making the Neuropsychological Evaluation a More Powerful Tool. , 2016, , 101-128.		0
657	Neural Dynamics of the Basal Ganglia During Perceptual, Cognitive, and Motor Learning and Gating. Innovations in Cognitive Neuroscience, 2016, , 457-512.	0.3	9
658	Hybrid Systems Neuroscience., 2016, , 113-129.		5
659	Understanding the link between somatosensory temporal discrimination and movement execution in healthy subjects. Physiological Reports, 2016, 4, e12899.	1.7	28
660	Safety out of control: dopamine and defence. Behavioral and Brain Functions, 2016, 12, 15.	3.3	43
661	What Is Shaping RT and Accuracy Distributions? Active and Selective Response Inhibition Causes the Negative Compatibility Effect. Journal of Cognitive Neuroscience, 2016, 28, 1651-1671.	2.3	24
662	The evolutionary psychology of hunger. Appetite, 2016, 105, 591-595.	3.7	30
663	Large-scale cognitive model design using the Nengo neural simulator. Biologically Inspired Cognitive Architectures, 2016, 17, 86-100.	0.9	9
664	Towards a Biologically Inspired Soft Switching Approach for Cloud Resource Provisioning. Cognitive Computation, 2016, 8, 992-1005.	5.2	6
665	Modelling Spiking Neural Network from the Architecture Evaluation Perspective. Journal of Computer Science and Technology, 2016, 31, 50-59.	1.5	5
666	Development and function of the midbrain dopamine system: what we know and what we need to. Genes, Brain and Behavior, 2016, 15, 62-73.	2.2	93
667	Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2180-8.	7.1	145
668	Adaptive Engagement of Cognitive Control in Context-Dependent Decision Making. Cerebral Cortex, 2017, 27, bhv333.	2.9	31
669	Behavioral plasticity through the modulation of switch neurons. Neural Networks, 2016, 74, 35-51.	5.9	7
670	Histamine and the striatum. Neuropharmacology, 2016, 106, 74-84.	4.1	62
671	The neostriatum: two entities, one structure?. Brain Structure and Function, 2016, 221, 1737-1749.	2.3	28

#	Article	IF	CITATIONS
672	Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor. Brain Structure and Function, 2016, 221, 2093-2107.	2.3	5
673	Uncertainty and expectancy deviations require cortico-subcortical cooperation. Neurolmage, 2017, 144, 23-34.	4.2	13
674	A neural network that links brain function, white-matter structure and risky behavior. NeuroImage, 2017, 149, 15-22.	4.2	20
675	Dynamic Nigrostriatal Dopamine Biases Action Selection. Neuron, 2017, 93, 1436-1450.e8.	8.1	102
676	Why Hunger is not a Desire. Review of Philosophy and Psychology, 2017, 8, 617-635.	1.8	5
677	A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160202.	4.0	93
678	Parsing the Roles of the Frontal Lobes and Basal Ganglia in Task Control Using Multivoxel Pattern Analysis. Journal of Cognitive Neuroscience, 2017, 29, 1390-1401.	2.3	4
679	Affective-Associative Two-Process theory: A neural network investigation of adaptive behaviour in differential outcomes training. Adaptive Behavior, 2017, 25, 5-23.	1.9	12
680	Mechanisms of automaticity and anticipatory control in fluid intelligence. Applied Neuropsychology: Child, 2017, 6, 212-223.	1.4	6
681	Attention Robustly Gates a Closed-Loop Touch Reflex. Current Biology, 2017, 27, 1836-1843.e7.	3.9	22
682	Frequency and function in the basal ganglia: the origins of beta and gamma band activity. Journal of Physiology, 2017, 595, 4525-4548.	2.9	17
683	Comparing functional <scp>MRI</scp> protocols for small, ironâ€rich basal ganglia nuclei such as the subthalamic nucleus at 7 <scp>T</scp> and 3 <scp>T</scp> . Human Brain Mapping, 2017, 38, 3226-3248.	3.6	76
684	Individual differences in the Simon effect are underpinned by differences in the competitive dynamics in the basal ganglia: An experimental verification and a computational model. Cognition, 2017, 164, 31-45.	2.2	25
685	Human centromedian-parafascicular complex signals sensory cues for goal-oriented behavior selection. Neurolmage, 2017, 152, 390-399.	4.2	15
687	Towards a mechanistic understanding of the human subcortex. Nature Reviews Neuroscience, 2017, 18, 57-65.	10.2	78
688	Contributions of the Ventral Striatum to Conscious Perception: An Intracranial EEG Study of the Attentional Blink. Journal of Neuroscience, 2017, 37, 1081-1089.	3.6	23
689	Direct Dopaminergic Projections from the SNc Modulate Visuomotor Transformation in the Lamprey Tectum. Neuron, 2017, 96, 910-924.e5.	8.1	39
691	Striatal Local Circuitry: A New Framework for Lateral Inhibition. Neuron, 2017, 96, 267-284.	8.1	170

#	Article	IF	Citations
692	A possible correlation between the basal ganglia motor function and the inverse kinematics calculation. Journal of Computational Neuroscience, 2017, 43, 295-318.	1.0	7
693	Evidence for deficient motor planning in ADHD. Scientific Reports, 2017, 7, 9631.	3.3	17
694	Nigral Glutamatergic Neurons Control the Speed of Locomotion. Journal of Neuroscience, 2017, 37, 9759-9770.	3.6	40
695	Intermittent muscle activity in the feedback loop of postural control system during natural quiet standing. Scientific Reports, 2017, 7, 10631.	3.3	14
696	Basal ganglia and autism – a translational perspective. Autism Research, 2017, 10, 1751-1775.	3.8	55
697	Striatal GPR88 Modulates Foraging Efficiency. Journal of Neuroscience, 2017, 37, 7939-7947.	3.6	14
698	Dissecting patterns of preparatory activity in the frontal eye fields during pursuit target selection. Journal of Neurophysiology, 2017, 118, 2216-2231.	1.8	14
699	Mechanism for optimization of signal-to-noise ratio of dopamine release based on short-term bidirectional plasticity. Brain Research, 2017, 1667, 68-73.	2.2	0
700	Action sequencing in the spontaneous swimming behavior of zebrafish larvae - implications for drug development. Scientific Reports, 2017, 7, 3191.	3.3	17
701	The Basal Ganglia Do Not Select Reach Targets but Control the Urgency of Commitment. Neuron, 2017, 95, 1160-1170.e5.	8.1	162
702	Illuminating Neural Circuits: From Molecules to MRI. Journal of Neuroscience, 2017, 37, 10817-10825.	3.6	16
703	Circuits for Action and Cognition: A View from the Superior Colliculus. Annual Review of Vision Science, 2017, 3, 197-226.	4.4	254
704	The functional logic of corticostriatal connections. Brain Structure and Function, 2017, 222, 669-706.	2.3	81
705	Reconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experience. Neuroscience and Biobehavioral Reviews, 2017, 76, 187-215.	6.1	98
706	Enactive self: A study of engineering perspectives to obtain the sensorimotor self through enaction., 2017,,.		13
708	Executive Control and Emerging Behavior in Youth With Tourette's Syndrome. , 2017, , 333-361.		0
709	Ventral Striatopallidal Pathways InvolvedÂinÂAppetitive and Aversive Motivational Processes. , 2017, , 47-58.		2
710	Parsing Heterogeneous Striatal Activity. Frontiers in Neuroanatomy, 2017, 11, 43.	1.7	3

