From fossil to green

Green Chemistry 1, 107-114 DOI: 10.1039/a809539f

Citation Report

#	Article	IF	CITATIONS
1	Green Chemistry in an industrial ecology context. Green Chemistry, 1999, 1, G126-G128.	9.0	23
Ŧ	Green enemistry in an industrial ecology context. Green enemistry, 1999, 1, 6120 6120.	9.0	20
2	Principles of Sustainable and Green Chemistry. , 0, , 10-27.		12
4	Green Chemistry in Practice. , 0, , 338-365.		2
5	Testing the Feasibility of Biomass Based Transport Fuels and Electricity Generation in Australia. Australasian Journal of Environmental Management, 2002, 9, 103-114.	1.1	4
7	Bimetallic nanocatalysts for the conversion of muconic acid to adipic acidElectronic supplementary information (ESI) available: experimental details, EXAFS fit and refined EXAFS parameters. See http://www.rsc.org/suppdata/cc/b3/b300203a/. Chemical Communications, 2003, , 1126-1127.	4.1	72
8	A Fast XPS study of the surface chemistry of ethanol over Pt{111}. Surface Science, 2004, 548, 200-208.	1.9	141
9	Carbohydrates as green raw materials for the chemical industry. Comptes Rendus Chimie, 2004, 7, 65-90.	0.5	324
10	Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chemical Engineering Journal, 2005, 108, 127-137.	12.7	223
11	Exergy-Based Efficiency and Renewability Assessment of Biofuel Production. Environmental Science & Technology, 2005, 39, 3878-3882.	10.0	133
14	Biomass-derived heat-resistant alicyclic hydrocarbon polymers: poly(terpenes) and their hydrogenated derivatives. Green Chemistry, 2006, 8, 878.	9.0	99
15	Chapter 9 Renewable feedstocks. Sustainability Science and Engineering, 2006, , 177-199.	0.6	0
16	Chemicals and energy from biomass. Canadian Journal of Chemistry, 2006, 84, 960-970.	1.1	73
17	Steam Reforming of Acetic Acid to Hydrogen over Fe–Co Catalyst. Chemistry Letters, 2006, 35, 452-453.	1.3	37
18	Mesoporous silica-supported 12-tungstophosphoric acid catalysts for the liquid phase dehydration of d-xylose. Microporous and Mesoporous Materials, 2006, 94, 214-225.	4.4	129
19	Carbohydrates for fermentation. Biotechnology Journal, 2006, 1, 806-814.	3.5	63
20	The impact of industrial biotechnology. Biotechnology Journal, 2006, 1, 756-769.	3.5	84
24	Raw Materials. , 2007, 105, 1-30.		30
25	International biorefinery systems. Pure and Applied Chemistry, 2007, 79, 1983-1997.	1.9	29

		CITATION REPORT		
#	Article		IF	CITATIONS
26	Recent Progress in Synthesis of Fine and Specialty Chemicals from Wood and Other Bior Heterogeneous Catalytic Processes. Catalysis Reviews - Science and Engineering, 2007, 4	nass by 19, 197-340.	12.9	250
27	The Rise and Fall of Direct Mechanisms in Methanol-to-Olefin Catalysis:Â An Overview of Contributions. Industrial & Engineering Chemistry Research, 2007, 46, 8832-8838.	Theoretical	3.7	95
28	Conclusions and Future Trends. , 2007, , 297-312.			4
30	Biorefineries – Multi Product Processes. , 2007, 105, 175-204.			97
31	Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuel Bioproducts and Biorefining, 2007, 1, 39-48.	5,	3.7	485
32	Enhancement effect of gold nanoparticles on biohydrogen production from artificial was International Journal of Hydrogen Energy, 2007, 32, 17-23.	tewater.	7.1	176
33	Dehydration of d-glucose in high temperature water at pressures up to 80MPa. Journal of Supercritical Fluids, 2007, 40, 381-388.	F	3.2	233
34	Bulk chemicals from biomass. Biofuels, Bioproducts and Biorefining, 2008, 2, 41-57.		3.7	433
35	Hydrothermal upgrading of wood biomass: Influence of the addition of K2CO3 and cellul ratio. Fuel, 2008, 87, 2236-2242.	ose/lignin	6.4	89
36	Opportunities for a Bio-based Economy in the Netherlands. Energies, 2008, 1, 105-119.		3.1	18
37	Cumulative Exergy and Life Cycle Assessment of Ethanol Fuel Production From Corn via I 2009, , .	Dry Milling. ,		0
38	Carbohydrate-based food processing wastes as biomass for biorefining of biofuels and cł 2009, , 479-514.	nemicals. ,		2
39	Biofuels in Perspective. , 0, , 1-8.			14
40	The integration of green chemistry into future biorefineries. Biofuels, Bioproducts and Bio 2009, 3, 72-90.	prefining,	3.7	199
41	Decentralized chemical processes with supercritical fluid technology for sustainable socio Journal of Supercritical Fluids, 2009, 47, 628-636.	ety.	3.2	64
42	Ionic Liquids in Biomass Processing. Topics in Current Chemistry, 2009, 290, 311-339.		4.0	101
43	Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lew SnCl4 in an ionic liquid. Green Chemistry, 2009, 11, 1746.	ris acid	9.0	442
44	Direct reduction of iron oxides based on steam reforming of bio-oil: a highly efficient app production of DRI from bio-oil and iron ores. Green Chemistry, 2009, 11, 2001.	roach for	9.0	58

