Probing the single-wall carbon nanotube bundle: Rama

Physical Review B 59, 10928-10934 DOI: 10.1103/physrevb.59.10928

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	In situ Raman investigations of single-wall carbon nanotubes pressurized in diamond anvil cell. , 1999, , .		0
2	Mechanical Response of Carbon Nanotubes under Molecular and Macroscopic Pressures. Journal of Physical Chemistry B, 1999, 103, 10388-10392.	2.6	109
3	van der Waals interaction in nanotube bundles: Consequences on vibrational modes. Physical Review B, 1999, 60, R8521-R8524.	3.2	206
4	Study of Carbon Nanotubes Under High Pressure. Materials Research Society Symposia Proceedings, 1999, 593, 179.	0.1	1
5	Bromine Doped Single-walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 13361.	0.1	0
6	Resonant Raman Scattering in Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2000, 220, 561-568.	1.5	8
7	Measuring the helicity of carbon nanotubes. Carbon, 2000, 38, 1713-1721.	10.3	38
8	Mechanical and electronic properties of carbon and boron–nitride nanotubes. Carbon, 2000, 38, 1681-1690.	10.3	171
9	Pressure-induced reversible transformation in single-wall carbon nanotube bundles studied by Raman spectroscopy. Chemical Physics Letters, 2000, 319, 296-302.	2.6	81
10	Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes. Chemical Physics Letters, 2000, 316, 186-190.	2.6	226
11	Phonon spectra in model carbon nanotubes. Journal of Chemical Physics, 2000, 113, 2007-2015.	3.0	63
12	Identity of molecular and macroscopic pressure on carbon nanotubes. High Pressure Research, 2000, 18, 153-157.	1.2	6
13	Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films. Physical Review B, 2000, 62, 1643-1646.	3.2	71
14	Pressure-induced interlinking of carbon nanotubes. Physical Review B, 2000, 62, 12648-12651.	3.2	116
15	Electronic structure of carbon nanotube ropes. Physical Review B, 2000, 61, 11156-11165.	3.2	147
16	Periodic Resonance Excitation and Intertube Interaction from Quasicontinuous Distributed Helicities in Single-Wall Carbon Nanotubes. Physical Review Letters, 2000, 84, 1324-1327.	7.8	218
17	Shear strain in carbon nanotubes under hydrostatic pressure. Physical Review B, 2000, 61, R13389-R13392.	3.2	109
18	Structural phase transition in carbon nanotube bundles under pressure. Physical Review B, 2000, 61, 5939-5944.	3.2	200

#	Article	IF	CITATIONS
19	Electronic transitions in single-walled carbon nanotubes: A resonance Raman study. Physical Review B, 2000, 61, 16179-16182.	3.2	45
20	Pressure dependence of the resistivity of single-wall carbon nanotube ropes. Physical Review B, 2000, 61, 7320-7323.	3.2	55
21	Polarized Raman Study of Single-Wall Semiconducting Carbon Nanotubes. Physical Review Letters, 2000, 85, 2617-2620.	7.8	221
22	Polarized Raman Spectroscopy on Isolated Single-Wall Carbon Nanotubes. Physical Review Letters, 2000, 85, 5436-5439.	7.8	423
23	Elastic buckling of single-walled carbon nanotube ropes under high pressure. Physical Review B, 2000, 62, 10405-10408.	3.2	200
24	Carbon nanotubes: From molecular to macroscopic sensors. Physical Review B, 2000, 62, 7571-7575.	3.2	164
25	Raman Scattering in Fullerenes and Related Carbon-Based Materials. Springer Series in Materials Science, 2000, , 314-364.	0.6	35
26	Potassium Doped Single Wall Carbon Nanotubes: Resistance under Pressure. Molecular Crystals and Liquid Crystals, 2000, 340, 763-768.	0.3	Ο
27	Selective Interaction of a Semiconjugated Organic Polymer with Single-Wall Nanotubes. Journal of Physical Chemistry B, 2000, 104, 10012-10016.	2.6	254
28	Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure. Physical Review Letters, 2000, 85, 1887-1889.	7.8	258
29	Phonon eigenvectors of chiral nanotubes. Physical Review B, 2001, 64, .	3.2	53
30	Effect of van der Waals Interactions on the Raman Modes in Single Walled Carbon Nanotubes. Physical Review Letters, 2001, 86, 3895-3898.	7.8	340
31	Effects of confinement on the vibrational spectra of liquid water adsorbed in carbon nanotubes. Physical Review B, 2001, 63, .	3.2	76
32	Condensed phases of gases inside nanotube bundles. Reviews of Modern Physics, 2001, 73, 857-865.	45.6	194
33	Optical properties of semiconducting and metallic single wall carbon nanotubes: effects of doping and high pressure. Synthetic Metals, 2001, 116, 405-409.	3.9	42
34	Optical Properties and Raman Spectroscopy of Carbon Nanotubes. , 2001, , 213-247.		54
35	Rayleigh and Raman Scattering from Individual Carbon Nanotube Bundles. Journal of Physical Chemistry B, 2001, 105, 1123-1134.	2.6	124
36	(n, m) Structural Assignments and Chirality Dependence in Single-Wall Carbon Nanotube Raman Scattering. Journal of Physical Chemistry B, 2001, 105, 6831-6837.	2.6	74

# 37	ARTICLE Interactions in Carbon Nanotubes and Polymer/Nanotubes Composites as Evidenced by Raman Spectroscopy (Invited). Materials Research Society Symposia Proceedings, 2001, 706, 1.	IF 0.1	Citations
38	<title>Purification and processing of carbon nanotubes using self-assembly and selective interaction with a semiconjugated polymer</title> . , 2001, 4468, 112.		0
39	Electric resistance of single-walled carbon nanotubes under hydrostatic pressure. Solid State Communications, 2001, 118, 31-36.	1.9	26
40	High Pressure Studies of the Raman-Active Phonons in Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2001, 223, 225-236.	1.5	76
41	Pressure Effects on Single Wall Carbon Nanotube Bundles. Physica Status Solidi (B): Basic Research, 2001, 223, 479-487.	1.5	28
42	The Pressure Dependence of the High-Energy Raman Modes in Empty and Filled Multiwalled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2001, 225, R18-R19.	1.5	11
43	Surface enhanced resonance Raman scattering from radial and tangential modes of semiconducting single wall carbon nanotubes. Applied Surface Science, 2001, 182, 196-201.	6.1	24
44	Electronic and mechanical properties of C60-doped nanotubes. Journal of Physics Condensed Matter, 2001, 13, 8049-8059.	1.8	21
45	Novel Polygonized Single-Wall Carbon Nanotube Bundles. Physical Review Letters, 2001, 86, 3056-3059.	7.8	113
46	Evidence for the existence of two breathinglike phonon modes in infinite bundles of single-walled carbon nanotubes. Physical Review B, 2001, 63, .	3.2	16
47	Influence of packing on the vibrational properties of infinite and finite bundles of carbon nanotubes. Physical Review B, 2001, 64, .	3.2	33
48	Random walk in an eddy and tube formation from fine particles. Chaos, 2001, 11, 674-677.	2.5	1
49	Pressure-induced phase transformation and structural resilience of single-wall carbon nanotube bundles. Physical Review B, 2001, 63, .	3.2	97
50	Intensities of the Raman-active modes in single and multiwall nanotubes. Physical Review B, 2001, 63, .	3.2	38
51	Polygonization of single-wall carbon nanotube bundles under high pressure. Physical Review B, 2001, 64, .	3.2	87
52	Time-resolved Raman spectroscopy of benzene and cyclohexane under laser-driven shock compression. Physical Review B, 2002, 65, .	3.2	27
53	Pressure dependence of the Raman modes in iodine-doped single-walled carbon nanotube bundles. Physical Review B, 2002, 65, .	3.2	25
54	Symmetry-driven phase transformations in single-wall carbon-nanotube bundles under hydrostatic pressure. Physical Review B, 2002, 65, .	3.2	48