#	ARTICLE	IF	CITATIONS
711	Striatal Neuropeptides Enhance Selection and Rejection of Sequential Actions. Frontiers in Computational Neuroscience, 2017, 11, 62.	2.1	11
712	Dynamic Changes in Upper-Limb Corticospinal Excitability during a â€~Pro-/Anti-saccade' Double-Choice Task. Frontiers in Human Neuroscience, 2017, 11, 624.	2.0	0
713	Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses. ELife, 2017, 6, .	6.0	86
714	Interplay between periodic stimulation and GABAergic inhibition in striatal network oscillations. PLoS ONE, 2017, 12, e0175135.	2.5	10
715	A neural model of hierarchical reinforcement learning. PLoS ONE, 2017, 12, e0180234.	2.5	31
716	The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS ONE, 2017, 12, e0189109.	2.5	23
717	Bio-Inspired Model Learning Visual Goals and Attention Skills Through Contingencies and Intrinsic Motivations. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10, 326-344.	3.8	12
718	Biologically Guided Driver Modeling: the Stop Behavior of Human Car Drivers. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 2454-2469.	8.0	22
719	The role of the dorsal striatum in extinction: A memory systems perspective. Neurobiology of Learning and Memory, 2018, 150, 48-55.	1.9	20
720	The Basal Ganglia System as an Engine for Exploration. Cognitive Science and Technology, 2018, , 59-96.	0.4	2
721	Chronic amphetamine treatment affects collicular-dependent behaviour. Behavioural Brain Research, 2018, 343, 1-7.	2.2	1
722	Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Translational Psychiatry, 2018, 8, 30.	4.8	224
723	Basal ganglia mechanisms in action selection, plasticity, and dystonia. European Journal of Paediatric Neurology, 2018, 22, 225-229.	1.6	26
724	Cooperative Intersection Support System Based on Mirroring Mechanisms Enacted by Bio-Inspired Layered Control Architecture. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 1415-1429.	8.0	10
725	The oscillatory boundary conditions of different frequency bands in Parkinson's disease. Journal of Theoretical Biology, 2018, 451, 67-79.	1.7	3
726	Classical Computational Approaches to Modeling the Basal Ganglia. Cognitive Science and Technology, 2018, , 41-58.	0.4	1
727	Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology, 2018, , .	0.4	12
728	Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Structure and Function, 2018, 223, 2733-2751.	2.3	7

#	Article	IF	CITATIONS
729	Thalamic and basal ganglia regions are involved in attentional processing of behaviorally significant events: evidence from simultaneous depth and scalp EEG. Brain Structure and Function, 2018, 223, 461-474.	2.3	14
730	A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements. Computers in Biology and Medicine, 2018, 92, 78-89.	7.0	8
731	Functional Diversity of Thalamic Reticular Subnetworks. Frontiers in Systems Neuroscience, 2018, 12, 41.	2.5	87
732	A probabilistic, distributed, recursive mechanism for decision-making in the brain. PLoS Computational Biology, 2018, 14, e1006033.	3.2	14
733	Interactions of spatial strategies producing generalization gradient and blocking: A computational approach. PLoS Computational Biology, 2018, 14, e1006092.	3.2	16
734	The Head Turning Modulation System: An Active Multimodal Paradigm for Intrinsically Motivated Exploration of Unknown Environments. Frontiers in Neurorobotics, 2018, 12, 60.	2.8	4
735	A Brain-Inspired Decision-Making Spiking Neural Network and Its Application in Unmanned Aerial Vehicle. Frontiers in Neurorobotics, 2018, 12, 56.	2.8	26
736	The role of the striatum in linguistic selection: Evidence from Huntington's disease and computational modeling. Cortex, 2018, 109, 189-204.	2.4	34
737	Coding of self-motion-induced and self-independent visual motion in the rat dorsomedial striatum. PLoS Biology, 2018, 16, e2004712.	5.6	5
738	3D Localization of Multiple Simultaneous Speakers with Discrete Wavelet Transform and Proposed 3D Nested Microphone Array., 2018, , .		0
739	What does dopamine mean?. Nature Neuroscience, 2018, 21, 787-793.	14.8	597
740	Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature, 2018, 559, 370-376.	27.8	338
741	Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scalesâ€"Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Frontiers in Neural Circuits, 2018, 12, 3.	2.8	34
742	Effects of Deep Brain Stimulation on Eye Movements and Vestibular Function. Frontiers in Neurology, 2018, 9, 444.	2.4	13
743	Integrating Brain and Biomechanical Models—A New Paradigm for Understanding Neuro-muscular Control. Frontiers in Neuroscience, 2018, 12, 39.	2.8	8
744	To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Frontiers in Integrative Neuroscience, 2018, 12, 6.	2.1	17
745	How Organisms Gained Causal Independence and How It Might Be Quantified. Biology, 2018, 7, 38.	2.8	16
746	Paradoxical Decision-Making: A Framework for Understanding Cognition in Parkinson's Disease. Trends in Neurosciences, 2018, 41, 512-525.	8.6	22

