Usefulness of diffusion-weighted MRI with echo-planar cellularity in gliomas

Journal of Magnetic Resonance Imaging

9, 53-60

DOI: 10.1002/(sici)1522-2586(199901)9:1<53::aid-jmri7>3.0.co;2-2

Citation Report

#	Article	IF	Citations
1	Diffusion-weighted MRI of soft tissue tumors. , 0, , 162-171.		0
2	Monitoring by compressed spectral array in prolonged coma. Neurology, 1984, 34, 35-35.	1.1	56
4	MR imaging of the brain: tumors. European Radiology, 1999, 9, 1047-1054.	4.5	41
5	Magnetic Resonance Imaging of Benign Spinal Lesions Simulating Metastasis: Role of Diffusion-Weighted Imaging. Topics in Magnetic Resonance Imaging, 2000, 11, 224-234.	1.2	44
6	Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magnetic Resonance in Medicine, 2000, 43, 828-836.	3.0	416
7	Water diffusion compartmentation and anisotropy at high b values in the human brain. Magnetic Resonance in Medicine, 2000, 44, 852-859.	3.0	391
8	Diffusion-weighted echo-planar MR imaging in differential diagnosis of brain tumors and tumor-like conditions. European Radiology, 2000, 10, 1342-1350.	4.5	125
9	Evolution of Diagnostic Neuroradiology from 1904 to 1999. Radiology, 2000, 217, 309-318.	7.3	48
10	Diffusion Magnetic Resonance Imaging: an Early Surrogate Marker of Therapeutic Efficacy in Brain Tumors. Journal of the National Cancer Institute, 2000, 92, 2029-2036.	6.3	627
11	Diffusion-weighted imaging in the evaluation of intracranial lesions. Seminars in Ultrasound, CT and MRI, 2000, 21, 405-416.	1.5	53
12	Late temporal lobe necrosis in patients with nasopharyngeal carcinoma: evaluation with combined multi-section diffusion weighted and perfusion weighted MR imaging. European Journal of Radiology, 2001, 39, 133-138.	2.6	45
13	Magnetic Resonance Imaging of Pediatric Brain Tumors: State of the Art. Topics in Magnetic Resonance Imaging, 2001, 12, 411-433.	1.2	36
14	Diffusion Property in a Hamartomatous Lesion of Neurofibromatosis Type 1. Journal of Computer Assisted Tomography, 2001, 25, 537-539.	0.9	12
15	Anatomical and biochemical investigation of primary brain tumours. European Journal of Nuclear Medicine and Molecular Imaging, 2001, 28, 1851-1872.	6.4	62
16	How to perform diffusion-weighted imaging. Child's Nervous System, 2001, 17, 195-201.	1.1	12
17	Diffusion-weighted imaging of the spine using radialk-space trajectories. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2001, 12, 23-31.	2.0	34
18	Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Computerized Medical Imaging and Graphics, 2001, 25, 299-326.	5.8	171
19	Diffusion-weighted imaging of the spine using radial k-space trajectories. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2001, 12, 23-31.	2.0	23

TION RE

#	Article	IF	Citations
20	Menstrual cycle variation of apparent diffusion coefficients measured in the normal breast using MRI. Journal of Magnetic Resonance Imaging, 2001, 14, 433-438.	3.4	104
21	Single-shot diffusion trace1H NMR spectroscopy. Magnetic Resonance in Medicine, 2001, 45, 741-748.	3.0	48
22	Evaluating Pediatric Brain Tumor Cellularity with Diffusion-Tensor Imaging. American Journal of Roentgenology, 2001, 177, 449-454.	2.2	355
23	Diffusion-Weighted MR Imaging in a Patient with Spinal Meningioma. American Journal of Roentgenology, 2001, 177, 1479-1481.	2.2	10
24	Lymphomas and High-Grade Astrocytomas: Comparison of Water Diffusibility and Histologic Characteristics. Radiology, 2002, 224, 177-183.	7.3	634
25	Diffusion-Weighted Magnetic Resonance Imaging. Journal of Neuro-Ophthalmology, 2002, 22, 118-122.	0.8	45
26	Imaging of intracranial tumours. Imaging, 2002, 14, 380-395.	0.0	1
28	Diffusion MRI: A New Strategy for Assessment of Cancer Therapeutic Efficacy. Molecular Imaging, 2002, 1, 153535002002214.	1.4	25
29	Utility of Diffusion-weighted Images in Bone Tumors Orthopedics & Traumatology, 2002, 51, 753-757.	0.1	1
30	Tuberous sclerosis: diffusion MRI findings in the brain. European Radiology, 2002, 12, 138-143.	4.5	26
31	Characterization of untreated gliomas by magnetic resonance spectroscopic imaging. Neuroimaging Clinics of North America, 2002, 12, 599-613.	1.0	55
32	Diffusion-weighted imaging of the spinal column. Neuroimaging Clinics of North America, 2002, 12, 147-160.	1.0	36
33	Comparison of weakness progression in inclusion body myositis during treatment with methotrexate or placebo. Annals of Neurology, 2002, 51, 369-372.	5.3	108
34	Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Annals of Neurology, 2002, 51, 377-380.	5.3	278
35	A novel <i>tau</i> mutation, S320F, causes a tauopathy with inclusions similar to those in Pick's disease. Annals of Neurology, 2002, 51, 373-376.	5.3	91
36	Loss of interhemispheric inhibition on the ipsilateral primary sensorimotor cortex in patients with brachial plexus injury: fMRI study. Annals of Neurology, 2002, 51, 381-385.	5.3	36
37	Hereditary motor and sensory neuropathy with minifascicle formation in a patient with 46XY pure gonadal dysgenesis: A new clinical entity. Annals of Neurology, 2002, 51, 385-388.	5.3	21
38	Septo-optic dysplasia associated with a new mitochondrialcytochrome b mutation. Annals of Neurology, 2002, 51, 388-392.	5.3	81

#	Article	IF	CITATIONS
39	In vivo diffusion-weighted MRI of the breast: Potential for lesion characterization. Journal of Magnetic Resonance Imaging, 2002, 15, 693-704.	3.4	244
40	Diffusionâ€weighted MRI of cholesteatomas of the petrous bone. Journal of Magnetic Resonance Imaging, 2002, 15, 636-641.	3.4	87
41	Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. Journal of Magnetic Resonance Imaging, 2002, 16, 172-178.	3.4	652
42	Diffusion-weighted imaging of brain metastases: their potential to be misinterpreted as focal ischaemic lesions. Neuroradiology, 2002, 44, 568-573.	2.2	29
43	Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology, 2002, 44, 656-666.	2.2	221
44	Study on the variations of the apparent diffusion coefficient in areas of solid tumor in high grade gliomas. Magnetic Resonance Imaging, 2002, 20, 635-641.	1.8	31
45	Diffusion MRI in neurofibromatosis type 1: ADC evaluations of the optic pathways, and a comparison with normal individuals. Computerized Medical Imaging and Graphics, 2002, 26, 59-64.	5.8	18
46	Longstanding tectal tumors: proton MR spectroscopy and diffusion MRI findings. Computerized Medical Imaging and Graphics, 2002, 26, 25-31.	5.8	6
47	Astroblastoma: diffusion MRI, and proton MR spectroscopy. Computerized Medical Imaging and Graphics, 2002, 26, 187-191.	5.8	19
48	Callosal changes in obstructive hydrocephalus: observations with FLAIR imaging, and diffusion MRI. Computerized Medical Imaging and Graphics, 2002, 26, 333-337.	5.8	11
49	Functional Magnetic Resonance of Human Breast Tumors. Annals of the New York Academy of Sciences, 2002, 980, 95-115.	3.8	63
50	Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors. Journal of Neuro-Oncology, 2003, 63, 109-116.	2.9	137
51	Darstellung der Zentralregion mit anisotroper echoplanarer Diffusionswichtung (EPI-DWI). Klinische Neuroradiologie, 2003, 13, 108-112.	0.9	1
52	Diffusion-weighted MRI of haemangioblastomas and other cerebellar tumours. Neuroradiology, 2003, 45, 212-219.	2.2	71
53	Diffusion-weighted imaging and single-voxel MR spectroscopy in a case of malignant cerebral lymphoma. Neuroradiology, 2003, 45, 865-868.	2.2	15
54	MR imaging of glioblastoma in children: usefulness of diffusion/perfusion-weighted MRI and MR spectroscopy. Pediatric Radiology, 2003, 33, 836-842.	2.0	65
55	Diffusion parameters of the extracellular space in human gliomas. Glia, 2003, 42, 77-88.	4.9	106
56	Diffusionâ€Weighted Echoâ€Planar MRI of the Brain with Calculated ADCs: A Useful Tool in the Differential Diagnosis of Tumor Necrosis from Abscess?. Journal of Neuroimaging, 2003, 13, 330-338.	2.0	34

