VORTEX PARADIGM FOR ACCELERATED INHOMOGEN Rayleigh-Taylor and Richtmyer-Meshkov Environment

Annual Review of Fluid Mechanics

31, 495-536

DOI: 10.1146/annurev.fluid.31.1.495

Citation Report

#	Article	IF	CITATIONS
1	The role of vorticity in shock propagation through inhomogeneous media. , 1999, , .		3
2	VORTEX PARADIGM FOR ACCELERATED INHOMOGENEOUS FLOWS: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov Environments. Annual Review of Fluid Mechanics, 1999, 31, 495-536.	10.8	183
3	Shock interactions with heavy gaseous elliptic cylinders: Two leeward-side shock competition modes and a heuristic model for interfacial circulation deposition at early times. Physics of Fluids, 2000, 12, 707-716.	1.6	30
4	Vortex morphologies on reaccelerated interfaces: Visualization, quantification and modeling of one- and two-mode compressible and incompressible environments. Physics of Fluids, 2000, 12, 3245-3264.	1.6	29
5	Richtmyer–Meshkov-like instabilities and early-time perturbation growth in laser targets and Z-pinch loads. Physics of Plasmas, 2000, 7, 1662-1671.	0.7	67
6	Visiometrics for reduced modeling of accelerated inhomogeneous flows. , 2000, , .		0
7	The effect of fore-shock heating in the plasma drag-reduction problem. , 2000, , .		4
8	Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories. Physics of Fluids, 2000, 12, 304-321.	1.6	292
9	Laboratory simulation of the collision of supernova 1987A with its circumstellar ring nebula. Plasma Physics Reports, 2001, 27, 843-851.	0.3	14
10	Nonlinear theory of diffusive acceleration of particles by shock waves. Reports on Progress in Physics, 2001, 64, 429-481.	8.1	659
11	Experimental Study of Rayleigh–Taylor Instability in a Shock Tube Accompanying Cavity Formation. Japanese Journal of Applied Physics, 2001, 40, 6668-6674.	0.8	9
12	Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected. Physical Review E, 2001, 63, 056303.	0.8	113
13	Blast-wave–sphere interaction using a laser-produced plasma: An experiment motivated by supernova 1987A. Physical Review E, 2001, 64, 047402.	0.8	20
14	Perfectly conducting incompressible fluid model of a wire array implosion. Physics of Plasmas, 2002, 9, 1366-1380.	0.7	45
15	Shock–planar curtain interactions in two dimensions: Emergence of vortex double layers, vortex projectiles, and decaying stratified turbulence. Physics of Fluids, 2002, 14, 419-422.	1.6	17
16	THERICHTMYER-MESHKOVINSTABILITY. Annual Review of Fluid Mechanics, 2002, 34, 445-468.	10.8	593
17	PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF6 interface. Journal of Fluid Mechanics, 2002, 464, 113-136.	1.4	155
18	Rotational suppression of Rayleigh–Taylor instability. Journal of Fluid Mechanics, 2002, 457, 181-190.	1.4	23