#	Article	IF	Citations
747	Chronic amphetamine enhances visual input to and suppresses visual output from the superior colliculus in withdrawal. Neuropharmacology, 2018, 138, 118-129.	4.1	1
748	Taking two to tango: fMRI analysis of improvised joint action with physical contact. PLoS ONE, 2018, 13, e0191098.	2.5	31
749	To move or to sense? Incorporating somatosensory representation into striatal functions. Current Opinion in Neurobiology, 2018, 52, 123-130.	4.2	39
750	Neural mechanisms of sensorimotor transformation and action selection. European Journal of Neuroscience, 2019, 49, 1055-1060.	2.6	23
751	Robots that Imagine $\hat{a} \in ``Can Hippocampal Replay Be Utilized for Robotic Mnemonics?. Lecture Notes in Computer Science, 2019, , 277-286.$	1.3	1
752	Neurophysiological correlates of stereotypic behaviour in a model carnivore species. Behavioural Brain Research, 2019, 373, 112056.	2.2	9
753	Common and Distinct Functional Brain Networks for Intuitive and Deliberate Decision Making. Brain Sciences, 2019, 9, 174.	2.3	7
7 54	Paradoxical response inhibition advantages in adolescent obsessive compulsive disorder result from the interplay of automatic and controlled processes. NeuroImage: Clinical, 2019, 23, 101893.	2.7	10
755	Impact of Stress on Gamma Oscillations in the Rat Nucleus Accumbens During Spontaneous Social Interaction. Frontiers in Behavioral Neuroscience, 2019, 13, 151.	2.0	13
756	Biomimetic and Biohybrid Systems. Lecture Notes in Computer Science, 2019, , .	1.3	3
757	A Computational Model of Trust-, Pupil-, and Motivation Dynamics. , 2019, , .		5
758	Acute L-DOPA administration reverses changes in firing pattern and low frequency oscillatory activity in the entopeduncular nucleus from long term L-DOPA treated 6-OHDA-lesioned rats. Experimental Neurology, 2019, 322, 113036.	4.1	9
759	Descending dopaminergic control of brainstem locomotor circuits. Current Opinion in Physiology, 2019, 8, 30-35.	1.8	13
760	Resynthesizing behavior through phylogenetic refinement. Attention, Perception, and Psychophysics, 2019, 81, 2265-2287.	1.3	160
761	Dopamine-glutamate neuron projections to the nucleus accumbens medial shell and behavioral switching. Neurochemistry International, 2019, 129, 104482.	3.8	47
762	Different Dopaminergic Dysfunctions Underlying Parkinsonian Akinesia and Tremor. Frontiers in Neuroscience, 2019, 13, 550.	2.8	14
763	Methanol Poisoning as an Acute Toxicological Basal Ganglia Lesion Model: Evidence from Brain Volumetry and Cognition. Alcoholism: Clinical and Experimental Research, 2019, 43, 1486-1497.	2.4	12
764	Oscillations in cortico-basal ganglia circuits: implications for Parkinson's disease and other neurologic and psychiatric conditions. Journal of Neurophysiology, 2019, 122, 203-231.	1.8	27

#	Article	IF	Citations
765	What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. Annual Review of Neuroscience, 2019, 42, 459-483.	10.7	184
766	Sit-to-walk performance in Parkinson's disease: A comparison between faller and non-faller patients. Clinical Biomechanics, 2019, 63, 140-146.	1.2	22
767	Learning the payoffs and costs of actions. PLoS Computational Biology, 2019, 15, e1006285.	3.2	26
768	Functional correlates of strategy formation and verbal suppression in Parkinson's disease. NeuroImage: Clinical, 2019, 22, 101683.	2.7	9
769	Substance P plays a critical role in synaptic transmission in striatal neurons. Biochemical and Biophysical Research Communications, 2019, 511, 369-373.	2.1	8
770	Dopamine effects on frontal cortical blood flow and motor inhibition in Parkinson's disease. Cortex, 2019, 115, 99-111.	2.4	27
771	Individual Dopaminergic Neurons of Lamprey SNc/VTA Project to Both the Striatum and Optic Tectum but Restrict Co-release of Glutamate to Striatum Only. Current Biology, 2019, 29, 677-685.e6.	3.9	28
772	Recent advances in understanding the role of the basal ganglia. F1000Research, 2019, 8, 122.	1.6	41
773	The super-learning hypothesis: Integrating learning processes across cortex, cerebellum and basal ganglia. Neuroscience and Biobehavioral Reviews, 2019, 100, 19-34.	6.1	70
774	Research on Path optimization Algorithm of the 6-DOF Manipulator. , 2019, , .		0
775	Distantly Supervised Biomedical Named Entity Recognition with Dictionary Expansion. , 2019, , .		13
776	MDP Autoencoder., 2019,,.		0
778	Spherical Video Coding With Motion Vector Modulation to Account For Camera Motion. , 2019, , .		1
779	Automatic determination of types number of mixed binary protocols. IET Communications, 2019, 13, 1769-1775.	2.2	0
780	Linear Array SAR Imaging and Autofocus Approach. , 2019, , .		1
781	Harmonic emission level assessment method based on parameter identification analysis. IET Generation, Transmission and Distribution, 2019, 13, 976-983.	2.5	12
783	[TENSYMP 2019 Title Page]., 2019,,.		0
786	Operation optimization of Household Intelligent Electrical Equipment Based on Time-of-Use Price. , 2019, , .		1

#	Article	IF	CITATIONS
787	Control of Multilevel Inverter as Shunt Active Power Filter using Maximum Versoria Criterion. , 2019, , .		2
788	Using context analysys for providing real time recommendations in e-tourism mobile location-based recommender systems. , 2019, , .		6
789	Quadratic Performance Analysis of Secondary Frequency Controllers. , 2019, , .		2
790	Real-Time Monitoring and Logging of Ionospheric Scintillation and Total Electron Content. , 2019, , .		4
791	Robust Attitude Control for a Rigid Body Spacecraft. , 2019, , .		0
792	Monocular vision navigation for aerial surveillance of power lines based on Deep Neural Networks and Hough transform. , $2019, , .$		1
793	A pilot study of a directed self-placement exam and a workshop designed to improve student learning outcomes in a junior level circuits and signals course. , 2019, , .		0
794	Closed-Form Expression for the Resources Dimensioning of Softwarized Network Services. , 2019, , .		2
795	Learning Sparse Patterns in Deep Neural Networks., 2019,,.		1
796	Victim Routine Influences the Number of DDoS Attacks: Evidence from Dutch Educational Network. , 2019, , .		0
797	Pitching and heaving motion of an unmanned catamaran vehicle in head seas., 2019,,.		0
798	Design and Implementation of Automatic Welding Machine. , 2019, , .		O
799	Adaptive Step-Size Recursive Least Biphase Errors Algorithm. , 2019, , .		1
800	Performance Assessment of Kron Reduction in the Numerical Analysis of Polyphase Power Systems. , 2019, , .		O
801	Spike-Based Winner-Take-All Computation: Fundamental Limits and Order-Optimal Circuits. Neural Computation, 2019, 31, 2523-2561.	2.2	17
802	The Modulation of Pain by Metabotropic Glutamate Receptors 7 and 8 in the Dorsal Striatum. Current Neuropharmacology, 2019, 18, 34-50.	2.9	18
803	Elevated Brain Iron in Cocaine Use Disorder as Indexed by Magnetic Field Correlation Imaging. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 579-588.	1.5	5
804	Roles for globus pallidus externa revealed in a computational model of action selection in the basal ganglia. Neural Networks, 2019, 109, 113-136.	5.9	34