	CITATION	CITATION REPORT	
#	Article	lF	CITATIONS
46	Oneâ€Step Catalytic Transformation of Carbohydrates and Cellulosic Biomass to 2,5â€Dimethyltetrahydrofuran for Liquid Fuels. ChemSusChem, 2010, 3, 597-603.	6.8	158
48	Hydrogen production by steam reforming of acetic acid: Comparison of conventional supported metal catalysts and metal-incorporated mesoporous smectite-like catalysts. International Journal of Hydrogen Energy, 2010, 35, 110-117.	7.1	66
50	Hydrogen production affected by Pt concentration on TiO ₂ produced from the incineration of dye wastewater flocculated sludge using titanium tetrachloride. Desalination and Water Treatment, 2010, 15, 214-221.	1.0	2
51	Hydrogen Production from Steam Reforming of <i>m</i> -Cresol, a Model Compound Derived from Bio-oil: Green Process Evaluation Based on Liquid Condensate Recycling. Energy & Fuels, 2010, 24, 5139-5147.	5.1	13
52	Synthesis and radiocarbon evidence of terephthalate polyesters completely prepared from renewable resources. Green Chemistry, 2011, 13, 2543.	9.0	107
53	Preparation of flame-retarding poly(propylene carbonate). Green Chemistry, 2011, 13, 3469.	9.0	78
54	Phenylboronic Acid Functionalized SBA-15 for Sugar Capture. Langmuir, 2011, 27, 14554-14562.	3.5	28
55	Chemicals from Hemicelluloses: A Review. ACS Symposium Series, 2011, , 219-259.	0.5	20
56	Mechanistic Study of the Pd/TOMPP atalyzed Telomerization of 1,3â€Butadiene with Biomassâ€Based Alcohols: On the Reversibility of Phosphine Alkylation. ChemCatChem, 2011, 3, 845-852.	3.7	17
57	Waste biomass to liquids: Low temperature conversion of sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments. Biomass and Bioenergy, 2011, 35, 2106-2116.	5.7	36
58	Seeking a Mechanistic Analogue of the Water–Gas Shift Reaction: Carboxamido Ligand Formation and Isocyanate Elimination from Complexes Containing the Tp′PtMe Fragment. Journal of the American Chemical Society, 2012, 134, 8902-8910.	13.7	8
59	Production of high quality fuels from lignocellulose-derived chemicals: a convenient C–C bond formation of furfural, 5-methylfurfural and aromatic aldehyde. RSC Advances, 2012, 2, 11211.	3.6	68
61	Green Chemistry $\hat{a} \in $ Aspects for the Knoevenagel Reaction. , 0, , .		7
62	Lubricating a bright future: Lubrication contribution to energy saving and low carbon emission. Science China Technological Sciences, 2013, 56, 2888-2913.	4.0	84
63	Application of Molecular Sieves in Transformations of Biomass and Biomass-Derived Feedstocks. Catalysis Reviews - Science and Engineering, 2013, 55, 1-78.	12.9	142
64	Synthesis and characterization of novel renewable polyesters based on 2,5â€furandicarboxylic acid and 2,3â€butanediol. Journal of Polymer Science Part A, 2013, 51, 890-898.	2.3	113
65	Direct conversion of glycerol into bio-oil via hydrotreatment using supported metal catalysts. Fuel, 2013, 112, 193-202.	6.4	10
66	The fossil trace of CO2 emissions in multi-fuel energy systems. Energy, 2013, 58, 236-246.	8.8	12

