Autosomal XX sex reversal caused by duplication of SO2

DOI: 10.1002/(sici)1096-8628(19991203)87:4<349::aid-ajmg13>3.0.co;2-n

Citation Report

#	Article	IF	CITATIONS
1	Sex chromosomes and sex-determining genes: insights from marsupials and monotremes. Cellular and Molecular Life Sciences, 1999, 55, 864.	2.4	32
2	Disorders of sexual differentiation. , 1999, 89, 175-175.		33
3	Syndromal (and nonsyndromal) forms of male pseudohermaphroditism. American Journal of Medical Genetics Part A, 1999, 89, 201-209.	2.4	12
4	Absence of SOX3 in the developing marsupial gonad is not consistent with a conserved role in mammalian sex determination. Genesis, 2000, 27, 145-152.	0.8	32
5	A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nature Genetics, 2000, 26, 490-494.	9.4	338
6	Female pseudohermaphroditism caused by caudal dysgenesis. Cytogenetic and Genome Research, 2000, 91, 296-299.	0.6	0
7	Deletions of 9p and the Quest for a Conserved Mechanism of Sex Determination. Molecular Genetics and Metabolism, 2000, 71, 397-404.	0.5	51
8	Exclusion of SOX9 as the Testis Determining Factor in Ellobius lutescens: Evidence for Another Testis Determining Gene Besides SRY and SOX9. Molecular Genetics and Metabolism, 2001, 72, 61-66.	0.5	23
9	Primate DAX1, SRY, and SOX9: Evolutionary Stratification of Sex-Determination Pathway. American Journal of Human Genetics, 2001, 68, 275-280.	2.6	21
10	Up-Regulation of WNT-4 Signaling and Dosage-Sensitive Sex Reversal in Humans. American Journal of Human Genetics, 2001, 68, 1102-1109.	2.6	299
11	Testis determination in mammals: more questions than answers. Molecular and Cellular Endocrinology, 2001, 179, 3-16.	1.6	58
12	Origin, differentiation and regulation of fetal and adult Leydig cells. Molecular and Cellular Endocrinology, 2001, 179, 47-74.	1.6	260
14	Invited Review: Sex-based differences in gene expression. Journal of Applied Physiology, 2001, 91, 2384-2388.	1.2	28
15	Two unbalanced translocations involving a common 6p25 region in two XY female patients. Clinical Genetics, 2001, 59, 52-57.	1.0	9
16	Sex determination: lessons from families and embryos. Clinical Genetics, 2001, 59, 207-215.	1.0	12
17	Regulation of male sexual development bySry andSox9. The Journal of Experimental Zoology, 2001, 290, 463-474.	1.4	61
18	Sex determining genes and sexual differentiation in a marsupial. The Journal of Experimental Zoology, 2001, 290, 586-596.	1.4	17
19	Contribution of domestic animals to the identification of new genes involved in sex determination. The Journal of Experimental Zoology, 2001, 290, 700-708.	1.4	19

		EPORT	
#	Article	IF	CITATIONS
20	Sox9 induces testis development in XX transgenic mice. Nature Genetics, 2001, 28, 216-217.	9.4	619
21	46,XX Sex Reversal. Archives of Medical Research, 2001, 32, 559-566.	1.5	55
22	Regulation of the Orphan Nuclear Receptor Steroidogenic Factor 1 by Sox Proteins. Molecular Endocrinology, 2002, 16, 529-540.	3.7	82
23	Concepts of Genetic and Hormonal Induction of Vertebrate Sexual Differentiation in the Twentieth Century, with Special Reference to the Brain. , 2002, , 105-135.		42
24	Sry Gene Expression In The Ovotestes Of XX True Hermaphrodites. Journal of Urology, 2002, 167, 1828-1831.	0.2	35
25	Aspectos Moleculares da Determinação e Diferenciação Sexual. Arquivos Brasileiros De Endocrinologia E Metabologia, 2002, 46, 433-443.	1.3	4
26	Sex Determination and Differentiation. , 2002, , 371-393.		4
27	Sry and sex determination: how lazy can it be?. Trends in Genetics, 2002, 18, 111-113.	2.9	45
28	SOX9 has both conserved and novel roles in marsupial sexual differentiation. Genesis, 2002, 33, 131-139.	0.8	28
29	The porcineSRY promoter is transactivated within a male genital ridge environment. Genesis, 2002, 33, 170-180.	0.8	25
30	Sry andSox9 expression during canine gonadal sex determination assayed by quantitative reverse transcription-polymerase chain reaction. Molecular Reproduction and Development, 2003, 65, 373-381.	1.0	28
31	The Molecular Action and Regulation of the Testis-Determining Factors, SRY (Sex-Determining Region) Tj ETQq1 2003, 24, 466-487.	1 0.78432 8.9	14 rgBT /Ove 217
32	Dimerization of SOX9 is required for chondrogenesis, but not for sex determination. Human Molecular Genetics, 2003, 12, 1755-1765.	1.4	139
33	Male Sex Determination and Prenatal Differentiation of the Testis. , 2003, 5, 1-23.		13
34	Mutations in the SRY, DAX1, SF1 and WNT4 genes in Brazilian sex-reversed patients. Brazilian Journal of Medical and Biological Research, 2004, 37, 145-150.	0.7	53
35	Long-range activation of Sox9 in Odd Sex (Ods) mice. Human Molecular Genetics, 2004, 13, 1213-1218.	1.4	92
36	The Effects of Estrogen on the Expression of Genes Underlying the Differentiation of Somatic Cells in the Murine Gonad. Endocrinology, 2004, 145, 3950-3960.	1.4	56
37	A Complex Interaction of Imprinted and Maternal-Effect Genes Modifies Sex Determination in Odd Sex (Ods) Mice. Genetics, 2004, 168, 1557-1562.	1.2	14