#	ARTICLE	IF	CITATIONS
805	A Neuro-Operant Analysis of Mnemonic Recognition. Perspectives on Behavior Science, 2019, 42, 267-281.	1.9	3
806	Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized corticoâ€basal ganglia systems. Hippocampus, 2020, 30, 73-98.	1.9	45
807	Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neuroscience and Biobehavioral Reviews, 2020, 112, 553-584.	6.1	63
808	Bipolar oscillations between positive and negative mood states in a computational model of Basal Ganglia. Cognitive Neurodynamics, 2020, 14, 181-202.	4.0	10
809	Winner-take-all competition with heterogeneous dynamic agents. Neurocomputing, 2020, 374, 42-48.	5.9	1
810	Robust parallel decision-making in neural circuits with nonlinear inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25505-25516.	7.1	7
811	Cardiac cycle gated cognitive-emotional control in superior frontal cortices. NeuroImage, 2020, 222, 117275.	4.2	20
812	Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia–thalamic communication. PLoS Biology, 2020, 18, e3000829.	5.6	19
813	Basal ganglia circuits., 2020,, 221-242.		2
814	Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. Biological Bulletin, 2020, 239, 189-208.	1.8	8
815	A Basal Ganglia Computational Model to Explain the Paradoxical Sensorial Improvement in the Presence of Huntington's Disease. International Journal of Neural Systems, 2020, 30, 2050057.	5.2	2
816	A computational model of language functions in flexible goal-directed behaviour. Scientific Reports, 2020, 10, 21623.	3.3	9
817	Functionally matched domains in parietal-frontal cortex of monkeys project to overlapping regions of the striatum. Progress in Neurobiology, 2020, 195, 101864.	5.7	5
818	Design and evaluation of a biologically-inspired cloud elasticity framework. Cluster Computing, 2020, 23, 3095-3117.	5.0	2
819	Synchronized Switching Modulation to Reduce the DC-Link Current in SRM Drives. IEEE Access, 2020, 8, 57849-57858.	4.2	4
820	MSP-MFCC: Energy-Efficient MFCC Feature Extraction Method With Mixed-Signal Processing Architecture for Wearable Speech Recognition Applications. IEEE Access, 2020, 8, 48720-48730.	4.2	37
821	Software Engineering for Data Analytics. IEEE Software, 2020, 37, 36-42.	1.8	5
822	Extensions of Multivariate Dynamical Systems to Simultaneously Explain Neural and Behavioral Data. Computational Brain & Behavior, 2020, 3, 430-457.	1.7	1

#	Article	IF	CITATIONS
823	SDN-Enabled S-BVT for Disaggregated Networks: Design, Implementation and Cost Analysis. Journal of Lightwave Technology, 2020, 38, 3037-3043.	4.6	16
824	A neurally plausible schema-theoretic approach to modelling cognitive dysfunction and neurophysiological markers in Parkinson's disease. Neuropsychologia, 2020, 140, 107359.	1.6	6
825	How the brain gets a roaring campfire. , 2020, , e2.1-e2.73.		1
826	Conscious perception and the modulatory role of dopamine: no effect of the dopamine D2 agonist cabergoline on visual masking, the attentional blink, and probabilistic discrimination. Psychopharmacology, 2020, 237, 2855-2872.	3.1	3
827	Synthesizing Shaped Power Patterns for Linear and Planar Antenna Arrays Including Mutual Coupling by Refined Joint Rotation/Phase Optimization. IEEE Transactions on Antennas and Propagation, 2020, 68, 4648-4657.	5.1	25
828	Studying neural circuits of decision-making in <i>Drosophila</i> larva. Journal of Neurogenetics, 2020, 34, 162-170.	1.4	4
829	Experimental Study of 600 V Accumulation-Type Lateral Double-Diffused MOSFET With Ultra-Low On-Resistance. IEEE Electron Device Letters, 2020, 41, 465-468.	3.9	19
830	The Differential Impact of a Response's Effectiveness and its Monetary Value on Response-Selection. Scientific Reports, 2020, 10, 3405.	3.3	17
831	Managing IoT Cyber-Security Using Programmable Telemetry and Machine Learning. IEEE Transactions on Network and Service Management, 2020, 17, 60-74.	4.9	47
832	Modeling Morphological Priming in German With Naive Discriminative Learning. Frontiers in Communication, 2020, 5, .	1.2	17
833	Correcting Automatic Cataract Diagnosis Systems Against Noisy/Blur Environment. , 2020, , .		1
834	Virtual Markers based Facial Emotion Recognition using ELM and PNN Classifiers. , 2020, , .		7
835	The Neural Basis of Escape Behavior in Vertebrates. Annual Review of Neuroscience, 2020, 43, 417-439.	10.7	64
836	A Concise Anisotropic Slope Tomography Based on 2-D Quasi-Acoustic Eikonal Equation for VTI Media. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 67-71.	3.1	0
837	A biologically constrained spiking neural network model of the primate basal ganglia with overlapping pathways exhibits action selection. European Journal of Neuroscience, 2021, 53, 2254-2277.	2.6	20
838	The influence of contextual constraint on verbal selection mechanisms and its neural correlates in Parkinson's disease. Brain Imaging and Behavior, 2021, 15, 865-881.	2.1	2
839	Longâ€lasting tagging of neurons activated by seizures or cocaine administration in Egr1â€CreER ^{T2} transgenic mice. European Journal of Neuroscience, 2021, 53, 1450-1472.	2.6	4
840	Bilingual and Multilingual Mental Lexicon: A Modeling Study With Linear Discriminative Learning. Language Learning, 2021, 71, 219-292.	2.7	10