#	Article	IF	CITATIONS
68	Tunable morphologies for ternary blends with poly(butylene succinate): Partial and complete wetting phenomena. Polymer, 2013, 54, 3271-3281.	3.8	56
69	Living carbocationic polymerization of a vinyl ether monomer derived from soybean oil, 2-(vinyloxy)ethyl soyate. Green Chemistry, 2013, 15, 1834.	9.0	36
70	Physicochemical Properties of Pyrolysis Bio-Oil from Sugarcane Straw and Sugarcane in Natura. Journal of Biomaterials and Nanobiotechnology, 2013, 04, 10-19.	0.5	17
71	Reforming of Glycerol into Bio-Crude: A Parametric Study. International Journal of Chemical Reactor Engineering, 2013, 11, 69-81.	1.1	1
72	Visible light induced Knoevenagel condensation: A clean and efficient protocol using aqueous fruit extract of tamarindus indica as catalyst. International Journal of Advanced Chemistry, 2013, 2, .	0.2	4
73	Increasing Biogas Production Rate from Cattle Manure Using Rumen Fluid as Inoculums. International Journal of Science and Engineering, 2013, 6, .	0.1	41
75	Preparation of Bio-polymers from Plant Oils in Green Media. RSC Green Chemistry, 2014, , 41-58.	0.1	1
76	Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2014, 260, 225-232.	7.8	56
77	Bio-based semi-aromatic polyesters for coating applications. Progress in Organic Coatings, 2014, 77, 277-284.	3.9	25
78	Renewable terephthalate polyesters from carbohydrate-based bicyclic monomers. Green Chemistry, 2014, 16, 1716-1739.	9.0	99
79	Sustainable polyesters for powder coating applications from recycled PET, isosorbide and succinic acid. Green Chemistry, 2014, 16, 1807-1815.	9.0	59
80	Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide–water: a tunable approach to dimethylfuran selectivity. Green Chemistry, 2014, 16, 1543.	9.0	121
81	Visible Light Induced Knoevenagel Condensation Catalyzed by Starfruit Juice of <i>Averrhoa carambola</i> . International Journal of Organic Chemistry, 2014, 04, 106-115.	0.7	11
82	Synthesis of Unsaturated Polyester Resins from Various Bio-Derived Platform Molecules. International Journal of Molecular Sciences, 2015, 16, 14912-14932.	4.1	98
83	Ceria Nanoshapes—Structural and Catalytic Properties. , 2015, , 31-70.		9
84	Renewable polymers derived from ferulic acid and biobased diols via ADMET. European Polymer Journal, 2015, 62, 236-243.	5.4	82
85	Valorization of Sugar Cane Bagasse and Jatropha Curcas Cake: Production of a Biocrude by Acetylation Reaction under Microwave Radiation. Energy & Fuels, 2015, 29, 917-921.	5.1	12
86	Powder coatings for indoor applications from renewable resources and recycled polymers. Journal of Coatings Technology Research, 2015, 12, 555-562.	2.5	18

