A review of the modern fluctuations of tropical glaciers

Global and Planetary Change 22, 93-103 DOI: 10.1016/s0921-8181(99)00028-4

Citation Report

#	Article	IF	CITATIONS
5	Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters, 2000, 27, 3885-3888.	4.0	252
6	Synoptic Survey of Surface Water Isotopes and Nutrient Concentrations, Páramo High-Elevation Region, Antisana Ecological Reserve, Ecuador. Arctic, Antarctic, and Alpine Research, 2001, 33, 397-403.	1.1	5
7	Glacier-climate interaction at low latitudes. Journal of Glaciology, 2001, 47, 195-204.	2.2	186
8	Mountain glaciers at the end of the twentieth century: Global analysis in relation to climate and water cycle. Polar Geography, 2001, 25, 241-336.	1.9	30
9	Tropical snowline depression at the Last Glacial Maximum: Comparison with proxy records using a single-cell tropical climate model. Journal of Geophysical Research, 2002, 107, ACL 4-1.	3.3	30
10	The contribution of increased incoming shortwave radiation to the retreat of the Rwenzori Glaciers, East Africa, during the 20th century. International Journal of Climatology, 2003, 23, 291-303.	3.5	60
11	Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. Journal of Geophysical Research, 2003, 108, .	3.3	189
12	Solar-radiation-maintained glacier recession on Kilimanjaro drawn from combined ice-radiation geometry modeling. Journal of Geophysical Research, 2003, 108, .	3.3	54
13	Mechanisms of Hemispherically Symmetric Climate Variability*. Journal of Climate, 2003, 16, 2960-2978.	3.2	330
14	Mountain cryospheric studies and the WCRP climate and cryosphere (CliC) project. Journal of Hydrology, 2003, 282, 177-181.	5.4	11
15	Mountain and subpolar glaciers show an increase in sensitivity to climate warming and intensification of the water cycle. Journal of Hydrology, 2003, 282, 164-176.	5.4	114
16	The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Perú. Journal of Hydrology, 2003, 282, 130-144.	5.4	135
17	Secular glacier mass balances derived from cumulative glacier length changes. Global and Planetary Change, 2003, 36, 295-306.	3.5	177
18	Tropical glacier meltwater contribution to stream discharge: a case study in the Cordillera Blanca, Peru. Journal of Glaciology, 2003, 49, 271-281.	2.2	128
19	Proxy climatic and environmental changes of the past 1000 years. Climate Research, 2003, 23, 89-110.	1.1	134
20	Map-based methods for estimating glacier equilibrium-line altitudes. Journal of Glaciology, 2003, 49, 329-336.	2.2	99
21	Reconstructing Climatic and Environmental Changes of the Past 1000 Years: A Reappraisal. Energy and Environment, 2003, 14, 233-296.	4.6	84
22	Glaciers and the study of climate and sea-level change. , 2004, , 579-622.		13

#	Article	IF	CITATIONS
23	Climate Reconstructions Derived from Global Glacier Length Records. Arctic, Antarctic, and Alpine Research, 2004, 36, 575-583.	1.1	23
24	20th-Century Glacier Fluctuations in the Tropical Cordillera Blanca, Perú. Arctic, Antarctic, and Alpine Research, 2004, 36, 100-107.	1.1	127
25	Modern glacier retreat on Kilimanjaro as evidence of climate change: observations and facts. International Journal of Climatology, 2004, 24, 329-339.	3.5	143
26	Late Quaternary glaciations of Bolivia. Developments in Quaternary Sciences, 2004, 2, 83-88.	0.1	2
27	Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. Journal of Geophysical Research, 2004, 109, .	3.3	146
28	Clobal climate change and the emergence/re-emergence of infectious diseases. International Journal of Medical Microbiology Supplements, 2004, 293, 16-26.	0.4	64
30	Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Global Change Biology, 2005, 11, 1013-1023.	9.5	195
