Surface energy exchange over a boreal snowpack: comp models

Hydrological Processes

13, 2395-2408

DOI: 10.1002/(sici)1099-1085(199910)13:14/15<2395::aid-hyp864>3.0.co;2-g

Citation Report

#	Article	IF	CITATIONS
1	Forest cover algorithms for estimating meteorological forcing in a numerical snow model. Hydrological Processes, 2000, 14, 3239-3256.	1.1	32
2	Test of a simple two-layer parameterisation to simulate the energy balance and temperature of a snow pack. Theoretical and Applied Climatology, 2001, 70, 65-79.	1.3	55
3	A semi-distributed approach to rainfall-runoff modelling—a case study in a snow affected catchment. Environmental Modelling and Software, 2001, 16, 481-493.	1.9	32
4	Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States. Water Resources Research, 2002, 38, 5-1-5-16.	1.7	214
5	Hydrological response to timber harvest in northern Idaho: implications for channel scour and persistence of salmonids. Hydrological Processes, 2008, 22, 3223-3235.	1.1	33
6	Development and comparison of Landsat radiometric and snowpack model inversion techniques for estimating geothermal heat flux. Remote Sensing of Environment, 2008, 112, 471-481.	4.6	34
7	Comparison of FASST and SNTHERM in Three Snow Accumulation Regimes. Journal of Hydrometeorology, 2008, 9, 1443-1463.	0.7	12
8	Chapter 6 Modeling Spatial Snow Pack Dynamics. Journal of Nano Education (Print), 2008, 3, 85-112.	0.3	4
9	Evaluation of the NOHRSC Snow Model (NSM) in a One-Dimensional Mode. Journal of Hydrometeorology, 2008, 9, 695-711.	0.7	26
10	Modelling impacts of climate change on snowmelt runoff generation and streamflow across western US mountain basins: a review of techniques and applications for water resource management. Progress in Physical Geography, 2009, 33, 614-633.	1.4	29
11	Spatial variation of snowmelt and sublimation in a highâ€elevation semiâ€desert basin of western Canada. Hydrological Processes, 2009, 23, 2611-2627.	1.1	28
12	Evaluation of forest snow processes models (SnowMIP2). Journal of Geophysical Research, 2009, 114, .	3.3	290
13	Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations. Hydrology and Earth System Sciences, 2010, 14, 535-543.	1.9	40
14	The sensitivity of snow-surface temperature equation to sloped terrain. Journal of Hydrology, 2011, 408, 308-313.	2.3	7
15	Distributed temperature-index snowmelt modelling for forested catchments. Journal of Hydrology, 2012, 420-421, 87-101.	2.3	48
16	Prediction of temperature variation within a snowpack in open areas and under different canopy covers. Hydrological Processes, 2012, 26, 4015-4028.	1.1	1
17	Large scale snow water equivalent status monitoring: comparison of different snow water products in the upper Colorado Basin. Hydrology and Earth System Sciences, 2013, 17, 5127-5139.	1.9	9
18	Modeling the snow surface temperature with a one-layer energy balance snowmelt model. Hydrology and Earth System Sciences, 2014, 18, 5061-5076.	1.9	14

CITATION REPORT

#	Article	IF	CITATIONS
19	Improving modeled snow albedo estimates during the spring melt season. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7311-7331.	1.2	19
20	Measurement of the physical properties of the snowpack. Reviews of Geophysics, 2015, 53, 481-544.	9.0	151
21	Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework. Hydrology and Earth System Sciences, 2015, 19, 3153-3179.	1.9	125
22	Evaluation of the Snow Thermal Model (SNTHERM) through Continuous in situ Observations of Snow's Physical Properties at the CREST-SAFE Field Experiment. Geosciences (Switzerland), 2015, 5, 310-333.	1.0	3
23	How Does Availability of Meteorological Forcing Data Impact Physically Based Snowpack Simulations?*. Journal of Hydrometeorology, 2016, 17, 99-120.	0.7	56
24	The effects of forest litter on snow energy budget in the Tianshan Mountains, China. Hydrological Processes, 2017, 31, 1602-1612.	1.1	4
25	Proof of Concept: Development of Snow Liquid Water Content Profiler Using CS650 Reflectometers at Caribou, ME, USA. Sensors, 2017, 17, 647.	2.1	7
26	Regional Snow Parameters Estimation for Largeâ€Domain Hydrological Applications in the Western United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5296-5313.	1.2	38
27	A simple regional snow hydrological process-based snow depth model and its application in the Upper Yangtze River Basin. Hydrology Research, 2019, 50, 672-690.	1.1	4
32	Characteristics of Snowmelt and Runoff in a Mountain Basin in Tohoku District, Japan. Hydrology, 2016, 4, 1.	0.5	0
33	Numerical estimation of thermal insulation performance of different coverage schemes at three places for snow storage. Advances in Climate Change Research, 2021, , .	2.1	3
34	GABLS4 intercomparison of snow models at Dome C in Antarctica. Cryosphere, 2022, 16, 2183-2202.	1.5	0
35	When and Where Are Multiple Snow Layers Important for Simulations of Snow Accumulation and Melt?. Water Resources Research, 2022, 58, .	1.7	1