#	Article	IF	CITATIONS
19	X-ray radiograms of complex blast wave/sphere interactions obtained from laser-produced plasmas juxtaposed with visualizations of two-dimensional axisymmetric hydrodynamic simulations. IEEE Transactions on Plasma Science, 2002, 30, 36-37.	0.6	1
20	Shock bowing and vorticity dynamics during propagation into different transverse density profiles. Physica D: Nonlinear Phenomena, 2002, 163, 150-165.	1.3	11
21	Statistics of long-wavelength fluctuations and the expansion rate of Richtmyer-Meshkov turbulence zone. JETP Letters, 2002, 75, 547-551.	0.4	6
22	Localization and spreading of contact discontinuity layers in simulations of compressible dissipationless flows. Journal of Computational Physics, 2003, 188, 348-364.	1.9	9
23	Experimental study of the Richtmyer–Meshkov instability of incompressible fluids. Journal of Fluid Mechanics, 2003, 485, 243-277.	1.4	83
24	Amplitude growth rate of a Richtmyer–Meshkov unstable two-dimensional interface to intermediate times. Journal of Fluid Mechanics, 2003, 475, 147-162.	1.4	19
25	Vortex structures and turbulence emerging in a supernova 1987a configuration: Interactions of "complex―blast waves and cylindrical/spherical bubbles. Laser and Particle Beams, 2003, 21, 471-477.	0.4	7
26	Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios. Physical Review E, 2003, 67, 026301.	0.8	107
27	Nonlinear evolution of an interface in the Richtmyer-Meshkov instability. Physical Review E, 2003, 67, 036301.	0.8	42
28	Shock–planar curtain interactions: Strong secondary baroclinic deposition and emergence of vortex projectiles and late-time inhomogeneous turbulence. Laser and Particle Beams, 2003, 21, 463-470.	0.4	8
29	Jet and vortex flows in a shock/ hemispherical-bubble-on-wall configuration. Laser and Particle Beams, 2003, 21, 449-453.	0.4	5
30	Vortex-accelerated secondary baroclinic vorticity deposition and late-intermediate time dynamics of a two-dimensional Richtmyer–Meshkov interface. Physics of Fluids, 2003, 15, 3730-3744.	1.6	63
31	A quantitative study of the interaction of two Richtmyer–Meshkov-unstable gas cylinders. Physics of Fluids, 2003, 15, 986-1004.	1.6	49
32	Density dependence of a Zufiria-type model for Rayleigh–Taylor bubble fronts. Physical Review E, 2004, 70, 045301.	0.8	21
33	Normal velocity freeze-out of the Richtmyer-Meshkov instability when a shock is reflected. Physical Review E, 2004, 70, 026305.	0.8	8
34	Shock gaseous cylinder interactions: Dynamically validated initial conditions provide excellent agreement between experiments and numerical simulations to late–intermediate time. Physics of Fluids, 2004, 16, 1203-1216.	1.6	21
35	An experimenter's perspective on validating codes and models with experiments having shock-accelerated fluid interfaces. Computing in Science and Engineering, 2004, 6, 40-49.	1.2	4
36	Turbulent Decay and Mixing of Accelerated Inhomogeneous Flows Via a Feature Based Analysis. SIAM Journal of Scientific Computing, 2004, 26, 86-104.	1.3	1

Сіт	ΑΤΙ	ON	Rep	ORT
U		U		U

#	Article	IF	CITATIONS
37	Micro-fluid dynamics via laser metal surface interactions: Wave-vortex interpretation of emerging multiscale coherent structures. Fluid Dynamics Research, 2005, 36, 291-299.	0.6	11
38	Estimation of shock induced vorticity on irregular gaseous interfaces: a wavelet-based approach. Shock Waves, 2005, 14, 147-160.	1.0	2
39	Stretching of material lines in shock-accelerated gaseous flows. Physics of Fluids, 2005, 17, 082107.	1.6	58
40	Richtmyer–Meshkov instability of arbitrary shapes. Physics of Fluids, 2005, 17, 034101.	1.6	56
41	Fermi–Pasta–Ulam, solitons and the fabric of nonlinear and computational science: History, synergetics, and visiometrics. Chaos, 2005, 15, 015102.	1.0	64
42	Vortex dynamics and baroclinically forced inhomogeneous turbulence for shock—planar heavy curtain interactions. Journal of Turbulence, 2005, 6, N3.	0.5	6
43	Hydrodynamics of high-energy GARPUN KrF laser interaction with solid and thin-film targets in ambient air. Journal Physics D: Applied Physics, 2005, 38, 2031-2044.	1.3	8
44	Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock. Journal of Fluid Mechanics, 2006, 557, 29.	1.4	183
45	Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability. Physical Review E, 2006, 73, 026304.	0.8	40
46	Fingering instability in particle systems. Journal of Computational and Applied Mathematics, 2006, 190, 408-423.	1.1	0
47	Numerical investigation of Richtmyer-Meshkov instability driven by cylindrical shocks. Acta Mechanica Sinica/Lixue Xuebao, 2006, 22, 9-16.	1.5	17
48	Circulation rate of change: A vortex approach for understanding accelerated inhomogeneous flows through intermediate times. Physics of Fluids, 2006, 18, 097102.	1.6	5
49	Eigen helicity density: A new vortex identification scheme and its application in accelerated inhomogeneous flows. Physics of Fluids, 2006, 18, 058104.	1.6	30
50	High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: Comparison to experimental data and to amplitude growth model predictions. Physics of Fluids, 2007, 19, 024104.	1.6	71
51	Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6. Physics of Fluids, 2007, 19, 036101.	1.6	47
52	Scaling the incompressible Richtmyer-Meshkov instability. Physics of Fluids, 2007, 19, 078105.	1.6	6
53	Supercomplex wave-vortex multiscale phenomena induced in laser-matter interactions. Physical Review E, 2007, 76, 016305.	0.8	5
54	Experimental Investigation of Primary and Secondary Features in High-Mach-Number Shock-Bubble Interaction. Physical Review Letters, 2007, 98, 024502.	2.9	64