		CITATION REPORT		
#	Article		IF	CITATIONS
55	Chirality of internal metallic and semiconducting carbon nanotubes. Physical Review B	, 2002, 65, .	3.2	52
56	Crystals of covalently bonded carbon nanotubes: Energetics and electronic structu Review B, 2002, 65, .	res. Physical	3.2	21
57	Raman study of bromine-doped single-walled carbon nanotubes under high pressure. J Physics Condensed Matter, 2002, 14, 11255-11259.	ournal of	1.8	8
58	High-pressure MÂssbauer study of perovskite iron oxides. Journal of Physics Condense 14, 10713-10718.	d Matter, 2002,	1.8	10
59	Polymerization of Single-Wall Carbon Nanotubes under High Pressures and High Temp Journal of Physical Chemistry B, 2002, 106, 11155-11162.	eratures.	2.6	56
60	Low-frequency Raman studies of multiwalled carbon nanotubes: â $\in f$ Experiments and t Review B, 2002, 66, .	heory. Physical	3.2	104
61	Combination of Confocal Raman Spectroscopy and Electron Microscopy on the Same Bundles of Single-Walled Carbon Nanotubes. Nano Letters, 2002, 2, 1209-1213.	Individual	9.1	7
62	Diameter-selective resonant Raman scattering in double-wall carbon nanotubes. Physic 2002, 66, .	cal Review B,	3.2	146
63	Superhard phase composed of single-wall carbon nanotubes. Physical Review B, 2002,	65, .	3.2	137
64	Ab initiodetermination of the phonon deformation potentials of graphene. Physical Re	view B, 2002, 65,	3.2	72
65	A new constant-pressure molecular dynamics method for finite systems. Journal of Phy Condensed Matter, 2002, 14, L487-L493.	sics	1.8	28
66	Elastic properties of carbon nanotubes under hydrostatic pressure. Physical Review B,	2002, 65, .	3.2	139
67	Hot wire chemical vapor deposition of isolated carbon single-walled nanotubes. Applie Letters, 2002, 81, 4061-4063.	d Physics	3.3	23
68	Structural and electronic transitions in single wall carbon nanotube bundles under pre Physica B: Condensed Matter, 2002, 323, 199-202.	ssure.	2.7	2
69	Structure of carbon nanotubes probed by local and global probes. Carbon, 2002, 40, 1	635-1648.	10.3	67
70	Phonons in single wall carbon nanotube bundles. Carbon, 2002, 40, 1697-1714.		10.3	124
71	Microscopic dynamics of confined supercritical water. Chemical Physics Letters, 2002,	354, 227-232.	2.6	33
72	Radial breathing modes of multiwalled carbon nanotubes. Chemical Physics Letters, 20	002, 361, 169-174.	2.6	111

	Сіта	TION REPORT	
#	Article	IF	Citations
73	Characterization of carbon nanotubes using Raman excitation profiles. Physical Review B, 2002, 65, .	3.2	29
74	Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science, 2002, 298, 2361-2366	6. 12.6	2,826
75	Breathinglike phonon modes of multiwalled carbon nanotubes. Physical Review B, 2002, 65, .	3.2	105
76	Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Physical Review B, 2003, 67, .	3.2	88
77	Raman spectroscopy on carbon nanotubes at high pressure. Journal of Raman Spectroscopy, 2003, 34, 611-627.	2.5	77
78	Heat treatment of thin carbon films and the effect on residual stress, modulus, thermal expansion and microstructure. Carbon, 2003, 41, 1867-1875.	10.3	25
79	Axially compressed buckling of pressured multiwall carbon nanotubes. International Journal of Solids and Structures, 2003, 40, 3893-3911.	2.7	146
80	Radial and tangential vibrational modes of HiPCO-derived carbon nanotubes under pressure. Physica Status Solidi (B): Basic Research, 2003, 235, 364-368.	1.5	10
81	Elastic properties and pressure-induced phase transitions of single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2003, 235, 354-359.	1.5	44
82	Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation. Thin Solid Films, 2003, 429, 190-200.	1.8	75
83	Superhard phase of single wall carbon nanotube: comparison with fullerite C60 and diamond. Diamond and Related Materials, 2003, 12, 833-839.	3.9	50
84	Functionalization of Single-Walled Carbon Nanotubes with (R-)Oxycarbonyl Nitrenes. Journal of the American Chemical Society, 2003, 125, 8566-8580.	13.7	520
85	Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: A simple geometric effect. Physical Review B, 2003, 67, .	3.2	128
86	Single-Wall Carbon Nanotube Films. Chemistry of Materials, 2003, 15, 175-178.	6.7	259
87	Cell dynamics based on the metric tensor as extended variable for isothermal–isobaric molecular dynamics simulations. Computational Materials Science, 2003, 27, 212-218.	3.0	6
88	Trocadero: a multiple-algorithm multiple-model atomistic simulation program. Computational Materials Science, 2003, 28, 85-106.	3.0	75
89	Effective wall thickness of a single-walled carbon nanotube. Physical Review B, 2003, 68, .	3.2	151
90	Structural changes in single-walled carbon nanotubes under non-hydrostatic pressures: x-ray and Raman studies. New Journal of Physics, 2003, 5, 143-143.	2.9	32

#	Article	IF	Citations
91	Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Applied Physics Letters, 2003, 82, 1682-1684.	3.3	253
92	Pressure-induced polygonization of filled multiwall carbon nanotube. , 0, , .		0
93	Comparative theoretical study of single-wall carbon and boron-nitride nanotubes. Physical Review B, 2003, 67, .	3.2	142
94	Controlled Assembly of Carbon Nanotubes by Designed Amphiphilic Peptide Helices. Journal of the American Chemical Society, 2003, 125, 1770-1777.	13.7	481
95	Diameter selective doping of single wall carbon nanotubes. Physical Chemistry Chemical Physics, 2003, 5, 582-587.	2.8	82
96	Raman Investigation of Fullerene [60] Under hydrostatic Pressure. Materials Research Society Symposia Proceedings, 2003, 791, 365.	0.1	0
97	Carbon nanotube bundles under high pressure: Transformation to low-symmetry structures. Physical Review B, 2003, 68, .	3.2	69
98	Diameter dependent wall deformations during the compression of a carbon nanotube bundle. Physical Review B, 2003, 68, .	3.2	49
99	Interaction between C60 and gases under pressure. Low Temperature Physics, 2003, 29, 440-444.	0.6	22
100	Tailoring the optical excitation energies of single-walled carbon nanotubes. Applied Physics Letters, 2004, 85, 1598-1600.	3.3	5
101	Discontinuous Tangential Stress in Double Wall Carbon Nanotubes. Physical Review Letters, 2004, 93, 095506.	7.8	66
102	Structure and phase transitions of single-wall carbon nanotube bundles under hydrostatic pressure. Physical Review B, 2004, 70, .	3.2	46
103	Formation ofsp3Bonding in Nanoindented Carbon Nanotubes and Graphite. Physical Review Letters, 2004, 93, 245502.	7.8	76
104	Study of the hydrostatic pressure dependence of the Raman spectrum of single-walled carbon nanotubes and nanospheres. Journal of Chemical Physics, 2004, 121, 2752.	3.0	44
105	Reconstructing the radial breathing mode resonance Raman spectra for HiPco single-wall carbon nanotubes. Physical Review B, 2004, 70, .	3.2	13
106	High-resolution Raman microscopy of curled carbon nanotubes. Applied Physics Letters, 2004, 85, 2598-2600.	3.3	39
107	Raman studies of suspensions and solutions of singlewall carbon nanotubes. Materials Research Society Symposia Proceedings, 2004, 858, 34.	0.1	0
108	A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13699-13702.	7.1	153