#	Article	IF	CITATIONS
87	High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility. Progress in Organic Coatings, 2015, 87, 197-203.	3.9	82
88	Catalytic Upgrading of Extractives to Chemicals: Monoterpenes to "EXICALSâ€: Chemical Reviews, 2015, 115, 3141-3169.	47.7	77
89	Glycerol Oxidation Using Gold-Containing Catalysts. Accounts of Chemical Research, 2015, 48, 1403-1412.	15.6	265
90	Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green Chemistry, 2015, 17, 2383-2392.	9.0	144
91	Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean Journal of Chemical Engineering, 2015, 32, 1945-1959.	2.7	104
92	Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Progress in Organic Coatings, 2015, 78, 49-54.	3.9	124
93	Biorenewable Thermoplastic Elastomeric Triblock Copolymers Containing Salicylic Acidâ€Derived Endâ€Blocks and a Fatty Acidâ€Derived Midblock. Macromolecular Chemistry and Physics, 2016, 217, 292-303.	2.2	16
95	Kinetics Modeling of the Heterogeneously Catalyzed Esterification of 2,3-Butanediol with Acetic Acid. Industrial & Engineering Chemistry Research, 2016, 55, 5247-5256.	3.7	7
96	ADMET polymerization of biobased monomers deriving from syringaresinol. RSC Advances, 2016, 6, 44297-44304.	3.6	26
98	From Ligninâ€derived Aromatic Compounds to Novel Biobased Polymers. Macromolecular Rapid Communications, 2016, 37, 9-28.	3.9	296
99	Renewability $\hat{a} \in \hat{a}$ a principle of utmost importance!. Green Chemistry, 2016, 18, 4800-4803.	9.0	41
100	Steam reforming of acetic acid over Cu Zn Co catalyst for hydrogen generation: Synergistic effects of the metal species. International Journal of Hydrogen Energy, 2016, 41, 13960-13969.	7.1	21
102	Integrated Biorefinery for Food, Feed, and Platform Chemicals. , 2016, , 393-416.		3
104	A Sustainable Route to a Terephthalic Acid Precursor. ChemSusChem, 2016, 9, 942-945.	6.8	26
105	Selective laccase-catalyzed dimerization of phenolic compounds derived from lignin: Towards original symmetrical bio-based (bis) aromatic monomers. Journal of Molecular Catalysis B: Enzymatic, 2016, 125, 34-41.	1.8	64
106	Plant Oil-Based Polyester. , 2016, , 73-86.		2
107	Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. International Journal of Biological Macromolecules, 2016, 82, 1028-1040.	7.5	188
108	Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chemistry, 2016, 18, 342-359.	9.0	254

#	Article	IF	CITATIONS
109	Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renewable and Sustainable Energy Reviews, 2017, 72, 673-722.	16.4	168
110	Solar STEP coal conversion: Fully solar-driven thermo- and electrochemical process for efficient transformation of coal to light fuel plus hydrogen. Applied Catalysis B: Environmental, 2017, 209, 372-382.	20.2	11
111	An overview of effect of process parameters on hydrothermal carbonization of biomass. Renewable and Sustainable Energy Reviews, 2017, 73, 1289-1299.	16.4	354
112	Step-Growth Polymers from Cashew Nut Shell Liquid (CNSL)-Based Aromatic Difunctional Monomers. , 2017, , 163-214.		6
113	Itaconic acid used as a versatile building block for the synthesis of renewable resourceâ€based resins and polyesters for future prospective: a review. Polymer International, 2017, 66, 1349-1363.	3.1	89
114	Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. Journal of Physical Chemistry A, 2017, 121, 623-630.	2.5	57
115	Valorization of biodiesel plant-derived products via preparation of solketal fatty esters over calcium-rich natural materials derived oxides. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 57-64.	5.3	9
116	A Greener and Facile Synthesis of Imidazole and Dihydropyrimidine Derivatives under Solventâ€Free Condition Using Natureâ€Derived Catalyst. ChemistrySelect, 2017, 2, 7787-7791.	1.5	21
117	Locating a Wind Energy Project: A Case of a Leading Oil and Gas Producer in India. Vision, 2017, 21, 172-194.	2.4	0
118	Dehydrogenation of methanol on Cu2O(100) and (111). Journal of Chemical Physics, 2017, 146, 244702.	3.0	23
119	Hyperbranched polyesters by polycondensation of fatty acid-based AB _n -type monomers. Green Chemistry, 2017, 19, 259-269.	9.0	38
120	Design and synthesis of bio-based UV curable PU acrylate resin from itaconic acid for coating applications. Designed Monomers and Polymers, 2017, 20, 269-282.	1.6	85
121	Molecular dynamics simulation study on the structure and the dynamic properties of nano-confined alcohols between graphene surfaces. Fluid Phase Equilibria, 2017, 431, 8-15.	2.5	4
122	Photocatalytic glycerol oxidation on Au _x Cu–CuS@TiO ₂ plasmonic heterostructures. Journal of Materials Chemistry A, 2018, 6, 22005-22012.	10.3	41
123	Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe 2 O 4 catalyst. Catalysis Today, 2018, 309, 119-125.	4.4	56
124	Bioderived Muconates by Crossâ€Metathesis and Their Conversion into Terephthalates. ChemSusChem, 2018, 11, 773-780.	6.8	18
125	Divinylglycol, a Glycerol-Based Monomer: Valorization, Properties, and Applications. ACS Symposium Series, 2018, , 299-330.	0.5	2
126	Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review. Energies, 2018, 11, 3366.	3.1	260