31	Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides, 2005, 2, 107-115.	5.4	93
33	Avenir des ressources en eau glaciaire de la Cordillère Blanche / On the future of the water resources from glacier melting in the Cordillera Blanca, Peru. Hydrological Sciences Journal, 2005, 50, .	2.6	46
34	Evaluation of recent glacier recession in the Cordillera Blanca, Peru (AD 1962–1999): spatial distribution of mass loss and climatic forcing. Quaternary Science Reviews, 2005, 24, 2265-2280.	3.0	101
35	Interactions between mass balance, atmospheric circulation, and recent climate change on the Djankuat Glacier, Caucasus Mountains, Russia. Journal of Geophysical Research, 2005, 110, .	3.3	29
36	Atmospheric controls of the heat balance of Zongo Glacier (16°S, Bolivia). Journal of Geophysical Research, 2005, 110, .	3.3	101
37	Solar modulation of Little Ice Age climate in the tropical Andes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8937-8942.	7.1	93
38	Earth's Cryosphere: Current State and Recent Changes. Annual Review of Environment and Resources, 2006, 31, 33-60.	13.4	18
39	Kilimanjaro Glaciers: Recent areal extent from satellite data and new interpretation of observed 20th century retreat rates. Geophysical Research Letters, 2006, 33, .	4.0	68
40	Quantifying the Significance of Recent Glacier Recession in the Cordillera Blanca, Perú: A Case Study of Hydrological Impact and Climatic Control. , 0, , 242-245.		1
41	Adaptive Governance and Climate Change in the Tropical Highlands of Western South America. Climatic Change, 2006, 78, 63-102.	3.6	114
42	Fast shrinkage of tropical glaciers in Colombia. Annals of Glaciology, 2006, 43, 194-201.	1.4	59

#	Article	IF	CITATIONS
43	Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images. Journal of Glaciology, 2006, 52, 65-79.	2.2	25
44	Evidence for the Postconquest Demographic Collapse of the Americas in Historical CO2 Levels. Earth Interactions, 2006, 10, 1-14.	1.5	20
45	Review and reassessment of hazards owing to volcano–glacier interactions in Colombia. Annals of Glaciology, 2007, 45, 128-136.	1.4	37
47	Lichenometry in the Cordillera Blanca, Peru: "Little Ice Age―moraine chronology. Global and Planetary Change, 2007, 59, 225-235.	3.5	56
48	Teleconnections between Andean and New Zealand glaciers. Global and Planetary Change, 2007, 59, 159-174.	3.5	44
49	Glacier mass balance of tropical Zongo glacier, Bolivia, comparing hydrological and glaciological methods. Global and Planetary Change, 2007, 59, 27-36.	3.5	34
50	Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes. Global and Planetary Change, 2007, 59, 110-125.	3.5	106
51	Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca,) Tj ETQq1 1 0.784	-314 rgBT	Overlock 10
52	Impact of climate variability on Alpine glaciers in northwestern Italy. International Journal of Climatology, 2007, 27, 2041-2053.	3.5	28
53	Change and Continuity in a Pastoralist Community in the High Peruvian Andes. Human Ecology, 2008, 36, 535-551.	1.4	90
54	The timing and magnitude of mountain glaciation in the tropical Andes. Journal of Quaternary Science, 2008, 23, 609-634.	2.1	52
55	Subâ€debris melt rates on southern inylchek glacier, central tian shan. Geografiska Annaler, Series A: Physical Geography, 2008, 90, 55-63.	1.5	72
56	A chronology of the Little Ice Age in the tropical Andes of Bolivia (16°S) and its implications for climate reconstruction. Quaternary Research, 2008, 70, 198-212.	1.7	68
57	Climate change and tropical Andean glaciers: Past, present and future. Earth-Science Reviews, 2008, 89, 79-96.	9.1	552
58	Tracing tropical Andean glaciers over space and time: Some lessons and transdisciplinary implications. Global and Planetary Change, 2008, 60, 101-114.	3.5	35