#	Article	IF	CITATIONS
109	Extremely intense Raman signals from single-walled carbon nanotubes suspended between Si nanopillars. Chemical Physics Letters, 2004, 386, 153-157.	2.6	34
110	Lattice vibrations of armchair carbon nanotubes: phonons, soliton deformations and lattice discreteness effects. European Physical Journal B, 2004, 42, 247-253.	1.5	7
111	Raman spectroscopy of carbon–nanotube–based composites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2407-2424.	3.4	205
112	Functionalized carbon nanotubes and device applications. Journal of Physics Condensed Matter, 2004, 16, R901-R960.	1.8	104
113	Carbon nanotubes: pressure-induced transformations and voltage generation by flow of liquids. Radiation Physics and Chemistry, 2004, 70, 647-653.	2.8	9
114	Optical properties of 0.4-nm single-wall carbon nanotubes aligned in channels of AlPO4-5 single crystals. Applied Physics A: Materials Science and Processing, 2004, 78, 1121-1128.	2.3	23
115	Light scattering of double wall carbon nanotubes under hydrostatic pressure: pressure effects on the internal and external tubes. Physica Status Solidi (B): Basic Research, 2004, 241, 3360-3366.	1.5	14
116	Squeezing carbon nanotubes. Physica Status Solidi (B): Basic Research, 2004, 241, 3345-3351.	1.5	24
117	Hydrostatic pressure effects on the structural and electronic properties of carbon nanotubes. Physica Status Solidi (B): Basic Research, 2004, 241, 3352-3359.	1.5	88
118	Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures. Journal of Catalysis, 2004, 225, 453-465.	6.2	105
119	Resonant Raman spectra of carbon nanotube bundles observed by perpendicularly polarized light. Chemical Physics Letters, 2004, 387, 301-306.	2.6	27
120	Spectroscopic Analysis of Single-Walled Carbon Nanotubes and Semiconjugated Polymer Composites. Journal of Physical Chemistry B, 2004, 108, 6233-6241.	2.6	50
121	Molecular selectivity due to adsorption properties in nanotubes. Physical Review B, 2004, 69, .	3.2	80
122	Electronic, thermal and mechanical properties of carbon nanotubes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2065-2098.	3.4	475
123	Using Raman Spectroscopy to Elucidate the Aggregation State of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 6905-6909.	2.6	283
124	Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent. Physical Review Letters, 2004, 92, 095501.	7.8	328
125	Geometric Constant Defining Shape Transitions of Carbon Nanotubes under Pressure. Physical Review Letters, 2004, 92, 105501.	7.8	103
126	Phase diagram of single-wall carbon nanotube crystals under hydrostatic pressure. Physical Review B, 2004, 69, .	3.2	42

		CITATION REPORT	
#	Article	IF	Citations
127	Pressure-induced hard-to-soft transition of a single carbon nanotube. Physical Review B, 2004, 70,	. 3.2	89
128	Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertu interactions: A direct comparison of bundled and individually dispersedHiPconanotubes. Physical Review B, 2004, 69, .	be 3.2	162
130	Fullerodendron-assisted Dispersion of Single-walled Carbon Nanotubes via Noncovalent Functionalization. Chemistry Letters, 2005, 34, 1608-1609.	1.3	52
131	Mechanical properties of single-walled carbon nanotube bundles as bulk materials. Journal of the Mechanics and Physics of Solids, 2005, 53, 123-142.	4.8	80
132	Characterization methods of carbon nanotubes: a review. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 119, 105-118.	3.5	729
133	Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment. Physical Review B, 2005, 72, .	3.2	323
134	Raman scattering study of adsorption/desorption of water from single-walled carbon nanotubes. Journal of Raman Spectroscopy, 2005, 36, 755-761.	2.5	21
135	Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surface Science Reports, 2005, 58, 1-1.	7.2	177
136	Study on Piezoresistive of Doped Carbon Nanotube Films. Journal of Metastable and Nanocrystalli Materials, 2005, 23, 309-312.	ne 0.1	1
137	Functionalization of single-walled carbon nanotubes using isotropic plasma treatment: Resonant Raman spectroscopy study. Journal of Applied Physics, 2005, 97, 104324.	2.5	41
138	Double-wall carbon nanotubes under pressure: Probing the response of individual tubes and their intratube correlation. Physical Review B, 2005, 72, .	3.2	29
139	Pressure screening in the interior of primary shells in double-wall carbon nanotubes. Physical Revie B, 2005, 71, .	W 3.2	62
140	Exfoliation of single-wall carbon nanotubes in aqueous surfactant suspensions: A Raman study. Physical Review B, 2005, 71, .	3.2	49
141	Pressure Control of Conducting Channels in Single-Wall Carbon Nanotube Networks. Physical Review Letters, 2005, 94, 235501.	7.8	22
142	Strength of radial breathing mode in single-walled carbon nanotubes. Physical Review B, 2005, 71	,. 3.2	109
143	Similarities in the Raman RBM and D bands in double-wall carbon nanotubes. Physical Review B, 20 72, .	005, <u>3.2</u>	13
144	Raman modes of the deformed single-wall carbon nanotubes. Physical Review B, 2005, 72, .	3.2	51
145	Resonant Raman spectroscopy of single-wall carbon nanotubes under pressure. Physical Review B 2005, 72, .	3.2	102