#	Article	IF	CITATIONS
127	Boron-containing UV-curable oligomer-based linseed oil as flame-retardant coatings: synthesis and characterization. Iranian Polymer Journal (English Edition), 2018, 27, 795-806.	2.4	7
128	Exploring the Effect of Au/Pt Ratio on Glycerol Oxidation in Presence and Absence of a Base. Catalysts, 2018, 8, 54.	3.5	23
129	Metal Carbides for Biomass Valorization. Applied Sciences (Switzerland), 2018, 8, 259.	2.5	15
130	Microwave-assisted valorization of pig bristles: towards visible light photocatalytic chalcocite composites. Green Chemistry, 2018, 20, 3001-3007.	9.0	20
131	Adsorption and Decomposition of Ethanol on Cu ₂ O(111) and (100). Journal of Physical Chemistry C, 2019, 123, 20384-20392.	3.1	11
132	Mechanical and Dynamic Mechanical Properties of Unsaturated Polyester Resin-Based Composites. , 2019, , 407-434.		8
133	Investigation of the surface species during temperature dependent dehydrogenation of naphthalene on Ni(111). Journal of Chemical Physics, 2019, 150, 244704.	3.0	3
134	Novel green route towards polyesters-based resin by photopolymerization of star polymers. EXPRESS Polymer Letters, 2019, 13, 1104-1115.	2.1	5
135	Enzyme Promiscuity as a Remedy for the Common Problems with Knoevenagel Condensation. Chemistry - A European Journal, 2019, 25, 10156-10164.	3.3	13
136	A circular economy approach to plastic waste. Polymer Degradation and Stability, 2019, 165, 170-181.	5.8	236
137	Valorization of tire wastes to carbon quantum dots (P-CDs) and photocatalytic degradation enhancement of organic wastes using ZnO-CDs nanocomposites. Journal of Materials Science: Materials in Electronics, 2019, 30, 11598-11606.	2.2	16
138	Self-sustainable azolla-biorefinery platform for valorization of biobased products with circular-cascading design. Chemical Engineering Journal, 2019, 373, 1042-1053.	12.7	36
139	Thermal Properties of Bio-based Polymers. Advances in Polymer Science, 2019, , .	0.8	9
140	Overview of Biobased Polymers. Advances in Polymer Science, 2019, , 1-35.	0.8	11
141	Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Progress in Materials Science, 2019, 102, 1-71.	32.8	129
142	Valorization of Lignocellulosic Waste (Crotalaria <i>juncea </i>) Using Alkaline Peroxide Pretreatment under Different Process Conditions: An Optimization Study on Separation of Lignin, Cellulose, and Hemicellulose. Journal of Natural Fibers, 2019, 16, 662-676.	3.1	20
143	A Pt-Mo hybrid catalyst for furfural transformation. Catalysis Today, 2020, 357, 122-131.	4.4	11
144	Chemo-enzymatic synthesis of glycolipids, their polymerization and self-assembly. Polymer Chemistry, 2020, 11, 3994-4004	3.9	3

ARTICLE IF CITATIONS # Fully bioâ€based thiolâ€ene photocured thermosets from isosorbide and tung oil. Journal of Polymer 145 3.8 27 Science, 2020, 58, 1105-1114. The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in 146 3.1 the Beijing-Tianjin-Hebei Region in China. Energies, 2020, 13, 844. 147 General background and introduction., 2020, , 1-14. 0 The economical and ecological advantages of industrial biotechnology., 2020, , 195-201. 148 Exploring the Biomass-Derived Chemical Space Emerging from Natural Dihydrochalcones through the 149 Single-Step Hemisynthesis of Antibacterial Balsacones. ACS Sustainable Chemistry and Engineering, 6.7 7 2020, 8, 6194-6199. Application of microreactor technology to dehydration of bio-ethanol. Chemical Engineering Science, 3.8 2021, 229, 116030. 151 An introduction to green chemistry., 2021, , 3-22. 1 The tree fractionation., 2021, , 33-84. 153 Hydropower generation by transpiration from microporous alumina. Scientific Reports, 2021, 11, 10954. 3.3 15 Green Synthesis of Heterogeneous Visible-Light-Active Photocatalysts: Recent Advances. Photochem, 154 2.2 2021, 1, 147-166. Role of surface engineering of hybrid structure for high performance quantum dots based 155 12.7 14 photoelectrochemical hydrogen generation. Chemical Engineering Journal, 2022, 429, 132425. Prospects for Methanol Production., 0, , 235-245. 156 The Effect of Feed to Inoculums Ratio on Biogas Production Rate from Cattle Manure Using Rumen 157 0.2 4 Fluid as Inoculums. International Journal of Waste Resources, 2012, 02, . Biogas production from co-digestion of orange peel waste and jatropha de-oiled cake in an anaerobic batch reactor. African Journal of Biotechnology, 2012, 11, . 159 Alternative Feedstocks for Bioprocessing., 2004, , 24-29. 2 Integrated Biorefineriesâ€"A Bottom-Up Approach to Biomass Fractionation. Biotechnology in Agriculture and Forestry, 2010, , 319-343. BENIGN STARTING MATERIALS., 2013, , 9-42. 162 0 Soy-Based Polymeric Surfactants Prepared in Carbon Dioxide Media and Inuence of Structure on Their Surface Properties. , 2014, , 438-461.