		CITATION RE	PORT	
#	Article		IF	CITATIONS
55	Bubble interaction model for hydrodynamic unstable mixing. Physical Review E, 2007, 7	'5,066312.	0.8	12
56	Transport and stirring induced by vortex formation. Journal of Fluid Mechanics, 2007, 5	93, 315-331.	1.4	77
57	Complex flow morphologies in shock-accelerated gaseous flows. Physica D: Nonlinear F 2007, 235, 21-28.	'henomena,	1.3	22
58	Micro-fluid dynamics via laser–matter interaction: Vortex filament structures, helical reconnection, merging, and undulation. Physics Letters, Section A: General, Atomic and Physics, 2007, 361, 87-97.	nstability, Solid State	0.9	16
59	Modeling of vapor-droplet plumes ablated from multiple spots. Applied Surface Science 6371-6376.	, 2007, 253,	3.1	2
60	A computational parameter study for the three-dimensional shock–bubble interaction Fluid Mechanics, 2008, 594, 85-124.	n. Journal of	1.4	151
61	Evolution of Richtmyer-Meshkov Instability with Single-Mode Perturbation. , 2008, , .			0
62	Review of nonlinear dynamics of the unstable fluid interface: conservation laws and gro Physica Scripta, 2008, T132, 014012.	up theory.	1.2	49
63	Simultaneous particle-image velocimetry–planar laser-induced fluorescence measure Richtmyer–Meshkov instability growth in a gas curtain with and without reshock. Phy 2008, 20, .	nents of /sics of Fluids,	1.6	80
64	An experimental investigation of mixing mechanisms in shock-accelerated flow. Journal Mechanics, 2008, 611, 131-150.	of Fluid	1.4	116
65	Dependence of growth patterns and mixing width on initial conditions in Richtmyer– unstable fluid layers. Physica Scripta, 2008, T132, 014013.	Meshkov	1.2	16
66	Analytical linear theory for the interaction of a planar shock wave with an isotropic turb vorticity field. Physical Review E, 2009, 79, 066315.	ulent	0.8	65
67	Large Eddy Simulation of Re-shocked Richtmyer-Meshkov Instability. , 2009, , .			3
68	On interaction of shock wave with elliptic gas cylinder. Journal of Visualization, 2010, 1	3, 347-353.	1.1	26
69	Richtmyer–Meshkov instability: theory of linear and nonlinear evolution. Philosophica Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1769-1807.	I Transactions	1.6	112
70	On Richtmyer–Meshkov instability in dilute gas-particle mixtures. Physics of Fluids, 20	010, 22, .	1.6	33
71	Shock-Bubble Interactions. Annual Review of Fluid Mechanics, 2011, 43, 117-140.		10.8	246
72	MAGNETIC-FIELD AMPLIFICATION BY TURBULENCE IN A RELATIVISTIC SHOCK PROPAG/ INHOMOGENEOUS MEDIUM. Astrophysical Journal, 2011, 726, 62.	ATING THROUGH AN	1.6	52