59	Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Global and Planetary Change, 2008, 62, 14-28.	3.5	138
60	Modelling the water balance in the glacierized Parón Lake basin (White Cordillera, Peru) / Modélisation du bilan hydrique du bassin versant englacé du Lac Parón (Cordillère Blanche, Pérou). Hydrological Sciences Journal, 2008, 53, 266-277.	2.6	15
61	Recent high-resolution surface velocities and elevation change at a high-altitude, debris-covered glacier: Chacraraju, Peru. Journal of Glaciology, 2008, 54, 479-486.	2.2	2

#	Article	IF	CITATIONS
62	Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. Journal of Glaciology, 2008, 54, 499-510.	2.2	241
63	Changes in mountain climates. , 0, , 474-494.		0
64	Rainfall response to Dam/Irrigation projects in Northern Nigeria. Global Journal of Educational Research, 2009, 8, .	0.2	2
65	Measured and modelled sublimation on the tropical Glaciar Artesonraju, Perú. Cryosphere, 2009, 3, 21-30.	3.9	49
66	Mass balance of Glaciar Zongo, Bolivia, between 1956 and 2006, using glaciological, hydrological and geodetic methods. Annals of Glaciology, 2009, 50, 1-8.	1.4	54
67	Quantifying Climate Change in the Tropical Midtroposphere over East Africa from Glacier Shrinkage on Kilimanjaro. Journal of Climate, 2009, 22, 4162-4181.	3.2	114
68	Hydroecological response of river systems to shrinking glaciers. Hydrological Processes, 2009, 23, 62-77.	2.6	254
69	Paleolimnological records of recent glacier recession in the Rwenzori Mountains, Uganda-D. R. Congo. Journal of Paleolimnology, 2009, 41, 253-271.	1.6	27
70	Climate change and its impact on the forests of Kilimanjaro. African Journal of Ecology, 2009, 47, 3-10.	0.9	71
71	Late quaternary moraines along the sekhokong range, eastern lesotho: contrasting the geomorphic history of north―and southâ€facing slopes. Geografiska Annaler, Series A: Physical Geography, 2009, 91, 121-140.	1.5	21
72	Past glaciation in the tropics. Quaternary Science Reviews, 2009, 28, 790-798.	3.0	41
73	The Little Ice Age glacier advance in the Central Andes (35°S), Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281, 345-350.	2.3	44
74	Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281, 269-282.	2.3	103
75	Rainfall response to dam/irrigation projects in northern Nigeria. Global Journal of Educational Research, 2010, 8, .	0.2	0
77	Relation between GRACE-derived surface mass variations and precipitation over Australia. Australian Journal of Earth Sciences, 2010, 57, 887-900.	1.0	55
78	Lake Malawi sediment and pore water chemistry: Proposition of a conceptual model for stratification intensification since the end of the Little Ice Age. Global and Planetary Change, 2010, 72, 321-330.	3.5	9
79	The montane circulation on Kilimanjaro, Tanzania and its relevance for the summit ice fields: Comparison of surface mountain climate with equivalent reanalysis parameters. Global and Planetary Change, 2010, 74, 61-75.	3.5	30
80	Analysis of seasonal variations in mass balance and meltwater discharge of the tropical Zongo Glacier by application of a distributed energy balance model. Journal of Geophysical Research, 2011, 116,	3.3	80

#	Article	IF	CITATIONS
82	Artificial Ground Freezing. Encyclopedia of Earth Sciences Series, 2011, , 61-61.	0.1	1
84	Late Quaternary Glaciations in Bolivia: Comments on Some New Approaches to Dating Morainic Sequences. Developments in Quaternary Sciences, 2011, 15, 757-772.	0.1	3
85	Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography, 2011, 20, 19-33.	5.8	331
86	Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Climatic Change, 2011, 105, 179-206.	3.6	135