#	Article	IF	CITATIONS
146	Alkali-metal-doping dynamics and anomalous lattice contraction of individual debundled carbon nanotubes. Physical Review B, 2005, 72, .	3.2	43
147	Influence of catalyst metal particles on the hydrogen sorption of single-walled carbon nanotube materials. Nanotechnology, 2005, 16, 512-517.	2.6	27
148	The radial breathing mode of carbon nanotubes. Molecular Simulation, 2005, 31, 135-141.	2.0	16
149	Elastic moduli of single-walled carbon nanotubes and their ropes. Physical Review B, 2005, 72, .	3.2	81
150	Pressure effect on radial breathing modes of multiwall carbon nanotubes. Journal of Applied Physics, 2005, 97, 024310.	2.5	46
151	Pressure-induced structural transition of double-walled carbon nanotubes. Physical Review B, 2005, 72, .	3.2	31
152	Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. Journal of Chemical Physics, 2005, 122, 084708.	3.0	46
153	Structural Transformations of Carbon Nanotubes under Hydrostatic Pressure. Nano Letters, 2005, 5, 2268-2273.	9.1	93
154	Purification and defect elimination of single-walled carbon nanotubes by the thermal reduction technique. Nanotechnology, 2005, 16, 639-646.	2.6	14
155	Molecular heat pump. Physical Review E, 2006, 73, 026109.	2.1	139
156	Processing and Mechanical Properties of Fluorinated Single-Wall Carbon Nanotubeâ^'Polyethylene Composites. Chemistry of Materials, 2006, 18, 906-913.	6.7	155
157	Raman and mechanical properties measurements of single walled carbon nanotube composites of polyisobutylene. Journal of Materials Chemistry, 2006, 16, 505-508.	6.7	14
158	Radial deformation and stability of single-wall carbon nanotubes under hydrostatic pressure. Physical Review B, 2006, 74, .	3.2	77
159	Noncovalent interactions of molecules with single walled carbon nanotubes. Chemical Society Reviews, 2006, 35, 637.	38.1	616
160	Hydrostatic-pressure-induced porous gallium nitride from nanotube bundles: An ab initio study. Journal of Chemical Physics, 2006, 125, 174711.	3.0	2
161	The environmental effect on the radial breathing mode of carbon nanotubes in water. Journal of Chemical Physics, 2006, 124, 234708.	3.0	43
162	Catalytic Polymerization and Facile Grafting of Poly(furfuryl alcohol) to Single-Wall Carbon Nanotube:Â Preparation of Nanocomposite Carbon. Journal of the American Chemical Society, 2006, 128, 11307-11313.	13.7	74
163	Synthesis of Polygonized Carbon Nanotubes Utilizing Inhomogeneous Catalyst Activity of Nonspherical Fe3O4Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 16404-16407.	2.6	22

#	Article	IF	CITATIONS
164	Nanoscale Uniaxial Pressure Effect of a Carbon Nanotube Bundle on Tip-Enhanced Near-Field Raman Spectra. Nano Letters, 2006, 6, 1269-1273.	9.1	99
165	Raman Studies of Solutions of Single-Wall Carbon Nanotube Salts. Journal of Physical Chemistry B, 2006, 110, 3949-3954.	2.6	28
166	Raman spectroscopy of open-ended Single Wall Carbon Nanotubes under pressure: effect of the pressure transmitting medium. Physica Status Solidi (B): Basic Research, 2006, 243, 690-699.	1.5	51
167	The Fourier Raman spectra of HiPCO single-wall carbon nanotubes under high pressure. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 100, 245-252.	0.6	3
168	Pressure induced reactivity change on the side-wall of a carbon nanotube: A case study on the addition of singlet O2. Carbon, 2006, 44, 928-938.	10.3	10
169	Carbon nanotubes as Raman sensors of vulcanization in natural rubber. Carbon, 2006, 44, 1740-1745.	10.3	41
170	Single wall carbon nanotubes polymerization under compression: An atomistic molecular dynamics study. Chemical Physics Letters, 2006, 419, 394-399.	2.6	18
171	High pressure Raman spectroscopy of single-walled carbon nanotubes: Effect of chemical environment on individual nanotubes and the nanotube bundle. Journal of Physics and Chemistry of Solids, 2006, 67, 2468-2472.	4.0	24
172	Curvature effects on pressure-induced buckling of empty or filled double-walled carbon nanotubes. Acta Mechanica, 2006, 187, 55-73.	2.1	4
173	Non-Linear Dynamic Response of a Single Wall Carbon Nanotube Subjected to Radial Impulse. Archive of Applied Mechanics, 2006, 76, 145-158.	2.2	3
174	Mechanical properties of single- and double-walled carbon nanotubes under hydrostatic pressure. Applied Physics A: Materials Science and Processing, 2006, 83, 13-17.	2.3	23
175	Nanostructured superhard carbon phase obtained under high pressure with shear deformation from single-wall nanotubes HiPco. Physica B: Condensed Matter, 2006, 382, 58-64.	2.7	17
176	Elongation of vertically well-aligned carbon nanofiber bundles and their field emission characteristics. Current Applied Physics, 2006, 6, 766-771.	2.4	9
177	Finite single wall capped carbon nanotubes under hydrostatic pressure. Journal of Physics Condensed Matter, 2006, 18, 9119-9128.	1.8	10
178	Radial breathinglike mode of the collapsed single-walled carbon nanotube bundle under hydrostatic pressure. Applied Physics Letters, 2006, 88, 223114.	3.3	7
179	Effect of chemical environment on high-pressure Raman response of single-walled carbon nanotubes. High Pressure Research, 2006, 26, 335-339.	1.2	1
180	Single-walled carbon nanotube bundle under hydrostatic pressure studied by first-principles calculations. Physical Review B, 2006, 73, .	3.2	26
181	Numerical analysis of the radial breathing mode of armchair and zigzag single-walled carbon nanotubes under deformation. Journal of Applied Physics, 2006, 100, 124305.	2.5	9

#	Article	IF	CITATIONS
182	Raman study of individually dispersed single-walled carbon nanotubes under pressure. Physical Review B, 2006, 73, .	3.2	95
183	Collapse of double-walled carbon nanotube bundles under hydrostatic pressure. Physical Review B, 2006, 73, .	3.2	55
184	Pressure-Induced Transition in Magnetoresistance of Single-Walled Carbon Nanotubes. Physical Review Letters, 2006, 97, 026402.	7.8	34
185	Photoluminescence study of aqueous-surfactant-wrapped single-walled carbon nanotubes under hydrostatic pressure. Physical Review B, 2006, 74, .	3.2	21
186	Nanoscale pressure effects in individual double-wall carbon nanotubes. Physical Review B, 2006, 73, .	3.2	32
187	Structural transformations of double-walled carbon nanotube bundle under hydrostatic pressure. Applied Physics Letters, 2006, 89, 113101.	3.3	41
188	Curvature effects on buckling of double-walled carbon nanotubes under combined axial compression and lateral pressure. Smart Materials and Structures, 2007, 16, 1997-2005.	3.5	1
189	Structure of armchair single-wall carbon nanotubes under hydrostatic pressure. Physical Review B, 2007, 76, .	3.2	26
190	Anomalous pressure behavior of tangential modes in single-wall carbon nanotubes. Physical Review B, 2007, 76, .	3.2	12
191	Pressure-induced Raman-active radial breathing mode transition in single-wall carbon nanotubes. Physical Review B, 2007, 75, .	3.2	24
192	Molecular dynamics study of radial pressure transmission in multiwalled carbon nanotubes. Physical Review B, 2007, 75, .	3.2	6
193	Laser-Induced High Local Temperature in Carbon Nanotube. Solid State Phenomena, 2007, 121-123, 331-336.	0.3	4
194	Structural and electronic properties of bundles of 4 Ã carbon nanotubes. Nanotechnology, 2007, 18, 445708.	2.6	3
195	Raman Spectra Variation of Partially Suspended Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 1983-1987.	3.1	51
196	Supramolecular Hydrogels Hybridized with Single-Walled Carbon Nanotubes. Macromolecules, 2007, 40, 3402-3407.	4.8	72
197	Raman Spectral Probing of Electronic Transition EnergyEiiVariation of Individual SWNTs under Torsional Strain. Nano Letters, 2007, 7, 750-753.	9.1	25
198	Choking Effect of Single-Wall Carbon Nanotubes on Solvent Adsorption in Radial Breathing Mode. Journal of Physical Chemistry C, 2007, 111, 3220-3223.	3.1	8
199	In situ Raman Measurements of Suspended Individual Single-Walled Carbon Nanotubes under Strain. Nano Letters, 2007, 7, 2590-2595.	9.1	30