	CITATION REF	PORT	
#	Article	IF	CITATIONS
38	The endless quest for sex determination genes. Clinical Genetics, 2004, 67, 15-25.	1.0	69
39	Molecular mechanisms in male determination and germ cell differentiation. Cellular and Molecular Life Sciences, 2004, 61, 1907-1925.	2.4	21
40	46,XX sex reversal with partial duplication of chromosome arm 22q. American Journal of Medical Genetics Part A, 2004, 127A, 149-151.	2.4	63
41	Mitotic and meiotic instability of a telomere association involving the Y chromosome. American Journal of Medical Genetics Part A, 2004, 129A, 120-123.	2.4	13
42	Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development (Cambridge), 2004, 131, 1891-1901.	1.2	490
43	Fetal hormones and sexual differentiation. Obstetrics and Gynecology Clinics of North America, 2004, 31, 837-856.	0.7	35
44	FBF-1 and FBF-2 Regulate the Size of the Mitotic Region in the C. elegans Germline. Developmental Cell, 2004, 7, 697-707.	3.1	167
46	SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Developmental Biology, 2004, 274, 271-279.	0.9	305
48	A novel isoform of Vinexin, Vinexin γ, regulates Sox9 gene expression through activation of MAPK cascade in mouse fetal gonad. Genes To Cells, 2005, 10, 421-434.	0.5	34
49	Characterization of Pisrt1/Foxl2 in Ellobius lutescens and exclusion as sex-determining genes. Mammalian Genome, 2005, 16, 281-289.	1.0	13
50	Exclusion of Candidate Genes for Canine SRY-Negative XX Sex Reversal. Journal of Heredity, 2005, 96, 759-763.	1.0	20
51	Sox9 is sufficient for functional testis development producing fertile male mice in the absence of Sry. Human Molecular Genetics, 2005, 14, 1221-1229.	1.4	117
52	Three New 46,XX Male Patients: A Clinical, Cytogenetic and Molecular Analysis. Journal of Pediatric Endocrinology and Metabolism, 2005, 18, 197-203.	0.4	23
53	Lack of the SOX9 Gene Polymorphism in Sex Reversal Dogs (78,XX; SRY negative). Journal of Heredity, 2005, 96, 797-802.	1.0	24
54	From SRY to SOX9: Mammalian Testis Differentiation. Journal of Biochemistry, 2005, 138, 13-19.	0.9	66
55	Position Effects Due to Chromosome Breakpoints that Map â ¹ /4900 Kb Upstream and â ¹ /41.3 Mb Downstream of SOX9 in Two Patients with Campomelic Dysplasia. American Journal of Human Genetics, 2005, 76, 652-662.	2.6	178
56	Fine Mapping of Chromosome 17 Translocation Breakpoints ⩾900 Kb Upstream of SOX9 in Acampomelic Campomelic Dysplasia and a Mild, Familial Skeletal Dysplasia. American Journal of Human Genetics, 2005, 76, 663-671.	2.6	42
57	Over- and Underdosage of SOX3 Is Associated with Infundibular Hypoplasia and Hypopituitarism. American Journal of Human Genetics, 2005, 76, 833-849.	2.6	223

#	Article	IF	CITATIONS
58	Left-Right Asymmetry in the Sea Urchin Embryo Is Regulated by Nodal Signaling on the Right Side. Developmental Cell, 2005, 9, 147-158.	3.1	242
59	Intersex. Advances in Pediatrics, 2005, 52, 295-319.	0.5	6
60	Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Developmental Biology, 2005, 287, 111-124.	0.9	251
61	Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reproductive Biology and Endocrinology, 2005, 3, 63.	1.4	160
62	Mechanisms of Disease: normal and abnormal gonadal development and sex determination in mammals. Nature Reviews Urology, 2005, 2, 616-627.	1.4	17
63	Mechanisms of Disease: transcription factors in sex determination—relevance to human disorders of sex development. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 231-238.	2.9	24
64	Genetic mechanisms of fetal male undermasculinization: A background to the role of endocrine disruptors. Environmental Research, 2006, 100, 44-49.	3.7	14
65	Disrupted sex differentiation and feminization of man and domestic animals. Environmental Research, 2006, 100, 18-38.	3.7	30
66	The road to maleness: from testis to Wolffian duct. Trends in Endocrinology and Metabolism, 2006, 17, 223-228.	3.1	46
67	Embryology and Genetics of the Mammalian Gonads and Ducts. , 2006, , 313-336.		3
67 69		7.7	3
	Embryology and Genetics of the Mammalian Gonads and Ducts. , 2006, , 313-336. The makings of maleness: towards an integrated view of male sexual development. Nature Reviews	7.7 2.9	
69	Embryology and Genetics of the Mammalian Gonads and Ducts. , 2006, , 313-336. The makings of maleness: towards an integrated view of male sexual development. Nature Reviews Genetics, 2006, 7, 620-631.		187
69 70	 Embryology and Genetics of the Mammalian Gonads and Ducts. , 2006, , 313-336. The makings of maleness: towards an integrated view of male sexual development. Nature Reviews Genetics, 2006, 7, 620-631. Sex is a threshold dichotomy mimicking a single gene effect. Trends in Genetics, 2006, 22, 96-100. Comparative proteomic analysis to study molecular events during gonad development in mice. Genesis, 	2.9	187 24
69 70 71	Embryology and Cenetics of the Mammalian Gonads and Ducts. , 2006, , 313-336. The makings of maleness: towards an integrated view of male sexual development. Nature Reviews Genetics, 2006, 7, 620-631. Sex is a threshold dichotomy mimicking a single gene effect. Trends in Genetics, 2006, 22, 96-100. Comparative proteomic analysis to study molecular events during gonad development in mice. Genesis, 2006, 44, 168-176. Male pseudohermaphroditism and gonadal mosaicism in a 47,XY,+22 fetus. American Journal of Medical	2.9 0.8	187 24 17
69707172	 Embryology and Genetics of the Mammalian Gonads and Ducts. , 2006, , 313-336. The makings of maleness: towards an integrated view of male sexual development. Nature Reviews Genetics, 2006, 7, 620-631. Sex is a threshold dichotomy mimicking a single gene effect. Trends in Genetics, 2006, 22, 96-100. Comparative proteomic analysis to study molecular events during gonad development in mice. Genesis, 2006, 44, 168-176. Male pseudohermaphroditism and gonadal mosaicism in a 47,XY,+22 fetus. American Journal of Medical Genetics, Part A, 2006, 140A, 1768-1772. SRY-negative 46,XX male with normal genitals, complete masculinization and infertility. Molecular 	2.9 0.8 0.7	187 24 17 6
 69 70 71 72 73 	Embryology and Genetics of the Mammalian Gonads and Ducts. , 2006, , 313-336. The makings of maleness: towards an integrated view of male sexual development. Nature Reviews Genetics, 2006, 7, 620-631. Sex is a threshold dichotomy mimicking a single gene effect. Trends in Genetics, 2006, 22, 96-100. Comparative proteomic analysis to study molecular events during gonad development in mice. Genesis, 2006, 44, 168-176. Male pseudohermaphroditism and gonadal mosaicism in a 47,XY,+22 fetus. American Journal of Medical Genetics, Part A, 2006, 140A, 1768-1772. SRY-negative 46,XX male with normal genitals, complete masculinization and infertility. Molecular Human Reproduction, 2006, 12, 341-346. Complex mosaicism in sex reversed <i>SRY</i>	2.9 0.8 0.7 1.3	187 24 17 6 85