# 57	ARTICLE Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. International Journal of Radiation Oncology Biology Physics, 2003, 56, 958-965.	IF 0.8	CITATIONS 221
58	Imaging of brain tumors with diffusion-weighted and diffusion tensor MR imaging. Magnetic Resonance Imaging Clinics of North America, 2003, 11, 379-401.	1.1	45
59	Biomedical Applications of Diffusion-Weighted NMR Techniques. Israel Journal of Chemistry, 2003, 43, 81-90.	2.3	3
60	Diffusion-Weighted MRI and Response to Anti-Cancer Therapies. Israel Journal of Chemistry, 2003, 43, 91-101.	2.3	12
61	Parametric MRI of Water Diffusion in Breast Cancer. Israel Journal of Chemistry, 2003, 43, 103-114.	2.3	2
62	Characterization of normal brain and brain tumor pathology by chisquares parameter maps of diffusion-weighted image data. European Journal of Radiology, 2003, 45, 199-207.	2.6	20
63	Multiparametric MR assessment of pediatric brain tumors. Neuroradiology, 2003, 45, 1-10.	2.2	52
66	Effect of Hydrophilic Components of the Extracellular Matrix on Quantifiable Diffusion-Weighted Imaging of Human Gliomas:Preliminary Results of Correlating Apparent Diffusion Coefficient Values and Hyaluronan Expression Level. American Journal of Roentgenology, 2003, 181, 235-241.	2.2	70
67	Diffusion MR Imaging of Giant Cell Tumors in Tuberous Sclerosis. Journal of Computer Assisted Tomography, 2003, 27, 431-433.	0.9	8
68	Un caso di Neurofibromatosi di tipo 1 "complicata―da processo espansivo cerebellare maligno con aspetti TC/RM atipici. The Neuroradiology Journal, 2003, 16, 445-448.	0.1	0
69	Usefulness of Diffusion and Perfusion MR Techniques for the Histological Characterization of Intracranial Meningiomas. The Neuroradiology Journal, 2003, 16, 1063-1064.	0.1	0
70	Imaging Glioblastoma Multiforme. Cancer Journal (Sudbury, Mass), 2003, 9, 134-145.	2.0	91
71	Diffusion Magnetic Resonance Imaging of Solid Vestibular Schwannomas. Journal of Computer Assisted Tomography, 2003, 27, 249-252.	0.9	32
72	Diffusion-weighted Images in Soft Tissue Tumors Orthopedics & Traumatology, 2003, 52, 746-749.	0.1	0
74	ADVANCED PULSE SEQUENCE TECHNIQUES. , 2004, , 802-954.		11
76	High-b-Value Diffusion-weighted MR Imaging for Pretreatment Prediction and Early Monitoring of Tumor Response to Therapy in Mice. Radiology, 2004, 232, 685-692.	7.3	155
77	Diffusion-weighted Single Shot Echo Planar Imaging of Colorectal Cancer Using a Sensitivity-encoding Technique. Japanese Journal of Clinical Oncology, 2004, 34, 620-626.	1.3	103
78	A review of structural magnetic resonance neuroimaging. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 1235-1244.	1.9	177

#	Article	IF	CITATIONS
79	Magnetic resonance spectroscopic imaging. IEEE Engineering in Medicine and Biology Magazine, 2004, 23, 30-39.	0.8	29
80	Survival analysis in patients with glioblastoma multiforme: Predictive value of choline-to-n-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume. Journal of Magnetic Resonance Imaging, 2004, 19, 546-554.	3.4	182
81	Usefulness of the calculated apparent diffusion coefficient value in the differential diagnosis of retroperitoneal masses. Journal of Magnetic Resonance Imaging, 2004, 20, 735-742.	3.4	60
82	Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor tissue from peritumoral tissue in cerebral gliomas?. Journal of Magnetic Resonance Imaging, 2004, 20, 758-764.	3.4	69
83	Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. Journal of Magnetic Resonance Imaging, 2004, 20, 905-912.	3.4	123
84	The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization. Magnetic Resonance in Medicine, 2004, 51, 278-285.	3.0	76
85	Water diffusion in the different microenvironments of breast cancer. NMR in Biomedicine, 2004, 17, 170-180.	2.8	73
86	Detecting glioma invasion of the corpus callosum using diffusion tensor imaging. British Journal of Neurosurgery, 2004, 18, 391-395.	0.8	24
87	Pretreatment Prediction of Brain Tumors Response to Radiation Therapy Using High b-Value Diffusion-Weighted MRI. Neoplasia, 2004, 6, 136-142.	5.3	153
88	Symptomatologie clinique et diagnostic neuroradiologique des tumeurs intracrâniennes. EMC - Neurologie, 2004, 1, 91-122.	0.0	1
89	Tumeurs cranioencéphaliques. Techniques d'imagerie et sémiologie. EMC - Radiologie, 2004, 1, 604-620.	0.0	1
90	Developing a quality control protocol for diffusion imaging on a clinical MRI system. Physics in Medicine and Biology, 2004, 49, 1409-1422.	3.0	60
91	Associations among Magnetic Resonance Spectroscopy, Apparent Diffusion Coefficients, and Image-Guided Histopathology with Special Attention to Radiation Necrosis. Neurosurgery, 2004, 54, 1111-1119.	1.1	197
92	Potential Impact of Advanced 3 Tesla Diagnostics in the Management of Patients with Brain Tumours. The Neuroradiology Journal, 2004, 17, 849-881.	0.1	2
94	Diffusion Tensor Imaging in Cerebral Tumor Diagnosis and Therapy. Topics in Magnetic Resonance Imaging, 2004, 15, 315-324.	1.2	68
96	The Added Value of the Apparent Diffusion Coefficient Calculation to Magnetic Resonance Imaging in the Differentiation and Grading of Malignant Brain Tumors. Journal of Computer Assisted Tomography, 2004, 28, 735-746.	0.9	139
97	Imaging of Metastatic Tumors of the Brain. , 0, , 71-98.		0
98	Diffusion-weighted Imaging of Breast Cancer with the Sensitivity Encoding Technique: Analysis of the Apparent Diffusion Coefficient Value. Magnetic Resonance in Medical Sciences, 2004, 3, 79-85.	2.0	170

#	Article	IF	CITATIONS
99	Diffusion-Weighted Imaging of Malignant Breast Tumors. Journal of Computer Assisted Tomography, 2005, 29, 644-649.	0.9	280
100	A comparative evaluation of a RARE-based single-shot pulse sequence for diffusion-weighted MRI of musculoskeletal soft-tissue tumors. European Radiology, 2005, 15, 772-783.	4.5	34
101	Diffusionâ€Weighted Imaging With Calculated Apparent Diffusion Coefficient of Enhancing Extraâ€Axial Masses. Journal of Neuroimaging, 2005, 15, 341-347.	2.0	21
102	Diffusion and magnetization transfer MRI of brain infarct, infection, and tumor in children. Clinical Imaging, 2005, 29, 162-171.	1.5	14
103	Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. Journal of Magnetic Resonance Imaging, 2005, 21, 701-708.	3.4	154
104	Diffusion-weighted echo-planar MR imaging and ADC mapping in the differential diagnosis of ovarian cystic masses: Usefulness of detecting keratinoid substances in mature cystic teratomas. Journal of Magnetic Resonance Imaging, 2005, 22, 271-278.	3.4	147
105	Isotropic diffusion weighting in radial fast spin-echo magnetic resonance imaging. Magnetic Resonance in Medicine, 2005, 53, 1347-1354.	3.0	12
106	Utility of three-dimensional anisotropy contrast magnetic resonance axonography for determining condition of the pyramidal tract in glioblastoma patients with hemiparesis. Journal of Neuro-Oncology, 2005, 73, 137-144.	2.9	13
107	Brain Neoplasms. , 2005, , 161-179.		0
108	Serial diffusion-weighted magnetic resonance imaging in cases of glioma: distinguishing tumor recurrence from postresection injury. Journal of Neurosurgery, 2005, 103, 428-438.	1.6	155
108 110		1.6 7.3	155 147
	recurrence from postresection injury. Journal of Neurosurgery, 2005, 103, 428-438. Diffusion-weighted MR Imaging in Monitoring the Effect of a Vascular Targeting Agent on		
110	recurrence from postresection injury. Journal of Neurosurgery, 2005, 103, 428-438. Diffusion-weighted MR Imaging in Monitoring the Effect of a Vascular Targeting Agent on Rhabdomyosarcoma in Rats. Radiology, 2005, 234, 756-764. Functional diffusion map: A noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102,	7.3	147
110	 recurrence from postresection injury. Journal of Neurosurgery, 2005, 103, 428-438. Diffusion-weighted MR Imaging in Monitoring the Effect of a Vascular Targeting Agent on Rhabdomyosarcoma in Rats. Radiology, 2005, 234, 756-764. Functional diffusion map: A noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5524-5529. Metabolic and Functional Brain Mapping, Connectivity and Plasticity Applied to the Surgery of 	7.3	147 602
110 111 112	 recurrence from postresection injury. Journal of Neurosurgery, 2005, 103, 428-438. Diffusion-weighted MR Imaging in Monitoring the Effect of a Vascular Targeting Agent on Rhabdomyosarcoma in Rats. Radiology, 2005, 234, 756-764. Functional diffusion map: A noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5524-5529. Metabolic and Functional Brain Mapping, Connectivity and Plasticity Applied to the Surgery of Cerebral Tumors. Current Medical Imaging, 2005, 1, 131-155. 	7.3 7.1 0.8	147 602 3
110 111 112 114	recurrence from postresection injury. Journal of Neurosurgery, 2005, 103, 428-438. Diffusion-weighted MR Imaging in Monitoring the Effect of a Vascular Targeting Agent on Rhabdomyosarcoma in Rats. Radiology, 2005, 234, 756-764. Functional diffusion map: A noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5524-5529. Metabolic and Functional Brain Mapping, Connectivity and Plasticity Applied to the Surgery of Cerebral Tumors. Current Medical Imaging, 2005, 1, 131-155. Usefulness of Diffusion/Perfusion-weighted MRI in Rat Gliomas. Academic Radiology, 2005, 12, 640-651.	7.3 7.1 0.8 2.5	147 602 3 34
110 111 112 114 116	 recurrence from postresection injury. Journal of Neurosurgery, 2005, 103, 428-438. Diffusion-weighted MR Imaging in Monitoring the Effect of a Vascular Targeting Agent on Rhabdomyosarcoma in Rats. Radiology, 2005, 234, 756-764. Functional diffusion map: A noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5524-5529. Metabolic and Functional Brain Mapping, Connectivity and Plasticity Applied to the Surgery of Cerebral Tumors. Current Medical Imaging, 2005, 1, 131-155. Usefulness of Diffusion/Perfusion-weighted MRI in Rat Gliomas. Academic Radiology, 2005, 12, 640-651. Apparent Diffusion Coefficient of Human Brain Tumors at MR Imaging. Radiology, 2005, 235, 985-991. Correlation between choline and MIB-1 index in human gliomas. A quantitative in proton MR 	 7.3 7.1 0.8 2.5 7.3 	147 602 3 34 442