#	Article	IF	CITATIONS
841	Immediate action effects motivate actions based on the stimulus–response relationship. Experimental Brain Research, 2021, 239, 67-78.	1.5	12
842	Substantia nigra pars reticulata-mediated sleep and motor activity regulation. Sleep, 2021, 44, .	1.1	13
843	Using Electrical Stimulation to Explore and Augment the Functions of Parietal-Frontal Cortical Networks in Primates. Contemporary Clinical Neuroscience, 2021, , 3-18.	0.3	2
844	Neuromodulation for Gait Disorders. Contemporary Clinical Neuroscience, 2021, , 485-520.	0.3	0
845	On the functional role of striatal and anterior cingulate GABA + in stimulusâ€response binding. Human Brain Mapping, 2021, 42, 1863-1878.	3.6	9
846	Imaging of the human subthalamic nucleus. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 403-416.	1.8	2
847	Basal Ganglia and Thalamic Contributions to Language Function: Insights from A Parallel Distributed Processing Perspective. Neuropsychology Review, 2021, 31, 495-515.	4.9	14
849	A global framework for a systemic view of brain modeling. Brain Informatics, 2021, 8, 3.	3.0	6
850	Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Frontiers in Immunology, 2021, 12, 644294.	4.8	16
853	A new era for executive function research: On the transition from centralized to distributed executive functioning. Neuroscience and Biobehavioral Reviews, 2021, 124, 235-244.	6.1	24
855	Basal ganglia and cortical control of thalamic rebound spikes. European Journal of Neuroscience, 2021, 54, 4295-4313.	2.6	4
857	Motivational competition and the paraventricular thalamus. Neuroscience and Biobehavioral Reviews, 2021, 125, 193-207.	6.1	19
860	Basal ganglia-orbitofrontal circuits are associated with prospective memory deficits in Wilson's disease. Brain Imaging and Behavior, 2022, 16, 141-150.	2.1	5
861	Making decisions in the dark basement of the brain: A look back at the GPR model of action selection and the basal ganglia. Biological Cybernetics, 2021, 115, 323-329.	1.3	8
862	The basal ganglia control the detailed kinematics of learned motor skills. Nature Neuroscience, 2021, 24, 1256-1269.	14.8	70
864	Revisiting the "Paradox of Stereotaxic Surgery― Insights Into Basal Ganglia-Thalamic Interactions. Frontiers in Systems Neuroscience, 2021, 15, 725876.	2.5	5
865	The statistics of optimal decision making: Exploring the relationship between signal detection theory and sequential analysis. Journal of Mathematical Psychology, 2021, 103, 102544.	1.8	13
868	Role of the Superior Colliculus in Guiding Movements Not Made by the Eyes. Annual Review of Vision Science, 2021, 7, 279-300.	4.4	15

#	Article	IF	CITATIONS
869	Simultaneously recorded subthalamic and cortical LFPs reveal different lexicality effects during reading aloud. Journal of Neurolinguistics, 2021, 60, 101019.	1.1	6
870	Internal manipulation of perceptual representations in human flexible cognition: A computational model. Neural Networks, 2021, 143, 572-594.	5.9	3
871	Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson $\hat{a} \in \mathbb{N}$ disease., 2021, 1, .		10
872	Distributed Action Selection by a Brainstem Neural Substrate: An Embodied Evaluation. Lecture Notes in Computer Science, 2006, , 199-210.	1.3	2
873	An Effective Robotic Model of Action Selection. Lecture Notes in Computer Science, 2006, , 123-132.	1.3	3
874	Modularity and Specialized Learning: Mapping between Agent Architectures and Brain Organization. Lecture Notes in Computer Science, 2001, , 98-113.	1.3	7
875	The Interaction of Recurrent Axon Collateral Networks in the Basal Ganglia. Lecture Notes in Computer Science, 2003, , 797-804.	1.3	2
876	The Basal Ganglia: Beyond the Motor System—From Movement to Thought. , 2009, , 27-68.		2
877	On the Relationships Between the Pedunculopontine Tegmental Nucleus, Corticostriatal Architecture, and the Medial Reticular Formation. Advances in Behavioral Biology, 2009, , 143-157.	0.2	9
878	The Involvement of Corticostriatal Loops in Learning Across Tasks, Species, and Methodologies. Advances in Behavioral Biology, 2009, , 25-39.	0.2	16
879	Basal Ganglia System as an Engine for Exploration. , 2014, , 1-15.		11
880	The Robot Basal Ganglia:. Advances in Behavioral Biology, 2002, , 349-358.	0.2	9
881	The Latent Inhibition Model of Schizophrenia. Neurobiological Foundation of Aberrant Behaviors, 2000, , 197-230.	0.2	10
882	The Robot Vibrissal System: Understanding Mammalian Sensorimotor Co-ordination Through Biomimetics., 2015,, 213-240.		5
883	MIRO: A Robot "Mammal―with a Biomimetic Brain-Based Control System. Lecture Notes in Computer Science, 2016, , 179-191.	1.3	16
884	Limbic-Basal Ganglia Circuits Parallel and Integrative Aspects. Innovations in Cognitive Neuroscience, 2016, , 11-45.	0.3	5
885	Current Understanding of PDE10A in the Modulation of Basal Ganglia Circuitry. Advances in Neurobiology, 2017, 17, 15-43.	1.8	9
887	Emergent Common Functional Principles in Control Theory and the Vertebrate Brain: A Case Study with Autonomous Vehicle Control. Lecture Notes in Computer Science, 2008, , 949-958.	1.3	5