#	Article	IF	CITATIONS
73	Marching Cubes Based Front Tracking Method and its Application to Some Interface Instability Problems. Journal of Hydrodynamics, 2011, 23, 580-588.	1.3	0
74	Growth rate predictions of single- and multi-mode Richtmyer–Meshkov instability with reshock. Shock Waves, 2011, 21, 533-546.	1.0	34
75	Laminar premixed flame fuel consumption rate modulation by shocks and expansion waves. Combustion and Flame, 2011, 158, 1140-1148.	2.8	18
76	A global arbitrary Lagrangian–Eulerian method for stratified Richtmyer–Meshkov instability. Computers and Fluids, 2011, 46, 113-121.	1.3	9
77	Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface. Physical Review E, 2011, 84, 026303.	0.8	35
78	Atwood ratio dependence of Richtmyer–Meshkov flows under reshock conditions using large-eddy simulations. Journal of Fluid Mechanics, 2011, 670, 439-480.	1.4	74
79	TOWARD UNDERSTANDING THE COSMIC-RAY ACCELERATION AT YOUNG SUPERNOVA REMNANTS INTERACTING WITH INTERSTELLAR CLOUDS: POSSIBLE APPLICATIONS TO RX J1713.7–3946. Astrophysical Journal, 2012, 744, 71.	1.6	192
80	Turbulent mixing in a Richtmyer–Meshkov fluid layer after reshock: velocity and density statistics. Journal of Fluid Mechanics, 2012, 696, 67-93.	1.4	88
81	Effect of incident shock wave strength on the decay of Richtmyer–Meshkov instability-introduced perturbations in the refracted shock wave. Shock Waves, 2012, 22, 511-519.	1.0	6
82	Reacting shock bubble interaction. Combustion and Flame, 2012, 159, 1339-1350.	2.8	48
83	The Richtmyer–Meshkov instability of a three-dimensional interface with a minimum-surface feature. Journal of Fluid Mechanics, 2013, 722, .	1.4	46
84	Investigation of the initial perturbation amplitude for the inclined interface Richtmyer–Meshkov instability. Physica Scripta, 2013, T155, 014014.	1.2	19
85	Evolution of the density self-correlation in developing Richtmyer–Meshkov turbulence. Journal of Fluid Mechanics, 2013, 735, 288-306.	1.4	46
86	Numerical simulation of a Richtmyer–Meshkov instability with an adaptive central-upwind sixth-order WENO scheme. Physica Scripta, 2013, T155, 014016.	1.2	15
87	On the Kolmogorov inertial subrange developing from Richtmyer-Meshkov instability. Physics of Fluids, 2013, 25, .	1.6	26
88	The eruption of a high-pressure cylindrical heavy gas cloud. Canadian Journal of Physics, 2013, 91, 850-854.	0.4	2
89	Scaling Interface Length Increase Rates in Richtmyer–Meshkov Instabilities. Journal of Fluids Engineering, Transactions of the ASME, 2013, 135, .	0.8	10
90	Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations. Physical Review E, 2014, 90, 063001.	0.8	34