#	Article	IF	CITATIONS
120	Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. World Neurosurgery, 2005, 63, 56-61.	1.3	150
122	Imagerie par résonance magnétique de diffusion de l'encéphale chez l'adulte : technique, résultats normaux et pathologiques. EMC - Radiologie, 2005, 2, 133-164.	0.0	5
123	Diffusion tensor magnetic resonance imaging of brain tumors. Neurosurgery Clinics of North America, 2005, 16, 115-134.	1.7	35
124	Posterior Fossa Tumors. , 2005, , 167-186.		0
125	In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. Journal of Biomedical Optics, 2006, 11, 044005.	2.6	365
126	Tumeurs cérébrales del'adulte : quelle imagerie par résonance magnétique ?. Feuillets De Radiologie, 2006, 46, 225-232.	0.0	0
127	The Functional Diffusion Map: An Imaging Biomarker for the Early Prediction of Cancer Treatment Outcome. Neoplasia, 2006, 8, 259-267.	5.3	175
128	Advanced Neuroimaging of Pediatric Brain Tumors: MR Diffusion, MR Perfusion, and MR Spectroscopy. Neuroimaging Clinics of North America, 2006, 16, 169-192.	1.0	63
129	Diffusion Tensor Magnetic Resonance Imaging of Brain Tumors. Magnetic Resonance Imaging Clinics of North America, 2006, 14, 183-202.	1.1	28
130	Neuroimaging in children. Current Paediatrics, 2006, 16, 348-359.	0.2	2
131	Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. European Journal of Radiology, 2006, 58, 394-403.	2.6	238
132	Physiologic characterisation of glioblastoma multiforme using MRI-based hypoxia mapping, chemical shift imaging, perfusion and diffusion maps. Journal of Clinical Neuroscience, 2006, 13, 811-817.	1.5	18
134	Evaluating Tumors and Tumorlike Lesions of the Nasal Cavity, the Paranasal Sinuses, and the Adjacent Skull Base With Diffusion-Weighted MRI. Journal of Computer Assisted Tomography, 2006, 30, 490-495.	0.9	68
135	Perfusion and diffusion MRI of glioblastoma progression in a four-year prospective temozolomide clinical trial. International Journal of Radiation Oncology Biology Physics, 2006, 64, 869-875.	0.8	32
136	The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas. Neuroradiology, 2006, 48, 513-520.	2.2	105
137	Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology, 2006, 48, 622-631.	2.2	123
139	Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas. NMR in Biomedicine, 2006, 19, 463-475.	2.8	118
140	Quantitative diffusion imaging in breast cancer: A clinical prospective study. Journal of Magnetic Resonance Imaging, 2006, 24, 319-324.	3.4	227

#	Article	IF	CITATIONS
141	Apparent diffusion coefficient in malignant lymphoma and carcinoma involving cavernous sinus evaluated by line scan diffusion-weighted imaging. Journal of Magnetic Resonance Imaging, 2006, 24, 543-548.	3.4	22
142	Methods and applications of diffusion imaging of vertebral bone marrow. Journal of Magnetic Resonance Imaging, 2006, 24, 1207-1220.	3.4	66
143	Hepatic Metastases: Diffusion-weighted Sensitivity-encoding versus SPIO-enhanced MR Imaging. Radiology, 2006, 239, 122-130.	7.3	301
144	Phyllodes Tumor of the Breast: Correlation between MR Findings and Histologic Grade. Radiology, 2006, 241, 702-709.	7.3	107
145	Usefulness of diffusion/perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas: a valuable tool to predict tumour grading?. British Journal of Radiology, 2006, 79, 652-658.	2.2	101
146	Glioblastoma multiforme with diffusion-weighted magnetic resonance imaging characteristics mimicking primary brain lymphoma. Journal of Neurosurgery, 2006, 105, 132-135.	1.6	30
147	Characterization of Breast Lesions by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS). Current Medical Imaging, 2006, 2, 329-340.	0.8	10
148	Apparent diffusion coefficient maps of pediatric mass lesions with free-breathing diffusion-weighted magnetic resonance: feasibility study. Acta Radiologica, 2006, 47, 198-204.	1.1	15
149	Potential of diffusion imaging in brain tumors: a review. Acta Radiologica, 2006, 47, 585-594.	1.1	39
150	Diffusion-weighted and Perfusion MR Imaging for Brain Tumor Characterization and Assessment of Treatment Response. Radiology, 2006, 239, 632-649.	7.3	359
151	Malignant Astrocytic Tumors: Clinical Importance of Apparent Diffusion Coefficient in Prediction of Grade and Prognosis. Radiology, 2006, 241, 839-846.	7.3	342
152	Dynamic Imaging of Emerging Resistance during Cancer Therapy. Cancer Research, 2006, 66, 4687-4692.	0.9	54
153	Present and potential future issues in glioblastoma treatment. Expert Review of Anticancer Therapy, 2006, 6, 719-732.	2.4	120
154	High-B-Value Diffusion-Weighted MRI in Colorectal Cancer. American Journal of Roentgenology, 2006, 187, 181-184.	2.2	204
155	Ischemic complications associated with resection of opercular glioma. Journal of Neurosurgery, 2007, 106, 263-269.	1.6	44
156	An objective method for combining multi-parametric MRI datasets to characterize malignant tumors. Medical Physics, 2007, 34, 1053-1061.	3.0	11
157	Lung Carcinoma: Diffusion-weighted MR Imaging—Preliminary Evaluation with Apparent Diffusion Coefficient. Radiology, 2007, 243, 570-577.	7.3	185
158	Prospective Early Response Imaging Biomarker for Neoadjuvant Breast Cancer Chemotherapy. Clinical Cancer Research, 2007, 13, 443-450.	7.0	82

#	ARTICLE	IF	Citations
159	Malignant Supratentorial Astrocytoma Treated with Postoperative Radiation Therapy: Prognostic Value of Pretreatment Quantitative Diffusion-weighted MR Imaging. Radiology, 2007, 243, 493-499.	7.3	145
160	Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4014-4019.	7.1	273
161	An Imaging Biomarker of Early Treatment Response in Prostate Cancer that Has Metastasized to the Bone. Cancer Research, 2007, 67, 3524-3528.	0.9	70
162	Tumor Effects on Cerebral White Matter as Characterized by Diffusion Tensor Tractography. Canadian Journal of Neurological Sciences, 2007, 34, 62-68.	0.5	37
163	BRAINSTEM CORTICOSPINAL TRACT DIFFUSION TENSOR IMAGING IN PATIENTS WITH PRIMARY POSTERIOR FOSSA NEOPLASMS STRATIFIED BY TUMOR TYPE. Neurosurgery, 2007, 61, 1199-1208.	1.1	27
164	STAB INJURIES TO THE SPINAL CORD. Neurosurgery, 2007, 61, 1262-1267.	1.1	21
165	Diffusion-weighted MR imaging improves diagnosis of CNS lymphomas. Clinical Neurology and Neurosurgery, 2007, 109, 92-101.	1.4	15
166	Paediatric PNET: pre-surgical MRI features. Clinical Radiology, 2007, 62, 43-52.	1.1	70
167	High-b Value Diffusion-Weighted MRI for Detecting Pancreatic Adenocarcinoma: Preliminary Results. American Journal of Roentgenology, 2007, 188, 409-414.	2.2	236
168	In Vivo Imaging of Cancer Therapy. , 2007, , .		6
169	The role of advanced MR imaging in understanding brain tumour pathology. British Journal of Neurosurgery, 2007, 21, 562-575.	0.8	44
170	Infratentorial pediatric brain tumors: theÂvalueÂofÂnewÂimaging modalities. Journal of Neuroradiology, 2007, 34, 49-58.	1.1	34
171	Apparent diffusion coefficients ofÂbenign andÂmalignantÂsalivary gland tumors. ComparisonÂtoÂhistopathological findings. Journal of Neuroradiology, 2007, 34, 183-189.	1.1	92
172	Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. American Journal of Roentgenology, 2007, 188, 1622-1635.	2.2	1,730
173	Numerical study of water diffusion in biological tissues using an improved finite difference method. Physics in Medicine and Biology, 2007, 52, N111-N126.	3.0	57
174	Advanced MRI of Adult Brain Tumors. Neurologic Clinics, 2007, 25, 947-973.	1.8	128
175	Functional MR Imaging of Prostate Cancer. Radiographics, 2007, 27, 63-75.	3.3	185
176	Advanced MRI in the management of adult gliomas. British Journal of Neurosurgery, 2007, 21, 550-561.	0.8	71