#	Article	IF	CITATIONS
77	Correct dosage of <i>Fog2</i> and <i>Gata4</i> transcription factors is critical for fetal testis development in mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14994-14999.	3.3	92
78	Linkage to CFA29 Detected in a Genome-Wide Linkage Screen of a Canine Pedigree Segregating Sry-Negative XX Sex Reversal. Journal of Heredity, 2007, 98, 438-444.	1.0	19
79	Extended Pedigree with Multiple Cases of XX Sex Reversal in the Absence of <i>SRY</i> and of a Mutation at the <i>SOX9</i> Locus. Sexual Development, 2007, 1, 24-34.	1.1	33
80	SOX9cre1, a cis-acting regulatory element located 1.1ÂMb upstream of SOX9, mediates its enhancement through the SHH pathway. Human Molecular Genetics, 2007, 16, 1143-1156.	1.4	68
81	Mapping platypus SOX genes; autosomal location of SOX9 excludes it from sex determining role. Cytogenetic and Genome Research, 2007, 116, 232-234.	0.6	17
82	SOX9 Regulates Prostaglandin D Synthase Gene Transcription in Vivo to Ensure Testis Development. Journal of Biological Chemistry, 2007, 282, 10553-10560.	1.6	203
83	Mammalian sex—Origin and evolution of the Y chromosome and SRY. Seminars in Cell and Developmental Biology, 2007, 18, 389-400.	2.3	132
84	Sry and the hesitant beginnings of male development. Developmental Biology, 2007, 302, 13-24.	0.9	95
85	Wnt4 action in gonadal development and sex determination. International Journal of Biochemistry and Cell Biology, 2007, 39, 31-43.	1.2	105
88	<i>Ellobius lutescens</i> : Sex Determination and Sex Chromosome. Sexual Development, 2007, 1, 211-221.	1.1	46
89	Genetics of sexual development: A new paradigm. American Journal of Medical Genetics, Part A, 2007, 143A, 3054-3068.	0.7	59
90	Three loci on mouse chromosome 5 and 10 modulate sex determination in XX <i>Ods</i> /+ mice. Genesis, 2007, 45, 452-455.	0.8	2
91	Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chromosome Research, 2007, 15, 949-959.	1.0	66
93	Male-to-female sex reversal associated with an â^1⁄4250Âkb deletion upstream of NROB1 (DAX1). Human Genetics, 2007, 122, 63-70.	1.8	59
94	Sex determination in mammals — Before and after the evolution of SRY. Cellular and Molecular Life Sciences, 2008, 65, 3182-3195.	2.4	122
95	Sexâ€specific expression of SOX9 during gonadogenesis in the amphibian <i>Xenopus tropicalis</i> . Developmental Dynamics, 2008, 237, 2996-3005.	0.8	40
96	Molecular analysis of the Y chromosome in XX sex-reversed patients. Russian Journal of Genetics, 2008, 44, 197-201.	0.2	3
97	Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature, 2008, 453, 930-934.	13.7	837

#	Article	IF	CITATIONS
98	The biology of infertility: research advances and clinical challenges. Nature Medicine, 2008, 14, 1197-1213.	15.2	797
99	Gene dosage imbalances in patients with 46,XY gonadal DSD detected by an inâ€houseâ€designed synthetic probe set for multiplex ligationâ€dependent probe amplification analysis. Clinical Genetics, 2008, 73, 453-464.	1.0	41
100	Human SRY inhibits β-catenin-mediated transcription. International Journal of Biochemistry and Cell Biology, 2008, 40, 2889-2900.	1.2	63
101	Nonautonomous Sex Determination Controls Sexually Dimorphic Development of the Drosophila Gonad. Developmental Cell, 2008, 14, 275-286.	3.1	59
102	Mutations in the <i>RSPO1</i> Coding Region Are Not the Main Cause of Canine <i>SRY</i> -Negative XX Sex Reversal in Several Breeds. Sexual Development, 2008, 2, 84-95.	1.1	21
103	SRY and the Standoff in Sex Determination. Molecular Endocrinology, 2008, 22, 1-9.	3.7	126
104	XX Maleness and XX True Hermaphroditism inSRY-Negative Monozygotic Twins: Additional Evidence for a Common Origin. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 339-343.	1.8	44
105	Review and Update: Genomic and Molecular Advances in Sex Determination and Differentiation in Small Animals. Reproduction in Domestic Animals, 2009, 44, 40-46.	0.6	26
106	Differential and overlapping expression pattern of SOX2 and SOX9 in inner ear development. Gene Expression Patterns, 2009, 9, 444-453.	0.3	73
107	Ex vivo magnetofection: A novel strategy for the study of gene function in mouse organogenesis. Developmental Dynamics, 2009, 238, 956-964.	0.8	19
108	Genetic mechanisms underlying male sex determination in mammals. Journal of Applied Genetics, 2009, 50, 347-360.	1.0	40
109	Is hypospadias a genetic, endocrine or environmental disease, or still an unexplained malformation?. Journal of Developmental and Physical Disabilities, 2009, 32, 187-197.	3.6	119
110	46, XX male sex reversal syndrome: a case report and review of the genetic basis. Andrologia, 2009, 41, 59-62.	1.0	39
111	The Mammalian Ovary from Genesis to Revelation. Endocrine Reviews, 2009, 30, 624-712.	8.9	630
112	Somatic Sex Reprogramming of Adult Ovaries to Testes by FOXL2 Ablation. Cell, 2009, 139, 1130-1142.	13.5	815
113	Different sox17 transcripts during sex differentiation in sea bass, Dicentrarchus labrax. Molecular and Cellular Endocrinology, 2009, 299, 240-251.	1.6	31
114	The PGD2 pathway, independently of FGF9, amplifies SOX9 activity in Sertoli cells during male sexual differentiation. Development (Cambridge), 2009, 136, 1813-1821.	1.2	165
115	Antagonism of the testis- and ovary-determining pathways during ovotestis development in mice. Mechanisms of Development, 2009, 126, 324-336.	1.7	102