#	Article	IF	CITATIONS
91	Numerical study on the jet formation due to Rayleigh–Taylor instability. Japanese Journal of Applied Physics, 2014, 53, 110302.	0.8	3
92	A Global Arbitrary Lagrangian-Eulerian Method for Stratified Richtmyer-Meshkov Instability. , 2014, , .		0
93	Experimental study of Richtmyer-Meshkov instability in a cylindrical converging shock tube. Laser and Particle Beams, 2014, 32, 343-351.	0.4	35
94	Evolution of heavy gas cylinder under reshock conditions. Journal of Visualization, 2014, 17, 123-129.	1.1	10
95	Richtmyer–Meshkov instability of a liquid–gas interface driven by a cylindrical imploding pressure wave. Computers and Fluids, 2014, 89, 1-19.	1.3	25
96	On the Evolution of Double Shock-Accelerated Elliptic Gas Cylinders. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	0.8	9
97	On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface. Journal of Fluid Mechanics, 2014, 755, 429-462.	1.4	91
98	Computing multi-mode shock-induced compressible turbulent mixing at late times. Journal of Fluid Mechanics, 2015, 779, 411-431.	1.4	23
99	Three- and two-dimensional simulations of counter-propagating shear experiments at high energy densities at the National Ignition Facility. Physics of Plasmas, 2015, 22, .	0.7	8
100	Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Physics of Fluids, 2015, 27, .	1.6	35
101	Experimental study on the interaction of planar shock wave with polygonal helium cylinders. Shock Waves, 2015, 25, 347-355.	1.0	14
102	Richtmyer–Meshkov instability for elastic–plastic solids in converging geometries. Journal of the Mechanics and Physics of Solids, 2015, 76, 291-324.	2.3	23
103	Richtmyer-Meshkov Instability of the Explosive Heavy Gas Cloud. , 2015, , 1089-1094.		0
104	Ignition by Hot Transient Jets in Confined Mixtures of Gaseous Fuels and Air. Journal of Combustion, 2016, 2016, 1-13.	0.5	3
105	Laser generated Richtmyer–Meshkov instability and nonlinear wave paradigm in turbulent mixing: I. Central region of Gaussian spot. Laser and Particle Beams, 2016, 34, 687-704.	0.4	11
106	The Richtmyer–Meshkov instability of a †V' shaped air/ interface. Journal of Fluid Mechanics, 2016, 802, 186-202.	1.4	30
107	Laser–matter interactions: Inhomogeneous Richtmyer–Meshkov and Rayleigh–Taylor instabilities. Laser and Particle Beams, 2016, 34, 123-136.	0.4	12
108	Shock Mach number influence on reaction wave types and mixing in reactive shock–bubble interaction. Combustion and Flame, 2016, 174, 85-99.	2.8	32

#	Article	IF	CITATIONS
109	Richtmyer-Meshkov instability of a three-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">SF<mml:mn>6</mml:mn></mml:mi </mml:msub>-air interface with a minimum-surface feature. Physical Review E, 2016, 93, 013101.</mml:math 	0.8	13
110	Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability. Physical Review E, 2016, 93, 053112.	0.8	32
111	The Richtmyer-Meshkov instability of a "V―shaped air/helium interface subjected to a weak shock. Physics of Fluids, 2016, 28, .	1.6	24
112	On the pressure dependence of ignition and mixing in two-dimensional reactive shock-bubble interaction. Combustion and Flame, 2016, 163, 414-426.	2.8	25
113	Three-dimensional reacting shock–bubble interaction. Combustion and Flame, 2017, 181, 300-314.	2.8	28
114	Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Physics Reports, 2017, 723-725, 1-160.	10.3	295
115	Laser-generated Richtmyer–Meshkov and Rayleigh–Taylor instabilities. III. Near-peripheral region of Gaussian spot. Laser and Particle Beams, 2017, 35, 597-609.	0.4	7
116	Numerical study of variable density turbulence interaction with a normal shock wave. Journal of Fluid Mechanics, 2017, 829, 551-588.	1.4	39
117	On the interaction of a planar shock with a three-dimensional light gas cylinder. Journal of Fluid Mechanics, 2017, 828, 289-317.	1.4	52
118	Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Physics Reports, 2017, 720-722, 1-136.	10.3	306
119	Numerical simulation of multi-material mixing in an inclined interface Richtmyer-Meshkov instability. AIP Conference Proceedings, 2017, , .	0.3	2
120	Interaction of rippled shock wave with flat fast-slow interface. Physics of Fluids, 2018, 30, .	1.6	19
121	Appearance of deterministic mixing behavior from ensembles of fluctuating hydrodynamics simulations of the Richtmyer-Meshkov instability. Physical Review E, 2018, 97, 043111.	0.8	2
122	Review of experimental Richtmyer–Meshkov instability in shock tube: From simple to complex. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 2830-2849.	1.1	37
123	Interaction of planar shock wave with three-dimensional heavy cylindrical bubble. Physics of Fluids, 2018, 30, .	1.6	29
124	Long-term effect of Rayleigh–Taylor stabilization on converging Richtmyer–Meshkov instability. Journal of Fluid Mechanics, 2018, 849, 231-244.	1.4	40
125	Plane blast wave interaction with an elongated straight and inclined heat-generated inhomogeneity. Journal of Fluid Mechanics, 2018, 851, 245-267.	1.4	8
126	An elaborate experiment on the single-mode Richtmyer–Meshkov instability. Journal of Fluid Mechanics, 2018, 853,	1.4	58