#	Article	IF	CITATIONS
177	The Role of Diffusion-Weighted Imaging and the Apparent Diffusion Coefficient (ADC) Values for Breast Tumors. Korean Journal of Radiology, 2007, 8, 390.	3.4	156
178	MRI-measured water mobility increases in response to chemotherapy via multiple cell-death mechanisms. NMR in Biomedicine, 2007, 20, 602-614.	2.8	70
179	Differentiation of fibroblastic meningiomas from other benign subtypes using diffusion tensor imaging. Journal of Magnetic Resonance Imaging, 2007, 25, 703-708.	3.4	62
180	Soft-tissue tumors evaluated by line-scan diffusion-weighted imaging: Influence of myxoid matrix on the apparent diffusion coefficient. Journal of Magnetic Resonance Imaging, 2007, 25, 1199-1204.	3.4	102
181	Solitary fibrous tumor of the pleura: Apparent diffusion coefficient (ADC) value and ADC map to predict malignant transformation. Journal of Magnetic Resonance Imaging, 2007, 26, 155-158.	3.4	21
182	Correlations between MR and endothelial hyperplasia in lowâ€grade gliomas. Journal of Magnetic Resonance Imaging, 2007, 26, 52-60.	3.4	15
183	Apparent diffusion coefficients in oligodendroglial tumors characterized by genotype. Journal of Magnetic Resonance Imaging, 2007, 26, 1405-1412.	3.4	69
184	Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short echo-time1H-MR spectroscopy. Journal of Magnetic Resonance Imaging, 2007, 26, 1390-1398.	3.4	99
185	Metastatic melanoma of the gallbladder. Computerized Medical Imaging and Graphics, 2007, 31, 469-471.	5.8	14
186	Metabolic and molecular imaging in neuro-oncology. Lancet Neurology, The, 2007, 6, 711-724.	10.2	100
186 187	Metabolic and molecular imaging in neuro-oncology. Lancet Neurology, The, 2007, 6, 711-724. Preclinical Models of Tumor Growth and Response. , 2007, , 13-32.	10.2	100 2
		10.2 4.5	
187	Preclinical Models of Tumor Growth and Response. , 2007, , 13-32. Extracranial applications of diffusion-weighted magnetic resonance imaging. European Radiology,		2
187 188	Preclinical Models of Tumor Growth and Response. , 2007, , 13-32. Extracranial applications of diffusion-weighted magnetic resonance imaging. European Radiology, 2007, 17, 1385-1393. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR	4.5	2 250
187 188 189	 Preclinical Models of Tumor Growth and Response. , 2007, , 13-32. Extracranial applications of diffusion-weighted magnetic resonance imaging. European Radiology, 2007, 17, 1385-1393. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology, 2007, 49, 795-803. Value of magnetic resonance imaging in prostate cancer diagnosis. World Journal of Urology, 2007, 	4.5 2.2	2 250 158
187 188 189 190	Preclinical Models of Tumor Growth and Response. , 2007, , 13-32. Extracranial applications of diffusion-weighted magnetic resonance imaging. European Radiology, 2007, 17, 1385-1393. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology, 2007, 49, 795-803. Value of magnetic resonance imaging in prostate cancer diagnosis. World Journal of Urology, 2007, 25, 351-359.	4.5 2.2 2.2	2 250 158 24
187 188 189 190 191	 Preclinical Models of Tumor Growth and Response. , 2007, , 13-32. Extracranial applications of diffusion-weighted magnetic resonance imaging. European Radiology, 2007, 17, 1385-1393. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology, 2007, 49, 795-803. Value of magnetic resonance imaging in prostate cancer diagnosis. World Journal of Urology, 2007, 25, 351-359. Diffusion MRI in the early diagnosis of malignant glioma. Journal of Neuro-Oncology, 2007, 82, 221-225. Hepatic pseudo-anisotropy: a specific artifact in hepatic diffusion-weighted images obtained with respiratory triggering. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2007, 20, 	4.5 2.2 2.2 2.9	2 250 158 24 60

ARTICLE IF CITATIONS Relation between cancer cellularity and apparent diffusion coefficient values using 195 0.8 140 diffusion-weighted magnetic resonance imaging in breast cancer. Radiation Medicine, 2008, 26, 222-226. Role of magnetic resonance methods in the evaluation of prostate cancer: an Indian perspective. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 393-407. Relationship between choline and apparent diffusion coefficient in patients with gliomas. Journal of 197 3.4 16 Magnetic Resonance Imaging, 2008, 27, 718-725. Evaluating local hepatocellular carcinoma recurrence postâ€transcatheter arterial chemoembolization: Is diffusionâ€weighted MRI reliable as an indicator?. Journal of Magnetic Resonance Imaging, 2008, 27, 834-839. Apparent diffusion coefficient in pancreatic cancer: Characterization and histopathological 199 3.4 148 correlations. Journal of Magnetic Resonance Imaging, 2008, 27, 1302-1308. Diffusionâ€weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with softâ€tissue sarcomas. Journal of Magnetic Resonance Imaging, 2008, 27, 1109-1113. 3.4 Diffusionâ€weighted imaging of the liver: Optimizing <i>b</i>) value for the detection and 201 characterization of benign and malignant hepatic lesions. Journal of Magnetic Resonance Imaging, 3.4 103 2008, 28, 691-697. Quantitative analysis of diffusionâ€weighted magnetic resonance imaging of the pancreas: Usefulness in 3.4 characterizing solid pancreatic masses. Journal of Magnetic Resonance Imaging, 2008, 28, 928-936. Ability of diffusionâ€weighted imaging for the differential diagnosis between chronic expanding 203 hematomas and malignant soft tissue tumors. Journal of Magnetic Resonance Imaging, 2008, 28, 3.4 71 1195-1200. Diagnostic accuracy of diffusionâ€weighted imaging in differentiating benign from malignant ovarian 204 3.4 140 lesions. Journal of Magnetic Resonance Imaging, 2008, 28, 1149-1156. Diagnostic accuracy of the apparent diffusion coefficient in differentiating benign from malignant 205 4.5186 uterine endometrial cavity lesions: initial results. European Radiology, 2008, 18, 384-389. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. European Radiology, 2008, 18, 4.5 376 477-485. Diffusion-weighted MRI in cervical cancer. European Radiology, 2008, 18, 1058-1064. 207 4.5 217 Predicting the Histopathological Grade of Cerebral Gliomas Using High b value MR DW Imaging at 3â€Tesla. Journal of Neuroimaging, 2008, 18, 276-281. 208 Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation 209 1.4 217 in cervical cancer. Gynecologic Oncology, 2008, 111, 213-220. Characteristics of typical and atypical meningiomas on ADC maps with respect to schwannomas. Clinical Imaging, 2008, 32, 22-27. Multiparametric Magnetic Resonance Imaging of the Prostate: Current Status in Prostate Cancer 211 0.6 21 Detection, Localization, and Staging. Seminars in Roentgenology, 2008, 43, 303-313. Technology Insight: water diffusion MRIâ€"a potential new biomarker of response to cancer therapy. 4.3 Nature Clinical Practice Oncology, 2008, 5, 220-233.

ARTICLE IF CITATIONS Contribution of the apparent diffusion coefficient in perilesional edema for the assessment of brain 213 1.1 30 tumors. Journal of Neuroradiology, 2008, 35, 224-229. Advanced MR Techniques in Clinical Brain Tumor Imaging., 2008, 136-149. 214 215 Basics of Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy., 2008, , 3-167. 12 Diffusion tensor tractography for the inferior alveolar nerve (V3): initial experiment. Oral Surgery 216 Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2008, 106, 270-274. Diffusion magnetic resonance imaging as an evaluation of the response of brain metastases treated by 217 1.330 stereotactic radiosurgery. World Neurosurgery, 2008, 69, 62-68. Fractional anisotropy and tumor cell density of the tumor core show positive correlation in 4.2 149 diffusion tensor magnetic resonance imaging of malignant brain tumors. NeuroImage, 2008, 43, 29-35. Whole Body Diffusion Weighted Imaging: A New Era of Oncological Radiology. Chinese Medical 221 0.4 0 Sciences Journal, 2008, 23, 129-132. Usefulness of diffusion-weighted imaging and the apparent diffusion coefficient in the assessment of 222 1.1 head and neck tumors. Journal of Neuroradiology, 2008, 35, 71-78. Molecular imaging of the myoskeletal system through Diffusion Weighted and Diffusion Tensor 223 0 Imaging with parallel imaging techniques., 2008,,. Diffusion-Weighted MR Imaging: Diagnosing Atypical or Malignant Meningiomas and Detecting Tumor 224 2.4 188 Dedifferentiation. American Journal of Neuroradiology, 2008, 29, 1147-1152. High b-Value Diffusion (<i>b</i>= 3000 s/mm²) MR Imaging in Cerebral Gliomas at 3T: Visual and Quantitative Comparisons with <i>b</i>= 1000 s/mm². American Journal of 225 102 2.4 Neuroradiology, 2008, 29, 458-463. Preoperative Grading of Presumptive Low-Grade Astrocytomas on MR Imaging: Diagnostic Value of 2.4 133 Minimum Apparent Diffusion Coefficient. American Journal of Neuroradiology, 2008, 29, 1872-1877. 227 Magnetic Resonance Imaging of Hepatocellular Carcinoma. Oncology, 2008, 75, 65-71. 1.9 27 Diffusion Magnetic Resonance Imaging in Brain Tumors., 2008, , 215-238. Primary Cerebral Lymphoma and Glioblastoma Multiforme: Differences in Diffusion Characteristics 229 204 2.4 Evaluated with Diffusion Tensor Imaging. American Journal of Neuroradiology, 2008, 29, 471-475. Apparent Diffusion Coefficient and Cerebral Blood Volume in Brain Gliomas: Relation to Tumor Cell Density and Tumor Microvessel Density Based on Stereotactic Biopsies. American Journal of 2.4 Neuroradiology, 2008, 29, 476-482. 231 Neuroimaging in Patients with Gliomas. Seminars in Neurology, 2008, 28, 484-494. 1.4 35 Magnetic resonance imaging of pilocytic astrocytomas: usefulness of the minimum apparent diffusion coefficient (adc) value for differentiation from high-grade gliomas. Acta Radiologica, 2008, 49, 1.1 462-467.

#	Article	IF	Citations
233	Diffusion-weighted Imaging in Cervical Cancer with an Endovaginal Technique: Potential Value for Improving Tumor Detection in Stage Ia and Ib1 Disease. Radiology, 2008, 249, 541-550.	7.3	111
234	Apparent Diffusion Coefficients of Breast Tumors: Clinical Application. Magnetic Resonance in Medical Sciences, 2008, 7, 23-29.	2.0	211
235	Characterization of Glioblastoma by Contrast-Enhanced Flair Sequences. Neuroradiology Journal, 2008, 21, 196-203.	1.2	2
236	MR Perfusion Imaging of Intracranial Tumors. Neuroradiology Journal, 2008, 21, 472-489.	1.2	4
237	Laryngeal and hypopharyngeal carcinomas after (chemo)radiotherapy: a diagnostic dilemma. Current Opinion in Otolaryngology and Head and Neck Surgery, 2008, 16, 147-153.	1.8	37
238	Diffusion-Weighted Magnetic Resonance Imaging for Characterization of Focal Liver Masses. Journal of Computer Assisted Tomography, 2008, 32, 865-871.	0.9	33
239	Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) in Breast Cancer. Magnetic Resonance Insights, 2008, 2, MRI.S991.	2.5	1
240	Usefulness of diffusion-weighted MR imaging for imaging diagnosis of hepatocellular carcinoma. Acta Hepatologica Japonica, 2009, 50, 703-710.	0.1	0
241	Glioblastoma of the optic pathways: An Atypical case. Journal of Radiology Case Reports, 2009, 3, 22-8.	0.4	4
242	In vitro experimental study of the relationship between the apparent diffusion coefficient and changes in cellularity and cell morphology. Oncology Reports, 2009, 22, 641-8.	2.6	43
243	DIFUSIÓN POR RESONANCIA MAGNÉTICA: BASES Y APLICACIONES ONCOLÓGICAS EN ÓRGANOS EXTRACRANEANOS. Revista Chilena De Radiologia, 0, 15, .	0.2	2
244	Neuro-Oncology. , 0, , 771-822.		1
245	Minimum apparent diffusion coefficient for the differential diagnosis of ganglioglioma. Neurological Research, 2009, 31, 1102-1107.	1.3	23
246	Fractional order NMR reflects anomalous diffusion. , 2009, , .		0
247	Urinary Bladder Cancer: Diffusion-weighted MR Imaging—Accuracy for Diagnosing T Stage and Estimating Histologic Grade. Radiology, 2009, 251, 112-121.	7.3	306
248	FRACTAL DIMENSION AND LACUNARITY OF TRACTOGRAPHY IMAGES OF THE HUMAN BRAIN. Fractals, 2009, 17, 181-189.	3.7	44
249	Characterization of Genitourinary Lesions with Diffusion-weighted Imaging. Radiographics, 2009, 29, 1295-1317.	3.3	47
250	Grading Astrocytic Tumors by Using Apparent Diffusion Coefficient Parameters: Superiority of a One- versus Two-Parameter Pilot Method. Radiology, 2009, 251, 838-845.	7.3	170