87	Glacier fluctuations in the southern Peruvian Andes during the lateâ€glacial period, constrained with cosmogenic ³ He. Journal of Quaternary Science, 2011, 26, 37-43.	2.1	36
88	Late Pleistocene snowline fluctuations at Nevado Coropuna (15°S), southern Peruvian Andes. Journal of Quaternary Science, 2011, 26, 305-317.	2.1	17
89	Potential of native forests for the mitigation of greenhouse gases in Salta, Argentina. Biomass and Bioenergy, 2011, 35, 2184-2193.	5.7	15
90	Quantifying 20th Century Glacier Change in the Sierra Nevada, California. Arctic, Antarctic, and Alpine Research, 2011, 43, 317-330.	1.1	36
91	The 1975–2005 glacier changes in Aosta Valley (Italy) and the relations with climate evolution. Progress in Physical Geography, 2012, 36, 764-785.	3.2	58
92	Analyse phytogéographique des forêts d'Afrique Centrale: le cas du massif de Ngovayang (Cameroun). Plant Ecology and Evolution, 2012, 145, 152-164.	0.7	22
93	WATER BALANCE OF GLACIERIZED CATCHMENTS IN TROPICS: A CASE STUDY IN BOLIVIAN ANDES. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_247-I_252.	0.1	1
94	Technological Solutions for Climate Change Adaptation in the Peruvian Highlands. , 2012, , .		0
95	DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 2438-2443.	2.6	152
96	Changes of the cryosphere and related geohazards in the highâ€mountain areas of tajikistan and austria: a comparison. Geografiska Annaler, Series A: Physical Geography, 2012, 94, 79-96.	1.5	30
97	The History and Disappearance of Glaciers in Venezuela. Journal of Latin American Geography, 2013, 12, 85-124.	0.1	31
98	Clacier Mapper – a new method designed to assess change in mountain glaciers. International Journal of Remote Sensing, 2013, 34, 8475-8490.	2.9	16
99	Die Anden. , 2013, , .		3
100	Characterization of recent glacier decline in the Cordillera Real by LANDSAT, ALOS, and ASTER data. Remote Sensing of Environment, 2013, 137, 158-172.	11.0	25

#	Article	IF	CITATIONS
101	Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia). Global and Planetary Change, 2013, 107, 13-24.	3.5	82
102	Continuity and Change in Cultural Adaptation to Mountain Environments. Studies in Human Ecology and Adaptation, 2013, , .	0.6	7
103	Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere, 2013, 7, 81-102.	3.9	470
104	IMPACT OF GLACIER DISAPPEARANCE ON RUNOFF FROM A GLACIERIZED CATCHMENT IN THE ANDES. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2013, 69, I_415-I_420.	0.1	4
105	ICE CORE RECORDS Africa., 2013,, 373-378.		1
106	Glacier shrinkage driven by climate change during half a century (1954–2007) in the Ortles-Cevedale group (Stelvio National Park, Lombardy, Italian Alps). Theoretical and Applied Climatology, 2014, 116, 169-190.	2.8	38
107	Bacteria recovered from a high-altitude, tropical glacier in Venezuelan Andes. World Journal of Microbiology and Biotechnology, 2014, 30, 931-941.	3.6	27
108	Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sensing of Environment, 2014, 140, 165-178.	11.0	131
109	Empirical mass balance modelling of South American tropical glaciers: case study of Antisana volcano, Ecuador. Hydrological Sciences Journal, 2014, 59, 1519-1535.	2.6	18
110	Where will the water go? Impacts of accelerated glacier melt in the Tropical Andes. Environmental Development, 2014, 10, 108-119.	4.1	4
111	Combined influence of PDO and ENSO on northern Andean glaciers: a case study on the Cotopaxi ice-covered volcano, Ecuador. Climate Dynamics, 2014, 43, 3439-3448.	3.8	36
112	Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs. Earth's Future, 2015, 3, 220-251.	6.3	98