#	Article	IF	CITATIONS
200	Temperature dependent piezoresistive effect of multi-walled carbon nanotube films. Diamond and Related Materials, 2007, 16, 388-392.	3.9	38
201	Molecular dynamics simulation of single wall carbon nanotubes polymerization under compression. Journal of Computational Chemistry, 2007, 28, 1724-1734.	3.3	13
202	Raman spectroscopy and molecular simulation investigations of adsorption on the surface of single-walled carbon nanotubes and nanospheres. Journal of Raman Spectroscopy, 2007, 38, 721-727.	2.5	9
203	Raman spectroscopy of covalently functionalized single-wall carbon nanotubes. Journal of Raman Spectroscopy, 2007, 38, 673-683.	2.5	284
204	Electronic properties of alkali–metal intercalated single walled carbon nanotubes. Surface Science, 2007, 601, 2828-2831.	1.9	10
205	Radiation damage and Raman vibrational modes of single-walled carbon nanotubes. Chemical Physics Letters, 2007, 447, 252-256.	2.6	28
206	Stability of C60-peapods under hydrostatic pressure. Acta Materialia, 2007, 55, 5483-5488.	7.9	14
207	RBM band shift-evidenced dispersion mechanism of single-wall carbon nanotube bundles with NaDDBS. Journal of Colloid and Interface Science, 2007, 308, 276-284.	9.4	55
208	Comparative high pressure Raman study of individual and bundled single-wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 100-104.	1.5	9
209	Pressure effects on surfactant solubilized single-wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 105-109.	1.5	9
210	Second-order Raman study of double-wall carbon nanotubes under high pressure. Physica Status Solidi (B): Basic Research, 2007, 244, 116-120.	1.5	7
211	Vibrational properties of single walled carbon nanotubes under pressure from Raman scattering experiments and molecular dynamics simulations. Physica Status Solidi (B): Basic Research, 2007, 244, 121-126.	1.5	11
212	High pressure studies of the radial breathing modes in double-wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 127-135.	1.5	6
213	Pressure dependence of Raman modes in DWCNT filled with PbI2 semiconductor. Physica Status Solidi (B): Basic Research, 2007, 244, 136-141.	1.5	4
214	Ab initio study of double-wall carbon nanotubes under uniaxial pressure. Physica Status Solidi (B): Basic Research, 2007, 244, 142-146.	1.5	2
215	Raman spectroscopy of single-walled carbon nanotubes at high pressure: Effect of interactions between the nanotubes and pressure transmitting media. Physica Status Solidi (B): Basic Research, 2007, 244, 147-150.	1.5	8
216	High pressure Raman study of the secondâ€order vibrational modes of single―and doubleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4069-4073.	1.5	8
217	Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes. Topics in Applied Physics, 2007, , 165-195.	0.8	23

#	Article	IF	CITATIONS
218	Mechanical interaction between single-walled carbon nanotubes during the formation of a bundle. Journal of Materials Science, 2007, 42, 4935-4941.	3.7	13
219	Raman scattering study of the thermal conversion of bundled carbon nanotubes into graphitic nanoribbons. Carbon, 2008, 46, 729-740.	10.3	25
220	Effects of pressure transmitting media on Raman features of single-walled carbon nanotubes. Solid State Communications, 2008, 147, 65-68.	1.9	9
221	Are deformed modes still Raman active for single-wall carbon nanotubes?. Physica B: Condensed Matter, 2008, 403, 3009-3012.	2.7	4
222	Structural support of the external tubes in double-wall carbon nanotubes. High Pressure Research, 2008, 28, 591-595.	1.2	2
223	Resonant micro-Raman spectroscopy of aligned single-walled carbon nanotubes on a-plane sapphire. Applied Physics Letters, 2008, 93, 123112.	3.3	9
224	Model of plasmon excitations in a bundle and a two-dimensional array of nanotubes. Physical Review B, 2008, 77, .	3.2	12
225	Probing high-pressure properties of single-wall carbon nanotubes through fullerene encapsulation. Physical Review B, 2008, 77, .	3.2	93
226	Bond lengths of armchair single-waled carbon nanotubes and their pressure dependence. Computational Materials Science, 2008, 44, 156-162.	3.0	29
227	High Levels of Electrochemical Doping of Carbon Nanotubes:  Evidence for a Transition from Double-Layer Charging to Intercalation and Functionalization. Journal of Physical Chemistry B, 2008, 112, 5368-5373.	2.6	28
228	Raman Spectra of Double-Wall Carbon Nanotubes under Extreme Uniaxial Stress. Nano Letters, 2008, 8, 2215-2218.	9.1	27
229	First-principles study of crystalline bundles of single-walled boron nanotubes with small diameter. Journal of Physics Condensed Matter, 2008, 20, 125202.	1.8	15
230	Electrochemical sensors based on carbon nanotubes. , 2008, , 459-VIII.		12
231	Multiple radial corrugations in multiwalled carbon nanotubes under pressure. Nanotechnology, 2008, 19, 495705.	2.6	36
232	The study of structural, electronic and optical properties of double-walled carbon nanotube bundles under hydrostatic pressure. Europhysics Letters, 2008, 81, 47003.	2.0	6
233	High-pressure Raman response of single-walled carbon nanotubes: Effect of the excitation laser energy. Physical Review B, 2008, 78, .	3.2	17
234	Effects of deformation on the electronic structure of a single-walled carbon nanotube bundle. Physical Review B, 2008, 77, .	3.2	17
235	Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure. Physical Review B, 2008, 78, .	3.2	79

#	Article	IF	CITATIONS
236	Radial breathing mode frequency of single-walled carbon nanotubes under strain. Applied Physics Letters, 2008, 93, 061901.	3.3	15
237	Piezoresistive properties of carbon nanotubes under radial force investigated by atomic force microscopy. Applied Physics Letters, 2008, 92, .	3.3	16
238	Simple model of van der Waals interactions between two radially deformed single-wall carbon nanotubes. Physical Review B, 2008, 77, .	3.2	33
239	A simple model for the interpretation of the pressure response of the radial breathing modes in double-wall carbon nanotubes. Journal of Physics: Conference Series, 2008, 121, 162004.	0.4	2
240	Buckling properties of carbon nanotubes under hydrostatic pressure. Journal of Applied Physics, 2009, 106, 084310.	2.5	8
241	Ideal dipole approximation fails to predict electronic coupling and energy transfer between semiconducting single-wall carbon nanotubes. Journal of Chemical Physics, 2009, 130, 081104.	3.0	56
242	Pressure-induced superconductivity in boron-doped Buckypapers. Applied Physics Letters, 2009, 95, .	3.3	9
243	NMR and Raman spectroscopic characterization of single walled carbon nanotube composites of polybutadiene. Journal of Materials Research, 2009, 24, 2215-2220.	2.6	3
244	Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding. Composites Science and Technology, 2009, 69, 147-153.	7.8	103
245	Structural and vibrational properties of deformed carbon nanotubes. Frontiers of Physics in China, 2009, 4, 280-296.	1.0	3
246	Pressureâ€induced structural transitions in multiâ€walled carbon nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2228-2233.	1.8	20
247	Gâ€mode behaviour of closed ended single wall carbon nanotubes under pressure. Physica Status Solidi (B): Basic Research, 2009, 246, 491-495.	1.5	5
248	Stability of single-walled carbon nanopeapods under combined axial compressive load and external pressure. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 513-517.	2.7	14
249	First-principles study of cobalt silicide nanosheet and nanotubes: Stability and electronic properties. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1795-1799.	2.7	5
250	Dispersing carbon nanotubes in aqueous solutions by a silicon surfactant: Experimental and molecular dynamics simulation study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 350, 101-108.	4.7	33
251	High structural stability of single wall carbon nanotube under quasi-hydrostatic high pressures. Chemical Physics Letters, 2009, 479, 91-94.	2.6	20
252	High temperature rearrangement of disordered nanoporous carbon at the interface with single wall carbon nanotubes. Carbon, 2009, 47, 2303-2309.	10.3	11
253	High-pressure studies of carbon nanotubes. High Pressure Research, 2009, 29, 548-553.	1.2	8