#	Article	IF	CITATIONS
251	Minimum apparent diffusion coefficient is significantly correlated with cellularity in medulloblastomas. Neurological Research, 2009, 31, 940-946.	1.3	68
252	Water Diffusivity: Comparison of Primary CNS Lymphoma and Astrocytic Tumor Infiltrating the Corpus Callosum. American Journal of Roentgenology, 2009, 193, 1384-1387.	2.2	47
253	Quantitative Diffusion-Weighted Imaging as an Adjunct to Conventional Breast MRI for Improved Positive Predictive Value. American Journal of Roentgenology, 2009, 193, 1716-1722.	2.2	246
254	T1 Hyperintense Renal Lesions: Characterization with Diffusion-weighted MR Imaging versus Contrast-enhanced MR Imaging. Radiology, 2009, 251, 796-807.	7.3	104
255	Advanced pancreatic cancer: the use of the apparent diffusion coefficient to predict response to chemotherapy. British Journal of Radiology, 2009, 82, 28-34.	2.2	75
256	Diffusion-Weighted Imaging of Surgically Resected Hepatocellular Carcinoma: Imaging Characteristics and Relationship Among Signal Intensity, Apparent Diffusion Coefficient, and Histopathologic Grade. American Journal of Roentgenology, 2009, 193, 438-444.	2.2	180
257	A new phantom using polyethylene glycol as an apparent diffusion coefficient standard for MR imaging. International Journal of Oncology, 2009, 35, 893-900.	3.3	12
258	Recurrent Glioblastoma Multiforme: ADC Histogram Analysis Predicts Response to Bevacizumab Treatment. Radiology, 2009, 252, 182-189.	7.3	317
259	Functional Magnetic Resonance Imaging in Prostate Cancer. European Urology, 2009, 55, 801-814.	1.9	103
260	Diffusionâ€weighted magnetic resonance imaging detection of renal cancer presenting with diffuse peritoneal metastases in a patient with hemodialysisâ€associated acquired cystic disease of the kidney. Journal of Magnetic Resonance Imaging, 2009, 29, 953-956.	3.4	3
261	Characterization of chondroblastic osteosarcoma: Gadoliniumâ€enhanced versus diffusionâ€weighted MR imaging. Journal of Magnetic Resonance Imaging, 2009, 29, 895-900.	3.4	49
262	Diffusionâ€weighted echoâ€planar magnetic resonance imaging for the assessment of tumor cellularity in patients with softâ€tissue sarcomas. Journal of Magnetic Resonance Imaging, 2009, 29, 1355-1359.	3.4	110
263	Diffusionâ€weighted imaging of prostate cancer: Correlation between apparent diffusion coefficient values and tumor proliferation. Journal of Magnetic Resonance Imaging, 2009, 29, 1360-1366.	3.4	76
264	Intraprocedural diffusionâ€weighted PROPELLER MRI to guide percutaneous biopsy needle placement within rabbit VX2 liver tumors. Journal of Magnetic Resonance Imaging, 2009, 30, 366-373.	3.4	8
265	Assessment of mediastinal tumors with diffusionâ€weighted singleâ€shot echoâ€planar MRI. Journal of Magnetic Resonance Imaging, 2009, 30, 535-540.	3.4	75
266	Sensitivity of MR diffusion measurements to variations in intracellular structure: Effects of nuclear size. Magnetic Resonance in Medicine, 2009, 61, 828-833.	3.0	86
267	Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid tumors. Magnetic Resonance in Medicine, 2009, 62, 420-429.	3.0	50
268	Longitudinal study of the assessment by MRI and diffusionâ€weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR in Biomedicine, 2009, 22, 104-113.	2.8	292

#	Article	IF	CITATIONS
269	Apparent diffusion coefficient and fractional anisotropy of newly diagnosed grade II gliomas. NMR in Biomedicine, 2009, 22, 449-455.	2.8	38
270	Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. Journal of Neuro-Oncology, 2009, 91, 69-81.	2.9	142
271	Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM. Journal of Neuro-Oncology, 2009, 91, 337-351.	2.9	95
273	Integration of preoperative anatomic and metabolic physiologic imaging of newly diagnosed glioma. Journal of Neuro-Oncology, 2009, 92, 401-415.	2.9	68
274	MRI for brain tumours: a multimodality approach. Memo - Magazine of European Medical Oncology, 2009, 2, 15-19.	0.5	1
275	Correlation of diffusionâ€weighted magnetic resonance data with cellularity in prostate cancer. BJU International, 2009, 103, 883-888.	2.5	220
276	Diffusion-weighted magnetic resonance imaging in differentiation of postobstructive consolidation from central lung carcinoma. Magnetic Resonance Imaging, 2009, 27, 1447-1454.	1.8	30
277	Head and neck squamous cell carcinoma: usefulness of diffusion-weighted MR imaging in the prediction of a neoadjuvant therapeutic effect. European Radiology, 2009, 19, 103-109.	4.5	72
278	Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses. European Radiology, 2009, 19, 1544-1552.	4.5	163
279	MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay. European Radiology, 2009, 19, 2716-2727.	4.5	45
280	Assessment of Tumor Necrosis of Hepatocellular Carcinoma After Chemoembolization: Diffusion-Weighted and Contrast-Enhanced MRI With Histopathologic Correlation of the Explanted Liver. American Journal of Roentgenology, 2009, 193, 1044-1052.	2.2	172
281	Beyond RECIST: Molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treatment Reviews, 2009, 35, 309-321.	7.7	151
282	Tissue characterization of head and neck lesions using diffusion-weighted MR imaging with SPLICE. European Journal of Radiology, 2009, 69, 260-268.	2.6	41
283	Renal Lesions: Characterization with Diffusion-weighted Imaging versus Contrast-enhanced MR Imaging. Radiology, 2009, 251, 398-407.	7.3	291
284	Quantitative imaging biomarkers in neuro-oncology. Nature Reviews Clinical Oncology, 2009, 6, 445-454.	27.6	92
285	Diffusion Imaging for Therapy Response Assessment of Brain Tumor. Neuroimaging Clinics of North America, 2009, 19, 559-571.	1.0	44
286	Diffusion MRI in Neurological Disorders. , 2009, , 175-203.		6
287	Tractography for Surgical Targeting. , 2009, , 415-444.		3

ARTICLE IF CITATIONS Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and 288 5.3 1,703 Recommendations. Neoplasia, 2009, 11, 102-125. Multiparametric Characterization of Grade 2 Glioma Subtypes Using Magnetic Resonance 289 3.7 Spectroscopic, Perfusion, and Diffusion Imaging. Translational Oncology, 2009, 2, 271-280. Diffusion-Weighted Imaging Characteristics of Primary Central Nervous System Germinoma with 290 2.5 27 Histopathologic Correlation. Academic Radiology, 2009, 16, 1356-1365. Diffusion-Weighted Magnetic Resonance Imaging of Uterine Cervical Cancer. Journal of Computer 0.9 Assisted Tomography, 2009, 33, 858-862. Correlation of ADC and T2 Measurements With Cell Density in Prostate Cancer at 3.0 Tesla. 293 6.2 256 Investigative Radiology, 2009, 44, 572-576. Diffusion-tensor imaging in brain tumors. Imaging in Medicine, 2009, 1, 155-171. Differentiation of Pancreas Carcinoma From Healthy Pancreatic Tissue Using Multiple b-Values. 295 6.2 215 Investigative Radiology, 2009, 44, 769-775. Contribution of Diffusion-Weighted Magnetic Resonance Imaging in the Characterization of Hepatocellular Carcinomas and Dysplastic Nodules in Cirrhotic Liver. Journal of Computer Assisted 296 95 Tomography, 2010, 34, 506-512. New pathology classification, imagery techniques and prospective trials for meningiomas: the future 297 3.6 37 looks bright. Current Opinion in Neurology, 2010, 23, 563-570. Apparent Diffusion and Fractional Anisotropy of Diffuse Intrinsic Brain Stem Gliomas. American 2.4 Journal of Neuroradiology, 2010, 31, 1879-1885. Glioblastoma Detected at the Initial Stage in its Developmental Process -Case Report-. Neurologia 299 2.2 15 Medico-Chirurgica, 2010, 50, 414-417. Evaluation of the clinical staging of esophageal cancer by using diffusion-weighted imaging. 1.8 Experimental and Therapeutic Medicine, 2010, 1, 847-851. Metastases in Mediastinal and Hilar Lymph Nodes in Patients With Non-Small Cell Lung Cancer. Journal 301 0.9 61 of Computer Assisted Tomography, 2010, 34, 1-8. Differentiation of diffusion coefficients to distinguish malignant and benign tumor. Journal of X-Ray 1.0 Science and Technology, 2010, 18, 235-249. Imaging ovarian cancer and peritoneal metastasesâ€"current and emerging techniques. Nature Reviews 303 27.6 108 Clinical Oncology, 2010, 7, 381-393. Comparison of STIR turbo SE imaging and diffusion-weighted imaging of the lung: capability for detection and subtype classification of pulmonary adenocarcinomas. European Radiology, 2010, 20, 304 790-800. The value of diffusion-weighted imaging for monitoring the chemotherapeutic response of 305 osteosarcoma: a comparison between average apparent diffusion coefficient and minimum apparent 2.0 118 diffusion coefficient. Skeletal Radiology, 2010, 39, 141-146. Pediatric abdominal masses: diagnostic accuracy of diffusion weighted MRI. Magnetic Resonance 1.8 Imaging, 2010, 28, 629-636.