113	The changing water cycle: climatic and socioeconomic drivers of waterâ€related changes in the Andes of Peru. Wiley Interdisciplinary Reviews: Water, 2015, 2, 715-733.	6.5	62
114	ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru. Cryosphere, 2015, 9, 1663-1683.	3.9	37
115	Pyrosequencing-Based Assessment of the Microbial Community Structure of Pastoruri Glacier Area (Huascarán National Park, Perú), a Natural Extreme Acidic Environment. Microbial Ecology, 2015, 70, 936-947.	2.8	22
116	Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru. Cryosphere, 2015, 9, 331-340.	3.9	31
118	Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in aÂtropical mountain environment (CordilleraÂBlanca,ÂPeru). Hydrology and Earth System Sciences, 2016, 20, 125-141.	4.9	41
119	Glacier change and glacial lake outburst flood risk inÂtheÂBolivianÂAndes. Cryosphere, 2016, 10, 2399-2413.	3.9	93

#	Article	IF	CITATIONS
121	Seasonal glacial meltwater contributions to surface water in the Bolivian Andes: A case study using environmental tracers. Journal of Hydrology: Regional Studies, 2016, 8, 260-273.	2.4	11
122	882 lakes of the Cordillera Blanca: An inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena, 2016, 147, 269-279.	5.0	96
123	Modelling melt, runoff, and mass balance of a tropical glacier in the Bolivian Andes using an enhanced temperature-index model. Hydrological Research Letters, 2016, 10, 51-59.	0.5	0
124	IMPACT ACCERSSMENT OF GLACIER RETREAT ON RUNOFF IN THE TUNI RESERVOIR CATHCMENT, BOLIVIA. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2016, 72, I_45-I_51.	0.1	0
125	Influence of ENSO and PDO on mountain glaciers in the outer tropics: case studies in Bolivia. Theoretical and Applied Climatology, 2016, 125, 757-768.	2.8	19
126	Shrinkage of Mt. Bogda glaciers of eastern Tian Shan in Central Asia during 1962–2006. Journal of Earth Science (Wuhan, China), 2016, 27, 139-150.	3.2	11
127	Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014). Geocarto International, 2016, 31, 544-556.	3.5	17
128	Recent trends in annual snowline variations in the northern wet outer tropics: case studies from southern Cordillera Blanca, Peru. Theoretical and Applied Climatology, 2017, 129, 213-227.	2.8	16
129	Volume change of tropical Peruvian glaciers from multi-temporal digital elevation models and volume–surface area scaling. Geografiska Annaler, Series A: Physical Geography, 2017, 99, 222-239.	1.5	10
130	Glacier monitoring and glacier-climate interactions in the tropical Andes: A review. Journal of South American Earth Sciences, 2017, 77, 218-246.	1.4	39
131	The Influence of Hydrology and Glaciology on Wetlands in the Himalayas. , 2017, , 175-188.		4
132	Glacier mass variation and its effect on surface runoff in the Beida River catchment during 1957–2013. Journal of Glaciology, 2017, 63, 523-534.	2.2	18
133	Ten years of monthly mass balance of Conejeras glacier, Colombia, and their evaluation using different interpolation methods. Geografiska Annaler, Series A: Physical Geography, 2017, 99, 155-176.	1.5	13
134	Decadal evolution of glaciers and glacial lakes in the Apolobamba–Carabaya region, tropical Andes (Bolivia–Peru). Geografiska Annaler, Series A: Physical Geography, 2017, 99, 193-206.	1.5	13
135	Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru's Cordillera Blanca. Applied Geography, 2017, 78, 94-103.	3.7	68
136	Remote sensing of glaciers in the tropical Andes: a review. International Journal of Remote Sensing, 2017, 38, 7101-7137.	2.9	27
137	Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews, 2017, 177, 220-234.	3.0	54
138	Remote Sensing-Based Study for Evaluating the Changes in Glacial Area: A Case Study from Himachal Pradesh, India. Earth Systems and Environment, 2017, 1, 1.	6.2	14