#	Article	IF	CITATIONS
117	Classical and Molecular Cytogenetics of Disorders of Sex Development in Domestic Animals. Cytogenetic and Genome Research, 2009, 126, 110-131.	0.6	71
118	Disorders of Sex Development. , 2009, , 367-393.		6
119	Global Survey of Protein Expression during Gonadal Sex Determination in Mice. Molecular and Cellular Proteomics, 2009, 8, 2624-2641.	2.5	17
120	De novo 12;17 translocation upstream of <i>SOX9</i> resulting in 46,XX testicular disorder of sex development. American Journal of Medical Genetics, Part A, 2010, 152A, 422-426.	0.7	33
121	FOXL2 <i>versus</i> SOX9: A lifelong "battle of the sexes― BioEssays, 2010, 32, 375-380.	1.2	82
122	Sex determination and disorders of sex development according to the revised nomenclature and classification in 46,XX individuals. Hormones, 2010, 9, 218-231.	0.9	55
123	Case Report Molecular characterisation of a der(Y)t(Xp;Yp) with Xp functional disomy and sex reversal. Genetics and Molecular Research, 2010, 9, 1815-1823.	0.3	2
124	Disorders of Sex Development. , 2010, , 227-243.		3
125	Identification of De Novo Copy Number Variants Associated with Human Disorders of Sexual Development. PLoS ONE, 2010, 5, e15392.	1.1	131
126	Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. Human Molecular Genetics, 2010, 19, 506-516.	1.4	149
127	New Technologies for the Identification of Novel Genetic Markers of Disorders of Sex Development (DSD). Sexual Development, 2010, 4, 213-224.	1.1	53
128	<i>Sry</i> : the master switch in mammalian sex determination. Development (Cambridge), 2010, 137, 3921-3930.	1.2	281
129	The Embryology of Gender. Journal of LGBT Youth, 2010, 7, 310-319.	1.3	3
130	A Case of Agonadism, Skeletal Malformations, Bicuspid Aortic Valve, and Delayed Development with a 16p13.3 Duplication Including <i>GNG13 </i> and <i>SOX8</i> Upstream Enhancers: Are Either, Both or Neither Involved in the Phenotype?. Molecular Syndromology, 2010, 1, 185-191.	0.3	14
131	Shuttling of SOX proteins. International Journal of Biochemistry and Cell Biology, 2010, 42, 411-416.	1.2	57
132	Forgetting RSPO1. Fertility and Sterility, 2010, 94, e39.	0.5	1
133	Hypospadias: Etiology and Current Research. Urologic Clinics of North America, 2010, 37, 159-166.	0.8	43
134	Disorders of sex development. Seminars in Fetal and Neonatal Medicine, 2011, 16, 119-127.	1.1	31

#	Article	IF	CITATIONS
135	Identification of New Susceptibility Regions for X;Y Translocations in Patients with Testicular Disorder of Sex Development. Sexual Development, 2011, 5, 1-6.	1.1	6
136	Understanding the role of SOX9 in acquired diseases: lessons from development. Trends in Molecular Medicine, 2011, 17, 166-174.	3.5	111
137	Hypospadias: Interactions between environment and genetics. Molecular and Cellular Endocrinology, 2011, 335, 89-95.	1.6	91
138	Transient development of ovotestes in XX Sox9 transgenic mice. Developmental Biology, 2011, 349, 65-77.	0.9	10
139	XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes. Developmental Biology, 2011, 354, 111-122.	0.9	54
141	Small micromeres contribute to the germline in the sea urchin. Development (Cambridge), 2011, 138, 237-243.	1.2	78
142	Evolutionary transitions between mechanisms of sex determination in vertebrates. Biology Letters, 2011, 7, 443-448.	1.0	92
143	Robertsonian Translocation in a Sex Reversal Dog (XX, <i>SRY </i> negative) May Indicate that the Causative Mutation for This Intersexuality Syndrome Resides on Canine Chromosome 23 (CFA23). Sexual Development, 2011, 5, 141-146.	1.1	20
144	A 3-year-old boy with ovotestes: gender reassignment and surgical management. Journal of Pediatric Endocrinology and Metabolism, 2011, 24, 587-9.	0.4	1
145	Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development. Journal of Medical Genetics, 2011, 48, 825-830.	1.5	162
146	Transcription Factors ER71/ETV2 and SOX9 Participate in a Positive Feedback Loop in Fetal and Adult Mouse Testis. Journal of Biological Chemistry, 2012, 287, 23657-23666.	1.6	32
147	Association of 8q22.3 locus in Chinese Han with idiopathic premature ovarian failure (POF). Human Molecular Genetics, 2012, 21, 430-436.	1.4	29
148	Duplication of SOX9 is not a common cause of 46,XX testicular or 46,XX ovotesticular DSD. Journal of Pediatric Endocrinology and Metabolism, 2012, 25, 121-3.	0.4	9
150	Testis development requires the repression of Wnt4 by Fgf signaling. Developmental Biology, 2012, 370, 24-32.	0.9	161
151	Oncogenicity of the Developmental Transcription Factor Sox9. Cancer Research, 2012, 72, 1301-1315.	0.4	180
152	XX SRY-Negative True Hermaphrodism in Two Dogs: Clinical, Morphological, Genetic and Cytogenetic Studies. Sexual Development, 2012, 6, 135-142.	1.1	4
153	The Molecular Basis of Gonadal Development and Disorders of Sex Development. , 2012, , 1-9.		3
154	Analysis of Medaka sox9 Orthologue Reveals a Conserved Role in Germ Cell Maintenance. PLoS ONE, 2012, 7, e29982.	1.1	87