#	Article	IF	CITATIONS
254	Molecular dynamics simulations of phase transitions in argon-filled single-walled carbon nanotube bundles under high pressure. Physical Review B, 2009, 79, .	3.2	18
255	High-pressure Raman spectroscopy of graphene. Physical Review B, 2009, 80, .	3.2	188
256	Nonuniform Compressive Strain in Horizontally Aligned Single-Walled Carbon Nanotubes Grown on Single Crystal Quartz. ACS Nano, 2009, 3, 2217-2224.	14.6	18
257	Wrinkling of monolayer graphene: A study by molecular dynamics and continuum plate theory. Physical Review B, 2009, 80, .	3.2	76
258	Pressure effects on bond lengths and shape of zigzag single-walled carbon nanotubes. Computational Materials Science, 2009, 44, 1142-1149.	3.0	16
259	Structure of chiral single-walled carbon nanotubes under hydrostatic pressure. Computational Materials Science, 2009, 46, 297-302.	3.0	19
260	Raman spectroscopy of strained single-walled carbon nanotubes. Chemical Communications, 2009, , 6902.	4.1	69
261	Computational investigation of the mechanical properties of nanomaterials. Diamond and Related Materials, 2009, 18, 438-442.	3.9	7
262	Raman-active modes in homogeneous and inhomogeneous bundles of single-walled carbon nanotubes. Journal of Physics Condensed Matter, 2009, 21, 045302.	1.8	10
263	Polygonal model for layered inorganic nanotubes. Physical Review B, 2009, 80, .	3.2	24
263 264	Polygonal model for layered inorganic nanotubes. Physical Review B, 2009, 80, . Raman Probing of Uniaxial Strain in Individual Single-Wall Carbon Nanotubes in a Composite Material. Journal of Physical Chemistry C, 2010, 114, 16210-16214.	3.2 3.1	24 9
	Raman Probing of Uniaxial Strain in Individual Single-Wall Carbon Nanotubes in a Composite Material.		
264	Raman Probing of Uniaxial Strain in Individual Single-Wall Carbon Nanotubes in a Composite Material. Journal of Physical Chemistry C, 2010, 114, 16210-16214. Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 2010, 110,	3.1	9
264 265	Raman Probing of Uniaxial Strain in Individual Single-Wall Carbon Nanotubes in a Composite Material. Journal of Physical Chemistry C, 2010, 114, 16210-16214. Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 2010, 110, 5790-5844. A theoretical study of possible shape and phase changes of carbon nanotube crystals during	3.1 47.7	9 889
264 265 266	Raman Probing of Uniaxial Strain in Individual Single-Wall Carbon Nanotubes in a Composite Material. Journal of Physical Chemistry C, 2010, 114, 16210-16214. Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 2010, 110, 5790-5844. A theoretical study of possible shape and phase changes of carbon nanotube crystals during contraction and expansion. Carbon, 2010, 48, 2948-2952.	3.1 47.7 10.3	9 889 1
264 265 266 267	Raman Probing of Uniaxial Strain in Individual Single-Wall Carbon Nanotubes in a Composite Material. Journal of Physical Chemistry C, 2010, 114, 16210-16214. Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 2010, 110, 5790-5844. A theoretical study of possible shape and phase changes of carbon nanotube crystals during contraction and expansion. Carbon, 2010, 48, 2948-2952. Doubleâ€Peak Mechanical Properties of Carbonâ€Nanotube Fibers. Small, 2010, 6, 2612-2617. Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide. JETP	3.147.710.310.0	9 889 1 87
264 265 266 267 268	Raman Probing of Uniaxial Strain in Individual Single-Wall Carbon Nanotubes in a Composite Material. Journal of Physical Chemistry C, 2010, 114, 16210-16214. Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 2010, 110, 5790-5844. A theoretical study of possible shape and phase changes of carbon nanotube crystals during contraction and expansion. Carbon, 2010, 48, 2948-2952. Doubleâ€Peak Mechanical Properties of Carbonâ€Nanotube Fibers. Small, 2010, 6, 2612-2617. Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide. JETP Letters, 2010, 91, 196-200. Structural Transformation of Single Wall Carbon Nanotube Bundles under Pressure. Mathematics	 3.1 47.7 10.3 10.0 1.4 	9 889 1 87 35

#	Article	IF	CITATIONS
272	Effect of Substituted Group of β-Cyclodextrin Derivatives on the Dispersing of Carbon Nanotubes. Journal of Dispersion Science and Technology, 2010, 31, 353-358.	2.4	4
273	Enhancement of Friction between Carbon Nanotubes: An Efficient Strategy to Strengthen Fibers. ACS Nano, 2010, 4, 312-316.	14.6	75
274	Transformations of Cold-Compressed Multiwalled Boron Nitride Nanotubes Probed by Infrared Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 1782-1788.	3.1	36
275	Modulating Conductivity, Environmental Stability of Transparent Conducting Nanotube Films on Flexible Substrates by Interfacial Engineering. ACS Nano, 2010, 4, 4551-4558.	14.6	27
276	Modeling Direct Exfoliation of Nanoscale Graphene Platelets. Journal of Physical Chemistry C, 2010, 114, 21083-21087.	3.1	35
277	Influence of Biomacromolecules and Humic Acid on the Aggregation Kinetics of Single-Walled Carbon Nanotubes. Environmental Science & Technology, 2010, 44, 2412-2418.	10.0	282
278	Novel nanocarbon hybrids of single-walled carbon nanotubes and dispersed nanodiamond: Structure and hierarchical defects evolution irradiated with gamma rays. Journal of Applied Physics, 2010, 107, .	2.5	14
279	Chemical Strain-Relaxation of Single-Walled Carbon Nanotubes on Plastic Substrates for Enhanced Conductivity. Journal of Physical Chemistry C, 2011, 115, 22251-22256.	3.1	7
280	Giant Dielectric Permittivity Nanocomposites: Realizing True Potential of Pristine Carbon Nanotubes in Polyvinylidene Fluoride Matrix through an Enhanced Interfacial Interaction. Journal of Physical Chemistry C, 2011, 115, 5515-5521.	3.1	341
281	Evidence of Multiwall Carbon Nanotube Deformation Caused by Poly(3-hexylthiophene) Adhesion. Journal of Physical Chemistry C, 2011, 115, 6324-6330.	3.1	18
282	The photoinduced charge transfer mechanism in aligned and unaligned carbon nanotubes. Carbon, 2011, 49, 5246-5252.	10.3	11
284	Superconductivity in Boron-Doped Carbon Nanotubes. Journal of Superconductivity and Novel Magnetism, 2011, 24, 111-120.	1.8	10
285	Raman Gâ€mode of singleâ€wall carbon nanotube bundles under pressure. Journal of Raman Spectroscopy, 2011, 42, 1611-1613.	2.5	7
287	A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon, 2011, 49, 1333-1339.	10.3	145
288	Strain dependent G-band mode frequency of single-walled carbon nanotubes. Carbon, 2011, 49, 4412-4419.	10.3	6
289	ZnO-CNT composite nanotubes as nanoresonators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2171-2175.	2.1	29
290	Radial breathing vibration of double-walled carbon nanotubes subjected to pressure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2416-2421.	2.1	10
291	Electrochemical characterization of electrodeposited carbon nanotubes. Thin Solid Films, 2011, 519, 6230-6235.	1.8	2