#	Article	IF	CITATIONS
139	Snowlines and Treelines in the Tropical Andes. Annals of the American Association of Geographers, 2017, 107, 429-440.	2.2	25
140	Environmental change in the equatorial Andes: Linking climate, land use, and land cover transformations. Remote Sensing Applications: Society and Environment, 2017, 8, 291-303.	1.5	28
141	Análisis multi-temporal entre 1975 y 2015 sobre cambios de la cobertura glaciar en los nevados Allin Capac y Chichi Capac, Perú. Journal of High Andean Research, 2017, 19, 265-274.	0.3	5
142	State and fate of the remaining tropical mountain glaciers in australasia using satellite imagery. Journal of Mountain Science, 2018, 15, 495-503.	2.0	9
143	Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead. Earth-Science Reviews, 2018, 176, 195-213.	9.1	203
144	Morphological analysis and features of the landslide dams in the Cordillera Blanca, Peru. Landslides, 2018, 15, 507-521.	5.4	44
145	<pre><mml:math altimg="si1.gif" display="inline" id="mml21" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>i</mml:mi></mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:msub></mml:math></pre>	i> 216 ml:m	i>@3/mml:mi
146	Mechanics and Its Applications, 2018, 494, 17-26. Hydrogeological modeling of the groundwater recharge feeding the Chambo aquifer, Ecuador. AIP Conference Proceedings, 2018, , .	0.4	9
147	Projections of the future disappearance of the Quelccaya Ice Cap in the Central Andes. Scientific Reports, 2018, 8, 15564.	3.3	33
148	Phylogenetic diversity of prokaryotes on the snow-cover of Lewis glacier in Mount Kenya. African Journal of Microbiology Research, 2018, 12, 574-579.	0.4	7
149	Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru. Journal of Glaciology, 2018, 64, 175-184.	2.2	17
150	Radar-Observed Characteristics of Precipitation in the Tropical High Andes of Southern Peru and Bolivia. Journal of Applied Meteorology and Climatology, 2018, 57, 1441-1458.	1.5	12
151	Glacier monitoring in the eastern mountain ranges of Bolivia from 1975 to 2016 using Landsat and Sentinel-2 data. Environmental Earth Sciences, 2018, 77, 1.	2.7	13
152	Glacier mapping in the Cordillera Blanca, Peru, tropical Andes, using Sentinelâ€⊋ and Landsat data. Singapore Journal of Tropical Geography, 2018, 39, 351-363.	0.9	16
153	Glacier variations and rising temperature in the Mt. Kenya since the Last Glacial Maximum. Journal of Mountain Science, 2018, 15, 1268-1282.	2.0	10
154	Evidence of climate change impacts on water, food and energy resources around Kilimanjaro, Tanzania. Regional Environmental Change, 2019, 19, 2521-2534.	2.9	25
155	A method for monitoring glacial loss and temperature variation using satellite observations: Case study of Pico de Orizaba and IztaccĀhuatl (Mexico). Arctic, Antarctic, and Alpine Research, 2019, 51, 379-396.	1.1	3
156	Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed. Hydrology and Earth System Sciences, 2019, 23, 405-425.	4.9	27

#	Article	IF	CITATIONS
157	Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences (Switzerland), 2019, 9, 196.	2.2	48
158	The influence of ENSO and PDO on tropical Andean glaciers and their impact on the hydrology of the Amazon Basin. Singapore Journal of Tropical Geography, 2019, 40, 346-360.	0.9	5
159	ç§~é²å,ƒå°åŧ山脉é«~å±±åŧç§¯å«æ°´å±,的水æ−‡åœ°è^. Hydrogeology Journal, 2019, 27, 2137-2154.	2.1	9
160	New land in the Neotropics: a review of biotic community, ecosystem, and landscape transformations in the face of climate and glacier change. Regional Environmental Change, 2019, 19, 1623-1642.	2.9	44