#	Article	IF	CITATIONS
127	Numerical study on Rayleigh-Taylor effect on cylindrically converging Richtmyer-Meshkov instability. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	16
128	Richtmyer–Meshkov instability of an unperturbed interface subjected to a diffractedÂconvergent shock. Journal of Fluid Mechanics, 2019, 879, 448-467.	1.4	23
129	The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions. Journal of Fluid Mechanics, 2019, 871, 595-635.	1.4	43
130	Numerical study on the jet formation of simple-geometry heavy gas inhomogeneities. Physics of Fluids, 2019, 31, .	1.6	25
131	Uncertainty quantification of shock–bubble interaction simulations. Shock Waves, 2019, 29, 1191-1204.	1.0	2
132	Time-Resolved Measurements of Turbulent Mixing in Shock-Driven Variable-Density Flows. Scientific Reports, 2019, 9, 20315.	1.6	10
133	Effects of non-periodic portions of interface on Richtmyer–Meshkov instability. Journal of Fluid Mechanics, 2019, 861, 309-327.	1.4	24
134	Atwood number effects on the instability of a uniform interface driven by a perturbed shock wave. Physical Review E, 2019, 99, 013103.	0.8	9
135	Laser-generated Richtmyer–Meshkov and Rayleigh–Taylor instabilities in a semiconfined configuration: bubble dynamics in the central region of the Gaussian spot. Physica Scripta, 2019, 94, 015001.	1.2	10
136	A comparison of two- and three-dimensional single-mode reshocked Richtmyer–Meshkov instability growth. Physica D: Nonlinear Phenomena, 2020, 401, 132201.	1.3	15
137	Turbulence with Large Thermal and Compositional Density Variations. Annual Review of Fluid Mechanics, 2020, 52, 309-341.	10.8	57
138	Effects of transverse shock waves on early evolution of multi-mode chevron interface. Physics of Fluids, 2020, 32, .	1.6	16
139	Linear and nonlinear interactions between an interface and bulk vortices in Richtmyer–Meshkov instability. Physics of Plasmas, 2020, 27, .	0.7	6
140	Nonlinear dynamics of double-layer unstable interfaces with non-uniform velocity shear. Physics of Fluids, 2020, 32, .	1.6	8
141	Contribution of viscosity to the circulation deposition in the Richtmyer–Meshkov instability. Journal of Fluid Mechanics, 2020, 895, .	1.4	10
142	Nonlinear interaction between bulk point vortices and an unstable interface with nonuniform velocity shear such as Richtmyer–Meshkov instability. Physics of Plasmas, 2020, 27, .	0.7	7
143	Nonlinear interaction between bulk vortices and the interface in the incompressible Richtmyer-Meshkov instability. High Energy Density Physics, 2020, 36, 100834.	0.4	1
144	Numerical study of the Richtmyer–Meshkov instability of a three-dimensional minimum-surface featured SF6/air interface. Physics of Fluids, 2020, 32, .	1.6	14