#	ARTICLE	IF	CITATIONS
307	Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy. Targeted Oncology, 2010, 5, 39-52.	3.6	95
308	Utility of functional diffusion maps to monitor a patient diagnosed with gliomatosis cerebri. Journal of Neuro-Oncology, 2010, 97, 419-423.	2.9	17
309	Cellularity and apparent diffusion coefficient in oligodendroglial tumours characterized by genotype. Journal of Neuro-Oncology, 2010, 96, 385-392.	2.9	35
310	Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. Journal of Neuro-Oncology, 2010, 100, 17-29.	2.9	51
311	Diffusion imaging of brain tumors. NMR in Biomedicine, 2010, 23, 849-864.	2.8	151
312	Diffusion tensor MRI: Preliminary anisotropy measures and mapping of breast tumors. Journal of Magnetic Resonance Imaging, 2010, 31, 339-347.	3.4	110
313	Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. Journal of Magnetic Resonance Imaging, 2010, 31, 538-548.	3.4	240
314	Comparison of apparent diffusion coefficients and distributed diffusion coefficients in highâ€grade gliomas. Journal of Magnetic Resonance Imaging, 2010, 31, 531-537.	3.4	63
315	Differential diagnosis of mammographically and clinically occult breast lesions on diffusionâ€weighted MRI. Journal of Magnetic Resonance Imaging, 2010, 31, 562-570.	3.4	148
316	Diagnostic value of minimum apparent diffusion coefficient values in prediction of neuroepithelial tumor grading. Journal of Magnetic Resonance Imaging, 2010, 31, 1331-1338.	3.4	37
317	Predicting survival in glioblastomas using diffusion tensor imaging metrics. Journal of Magnetic Resonance Imaging, 2010, 32, 788-795.	3.4	58
318	Studies of anomalous diffusion in the human brain using fractional order calculus. Magnetic Resonance in Medicine, 2010, 63, 562-569.	3.0	150
319	Detection of bone metastases using diffusion weighted magnetic resonance imaging: comparison with 11C-methionine PET and bone scintigraphy. Magnetic Resonance Imaging, 2010, 28, 372-379.	1.8	53
320	Functional diffusion map of malignant brain tumors: A surrogate imaging biomarker for early prediction of therapeutic response and patient survival. Egyptian Journal of Radiology and Nuclear Medicine, 2010, 41, 441-451.	0.6	5
321	Advanced MRI and PET Imaging of Meningiomas. , 2010, , 233-242.		0
322	Current and Future Trends in Magnetic Resonance Imaging Assessments of the Response of Breast Tumors to Neoadjuvant Chemotherapy. Journal of Oncology, 2010, 2010, 1-17.	1.3	32
323	Advanced Imaging of Adult Brain Tumors with MRI and PET. Blue Books of Neurology, 2010, 36, 71-98.	0.1	3
324	Apparent Diffusion Coefficient of Glial Neoplasms: Correlation with Fluorodeoxyglucose–Positron-Emission Tomography and Gadolinium-Enhanced MR Imaging. American Journal of Neuroradiology, 2010, 31, 1042-1048.	2.4	34

	Сітат	ION REPORT	
#	ARTICLE	IF	CITATIONS
325	Utility of the Apparent Diffusion Coefficient for Distinguishing Clear Cell Renal Cell Carcinoma of Low and High Nuclear Grade. American Journal of Roentgenology, 2010, 195, W344-W351.	2.2	121
326	Diffusion Weighted Magnetic Resonance Imaging of metastatic bone disease: A biomarker for treatment response monitoring. Cancer Biomarkers, 2010, 6, 21-32.	1.7	24
327	Complementary Roles of Whole-Body Diffusion-Weighted MRI and ¹⁸ F-FDG PET: The State of the Art and Potential Applications. Journal of Nuclear Medicine, 2010, 51, 1549-1558.	f 5.0	92
328	Diffusion-weighted MR Imaging: Pretreatment Prediction of Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer. Radiology, 2010, 257, 56-63.	7.3	249
329	Distinguishing Recurrent Primary Brain Tumor from Radiation Injury: A Preliminary Study Using a Susceptibility-Weighted MR Imagingâ^'Guided Apparent Diffusion Coefficient Analysis Strategy. American Journal of Neuroradiology, 2010, 31, 1049-1054.	n 2.4	50
330	Combination of high-resolution susceptibility-weighted imaging and the apparent diffusion coefficient: added value to brain tumour imaging and clinical feasibility of non-contrast MRI at 3 T. British Journal of Radiology, 2010, 83, 466-475.	2.2	34
331	Identification of Residual Breast Carcinoma Following Neoadjuvant Chemotherapy: Diffusion-weighted Imaging—Comparison with Contrast-enhanced MR Imaging and Pathologic Findings. Radiology, 2010, 254, 357-366.	7.3	146
332	Glioblastoma Multiforme Regional Genetic and Cellular Expression Patterns: Influence on Anatomic and Physiologic MR Imaging. Radiology, 2010, 254, 564-576.	7.3	148
333	Indeterminate Orbital Masses: Restricted Diffusion at MR Imaging with Echo-planar Diffusion-weighted Imaging Predicts Malignancy. Radiology, 2010, 256, 554-564.	7.3	118
334	Candidate Biomarkers of Extravascular Extracellular Space: A Direct Comparison of Apparent Diffusion Coefficient and Dynamic Contrast-Enhanced MR Imaging—Derived Measurement of the Volume of the Extravascular Extracellular Space in Glioblastoma Multiforme. American Journal of Neuroradiology. 2010. 31, 549-553.	2.4	61
335	The Role of Parallel Diffusion-Weighted Imaging and Apparent Diffusion Coefficient (ADC) Map Values for Evaluating Breast Lesions. Academic Radiology, 2010, 17, 456-463.	2.5	42
336	Diffusion-Weighted MRI at 3 T for the Evaluation of Prostate Cancer. American Journal of Roentgenology, 2010, 194, 1461-1469.	2.2	105
338	Differences in the architecture of low-grade and high-grade gliomas evaluated using fiber density index and fractional anisotropy. Journal of Clinical Neuroscience, 2010, 17, 824-829.	1.5	19
339	1H-MRSI of prostate cancer: The relationship between metabolite ratio and tumor proliferation. European Journal of Radiology, 2010, 73, 345-351.	2.6	21
340	Glioblastoma treated with postoperative radio-chemotherapy: Prognostic value of apparent diffusion coefficient at MR imaging. European Journal of Radiology, 2010, 73, 532-537.	2.6	46
341	Use of new imaging techniques to predict tumour response to therapy. Lancet Oncology, The, 2010, 11, 92-102.	10.7	146
342	Usefulness of Diffusion-Weighted Imaging in the Evaluation of Renal Masses. American Journal of Roentgenology, 2010, 194, 438-445.	2.2	172
343	Leucoencephalopathy with brainstem and spinal cord involvement and high lactate: quantitative magnetic resonance imaging. Brain, 2011, 134, 3333-3341.	7.6	26

#	Article	IF	CITATIONS
345	Methodology of diffusion-weighted, diffusion tensor and magnetisation transfer imaging. British Journal of Radiology, 2011, 84, S121-S126.	2.2	13
346	Advanced Magnetic Resonance Imaging Techniques in the Evaluation of Musculoskeletal Tumors. Radiologic Clinics of North America, 2011, 49, 1325-1358.	1.8	48
347	Pelvic Applications of Diffusion Magnetic Resonance Images. Magnetic Resonance Imaging Clinics of North America, 2011, 19, 133-157.	1.1	20
348	Diffusion MR Imaging for Monitoring of Treatment Response. Magnetic Resonance Imaging Clinics of North America, 2011, 19, 181-209.	1.1	123
349	Diffusion MR Imaging: An Important Tool in the Assessment of Brain Tumors. Neuroimaging Clinics of North America, 2011, 21, 27-49.	1.0	22
350	Role of Diffusion MRI and Apparent Diffusion Coefficient Measurement in the Diagnosis, Staging and Pathological Classification of Bladder Tumors. Urologia Internationalis, 2011, 87, 346-352.	1.3	26
351	Spinal pilocytic astrocytoma: MR imaging findings at first presentation and following surgery. European Journal of Radiology, 2011, 79, 389-399.	2.6	15
352	Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. European Journal of Radiology, 2011, 80, 462-470.	2.6	89
353	Diffusion MR Imaging in Central Nervous System. Magnetic Resonance Imaging Clinics of North America, 2011, 19, 23-53.	1.1	23
354	Imaging of Non— or Very Subtle Contrast-Enhancing Malignant Gliomas with [¹¹ C]-Methionine Positron Emission Tomography. Molecular Imaging, 2011, 10, 7290.2011.00014.	1.4	28
355	MR imaging and MR-guided biopsy of the prostate at 3T. , 0, , 178-196.		0
356	Bony metastases: assessing response to therapy with whole-body diffusion MRI. Cancer Imaging, 2011, 11, 5129-S154.	2.8	63
357	Prediction of Local Failures with a Combination of Pretreatment Tumor Volume and Apparent Diffusion Coefficient in Patients Treated with Definitive Radiotherapy for Hypopharyngeal or Oropharyngeal Squamous Cell Carcinoma. Journal of Radiation Research, 2011, 52, 522-530.	1.6	33
358	Sensitivity of MRI Tumor Biomarkers to VEGFR Inhibitor Therapy in an Orthotopic Mouse Glioma Model. PLoS ONE, 2011, 6, e17228.	2.5	27
359	Intracranial Tumour Characterization: Whole Brain Evaluation with MR Perfusion Images and SPECT-CT. Neuroradiology Journal, 2011, 24, 838-845.	1.2	0
360	Diffusionâ€weighted imaging for nonâ€invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. British Journal of Haematology, 2011, 153, 721-728.	2.5	132
361	MAGNETIC RESONANCE IMAGING APPARENT DIFFUSION COEFFICIENTS FOR HISTOLOGICALLY CONFIRMED INTRACRANIAL LESIONS IN DOGS. Veterinary Radiology and Ultrasound, 2011, 52, 142-148.	0.9	33
362	Diffusion Magnetic Resonance Imaging in Cancer Patient Management. Seminars in Radiation Oncology, 2011, 21, 119-140.	2.2	47