161	NDVI, 137Cs and nutrients for tracking soil and vegetation development on glacial landforms in the Lake Parón Catchment (Cordillera Blanca, Perú). Science of the Total Environment, 2019, 651, 250-260.	8.0	28
162	The human impact in geomorphology – 50†years of change. Geomorphology, 2020, 366, 106601.	2.6	39
163	Lake Inventory and Evolution of Glacial Lakes in the Nubra-Shyok Basin of Karakoram Range. Earth Systems and Environment, 2020, 4, 57-70.	6.2	22
164	ENSO and Light-Absorbing Impurities and Their Impact on Snow Albedo in the Sierra Nevada de Santa Marta, Colombia. Geosciences (Switzerland), 2020, 10, 437.	2.2	3
165	Distinct types of landslides in moraines associated with the post-LIA glacier thinning: Observations from the Kinzl Glacier, HuascarÃ _i n, Peru. Science of the Total Environment, 2020, 739, 139997.	8.0	15
166	Maximum and minimum air temperature lapse rates in the Andean region of Ecuador and Peru. International Journal of Climatology, 2020, 40, 6150-6168.	3.5	13
167	Glacier-Glacial Lake Interactions and Glacial Lake Development in the Central Himalaya, India (1994–2017). Journal of Earth Science (Wuhan, China), 2021, 32, 1563-1574.	3.2	26
168	Quantitative Estimation of Black Carbon in the Glacier Ampay-Apurimac. Journal of Sustainable Development of Energy, Water and Environment Systems, 2021, 9, 0-0.	1.9	2
169	Nonuniform Late Pleistocene glacier fluctuations in tropical Eastern Africa. Science Advances, 2021, 7,	10.3	28
170	Hydropower under climate uncertainty: Characterizing the usable capacity of Brazilian, Colombian and Peruvian power plants under climate scenarios. Energy for Sustainable Development, 2021, 61, 217-229.	4.5	21
171	Paraglacial Rock Slope Stability Under Changing Environmental Conditions, Safuna Lakes, Cordillera Blanca Peru. Frontiers in Earth Science, 2021, 9, .	1.8	9
173	Downscaling CESM2 in CLM5 to Hindcast Preindustrial Equilibrium Line Altitudes for Tropical Mountain Glaciers. Geophysical Research Letters, 2021, 48, e2021GL094071.	4.0	1
174	Malaria, Climate Change and Possible Impacts on Populations in Africa. , 2007, , 67-77.		5
175	Adaptation of Andean Herders to Political and Climatic Changes. Studies in Human Ecology and Adaptation, 2013, , 229-258.	0.6	3

#	Article	IF	CITATIONS
176	Glaciers and Monsoon Systems. Springer Climate, 2016, , 225-249.	0.6	2
177	Remote sensing of rapidly diminishing tropical glaciers in the northern Andes. , 2014, , 609-638.		11
178	20th Century Climate Change in the Tropical Andes: Observations and Model Results. Advances in Global Change Research, 2003, , 75-99.	1.6	71
179	ICE CORE RECORDS Africa., 2007, , 1220-1225.		1
180	Determinação de Morainas de Retração na Cordilheira Tres Cruces, BolÃvia. GEOUSP: Espaço E Tempo, 2010, , 73.	0.1	3
181	Clarifying regional hydrologic controls of the Marañón River, Peru through rapid assessment to inform system-wide basin planning approaches. Elementa, 2018, 6, .	3.2	5
182	Reassessment of Colombia's tropical glaciers retreat rates: are they bound to disappear during the 2010–2020 decade?. Advances in Geosciences, 0, 22, 107-116.	12.0	43
188	The Health of Claciers: Recent Changes in Glacier Regime. Advances in Global Change Research, 2003, , 123-135.	1.6	9
189	Towards curbing global village warming: Nepal's contribution to make a difference. Tribhuvan University Journal, 0, 8, 133-144.	0.2	0
192	Climate Change, Adaptation, and Water in the Central Andes. , 2014, , .		0
196	160 glacial lake outburst floods (GLOFs) across the Tropical Andes since the Little Ice Age. Global and Planetary Change, 2022, 208, 103722.	3.5	16
197	An hourly ground temperature dataset for 16Âhigh-elevation sites (3493–4377 m a.s.l.) in the Bale Mountains, Ethiopia (2017–2020). Earth System Science Data, 2022, 14, 1043-1062.	9.9	4