#	Article	IF	Citations
888	Multi-objective Evolutionary Algorithms to Investigate Neurocomputational Issues: The Case Study of Basal Ganglia Models. Lecture Notes in Computer Science, 2010, , 597-606.	1.3	2
890	The Emergence of Action Sequences from Spatial Attention: Insight from Rodent-Like Robots. Lecture Notes in Computer Science, 2012, , 168-179.	1.3	5
891	Neurobiologically-Inspired Soft Switching Control of Autonomous Vehicles. Lecture Notes in Computer Science, 2012, , 82-91.	1.3	6
892	Action Discovery and Intrinsic Motivation: A Biologically Constrained Formalisation., 2013, , 151-181.		14
893	The Hierarchical Organisation of Cortical and Basal-Ganglia Systems: A Computationally-Informed Review and Integrated Hypothesis., 2013,, 237-270.		13
894	Agent-Based Composite Services in DAML-S: the Behavior-Oriented Design of an Intelligent Semantic Web. , 2003, , 37-58.		21
895	Dopamine in Schizophrenia Dysfunctional Information Processing in Basal Ganglia — Thalamocortical Split Circuits. Handbook of Experimental Pharmacology, 2002, , 417-471.	1.8	20
896	Cortical Models for Movement Control. Mathematical Modelling: Theory and Applications, 2001, , 135-162.	0.2	3
897	Selective attention without a neocortex. Cortex, 2018, 102, 161-175.	2.4	79
898	Divergent findings regarding negative priming in Parkinson's disease: A comment of Filoteo et al. (2000) and Wylie and Stout (2000) Neuropsychology, 2002, 16, 251-253.	1.3	6
899	Beyond happiness: Building a science of discrete positive emotions American Psychologist, 2017, 72, 617-643.	4.2	172
900	Overriding actions in Parkinson's disease: Impaired stopping and changing of motor responses Behavioral Neuroscience, 2017, 131, 372-384.	1.2	5
901	New perspectives on speech motor planning and programming in the context of the four-level model and its implications for understanding the pathophysiology underlying apraxia of speech and other motor speech disorders. Aphasiology, 2021, 35, 397-423.	2.2	25
902	Testing computational hypotheses of brain systems function: a case study with the basal ganglia. Network: Computation in Neural Systems, 2004, 15, 263-290.	3.6	24
903	Resource Acquisition, Violence, and Evolutionary Consciousness. , 2012, , .		4
914	A Biologically Plausible Action Selection System for Cognitive Architectures: Implications of Basal Ganglia Anatomy for Learning and Decisionâ€Making Models. Cognitive Science, 2018, 42, 457-490.	1.7	18
915	Freezing of Gait in Parkinson's Disease: Invasive and Noninvasive Neuromodulation. Neuromodulation, 2021, 24, 829-842.	0.8	21
916	Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. Journal of Clinical Investigation, 2019, 129, 3407-3419.	8.2	103

#	Article	IF	CITATIONS
917	Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection. PLoS Computational Biology, 2016, 12, e1005004.	3.2	30
918	Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome. PLoS Computational Biology, 2017, 13, e1005395.	3.2	82
919	Brief Subthreshold Events Can Act as Hebbian Signals for Long-Term Plasticity. PLoS ONE, 2009, 4, e6557.	2.5	23
920	The Dopamine D2 Receptor Gene in Lamprey, Its Expression in the Striatum and Cellular Effects of D2 Receptor Activation. PLoS ONE, 2012, 7, e35642.	2.5	31
921	Globus Pallidus External Segment Neuron Classification in Freely Moving Rats: A Comparison to Primates. PLoS ONE, 2012, 7, e45421.	2.5	46
922	Target-distractor synchrony affects performance in a novel motor task for studying action selection. PLoS ONE, 2017, 12, e0176945.	2.5	1
923	How can we learn what attention is? Response gating via multiple direct routes kept in check by inhibitory control processes. Open Psychology, 2020, 2, 238-279.	0.3	2
924	The basal ganglia corticostriatal loops and conditional learning. Reviews in the Neurosciences, 2021, 32, 181-190.	2.9	5
925	Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model. ENeuro, 2016, 3, ENEURO.0156-16.2016.	1.9	49
926	Prefronto-Striatal Structural Connectivity Mediates Adult Age Differences in Action Selection. Journal of Neuroscience, 2021, 41, 331-341.	3.6	9
927	The Multifunctional Mesencephalic Locomotor Region. Current Pharmaceutical Design, 2013, 19, 4448-4470.	1.9	159
928	The involvement of the striatum in decision making. Dialogues in Clinical Neuroscience, 2016, 18, 55-63.	3.7	14
929	Goal-directed top-down control of perceptual representations: A computational model of the Wisconsin Card Sorting Test. , 2019, , .		2
931	Modular Representations of Cognitive Phenomena in Al, Psychology and Neuroscience., 0,, 66-89.		8
932	Insects have the capacity for subjective experience. Animal Sentience, 2016, 1, .	0.5	41
933	A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. ELife, 2014, 3, e02951.	6.0	156
934	Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila. ELife, 2017, 6, .	6.0	38
935	A subcortical circuit linking the cerebellum to the basal ganglia engaged in vocal learning. ELife, 2018, 7, .	6.0	37

#	Article	IF	Citations
936	The caudate nucleus contributes causally to decisions that balance reward and uncertain visual information. ELife, 2020, 9, .	6.0	41
937	Direct and indirect pathway neurons in ventrolateral striatum differentially regulate licking movement and nigral responses. Cell Reports, 2021, 37, 109847.	6.4	13
938	Convergence of forepaw somatosensory and motor cortical projections in the striatum, claustrum, thalamus, and pontine nuclei of cats. Brain Structure and Function, 2022, 227, 361-379.	2.3	6
939	An embodied model of action selection mechanisms in the vertebrate brain., 2000,, 157-166.		6
940	Selection and the Basal Ganglia. Advances in Behavioral Biology, 2002, , 257-266.	0.2	0
941	Comparing a Brain-inspired Robot Action Selection Mechanism with Winner-takes-all. , 2002, , 75-84.		3
942	Basal Ganglia Circuits and Thalamocortical Outputs. Neurological Disease and Therapy, 2004, , 253-272.	0.0	0
944	Making Economic Sense of Brain Models. SSRN Electronic Journal, 0, , .	0.4	0
945	Basal Ganglia – Cortex Interactions: Regulation of Cortical Function by D1 Dopamine Receptors in the Striatum. , 2007, , 261-282.		1
946	Introduction: Movement, Cognition, and the Vertically Organized Brain. , 2009, , 1-26.		0
947	Hippocampus, Amygdala and Basal Ganglia Based Navigation Control. Lecture Notes in Computer Science, 2009, , 267-276.	1.3	1
948	Effects of dopamine depletion on reward-seeking behavior. , 2009, , 271-289.		0
949	Basal Ganglia Models for Autonomous Behavior Learning. Lecture Notes in Computer Science, 2009, , 328-350.	1.3	1
950	Controlled and Automatic Processing in Animals and Machines with Application to Autonomous Vehicle Control. Lecture Notes in Computer Science, 2009, , 198-207.	1.3	8
951	Learning How to Select an Action: A Computational Model. Lecture Notes in Computer Science, 2012, , 474-481.	1.3	5
952	Structuring Intelligence: The Role of Hierarchy, Modularity and Learning in Generating Intelligent Behaviour., 2012,, 126-143.		2
953	A New Neural Framework for Adaptive and Maladaptive Behaviors in Changeable and Demanding Environments. The Ergonomics Design & Mgmtory & Applications, 2012, , .	0.2	0
955	Neuroanatomical Structures Underlying the Extinction of Drug-Seeking Behavior. The Open Addiction Journal, 2013, 3, 63-75.	0.5	0