#	Article	IF	CITATIONS
165	Analytical Approaches in the Catalytic Transformation of Biomass: What Needs to be Analyzed and Why?. , 2015, , 103-132.		0
166	Biomethanization. , 2016, , 35-122.		0
167	The Effect of Blade Number on Small Horizontal Axis Wind Turbine (HAWT) Performance: An Experimental and Numerical Study. International Journal of Environmental Science and Development, 2020, 11, 555-560.	0.6	1
168	Role of Substrate to Improve Biomass to Biofuel Production Technologies. Clean Energy Production Technologies, 2021, , 127-156.	0.5	1
169	Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective. Nanotechnology, 2022, 33, 142001.	2.6	90
170	Wholly Biobased Polyamide Thermoplastic Elastomerâ€Cellulose Nanocomposites. Macromolecular Materials and Engineering, 2022, 307, .	3.6	3
173	Constructing quantum dots sensitized TiO2 nanotube p-n heterojunction for photoelectrochemical hydrogen generation. Chemical Engineering Journal, 2022, 446, 137312.	12.7	18
175	Minireview on Solar Desalination and Hydropower Generation by Water Evaporation: Recent Challenges and Perspectives in Materials Science. Energy & Fuels, 2022, 36, 11443-11456.	5.1	5
177	Renewable polyol-based biodegradable polyesters as greener plastics for industrial applications. Chemical Engineering Journal, 2023, 459, 141211.	12.7	30
178	Ceramic particle–dispersed polymer composites. , 2023, , 399-432.		0
179	Investigating the spatial charge density flow and molecular structure of g-C3N4 photocatalyst from a computational perspective. Applied Catalysis A: General, 2023, 659, 119190.	4.3	16
180	Life Cycle Environmental Impacts of a Biobased Acrylic Polymer for Leather Production. Polymers, 2023, 15, 1318.	4.5	1
181	Biomass as a Source of Energy, Fuels and Chemicals. , 2021, , 589-741.		0
182	Highly efficient synthesis of sustainable bisphenols from hydroxycinnamic acids. , 2023, 1, 1765-1772.		1
183	Liquefaction of natural gas and simulated process optimization – A review. Ain Shams Engineering Journal, 2024, 15, 102431.	6.1	0
184	Recent development advances in bio-based powder coatings: a review. Journal of Coatings Technology Research, 2024, 21, 435-444.	2.5	0
185	Unexpected performance of iron(<scp>iii</scp>)chloride in the polymerization of renewable 2,3-butanediol and the depolymerization of poly(ethylene terephthalate). , 2024, 2, 435-444.		0
186	Recent Updates on Biopolymers: Precursors, Process, Properties, Challenge, and Future Perspectives. Green Energy and Technology, 2024, , 19-42.	0.6	0

#	Article	IF	CITATIONS
187	Direct biomass valorisation to \hat{I}^3 -valerolactone by Ru-PNP catalysed hydrogenation in acid. , 2024, 2, 803-810.		1
188	Energizing the Now: Navigating the Critical Landscape of Today's Energy Challenges—An In-Depth Review. Energies, 2024, 17, 675.	3.1	0
189	Naphthalene Dehydrogenation on Ni(111) in the Presence of Chemisorbed Oxygen and Nickel Oxide. Catalysts, 2024, 14, 124.	3.5	0