ARTICLE IF CITATIONS # Vortex-sheet modeling of hydrodynamic instabilities produced by an oblique shock interacting with a 145 0.7 4 perturbed interface in the HED regime. Physics of Plasmas, 2021, 28, . Mechanism and modelling of the secondary baroclinic vorticity in the Richtmyer–Meshkov instability. 146 1.4 Journal of Fluid Mechanics, 2021, 911, . Scaling behavior of density gradient accelerated mixing rate in shock bubble interaction. Physical 147 1.0 9 Review Fluids, 2021, 6, . Delineation of the flow and mixing induced by Rayleigh–Taylor instability through tracers. Physics of 148 Fluids, 2021, 33, . Effects of the secondary baroclinic vorticity on the energy cascade in the Richtmyer–Meshkov 149 1.4 6 instability. Journal of Fluid Mechanics, 2021, 925, . Rayleigh–Taylor and Richtmyer–Meshkov instabilities: A journey through scales. Physica D: Nonlinear Phenomena, 2021, 423, 132838. 1.3 Motion of unstable two interfaces in a three-layer fluid with a non-zero uniform current. Fluid 151 0.6 4 Dynamics Research, 2021, 53, 055502. Buoyancy–Drag modelling of bubble and spike distances for single-shock Richtmyer–Meshkov mixing. 1.3 10 Physica D: Nonlinear Phenomena, 2020, 410, 132517. Vortex Dynamics of a Twiceâ€accelerated Interface in an Incompressible Ideal Fluid. Astrophysical 153 3.0 2 Journal, Supplement Series, 2000, 127, 389-394. 154 Dynamics of Fe Bubbles in Young Supernova Remnants. Astrophysical Journal, 2001, 557, 782-791. 1.6 48 Evolution of a shocked multimode interface with sharp corners. Physical Review Fluids, 2018, 3, . 155 1.0 9 Richtmyer-Meshkov instability of an imploding flow with a two-fluid plasma model. Physical Review 1.0 Fluids, 2020, 5, . Contribution of Mach number to the evolution of the Richtmyer-Meshkov instability induced by a 157 1.0 8 shock-accelerated square light bubble. Physical Review Fluids, 2021, 6, . Effects of Density Distribution on Reshocked Gas Cylinder., 2017, 1091-1096. Vortex bi-layers and the emergence of vortex projectiles in compressible accelerated inhomogeneous 161 0 flows (AIFs)., 2002, , 191-200. Large-Eddy Simulation of Richtmyer-Meshkov Instability., 2007, , 263-271. On mixing enhancement by secondary baroclinic vorticity in a shock–bubble interaction. Journal of 163 1.4 5 Fluid Mechanics, 2022, 931, . 164 Investigating the Unsteady Shock Bubble Multiphase Interactions., 2022, , .

#	Article	IF	CITATIONS
165	A hybrid adaptive multiresolution approach for the efficient simulation of reactive flows. Computer Physics Communications, 2022, 274, 108300.	3.0	0
166	Nonlinear evolution of two vortex sheets moving separately in uniform shear flows with opposite direction. Electronic Research Archive, 2022, 30, 1836-1863.	0.4	1
167	Linear stability of an impulsively accelerated density interface in an ideal two-fluid plasma. Physics of Fluids, 2022, 34, .	1.6	3
168	Numerical investigation on reacting shock-bubble interaction at a low Mach limit. Combustion and Flame, 2022, 241, 112085.	2.8	6
169	Design optimization for Richtmyer–Meshkov instability suppression at shock-compressed material interfaces. Physics of Fluids, 2022, 34, .	1.6	10
170	Temporal evolution of scalar modes in Richtmyer–Meshkov instability of inclined interface using high-speed PIV and PLIF measurements at 60 kHz. Measurement Science and Technology, 2022, 33, 105206.	1.4	1
171	Interactions between a propagating detonation wave and circular water cloud in hydrogen/air mixture. Combustion and Flame, 2022, 245, 112369.	2.8	4
172	High-amplitude effect on single-mode Richtmyer–Meshkov instability of a light–heavy interface. Physics of Fluids, 2023, 35, .	1.6	4