#	Article	IF	Citations
956	Basal Ganglia: Control of Saccades. , 2014, , 1-4.		0
957	Basal Ganglia: Mechanisms for Action Selection. , 2014, , 1-7.		3
958	The Basal Ganglia Underpinning of Cognitive Control: The Fronto-Striatal System. SpringerBriefs in Neuroscience, 2014, , 57-59.	0.1	0
959	Integration of Biological Neural Models for the Control of Eye Movements in a Robotic Head. Lecture Notes in Computer Science, 2015, , 231-242.	1.3	2
961	Dynamics of Reward Based Decision Making: A Computational Study. Lecture Notes in Computer Science, 2016, , 322-329.	1.3	2
964	The status of the simulative method in cognitive science: current debates and future prospects. Paradigmi, 2016, , 47-66.	0.0	0
967	Bau und Funktion der Basalganglien bei "niederen" Vertebraten. , 2017, , 11-28.		0
973	A Survival Task for the Design and the Assessment of an Autonomous Agent. Lecture Notes in Computer Science, 2018, , 338-347.	1.3	O
977	Basal Ganglia: Control of Saccades. , 2019, , 1-3.		0
980	Effects of Rhythmic Interventions on Cognitive Abilities in Parkinson's Disease. Dementia and Geriatric Cognitive Disorders, 2021, 50, 372-386.	1.5	3
981	Intrinsic timescales across the basal ganglia. Scientific Reports, 2021, 11, 21395.	3.3	8
982	Basal Ganglia Output Has a Permissive Non-Driving Role in a Signaled Locomotor Action Mediated by the Midbrain. Journal of Neuroscience, 2021, 41, 1529-1552.	3.6	11
983	Agent Architecture for Adaptive Behaviors in Autonomous Driving. IEEE Access, 2020, 8, 154906-154923.	4.2	13
984	When Artificial Intelligence and Computational Neuroscience Meet. , 2020, , 303-335.		2
985	Impaired Motor Recycling during Action Selection in Parkinson's Disease. ENeuro, 2020, 7, ENEURO.0492-19.2020.	1.9	0
987	Feedforward and Feedback Inhibition in the Neostriatum. , 2005, , 457-466.		0
988	Anticipation and Future-Oriented Capabilities in Natural and Artificial Cognition., 2007,, 257-270.		4
990	The avian subpallium and autonomic nervous system. , 2022, , 257-290.		0

#	Article	IF	CITATIONS
991	From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. Journal of Neuroscience, 2021, 41, 9483-9502.	3.6	18
992	An Evolutionary Perspective on Embodiment. , 2021, , 547-571.		2
994	The Biasing of Action Selection Produces Emergent Human-Robot Interactions in Autonomous Driving. IEEE Robotics and Automation Letters, 2022, 7, 1254-1261.	5.1	4
995	Procedural Memory Augmented Deep Reinforcement Learning. IEEE Transactions on Artificial Intelligence, 2020, 1, 105-120.	4.7	2
997	Robust top-down and bottom-up visual saliency for mobile robots using bio-inspired design principles. , 2021, , .		0
999	Functional dissociation of behavioral effects from acetylcholine and glutamate released from cholinergic striatal interneurons. FASEB Journal, 2022, 36, e22135.	0.5	4
1000	Neural correlates of impaired response inhibition in the antisaccade task in Parkinson's disease. Behavioural Brain Research, 2022, 422, 113763.	2.2	3
1001	Striatal Synaptic Dysfunction in Dystonia and Levodopa-Induced Dyskinesia. Neurobiology of Disease, 2022, 166, 105650.	4.4	18
1002	Dorsal visual stream is preferentially engaged during externally guided action selection in Parkinson Disease. Clinical Neurophysiology, 2021, , .	1.5	2
1004	Reaching and Grasping Movements in Parkinson's Disease: A Review. Journal of Parkinson's Disease, 2022, 12, 1083-1113.	2.8	10
1006	Thalamic bursts modulate cortical synchrony locally to switch between states of global functional connectivity in a cognitive task. PLoS Computational Biology, 2022, 18, e1009407.	3.2	1
1007	Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiology of Disease, 2022, 168, 105697.	4.4	26
1008	The evolution of brain architectures for predictive coding and active inference. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200531.	4.0	23
1009	How the insect central complex could coordinate multimodal navigation. ELife, 2021, 10, .	6.0	14
1010	Evolution of behavioural control from chordates to primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200522.	4.0	30
1011	Bayesian Mapping of the Striatal Microcircuit Reveals Robust Asymmetries in the Probabilities and Distances of Connections. Journal of Neuroscience, 2022, 42, 1417-1435.	3.6	0
1012	Dopamine Modulation of Drosophila Ellipsoid Body Neurons, a Nod to the Mammalian Basal Ganglia. Frontiers in Physiology, 2022, 13, 849142.	2.8	4
1018	Negative priming in patients with Parkinson's disease: Evidence for a role of the striatum in inhibitory attentional processes Neuropsychology, 2002, 16, 230-241.	1.3	18