ARTICLE IF CITATIONS The molecular and cellular basis of gonadal sex reversal in mice and humans. Wiley Interdisciplinary 155 5.9 51 Reviews: Developmental Biology, 2012, 1, 559-577. Molecular Mechanisms of Sexual Development. Sexual Development, 2012, 6, 7-17. 1.1 24 Sequence Variations in Equine Candidate Genes For XX and XY Inherited Disorders of Sexual 157 0.6 6 Development. Reproduction in Domestic Animals, 2012, 47, 827-834. Mammalian sex determinationâ€"insights from humans and mice. Chromosome Research, 2012, 20, 139 215-238. The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9gene: two 159 novel de novo balanced translocations associated with acampomelic campomelic dysplasia. BMC 2.1 33 Medical Genetics, 2013, 14, 50. Translational Genetics for Diagnosis of Human Disorders of Sex Development. Annual Review of 2.5 Genomics and Human Genetics, 2013, 14, 371-392. 161 Disorders of the Gonads, Genital Tract, and Genitalia., 2013, , 1-45. 3 Mammalian Sex Determination and Gonad Development. Current Topics in Developmental Biology, 2013, 1.0 37 106, 89-121. Building the mammalian testis: origins, differentiation, and assembly of the component cell 163 2.7 326 populations. Genes and Development, 2013, 27, 2409-2426. A rare case of 46, XX SRY-negative male with a â^¼74-kb duplication in a region upstream of SOX9. European 164 Journal of Medical Genetics, 2013, 56, 695-698. A case report of an incidental finding of a 46,XX, SRY-negative male with masculine phenotype during standard fertility workup with review of the literature and proposed immediate and long-term 165 0.5 9 management guidance. Fertility and Sterility, 2013, 99, 1273-1276. Genetic Control of Testis Development. Sexual Development, 2013, 7, 21-32. 166 1.1 Clinical, cytogenetic, and molecular analysis with 46,XX male sex reversal syndrome: case reports. 167 1.2 21 Journal of Assisted Reproduction and Genetics, 2013, 30, 431-435. Gene Mutations Associated with Anomalies of Human Gonad Formation. Sexual Development, 2013, 7, 168 1.1 36 126-146. 169 Disorders of sex development: new genes, new concepts. Nature Reviews Endocrinology, 2013, 9, 79-91. 150 4.3 Chromosome conformation capture-on-chip analysis of long-range cis-interactions of the SOX9 171 23 promoter. Chromosome Research, 2013, 21, 781-788. A far-upstream (â⁻70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during 172 6.5 80 development and adult regeneration. Nucleic Acids Research, 2013, 41, 4459-4469. Changes in gonadal gene network by exogenous ligands in temperature-dependent sex determination. 173 1.1 Journal of Molecular Endocrinology, 2013, 50, 389-400.

#	Article	IF	CITATIONS
174	Inherited human sex reversal due to impaired nucleocytoplasmic trafficking of SRY defines a male transcriptional threshold. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3567-76.	3.3	26
175	64, <scp>XX</scp> , <scp> SRY</scp> â€negative, Testicular <scp>DSD</scp> Syndrome in a <scp>L</scp> usitano Horse. Reproduction in Domestic Animals, 2013, 48, e33-7.	0.6	3
177	SOX9 Duplication Linked to Intersex in Deer. PLoS ONE, 2013, 8, e73734.	1.1	18
178	A Genome-Wide Association Study Points out the Causal Implication of SOX9 in the Sex-Reversal Phenotype in XX Pigs. PLoS ONE, 2013, 8, e79882.	1.1	17
179	Mutations in the Testis-Specific Enhancer of SOX9 in the SRY Independent Sex-Determining Mechanism in the Genus Tokudaia. PLoS ONE, 2014, 9, e108779.	1.1	20
180	Investigation of mutations in the SRY, SOX9, and DAX1 genes in sex reversal patients from the Sichuan region of China. Genetics and Molecular Research, 2014, 13, 1518-1526.	0.3	8
181	The versatile functions of Sox9 in development, stem cells, and human diseases. Genes and Diseases, 2014, 1, 149-161.	1.5	270
182	Disorders of Sex Development. , 2014, , 351-376.e5.		5
183	Disorders of sex development: a genetic study of patients in a multidisciplinary clinic. Endocrine Connections, 2014, 3, 180-192.	0.8	17
184	Disruption of long-range gene regulation in human genetic disease: a kaleidoscope of general principles, diverse mechanisms and unique phenotypic consequences. Human Genetics, 2014, 133, 815-845.	1.8	32
185	The Genetics of Disorders of Sex Development in Humans. Sexual Development, 2014, 8, 262-272.	1.1	83
186	Disorders of Sex Development (DSDs): An Update. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1503-1509.	1.8	92
187	Characterising Novel Pathways in Testis Determination Using Mouse Genetics. Sexual Development, 2014, 8, 199-207.	1.1	23
188	Molecular mechanisms involved in mammalian primary sex determination. Journal of Molecular Endocrinology, 2014, 53, R21-R37.	1.1	37
189	The Potential Role of SRY in Epigenetic Gene Regulation During Brain Sexual Differentiation in Mammals. Advances in Genetics, 2014, 86, 135-165.	0.8	25
190	DSDs: genetics, underlying pathologies and psychosexual differentiation. Nature Reviews Endocrinology, 2014, 10, 603-615.	4.3	93
191	Regulation of Sex Determination in Mice by a Non-coding Genomic Region. Genetics, 2014, 197, 885-897.	1.2	14
192	A duplication upstream of SOX9 was not positively correlated with the SRY-negative 46,XX testicular disorder of sex development: A case report and literature review. Molecular Medicine Reports, 2015, 12, 5659-5664.	1.1	9

	CITATION REF	PORT	
#	Article	IF	Citations
193	Genes and Gene Defects Affecting Gonad Development and Primary Sex Determination \hat{a} , 2015, , .		2
194	Sry-Independent Overexpression of Sox9 Supports Spermatogenesis and Fertility in the Mouse1. Biology of Reproduction, 2015, 93, 141.	1.2	11
195	Copy number variation of two separate regulatory regions upstream of <i>SOX9</i> causes isolated 46,XY or 46,XX disorder of sex development. Journal of Medical Genetics, 2015, 52, 240-247.	1.5	88
196	Refining the regulatory region upstream of <i>SOX9</i> associated with 46,XX testicular disorders of Sex Development (DSD). American Journal of Medical Genetics, Part A, 2015, 167, 1851-1858.	0.7	53
197	Disorders of Sexual Development. Clinics in Perinatology, 2015, 42, 395-412.	0.8	15
198	Gonadal Identity in the Absence of Pro-Testis Factor SOX9 and Pro-Ovary Factor Beta-Catenin in Mice1. Biology of Reproduction, 2015, 93, 35.	1.2	59
199	Gonadal development and germ cell tumors in mouse and humans. Seminars in Cell and Developmental Biology, 2015, 45, 114-123.	2.3	18
200	46,XY Gonadal Dysgenesis due to a Homozygous Mutation in Desert Hedgehog (<i>DHH</i>) Identified by Exome Sequencing. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1022-E1029.	1.8	59
202	Sex Determination and Differentiation. , 2015, , 267-292.		2
203	Testis development in the absence of SRY: chromosomal rearrangements at SOX9 and SOX3. European Journal of Human Genetics, 2015, 23, 1025-1032.	1.4	59
204	Perspectives in Pediatric Pathology, Chapter 16. Klinefelter Syndrome and other Anomalies in X and Y Chromosomes. Clinical and Pathological Entities. Pediatric and Developmental Pathology, 2016, 19, 259-277.	0.5	1
205	Disorders of Sex Development. , 2016, , 259-278.		0
206	Pediatric Disorders of Sex Development. , 2016, , 893-963.		12
207	A Rare Case of Testicular Disorder of Sex Development in a Dog (78,XX;) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Number Variation in the Region Upstream of the <i>SOX9</i> Gene. Sexual Development, 2016, 10, 74-78.	Tf 50 232 1.1	Td (<b&g 16</b&g
208	Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biology, 2016, 17, 243.	3.8	241
209	Disorders of Sex Development with Testicular Differentiation in SRY-Negative 46,XX Individuals: Clinical and Genetic Aspects. Sexual Development, 2016, 10, 1-11.	1.1	56
210	Sex Reversal in Non-Human Placental Mammals. Sexual Development, 2016, 10, 326-344.	1.1	31
211	Molecular mechanisms associated with 46,XX disorders of sex development. Clinical Science, 2016, 130, 421-432.	1.8	16