	CITATION	N KEPORT	
#	Article	IF	CITATIONS
292	Dispersion interaction in hydrogen-chain models. Journal of Chemical Physics, 2011, 134, 114106.	3.0	26
293	Multiwalled carbon nanotubes and dispersed nanodiamond novel hybrids: Microscopic structure evolution, physical properties, and radiation resilience. Journal of Applied Physics, 2011, 109, .	2.5	31
294	Laser sintering of carbon nanotube-reinforced ceramic nanocomposites. International Journal of Smart and Nano Materials, 2011, , 1-11.	4.2	1
295	Theoretical calculations of thermophysical properties of single-wall carbon nanotube bundles. Chinese Physics B, 2011, 20, 056501.	1.4	6
296	Buckling of Carbon Nanotubes: A State of the Art Review. Materials, 2012, 5, 47-84.	2.9	107
297	Stabilization of carbon nanotubes by filling with inner tubes: An optical spectroscopy study on double-walled carbon nanotubes under hydrostatic pressure. Physical Review B, 2012, 86, .	3.2	15
298	Implicit phonon shifts and thermodynamical properties of rigid carbon nanotube bunches. AIP Advances, 2012, 2, 042192.	1.3	1
299	The reinforced hydrogel for drug loading: immobilization of single-walled carbon nanotubes in cross-linked polymers via multiple interactions. RSC Advances, 2012, 2, 12424.	3.6	19
300	Effect of Pressure on the Electrical Resistance of Individual Boron-Doped Carbon Nanotubes. Japanese Journal of Applied Physics, 2012, 51, 105103.	1.5	1
301	Electrostatically controlled isolation of debundled single-walled carbon nanotubes from nanotubes from nanoplatelet dispersant. Journal of Materials Chemistry, 2012, 22, 6156.	6.7	7
302	A Raman Spectroscopy Study on Single-Wall Carbon Nanotube/Polystyrene Nanocomposites: Mechanical Compression Transferred from the Polymer to Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 17897-17903.	3.1	46
303	Alignment of Single-Walled Carbon Nanotubes with Ferroelectric Liquid Crystal. Journal of Physical Chemistry C, 2012, 116, 16694-16699.	3.1	8
304	Modeling magnetic nanotubes using a chain of ellipsoid-rings approach. Journal of Applied Physics, 2012, 111, 063912.	2.5	6
305	Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: I – Structure, thermal stability and crystallization behaviour. Composites Part A: Applied Science and Manufacturing, 2012, 43, 997-1006.	7.6	70
306	High-pressure behaviors of carbon nanotubes. Journal of Superhard Materials, 2012, 34, 371-385.	1.2	28
307	POLYMERIC NITROGEN CHAINS CONFINED IN CARBON NANOTUBE BUNDLE. International Journal of Modern Physics B, 2012, 26, 1250047.	2.0	7
308	Polymer Self-assembly on Carbon Nanotubes. , 2012, , 1-72.		8
309	The pH-sensitive polyampholyte nanogels: Inclusion of carbon nanotubes for improved drug loading. Colloids and Surfaces B: Biointerfaces, 2013, 112, 120-127.	5.0	26

#	Article	IF	CITATIONS
310	Compressed carbon nanotubes: A family of new multifunctional carbon allotropes. Scientific Reports, 2013, 3, 1331.	3.3	80
311	Carbon Nanotube Buckypaper Reinforced Acrylonitrile–Butadiene–Styrene Composites for Electronic Applications. ACS Applied Materials & Interfaces, 2013, 5, 12107-12119.	8.0	44
312	Graphitization of single-wall nanotube bundles at extreme conditions: Collapse or coalescence route. Physical Review B, 2013, 88, .	3.2	9
313	High-Pressure Optical Microspectroscopy Study on Single-Walled Carbon Nanotubes Encapsulating C60. Journal of Physical Chemistry C, 2013, 117, 21995-22001.	3.1	14
314	Charge Transfer at Junctions of a Single Layer of Graphene and a Metallic Single Walled Carbon Nanotube. Small, 2013, 9, 1954-1963.	10.0	24
315	Exploring the possible interlinked structures in singleâ€wall carbon nanotubes under pressure by Raman spectroscopy. Journal of Raman Spectroscopy, 2013, 44, 176-182.	2.5	10
316	Role of the pressure transmitting medium on the pressure effects in DWCNTs. Physica Status Solidi (B): Basic Research, 2013, 250, 2616-2621.	1.5	11
317	Investigation of Temperature Dependent Multi-Walled Nanotube G and D Doublet Using Pseudo-Voigt Functions. Applied Spectroscopy, 2013, 67, 321-328.	2.2	7
318	Probing factors affecting the Raman modes and structural collapse of singleâ€walled carbon nanotubes under pressure. Physica Status Solidi (B): Basic Research, 2013, 250, 1370-1375.	1.5	4
319	Adsorption and Defect-Sensitive Structure of Single Wall Nanocarbons. , 2013, , .		0
320	Empirical Equation Based Chirality (n, m) Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data. Nanomaterials, 2013, 3, 1-21.	4.1	8
321	Deviatoric stress-induced phase transitions in diamantane. Journal of Chemical Physics, 2014, 141, 154305.	3.0	9
322	Inter- and Intralayer Compression of Germanane. Journal of Physical Chemistry C, 2014, 118, 28196-28201.	3.1	7
323	Studies on Inter and Intra Molecular Hydrogen Bonding and Morphologies of Single-walled Carbon Nanotubes/polyurethane-amide. Procedia Engineering, 2014, 93, 43-48.	1.2	2
324	Characteristics and Applications of Carbon Nanotubes with Different Numbers of Walls. , 2014, , 313-339.		5
325	Optical Microspectroscopy Study of the Mechanical Stability of Empty and Filled Carbon Nanotubes under Hydrostatic Pressure. Journal of Physical Chemistry C, 2014, 118, 27048-27062.	3.1	13
326	Density-functional tight-binding study of the collapse of carbon nanotubes under hydrostatic pressure. Carbon, 2014, 69, 355-360.	10.3	40
328	Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties. Nature Communications, 2015, 6, 6212.	12.8	57