#	Article	IF	CITATIONS
363	Endovaginal magnetic resonance imaging of stage 1A/1B cervical cancer with A T2- and diffusion-weighted magnetic resonance technique: Effect of lesion size and previous cone biopsy on tumor detectability. Gynecologic Oncology, 2011, 120, 368-373.	1.4	27
364	Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility. European Radiology, 2011, 21, 1713-1718.	4.5	143
365	Volumetric analysis of functional diffusion maps is a predictive imaging biomarker for cytotoxic and anti-angiogenic treatments in malignant gliomas. Journal of Neuro-Oncology, 2011, 102, 95-103.	2.9	65
366	Cell invasion, motility, and proliferation level estimate (CIMPLE) maps derived from serial diffusion MR images in recurrent glioblastoma treated with bevacizumab. Journal of Neuro-Oncology, 2011, 105, 91-101.	2.9	33
367	ADC measurements in the evaluation of lymph nodes in patients with non-Hodgkin lymphoma: feasibility study. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2011, 24, 1-8.	2.0	31
369	Discrimination of metastatic from hyperplastic pelvic lymph nodes in patients with cervical cancer by diffusion-weighted magnetic resonance imaging. Abdominal Imaging, 2011, 36, 102-109.	2.0	78
370	MR imaging characteristics of protoplasmic astrocytomas. Neuroradiology, 2011, 53, 405-411.	2.2	33
371	Can diffusion tensor metrics help in preoperative grading of diffusely infiltrating astrocytomas? A retrospective study of 36 cases. Neuroradiology, 2011, 53, 63-68.	2.2	29
372	Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps. Neuroradiology, 2011, 53, 483-491.	2.2	43
373	Measurements of diagnostic examination performance and correlation analysis using microvascular leakage, cerebral blood volume, and blood flow derived from 3T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in glial tumor grading. Neuroradiology, 2011, 53, 435-447.	2.2	34
374	Usefulness of diffusion-weighted imaging of breast tumors: quantitative and visual assessment. Japanese Journal of Radiology, 2011, 29, 429-436.	2.4	21
375	Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: Can ADC values contribute to assess the aggressiveness of prostate cancer?. Journal of Magnetic Resonance Imaging, 2011, 33, 167-172.	3.4	105
376	Correlation of diffusionâ€weighted imaging data with apoptotic and proliferation indexes in CT26 colorectal tumor homografts in balb/c mouse. Journal of Magnetic Resonance Imaging, 2011, 33, 1171-1176.	3.4	23
377	Improving apparent diffusion coefficient estimates and elucidating tumor heterogeneity using Bayesian adaptive smoothing. Magnetic Resonance in Medicine, 2011, 65, 438-447.	3.0	24
378	Spatially quantifying microscopic tumor invasion and proliferation using a voxelâ€wise solution to a glioma growth model and serial diffusion MRI. Magnetic Resonance in Medicine, 2011, 65, 1131-1143.	3.0	42
379	Integration of diffusionâ€weighted MRI data and a simple mathematical model to predict breast tumor cellularity during neoadjuvant chemotherapy. Magnetic Resonance in Medicine, 2011, 66, 1689-1696.	3.0	41
380	Diffusion tensor imaging discriminates between glioblastoma and cerebral metastases <i>in vivo</i> . NMR in Biomedicine, 2011, 24, 54-60.	2.8	97
381	Quantitative magnetisation transfer imaging in glioma: preliminary results. NMR in Biomedicine, 2011, 24, 492-498.	2.8	18

#	Article	IF	CITATIONS
382	Hepatic tumor response evaluation by MRI. NMR in Biomedicine, 2011, 24, 721-733.	2.8	19
383	Assessment of therapeutic response and treatment planning for brain tumors using metabolic and physiological MRI. NMR in Biomedicine, 2011, 24, 734-749.	2.8	81
384	Earlier detection of tumor treatment response using magnetic resonance diffusion imaging with oscillating gradients. Magnetic Resonance Imaging, 2011, 29, 315-323.	1.8	40
385	Magnetic resonance in the era of molecular imaging of cancer. Magnetic Resonance Imaging, 2011, 29, 587-600.	1.8	82
386	Assessing extracranial tumors using diffusion-weighted whole-body MRI. Zeitschrift Fur Medizinische Physik, 2011, 21, 79-90.	1.5	11
387	Apparent Diffusion Coefficient as an MR Imaging Biomarker of Low-Risk Ductal Carcinoma in Situ: A Pilot Study. Radiology, 2011, 260, 364-372.	7.3	83
388	Gliomas: Histogram Analysis of Apparent Diffusion Coefficient Maps with Standard- or High- <i>b</i> -Value Diffusion-weighted MR Imaging—Correlation with Tumor Grade. Radiology, 2011, 261, 882-890.	7.3	297
389	Whole-Body Diffusion-weighted MR Imaging in Cancer: Current Status and Research Directions. Radiology, 2011, 261, 700-718.	7.3	293
390	MRI apparent diffusion coefficient reflects histopathologic subtype, axonal disruption, and tumor fraction in diffuse-type grade II gliomas. Neuro-Oncology, 2011, 13, 1192-1201.	1.2	31
391	Isolated Diffusion Restriction Precedes the Development of Enhancing Tumor in a Subset of Patients with Clioblastoma. American Journal of Neuroradiology, 2011, 32, 1301-1306.	2.4	74
392	Is Apparent Diffusion Coefficient Associated with Clinical Risk Scores for Prostate Cancers that Are Visible on 3-T MR Images?. Radiology, 2011, 258, 488-495.	7.3	372
393	Value of Diffusion-Weighted Imaging in Grading Tumours Localized in the Fourth Ventricle Region by Visual and Quantitative Assessments. Journal of International Medical Research, 2011, 39, 912-919.	1.0	8
394	Pineal Parenchymal Tumours: Minimum Apparent Diffusion Coefficient in Prediction of Tumour Grading. Journal of International Medical Research, 2011, 39, 1456-1463.	1.0	15
395	Diffusion MR Imaging of the Brain in Patients with Cancer. International Journal of Molecular Imaging, 2011, 2011, 1-9.	1.3	7
396	Value of diffusion-weighted imaging for assessing site-specific response of advanced ovarian cancer to neoadjuvant chemotherapy: Correlation of apparent diffusion coefficients with epithelial and stromal densities on histology. Cancer Biomarkers, 2011, 7, 201-210.	1.7	14
397	Quantitative Diffusion-Weighted and Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging Analysis of T2 Hypointense Lesion Components in Pediatric Diffuse Intrinsic Pontine Glioma. American Journal of Neuroradiology, 2011, 32, 315-322.	2.4	62
398	Specific biomarkers of receptors, pathways of inhibition and targeted therapies: clinical applications. British Journal of Radiology, 2011, 84, S179-S195.	2.2	3
399	Statistical evaluation of fitting models of diffusion tensor imaging in characterizing normal porcine myocardium. , 2011, , .		0

#	Article	IF	CITATIONS
400	Metastatic Ovarian and Primary Peritoneal Cancer: Assessing Chemotherapy Response with Diffusion-weighted MR Imaging—Value of Histogram Analysis of Apparent Diffusion Coefficients. Radiology, 2011, 261, 182-192.	7.3	211
401	Diagnostic Value of Peritumoral Minimum Apparent Diffusion Coefficient for Differentiation of Glioblastoma Multiforme From Solitary Metastatic Lesions. American Journal of Roentgenology, 2011, 196, 71-76.	2.2	130
402	38, 2742-2753.	3.0	4
403	Diffusion magnetic resonance imaging for enhanced visualization of malignant cerebral tumors and abscesses. Neurology India, 2011, 59, 674.	0.4	6
404	Functional diffusion maps (fDMs) evaluated before and after radiochemotherapy predict progression-free and overall survival in newly diagnosed glioblastoma. Neuro-Oncology, 2012, 14, 333-343.	1.2	74
405	Survival Analysis of Patients with High-Grade Gliomas Based on Data Mining of Imaging Variables. American Journal of Neuroradiology, 2012, 33, 1065-1071.	2.4	70
406	Survival analysis for apparent diffusion coefficient measures in children with embryonal brain tumours. Neuro-Oncology, 2012, 14, 1285-1293.	1.2	8
407	Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro-Oncology, 2012, 14, 942-954.	1.2	183
408	A Case of a Giant Pseudoangiomatous Stromal Hyperplasia of the Breast: Magnetic Resonance Imaging Findings. Rare Tumors, 2012, 4, 73-77.	0.6	13
409	Neurosurgical Approach. Cancer Journal (Sudbury, Mass), 2012, 18, 20-25.	2.0	18
410	Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth. Physics in Medicine and Biology, 2012, 57, 225-240.	3.0	40
411	Nonmalignant Breast Lesions: ADCs of Benign and High-Risk Subtypes Assessed as False-Positive at Dynamic Enhanced MR Imaging. Radiology, 2012, 265, 696-706.	7.3	72
412	Diffusion-Weighted Imaging for Differentiating Benign From Malignant Skull Lesions and Correlation With Cell Density. American Journal of Roentgenology, 2012, 198, W597-W601.	2.2	90
413	The Added Value of Apparent Diffusion Coefficient to Cerebral Blood Volume in the Preoperative Grading of Diffuse Gliomas. American Journal of Neuroradiology, 2012, 33, 701-707.	2.4	119
414	High-Grade Cerebral Glioma Characterization: Usefulness of MR Spectroscopy and Perfusion Imaging Associated Evaluation. Neuroradiology Journal, 2012, 25, 57-66.	1.2	6
415	Restricted Diffusion in Vanishing White Matter. Archives of Neurology, 2012, 69, 723-7.	4.5	18
416	Small hypervascular hepatocellular carcinomas: value of diffusion-weighted imaging compared with "washout―appearance on dynamic MRI. British Journal of Radiology, 2012, 85, e879-e886.	2.2	14
417	Visualizing Non-Gaussian Diffusion: Clinical Application of q-Space Imaging and Diffusional Kurtosis Imaging of the Brain and Spine. Magnetic Resonance in Medical Sciences, 2012, 11, 221-233.	2.0	101