#	Article	IF	CITATIONS
212	The Gonadal Supporting Cell Lineage and Mammalian Sex Determination: The Differentiation of Sertoli and Granulosa Cells. Results and Problems in Cell Differentiation, 2016, 58, 47-66.	0.2	14
213	Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science, 2016, 351, 514-516.	6.0	46
214	Genetic Basis of Gonadal and Genital Development. , 2016, , 2051-2085.e7.		3
215	MECHANISMS IN ENDOCRINOLOGY: Aberrations of the X chromosome as cause of male infertility. European Journal of Endocrinology, 2017, 177, R249-R259.	1.9	18
216	In mammalian foetal testes, SOX9 regulates expression of its target genes by binding to genomic regions with conserved signatures. Nucleic Acids Research, 2017, 45, 7191-7211.	6.5	77
217	Recent findings on the genetics of disorders of sex development. Current Opinion in Urology, 2017, 27, 1-6.	0.9	6
218	A duplication in a patient with 46, <scp>XX</scp> ovoâ€ŧesticular disorder of sex development refines the <i><scp>SOX9</scp></i> testisâ€specific regulatory region to 24 kb. Clinical Genetics, 2017, 92, 347-349.	1.0	23
219	In Vivo Characterization of an AHR-Dependent Long Noncoding RNA Required for Proper <i>Sox9b</i> Expression. Molecular Pharmacology, 2017, 91, 609-619.	1.0	39
220	SOX9: A genomic view of tissue specific expression and action. International Journal of Biochemistry and Cell Biology, 2017, 87, 18-22.	1.2	56
221	AnomalÃas de la diferenciación sexual. EMC - GinecologÃa-Obstetricia, 2017, 53, 1-11.	0.0	0
222	Polymorphisms in the SOX9 region and testicular disorder of sex development (38,XX; SRY -negative) in pigs. Livestock Science, 2017, 203, 48-53.	0.6	15
223	Altered SOX9 genital tubercle enhancer region in hypospadias. Journal of Steroid Biochemistry and Molecular Biology, 2017, 170, 28-38.	1.2	10
224	Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development?. Seminars in Cell and Developmental Biology, 2017, 63, 13-22.	2.3	77
225	NR5A1 is a novel disease gene for 46,XX testicular and ovotesticular disorders of sex development. Genetics in Medicine, 2017, 19, 367-376.	1.1	87
226	The biology of germ cell tumors in disorders of sex development. Clinical Genetics, 2017, 91, 292-301.	1.0	42
227	46,XX males: a case series based on clinical and genetics evaluation. Andrologia, 2017, 49, e12710.	1.0	9
228	Coexistence of Trisomy 13 and SRY (â^') XX Ovotesticular Disorder of Sex Development. Fetal and Pediatric Pathology, 2017, 36, 445-451.	0.4	2
229	Disorders of Sex Development in Males: Molecular Genetics, Epigenetics, Gender Identity, and Cognition. , 2017, , 59-103.		1

#	Article	IF	CITATIONS
230	Genetic Defects of Female Sexual Differentiation. , 2017, , 105-134.		0
231	XX Disorder of Sex Development is associated with an insertion on chromosome 9 and downregulation of RSPO1 in dogs (Canis lupus familiaris). PLoS ONE, 2017, 12, e0186331.	1.1	12
232	Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone. PLoS Genetics, 2017, 13, e1006520.	1.5	52
233	Normal and Variant Sex Development. , 2017, , 1-16.		1
234	Sex determination and maintenance: the role of DMRT1 and FOXL2. Asian Journal of Andrology, 2017, 19, 619.	0.8	92
235	Duplication of SOX9 associated with 46,XX ovotesticular disorder of sex development. Reproductive BioMedicine Online, 2018, 37, 107-112.	1.1	11
236	Management of Infants Born with Disorders/Differences of Sex Development. , 2018, , 617-639.		1
237	A brief history of sex determination. Molecular and Cellular Endocrinology, 2018, 468, 3-10.	1.6	20
238	Autosomal single-gene disorders involved in human infertility. Saudi Journal of Biological Sciences, 2018, 25, 881-887.	1.8	18
239	Untangling the Gordian Knot of Human Sexuality. , 2018, 2, 62-67.	0.8	6
241	The Wilms' tumour 1 gene as a factor in non-syndromic hypospadias: evidence and controversy. Pathology, 2018, 50, 377-381.	0.3	2
242	Molecular genetics of hypospadias and cryptorchidism recent developments. Clinical Genetics, 2019, 95, 122-131.	1.0	46
243	46,XX Testicular Disorder of Sex Development (DSD): A Case Report and Systematic Review. Medicina (Lithuania), 2019, 55, 371.	0.8	34
244	Genetic evaluation of disorders of sex development. Current Opinion in Endocrinology, Diabetes and Obesity, 2019, 26, 54-59.	1.2	5
245	Testis Development. Endocrine Reviews, 2019, 40, 857-905.	8.9	182
246	The regulation of Sox9 expression in the gonad. Current Topics in Developmental Biology, 2019, 134, 223-252.	1.0	43
247	The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Scientific Reports, 2019, 9, 17033.	1.6	12
248	Molecular Characterization of XX Maleness. International Journal of Molecular Sciences, 2019, 20, 6089.	1.8	25