#	Article	IF	CITATIONS
329	Facile tuning of a polymeric dispersant for single-walled carbon nanotube dispersion. RSC Advances, 2015, 5, 69410-69417.	3.6	10
330	Linear Carbon Chains under High-Pressure Conditions. Journal of Physical Chemistry C, 2015, 119, 10669-10676.	3.1	46
331	Chirality-dependent mechanical response of empty and water-filled single-wall carbon nanotubes at high pressure. Carbon, 2015, 95, 442-451.	10.3	40
332	Effect of tetrahedral amorphous carbon coating on the resistivity and wear of single-walled carbon nanotube network. Journal of Applied Physics, 2016, 119, 185306.	2.5	5
333	Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study. RSC Advances, 2016, 6, 49543-49550.	3.6	36
334	Effective enhancement of the mechanical properties of macroscopic single-walled carbon nanotube fibers by pressure treatment. RSC Advances, 2016, 6, 97012-97017.	3.6	17
335	Effects of Molecular Geometry on the Properties of Compressed Diamondoid Crystals. Journal of Physical Chemistry Letters, 2016, 7, 4641-4647.	4.6	12
336	Carbon Nanotubes Under Pressure. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2016, , 99-134.	0.6	0
337	Correlation between manufacturing processes and anisotropic magnetic and electromagnetic properties of carbon nanotube/polystyrene composites. Composites Part B: Engineering, 2016, 91, 505-512.	12.0	26
338	Significance of Bundling Effects on Carbon Nanotubes' Response to Hydrostatic Compression. Journal of Physical Chemistry C, 2016, 120, 1863-1870.	3.1	3
339	Deformation behavior of titanate nanotubes subjected to high pressure. Journal of Applied Physics, 2017, 121, 025902.	2.5	5
340	Atomistic-Continuum Theory. , 2017, , 141-248.		0
341	Single walled carbon nanotube quantification method employing the Raman signal intensity. Carbon, 2017, 116, 547-552.	10.3	44
342	Effects of irradiation-induced structure evolution on the adhesion force and instantaneous modulus of multi-walled carbon nanotube arrays. Materials Chemistry and Physics, 2017, 196, 160-169.	4.0	10
343	The best features of diamond nanothread for nanofibre applications. Nature Communications, 2017, 8, 14863.	12.8	62
344	Probing the mechanical properties of carbon nanohorns subjected to uniaxial compression and hydrostatic pressure. Carbon, 2017, 125, 236-244.	10.3	9
345	Pressure-induced radial collapse in few-wall carbon nanotubes: A combined theoretical and experimental study. Carbon, 2017, 125, 429-436.	10.3	27
346	From mesoscale to nanoscale mechanics in single-wall carbon nanotubes. Carbon, 2017, 123, 145-150.	10.3	41

		CITATION REPORT		
#	Article		IF	Citations
347	Uranyl peroxide nanoclusters at high-pressure. Journal of Materials Research, 2017, 32	, 3679-3688.	2.6	7
348	Prediction of the critical point of pressure-induced deformation-related phase transitio single-walled carbon nanotubes on the basis of extreme-low-frequency-shift Raman spe Physical Review B, 2017, 95, .		3.2	7
349	Interfacial Mechanical Behaviors in Carbon Nanotube Assemblies. , 0, , .			4
350	Effects of pressure on the structural and electronic properties of linear carbon chains e in double wall carbon nanotubes. Carbon, 2018, 133, 446-456.	encapsulated	10.3	47
351	Effect of radial heat conduction on effective thermal conductivity of carbon nanotube Science China Technological Sciences, 2018, 61, 1959-1966.	bundles.	4.0	2
352	Selfâ€Adaptive Electrode with SWCNT Bundles as Elastic Substrate for Highâ€Rate an Lithium/Sodium Ion Batteries. Small, 2018, 14, e1802913.	d Longâ€Cycleâ€Life	10.0	32
353	Perspective: High pressure transformations in nanomaterials and opportunities in mate Journal of Applied Physics, 2018, 124, .	erial design.	2.5	37
354	Growth of ZIF-8 on molecularly ordered 2-methylimidazole/single-walled carbon nanot highly porous, electrically conductive composites. Chemical Science, 2019, 10, 737-74		7.4	34
355	Enrichment of solution-processable single-walled carbon nanotubes for flexible nanoel Materials Research Express, 2019, 6, 0850b4.	ectronics.	1.6	2
356	Molecules under Pressure: The Case of [<i>n</i>]Cycloparaphenylenes. Chemistry of N 31, 6443-6452.	Naterials, 2019,	6.7	5
357	Covalent Organic Framework (COFâ€1) under High Pressure. Angewandte Chemie, 20	20, 132, 1103-1108.	2.0	3
358	Covalent Organic Framework (COFâ€1) under High Pressure. Angewandte Chemie - In 2020, 59, 1087-1092.	ternational Edition,	13.8	34
359	Copper–Carbon Nanotube Composites Enabled by Electrospinning for Advanced Co Applied Nano Materials, 2020, 3, 6863-6875.	nductors. ACS	5.0	15
360	Amorphous Silicon and Carbon Nanotubes Layered Thin-Film Based Device for Temper Application. IEEE Sensors Journal, 2021, 21, 2627-2633.	ature Sensing	4.7	2
361	Raman resonance tuning of quaterthiophene in filled carbon nanotubes at high pressu 2021, 173, 163-173.	res. Carbon,	10.3	12
362	New boron nitride monolith phases from high-pressure compression of double-walled l nanotubes. Journal of Chemical Physics, 2021, 154, 134702.	boron nitride	3.0	8
363	Carbon under pressure. Physics Reports, 2021, 909, 1-73.		25.6	64
364	Two different emission enhancement of trans-stilbene crystal under high pressure: Diffevention of structure. Chinese Physics B, 2022, 31, 017901.	ierent	1.4	5

#	Article	IF	CITATIONS
365	Phase Transitions of Carbon Materials under High Pressure. , 2007, , 239-249.		1
366	Geometry–Property Relation in Corrugated Nanocarbon Cylinders. Springer Series in Materials Science, 2014, , 177-200.	0.6	1
367	High Pressure Raman Spectroscopy in Carbon Nanotubes. Acta Physica Polonica A, 2009, 116, 13-18.	0.5	6
368	Mechanical and tribological behaviour of carbon nanotube brushes. International Journal of Materials Research, 2008, 99, 883-887.	0.3	3
370	In situ Raman Investigations of Single-Wall Carbon Nanotubes Pressurized in Diamond Anvil Cell. , 2001, , 473-482.		0
371	The Nano-frontier; Properties, Achievements, and Challenges. RSC Nanoscience and Nanotechnology, 2010, , 182-258.	0.2	0
372	Effect of Pressure on the Electrical Resistance of Individual Boron-Doped Carbon Nanotubes. Japanese Journal of Applied Physics, 2012, 51, 105103.	1.5	0
373	Reinforcement Application. , 2013, , 205-226.		0
374	10 Thermal and Mechanical Properties of Graphene and SWCNTs. , 2016, , 173-204.		0
376	Single-wall carbon nanotube mechanical behavior using the modified embedded atom method with bond order (MEAM-BO). Modelling and Simulation in Materials Science and Engineering, 0, , .	2.0	1
377	Structural properties of single-walled carbon nanotubes under extreme dynamic pressures. Acta Materialia, 2022, 228, 117776.	7.9	3
379	Structural and electronic properties of collapsed armchair single-walled <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si25.svg" display="inline" id="d1e734"><mml:mi>α</mml:mi>-graphyne nanotubes. Computational Materials Science, 2023, 227, 112264.</mml:math 	3.0	Ο