198	Multi-Decadal Glacier Area and Mass Balance Change in the Southern Peruvian Andes. Frontiers in Earth Science, 2022, 10, .	1.8	4
199	Climate Controls on the Interseasonal and Interannual Variability of the Surface Mass and Energy Balances of a Tropical Glacier (Zongo Glacier, Bolivia, 16°S): New Insights From the Multiâ€Year Application of a Distributed Energy Balance Model. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
200	Comparison of elevation-dependent warming and its drivers in the tropical and subtropical Andes. Climate Dynamics, 2022, 58, 3057-3074.	3.8	8
201	Modelling Snowmelt Runoff from Tropical Andean Glaciers under Climate Change Scenarios in the Santa River Sub-Basin (Peru). Water (Switzerland), 2021, 13, 3535.	2.7	4
202	The Recent Relationships Between Andean Ice-Core Dust Record and Madeira River Suspended Sediments on the Wet Season. Frontiers in Environmental Science, 2022, 10, .	3.3	1
203	Black carbon, organic carbon, and mineral dust in South American tropical glaciers: A review. Global and Planetary Change, 2022, 213, 103837.	3.5	10

#	Article	IF	CITATIONS
204	A New Look into the South America Precipitation Regimes: Observation and Forecast. Atmosphere, 2022, 13, 873.	2.3	18
205	Changes of streamflow regulation in an Andean watershed with shrinking glaciers: implications for water security. Hydrological Sciences Journal, 2022, 67, 1755-1770.	2.6	4
206	Targeting the source of fine sediment and associated geochemical elements by using novel fingerprinting methods in proglacial tropical highlands (Cordillera Blanca, Perú). Hydrological Processes, 2022, 36, .	2.6	7
207	Climate reconstruction of the Little Ice Age maximum extent of the tropical Zongo Glacier using a distributed energy balance model. Comptes Rendus - Geoscience, 2023, 355, 381-398.	1.2	1
208	The Evolution of the Two Largest Tropical Ice Masses since the 1980s. Geosciences (Switzerland), 2022, 12, 365.	2.2	1
209	The last glaciers in Africa and their environmental implications. Journal of African Earth Sciences, 2023, 200, 104863.	2.0	1
210	Prevalence and abundance of antibiotic-resistant genes in culturable bacteria inhabiting a non-polar passu glacier, karakorum mountains range, Pakistan. World Journal of Microbiology and Biotechnology, 2023, 39, .	3.6	2
211	Understanding the Susceptibility of the Tropical Proglacial Environment in Peru Using Optical Imagery and Radon Measurements. Atmosphere, 2023, 14, 568.	2.3	0
212	Snow Cover Temporal Dynamic Using MODIS Product, and Its Relationship with Precipitation and Temperature in the Tropical Andean Glaciers in the Alto Santa Sub-Basin (Peru). Sustainability, 2023, 15, 7610.	3.2	1
213	Using a Web Map Service to map Little Ice Age glacier extents at regional scales. Annals of Glaciology, 0, , 1-19.	1.4	2
214	The Cryosphere. , 2023, , 113-128.		0
215	Reconstruction of glaciers in the western boundary of the Altiplano (18.5°-19°S): Singularities and insights on potential drivers of past advances. Quaternary Science Advances, 2024, 13, 100158.	1.9	0
216	Ice core records from South America. , 2023, , .		0
217	Investigating the past, present and future responses of Shallap and Zongo Glaciers, Tropical Andes, to the El Niño Southern Oscillation. Journal of Glaciology, 0, , 1-21.	2.2	0
218	Infilled lakes (<i>Pampas</i>) of the Cordillera Blanca, Peru: Inventory, sediment storage, and paleo outbursts. Progress in Physical Geography, 2024, 48, 208-230.	3.2	0
219	Tropical glacier loss in East Africa: recent areal extents on Kilimanjaro, Mount Kenya, and in the Rwenzori Range from high-resolution remote sensing data. , 2024, 3, 011003.		0