#	Article	IF	Citations
249	<i>NR5A1</i> gene variants repress the ovarian-specific WNT signaling pathway in 46,XX disorders of sex development patients. Human Mutation, 2019, 40, 207-216.	1.1	24
250	A comparative transcriptomic study on developmental gonads provides novel insights into sex change in the protandrous black porgy (Acanthopagrus schlegelii). Genomics, 2019, 111, 277-283.	1.3	16
251	Threeâ€dimensional genome architecture in health and disease. Clinical Genetics, 2019, 95, 189-198.	1.0	6
252	Nonneoplastic Diseases of the Testis. , 2020, , 549-730.e81.		2
253	Development and Function of the Ovaries and Testes in the Fetus and Neonate. , 2020, , 625-641.		0
254	Disorders of Sex Development. , 2020, , 841-867.		1
255	Disorders of Sexual Development: Current Status and Progress in the Diagnostic Approach. Current Urology, 2020, 13, 169-178.	0.4	33
256	Transcriptional Regulation of Vih by Oct4 and Sox9 in Scylla paramamosain. Frontiers in Endocrinology, 2020, 11, 650.	1.5	6
257	An InÂVitro Differentiation Protocol for Human Embryonic Bipotential Gonad and Testis Cell Development. Stem Cell Reports, 2020, 15, 1377-1391.	2.3	22
258	46,XX Testicular Disorders of Sex Development With DMD Gene Mutation: First Case Report Identified Prenatally by Integrated Analyses in China. Frontiers in Genetics, 2020, 10, 1350.	1.1	7
259	What determines biological sex?. , 2020, , 1-23.		2
260	Disorders of sex development. , 2020, , 25-36.		0
261	The regulatory landscapes of developmental genes. Development (Cambridge), 2020, 147, .	1.2	48
262	Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiological Reviews, 2021, 101, 1237-1308.	13.1	122
263	Heterozygous deletion of <i>Sox9</i> in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans. Human Molecular Genetics, 2021, 29, 3781-3792.	1.4	5
264	<i>SRY</i> â€negative 46,XX testicular/ovotesticular DSD: Longâ€term outcomes and early blockade of gonadotropic axis. Clinical Endocrinology, 2021, 94, 667-676.	1.2	10
265	Disorders of sexual development. , 2021, , 581-638.		0
266	<i>Sox9</i> is indispensable for testis differentiation in the red-eared slider turtle, a reptile with temperature-dependent sex determination. Zoological Research, 2021, 42, 721-725.	0.9	8

		CITATION REPORT		
#	Article		IF	Citations
267	Diverse Regulation but Conserved Function: SOX9 in Vertebrate Sex Determination. G	enes, 2021, 12, 486.	1.0	33
268	The 46, XX Ovotesticular Disorder of Sex Development With Xq27.1q27.2 Duplication SOX3 Gene: A Rare Case Report and Literature Review. Frontiers in Pediatrics, 2021, 9,	Involving the 682846.	0.9	4
269	Variance in expression and localization of sex-related genes CgDsx, CgBHMG1 and CgI diploid and triploid Pacific oyster Crassostrea gigas gonad differentiation. Gene, 2021,	⁻ oxl2 during 790, 145692.	1.0	15
270	Identification of the first promoterâ€specific gainâ€ofâ€function SOX9 missense varia patient with 46, XX ovotesticular disorder of sex development. American Journal of Me Part A, 2021, 185, 1067-1075.		0.7	2
271	Development of the Reproductive Systems. , 0, , 153-170.			5
272	Review disorders of sex development: The evolving role of genomics in diagnosis and g Birth Defects Research Part C: Embryo Today Reviews, 2016, 108, 337-350.	ene discovery.	3.6	24
273	The Role of Genes and Hormones in Sexual Differentiation. , 2006, , 1-16.			1
274	Genetic Disorders of Sex Differentiation. Advances in Experimental Medicine and Biolo 91-99.	gy, 2011, 707,	0.8	3
275	Genetics of Male Fertility. Methods in Molecular Biology, 2014, 1154, 25-37.		0.4	22
276	Position Effects. , 2006, , 357-369.			2
277	Sry, Sox9 and mammalian sex determination. Exs, 2001, , 25-56.		1.4	28
278	Sex chromosomes and sex-determining genes: insights from marsupials and monotren 71-95.	nes. Exs, 2001, ,	1.4	11
279	Compact but Complex â \in " The Marsupial Y Chromosome. , 2010, , 207-228.			1
280	Non-neoplastic diseases of the testis. , 2008, , 614-755.			15
281	Metabolic and endocrine disorders. , 2011, , 1497-1620.			2
282	Genetics of Sex Determination and Differentiation. , 2004, , 1935-1941.			3
283	Disorders of Sex Development. , 2011, , 868-934.			23
284	Knockout of the HMG domain of the porcine SRY gene causes sex reversal in gene-edit Proceedings of the National Academy of Sciences of the United States of America, 202		3.3	24

	CHAHON		
#	Article	IF	CITATIONS
285	Change of the Heterogametic Sex From Male to Female in the Frog. Genetics, 2003, 164, 613-620.	1.2	62
286	Sry Gene Expression In The Ovotestes Of XX True Hermaphrodites. Journal of Urology, 2002, , 1828-1831.	0.2	3
288	Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation. JCI Insight, 2019, 4, .	2.3	47
289	Identification of SOX3 as an XX male sex reversal gene in mice and humans. Journal of Clinical Investigation, 2011, 121, 328-341.	3.9	234
290	A zebrafish <i>sox9</i> gene required for cartilage morphogenesis. Development (Cambridge), 2002, 129, 5065-5079.	1.2	252
291	Fgf9 and Wnt4 Act as Antagonistic Signals to Regulate Mammalian Sex Determination. PLoS Biology, 2006, 4, e187.	2.6	469
292	Failure of SOX9 Regulation in 46XY Disorders of Sex Development with SRY, SOX9 and SF1 Mutations. PLoS ONE, 2011, 6, e17751.	1.1	60
293	Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis. PLoS ONE, 2011, 6, e17793.	1.1	116
294	Sox9 Duplications Are a Relevant Cause of Sry-Negative XX Sex Reversal Dogs. PLoS ONE, 2014, 9, e101244.	1.1	39
295	Painful ovulation in a 46,XX SRY â^'ve adult male with SOX9 duplication. Endocrinology, Diabetes and Metabolism Case Reports, 2017, 2017, .	0.2	5
296	Hormone and genetic study in male to female transsexual patients. Journal of Endocrinological Investigation, 2013, 36, 550-7.	1.8	7
297	A Duplication Upstream of SOX9 Associated with <i>SRY</i> Negative 46,XX Ovotesticular Disorder of Sex Development: A Case Report. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2020, 12, 308-314.	0.4	4
298	A Korean boy with 46,XX testicular disorder of sex development caused bySOX9duplication. Annals of Pediatric Endocrinology and Metabolism, 2014, 19, 108.	0.8	15
299	Sox8 and Sox9 act redundantly for ovarian-to-testicular fate reprogramming in the absence of R-spondin1 in mouse sex reversals. ELife, 2020, 9, .	2.8	13
300	SRY and NR5A1 gene mutation in Algerian children and adolescents with DSD and testicular dysgenesis. African Health Sciences, 2021, 21, 1491-1497.	0.3	1
303	Gonads–Müllerian Ducts. , 2004, , 345-357.		0
304	Molecular genetics of gonad development. , 2004, , 9-21.		0
305	Development of the Reproductive Tract. , 2005, , 1-21.		0