#	Article	IF	CITATIONS
1020	Neural Control of Action Selection Among Innate Behaviors. Neuroscience Bulletin, 2022, 38, 1541-1558.	2.9	10
1021	Uncertainty–guided learning with scaled prediction errors in the basal ganglia. PLoS Computational Biology, 2022, 18, e1009816.	3.2	4
1022	Differential Dopamine Receptor-Dependent Sensitivity Improves the Switch Between Hard and Soft Selection in a Model of the Basal Ganglia. Neural Computation, 2022, 34, 1588-1615.	2.2	2
1023	Basal Ganglia System as an Engine for Exploration. , 2022, , 353-365.		0
1024	Basal Ganglia: Mechanisms for Action Selection. , 2022, , 410-415.		0
1025	Basal Ganglia: Control of Saccades. , 2022, , 376-379.		0
1026	An insula hierarchical network architecture for active interoceptive inference. Royal Society Open Science, 2022, 9, .	2.4	21
1027	Cortical-subcortical interactions in goal-directed behavior. Physiological Reviews, 2023, 103, 347-389.	28.8	13
1028	The Subthalamic Nucleus: A Hub for Sensory Control via Short Three-Lateral Loop Connections with the Brainstem?. Current Neuropharmacology, 2023, 21, 22-30.	2.9	2
1029	Reward prediction errors, not sensory prediction errors, play a major role in model selection in human reinforcement learning. Neural Networks, 2022, 154, 109-121.	5.9	2
1030	Action suppression reveals opponent parallel control via striatal circuits. Nature, 2022, 607, 521-526.	27.8	21
1031	A computational model of inner speech supporting flexible goal-directed behaviour in Autism. Scientific Reports, 2022, 12, .	3.3	2
1032	Motor Thalamic Interactions with the Brainstem and Basal Ganglia. , 2022, , 269-283.		1
1033	An fMRI meta-analysis of the role of the striatum in everyday-life vs laboratory-developed habits. Neuroscience and Biobehavioral Reviews, 2022, 141, 104826.	6.1	4
1034	Nmda- and 6-OHDA-Induced Lesions in the Nucleus Accumbens Differently Affect Maternal and Infanticidal Behavior in Pup-NaÃ-ve Female and Male Mice (C57BL/6). SSRN Electronic Journal, 0, , .	0.4	0
1035	Neurophysiological mechanisms of implicit and explicit memory in the process of consciousness. Journal of Neurophysiology, 2022, 128, 872-891.	1.8	3
1036	Black-box and surrogate optimization for tuning spiking neural models of striatum plasticity. Frontiers in Neuroinformatics, 0, 16, .	2.5	3
1037	Adaptively navigating affordance landscapes: How interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour. Neuroscience and Biobehavioral Reviews, 2022, 143, 104921.	6.1	5

#	Article	IF	CITATIONS
1038	Cerebellar Contributions to the Basal Ganglia Influence Motor Coordination, Reward Processing, and Movement Vigor. Journal of Neuroscience, 2022, 42, 8406-8415.	3.6	22
1041	Integrated neural dynamics of sensorimotor decisions and actions. PLoS Biology, 2022, 20, e3001861.	5.6	13
1042	Computational models of behavioral addictions: State of the art and future directions. Addictive Behaviors, 2023, 140, 107595.	3.0	6
1044	Experiential values are underweighted in decisions involving symbolic options. Nature Human Behaviour, 2023, 7, 611-626.	12.0	3
1046	Dorsolateral Striatum is a Bottleneck for Responding to Task-Relevant Stimuli in a Learned Whisker Detection Task in Mice. Journal of Neuroscience, 2023, 43, 2126-2139.	3.6	1
1047	Basal ganglia network dynamics and function: Role of direct, indirect and hyper-direct pathways in action selection. Network: Computation in Neural Systems, 2023, 34, 84-121.	3.6	4
1048	Embodied decision architectures. , 2023, , 17-38.		0
1050	Social influence and external feedback control in humans. F1000Research, 0, 12, 438.	1.6	0
1052	Deep brain stimulation alleviates tics in Tourette syndrome via striatal dopamine transmission. Brain, 2023, 146, 4174-4190.	7.6	2
1053	Understanding brain functional architecture through robotics. Science Robotics, 2023, 8, .	17.6	3
1054	Multiple dynamic interactions from basal ganglia direct and indirect pathways mediate action selection. ELife, $0,12,.$	6.0	2
1055	Elements ofÂCognition forÂGeneral Intelligence. Lecture Notes in Computer Science, 2023, , 11-20.	1.3	0
1056	Altered parabrachial nucleus nociceptive processing may underlie central pain in Parkinson's disease. Npj Parkinson's Disease, 2023, 9, .	5.3	2
1057	Language disorders in patients with striatal lesions: Deciphering the role of the striatum in language performance. Cortex, 2023, 166, 91-106.	2.4	2
1058	Role of the basal ganglia in innate and learned behavioural sequences. Reviews in the Neurosciences, 2023, .	2.9	0
1059	Gamma-Aminobutyric Acid and Glutamate Concentrations in the Striatum and Anterior Cingulate Cortex Not Found to Be Associated with Cognitive Flexibility. Brain Sciences, 2023, 13, 1192.	2.3	0
1060	Feasibility of dopamine as a vector-valued feedback signal in the basal ganglia. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
1061	Contributions of the Basal Ganglia to Visual Perceptual Decisions. Annual Review of Vision Science, 2023, 9, 385-407.	4.4	0

#	Article	lF	Citations
1062	How trial-to-trial learning shapes mappings in the mental lexicon: Modelling lexical decision with linear discriminative learning. Cognitive Psychology, 2023, 146, 101598.	2.2	3
1063	Motivational Modulation ofÂConsummatory Behaviour andÂLearning inÂaÂRobot Model ofÂSpatial Navigation. Lecture Notes in Computer Science, 2023, , 240-253.	1.3	0
1066	Multiple dynamic interactions from basal ganglia direct and indirect pathways mediate action selection. ELife, 0, 12 , .	6.0	0
1067	Continuous evaluation of cost-to-go for flexible reaching control and online decisions. PLoS Computational Biology, 2023, 19, e1011493.	3.2	2
1068	A common modular design of nervous systems originating in soft-bodied invertebrates. Frontiers in Physiology, 0, 14, .	2.8	1
1069	Graph analysis of cortical reorganization after virtual reality-based rehabilitation following stroke: a pilot randomized study. Frontiers in Neurology, 0, 14 , .	2.4	1
1071	Superior colliculus bidirectionally modulates choice activity in frontal cortex. Nature Communications, 2023, 14, .	12.8	1
1072	Neuromorphological bases of sensorimotor reactions. The Siberian Scientific Medical Journal, 2023, 43, 62-73.	0.3	0
1075	Social influence and external feedback control in humans. F1000Research, 0, 12, 438.	1.6	0
1077	Goal-directed learning in adolescence: neurocognitive development and contextual influences. Nature Reviews Neuroscience, 2024, 25, 176-194.	10.2	0
1078	NMDA- and 6-OHDA-induced Lesions in the Nucleus Accumbens Differently Affect Maternal and Infanticidal Behavior in Pup-naÃ-ve Female and Male Mice. Neuroscience, 2024, 539, 35-50.	2.3	0
1079	Rethinking Movement Disorders. Movement Disorders, 2024, 39, 472-484.	3.9	0
1081	Social influence and external feedback control in humans. F1000Research, 0, 12, 438.	1.6	0
1082	Simulated Dopamine Modulation of a Neurorobotic Model of the Basal Ganglia. Biomimetics, 2024, 9, 139.	3.3	0
1083	Bridging the artificial intelligence inventorship gap. Russian Journal of Economics and Law, 2024, 18, 190-216.	0.6	0