	CITATION I	CITATION REPORT	
#	Article	IF	CITATIONS
306	Gonadoblastoma in a Patient with 46XY Gonadal Dysgenesis. Acta Endocrinologica, 2006, 2, 227-238.	0.1	0
307	The Reproductive System. , 2007, , 651-661.		1
308	Disorders of sexual differentiation. , 2008, , 62-96.		0
309	Genetic Basis of Gonadal and Genital Development. , 2010, , 2148-2190.		0
310	10.1007/s11177-008-2012-4. , 2010, 44, 197.		0
311	Ovotesticular disorder of sexual development due to gonosomal mosaicism. Problemy Endokrinologii, 2010, 56, 42-46.	0.2	0
312	Genetics of Sex Determination and Differentiation. , 2011, , 2014-2022.		0
313	Anomalies de l'appareil génital. , 2011, , 223-230.		0
315	Le facteur de transcription FOXL2 : un acteur clé de la différenciation de l'ovaire, de son maintien et de la fertilité. Bulletin De L'Academie Nationale De Medecine, 2016, 200, 1115-1127.	0.0	0
316	Sexual Differentiation, Gonadal Development, and Development of the External Genitalia. , 0, , 1-33.		0
318	Análisis clÃnico y citogenético de un caso de trastorno del desarrollo sexual testicular XX con SRY negativo. Revista Med, 2020, 27, 45-52.	0.1	0
319	Role of the Mevalonate Pathway in Adrenocortical Tumorigenesis. Hormone and Metabolic Research, 2021, 53, 124-131.	0.7	1
320	SRY-negative 45,X/46,XY adult male with complete masculinization and infertility: A case report and review of literature. World Journal of Clinical Cases, 2020, 8, 6380-6388.	0.3	1
322	Hypospadias Embryology, Etiology, and Classification. , 2022, , 9-16.		0
323	Mammalian X-chromosome inactivation: proposed role in suppression of the male programme in genetic females. Journal of Genetics, 2022, 101, 1.	0.4	0
325	Bellidifolin Inhibits SRY-Related High Mobility Group-Box Gene 9 to Block TGF-Î ² Signalling Activation to Ameliorate Myocardial Fibrosis. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-13.	0.5	0
327	Construction of Copy Number Variation Map Identifies Small Regions of Overlap and Candidate Genes for Atypical Female Genitalia Development. Reproductive Medicine, 2022, 3, 160-188.	0.3	2
328	Early Gonadal Development and Sex Determination in Mammal. International Journal of Molecular Sciences, 2022, 23, 7500.	1.8	3

#	ARTICLE Transcriptome analysis of differentially expressed circular RNAs in the testis and ovary of golden	lF	CITATIONS
329	pompano (Trachinotus blochii). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2023, 45, 101052.	0.4	1
330	In vitro cellular reprogramming to model gonad development and its disorders. Science Advances, 2023, 9, .	4.7	7
334	1.5. Zusammenfassung erster Teil: bleibende Herausforderungen. Religionswissenschaft, 2023, , 81-82.	0.0	0
337	Online Quellen. Religionswissenschaft, 2023, , 289-294.	0.0	0
338	Kirchliche Quellentexte. Religionswissenschaft, 2023, , 267-269.	0.0	0
339	1.4. Existenzielle Perspektiven und ethische Fragestellungen. Religionswissenschaft, 2023, , 69-81.	0.0	0
340	1.3. Historische und zeitgenössische Denkformen, Umgangsformen und Behandlungspraxen. Religionswissenschaft, 2023, , 47-69.	0.0	0
341	3.3. Freiheit und Kontingenz: kritische Diskussion der Theologie der Freiheit Thomas Pröppers. Religionswissenschaft, 2023, , 197-211.	0.0	0
344	Allgemeine Hilfsmittel. Religionswissenschaft, 2023, , 267.	0.0	0
345	2.5. Zusammenfassung zweiter Teil: Anerkennung für intergeschlechtliche Menschen als theologisches und kirchliches Desiderat. Religionswissenschaft, 2023, , 168.	0.0	0
346	3.5. Zusammenfassung dritter Teil: Bedingungen und Möglichkeiten der Anerkennung intergeschlechtlicher Menschen im römisch-katholischen Feld. Religionswissenschaft, 2023, , 250-252.	0.0	0
349	3.2. Grundlagen der theologischen Anthropologie Thomas Pröppers. Religionswissenschaft, 2023, , 184-197.	0.0	0
351	4. Resümee und theologisch-ethischer Ausblick: PlÃ z oyer für eine ambiguitÃæstolerante Ethik. Religionswissenschaft, 2023, , 253-260.	0.0	0
352	3.4. Implikate einer Theologie der Freiheit für eine kontingenzsensible Geschlechteranthropologie. Religionswissenschaft, 2023, , 211-249.	0.0	0
354	1.1. Medizinisch-biologische Grundlagen der Geschlechtsentwicklung. Religionswissenschaft, 2023, , 16-34.	0.0	0
355	2.1. Grundlagen des Habituskonzepts und der Theorie der Mänlichen Herrschaft. Religionswissenschaft, 2023, , 84-109.	0.0	0
356	2.2. Anamnese: Charakterisierung des religiösen Feldes. Religionswissenschaft, 2023, , 109-131.	0.0	0
358	2.4. Intersektionale Analyse: Auswirkungen symbolischer Gewalt auf intergeschlechtliche Menschen im römisch-katholischen Feld. Religionswissenschaft, 2023, , 151-168.	0.0	Ο

#	Article	IF	Citations
359	Allgemeines Abkürzungsverzeichnis. Religionswissenschaft, 2023, , 261-262.	0.0	0
361	2.3. Historische Aufarbeitung: Wandel des Geschlechterhabitus und geschlechtsspezifischer Anerkennungsparadigmen im rĶmisch-katholischen Feld. Religionswissenschaft, 2023, , 132-151.	0.0	Ο
363	1.2. Medizinische Klassifikationen und Indikationen im Vergleich. Religionswissenschaft, 2023, , 34-47.	0.0	0
365	3.1. Intergeschlechtlichkeit als Thema der Theologie. Religionswissenschaft, 2023, , 170-184.	0.0	0