#	Article	IF	CITATIONS
418	T2 and DWI in Pilocytic and Pilomyxoid Astrocytoma with Pathologic Correlation. Canadian Journal of Neurological Sciences, 2012, 39, 491-498.	0.5	16
419	Differentiation between pelvic abscesses and pelvic tumors with diffusion-weighted MR imaging: a preliminary study. Clinical Imaging, 2012, 36, 532-538.	1.5	10
420	High-resolution Diffusion-weighted Magnetic Resonance Imaging in Patients with Locally Advanced Breast Cancer. Academic Radiology, 2012, 19, 526-534.	2.5	70
421	Comparisons of the Efficacy of a Jak1/2 Inhibitor (AZD1480) with a VEGF Signaling Inhibitor (Cediranib) and Sham Treatments in Mouse Tumors Using DCE-MRI, DW-MRI, and Histology. Neoplasia, 2012, 14, 54-64.	5.3	35
422	Diffusion-weighted MR Imaging for the Differentiation of True Progression from Pseudoprogression Following Concomitant Radiotherapy with Temozolomide in Patients with Newly Diagnosed High-grade Gliomas. Academic Radiology, 2012, 19, 1353-1361.	2.5	96
423	Quantitative diffusion-weighted magnetic resonance imaging as a powerful adjunct to fine needle aspiration cytology for assessment of thyroid nodules. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2012, 33, 408-416.	1.3	27
424	MRI features in children with desmoplastic medulloblastoma. Journal of Clinical Neuroscience, 2012, 19, 281-285.	1.5	14
425	Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. European Journal of Cancer, 2012, 48, 425-431.	2.8	68
426	Lymphomas and glioblastomas: Differences in the apparent diffusion coefficient evaluated with high b-value diffusion-weighted magnetic resonance imaging at 3 T. European Journal of Radiology, 2012, 81, 339-344.	2.6	101
427	Prebiopsy magnetic resonance spectroscopy and imaging in the diagnosis of prostate cancer. International Journal of Urology, 2012, 19, 602-613.	1.0	33
428	Diffusion-weighted MRI in neuro-oncology. CNS Oncology, 2012, 1, 155-167.	3.0	12
429	Pelvic Nodal Imaging. Radiologic Clinics of North America, 2012, 50, 1111-1125.	1.8	30
430	Direct measurement of the signal intensity of diffusion-weighted magnetic resonance imaging for preoperative grading and treatment guidance for brain gliomas. Journal of the Chinese Medical Association, 2012, 75, 581-588.	1.4	23
431	Advantages of high b-value diffusion-weighted imaging to diagnose pseudo-responses in patients with recurrent glioma after bevacizumab treatment. European Journal of Radiology, 2012, 81, 2805-2810.	2.6	36
432	Pseudoprogression and Treatment Effect. Neurosurgery Clinics of North America, 2012, 23, 277-287.	1.7	27
433	Value of diffusion-weighted magnetic resonance imaging in early diagnosis of ankylosing spondylitis. Rheumatology International, 2012, 32, 4005-4013.	3.0	23
435	Diffusion-weighted MRI as a biomarker for treatment response in glioma. CNS Oncology, 2012, 1, 169-180.	3.0	47
436	Apparent diffusion coefficient measurements in the differentiation between benign and malignant lesions: a systematic review. Insights Into Imaging, 2012, 3, 395-409.	3.4	57

ARTICLE

Pilot study on evaluation of any correlation between MR perfusion (Ktrans) and diffusion (apparent) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

438	Diffusion-Weighted Imaging of a Prostate Cancer Xenograft Model Seen on a 7 Tesla Animal MR Scanner: Comparison of ADC Values and Pathologic Findings. Korean Journal of Radiology, 2012, 13, 82.	3.4	26
439	Comparisons of multi <i>b</i> â€value DWI signal analysis with pathological specimen of breast cancer. Magnetic Resonance in Medicine, 2012, 68, 890-897.	3.0	31
440	Dynamic contrastâ€enhanced magnetic resonance imaging as a prognostic factor in predicting eventâ€free and overall survival in pediatric patients with osteosarcoma. Cancer, 2012, 118, 3776-3785.	4.1	95
441	Relation between FDG uptake and apparent diffusion coefficients in glioma and malignant lymphoma. Annals of Nuclear Medicine, 2012, 26, 262-271.	2.2	25
442	Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms. European Radiology, 2012, 22, 447-457.	4.5	96
443	Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason grades than TRUS-guided biopsies in peripheral zone tumours. European Radiology, 2012, 22, 468-475.	4.5	104
445	Role of apparent diffusion coefficient values for the differentiation of viable and necrotic areas of breast cancer and its potential utility to guide voxel positioning for MRS in the absence of dynamic contrast-enhanced MRI data. Magnetic Resonance Imaging, 2012, 30, 649-655.	1.8	23
446	Quantitative assessment of central nervous system disorder induced by prenatal Xâ€ray exposure using diffusion and manganeseâ€enhanced MRI. NMR in Biomedicine, 2012, 25, 75-83.	2.8	14
447	Nonlinear registration of diffusionâ€weighted images improves clinical sensitivity of functional diffusion maps in recurrent glioblastoma treated with bevacizumab. Magnetic Resonance in Medicine, 2012, 67, 237-245.	3.0	36
448	Diffusion-weighted imaging findings of mucinous carcinoma arising in the ano-rectal region: comparison of apparent diffusion coefficient with that of tubular adenocarcinoma. Japanese Journal of Radiology, 2012, 30, 120-127.	2.4	49
449	Differential microstructure and physiology of brain and bone metastases in a rat breast cancer model by diffusion and dynamic contrast enhanced MRI. Clinical and Experimental Metastasis, 2012, 29, 51-62.	3.3	30
450	Diffusion MRI of acute pancreatitis and comparison with normal individuals using ADC values. Emergency Radiology, 2012, 19, 5-9.	1.8	44
451	Head and neck squamous cell carcinoma: Differentiation of histologic grade with standard―and highâ€bâ€value diffusionâ€weighted MRI. Head and Neck, 2013, 35, 626-631.	2.0	36
453	Perfusion and diffusion MRI combined with 11C-methionine PET in the preoperative evaluation of suspected adult low-grade gliomas. Journal of Neuro-Oncology, 2013, 114, 241-249.	2.9	31
454	Prognostic role for diffusion-weighted imaging of pediatric optic pathway glioma. Journal of Neuro-Oncology, 2013, 113, 479-483.	2.9	33
455	Emerging Concepts in Neuro-Oncology. , 2013, , .		0
456	Quantitative MR perfusion parameters related to survival time in high-grade gliomas. European Radiology, 2013, 23, 3456-3465.	4.5	20

#	Article	IF	CITATIONS
457	Detection of invasive components in cases of breast ductal carcinoma in situ on biopsy by using apparent diffusion coefficient MR parameters. European Radiology, 2013, 23, 2705-2712.	4.5	59
458	Associations among q-space MRI, diffusion-weighted MRI and histopathological parameters in meningiomas. European Radiology, 2013, 23, 2258-2263.	4.5	21
459	Total magnitude of diffusion tensor imaging as an effective tool for the differentiation of glioma. European Journal of Radiology, 2013, 82, 857-861.	2.6	19
460	Imaging biomarkers for antiangiogenic therapy in malignant gliomas. CNS Oncology, 2013, 2, 33-47.	3.0	17
461	Potential role of advanced MRI techniques for the peritumoural region in differentiating glioblastoma multiforme and solitary metastatic lesions. Clinical Radiology, 2013, 68, e689-e697.	1.1	68
462	Recurrent high-grade glioma treated with bevacizumab: prognostic value of MGMTÂmethylation, EGFR status and pretreatment MRI in determining response and survival. Journal of Neuro-Oncology, 2013, 115, 267-276.	2.9	30
463	Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques. Magnetic Resonance Imaging, 2013, 31, 1567-1577.	1.8	82
464	Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with MGMT promoter methylation status. European Radiology, 2013, 23, 513-520.	4.5	86
465	Diffusionâ€weighted MRI of the abdomen: Current value in clinical routine. Journal of Magnetic Resonance Imaging, 2013, 37, 35-47.	3.4	48
466	Characterization of malignancy of adnexal lesions using ADC entropy: Comparison with mean ADC and qualitative DWI assessment. Journal of Magnetic Resonance Imaging, 2013, 37, 164-171.	3.4	57
467	Tumor volume and subvolume concordance between FDGâ€PET/CT and diffusionâ€weighted MRI for squamous cell carcinoma of the cervix. Journal of Magnetic Resonance Imaging, 2013, 37, 431-434.	3.4	44
468	Parameterizing the Logistic Model of Tumor Growth by DW-MRI and DCE-MRI Data to Predict Treatment Response and Changes in Breast Cancer Cellularity during Neoadjuvant Chemotherapy. Translational Oncology, 2013, 6, 256-264.	3.7	69
469	Intracranial hemangiopericytoma: MR imaging findings and diagnostic usefulness of minimum ADC values. Journal of Magnetic Resonance Imaging, 2013, 38, 1146-1151.	3.4	34
470	Diffusion tensor imaging of extraocular muscle using twoâ€dimensional singleâ€shot interleaved multiple inner volume imaging diffusionâ€weighted EPI at 3 tesla. Journal of Magnetic Resonance Imaging, 2013, 38, 1162-1168.	3.4	7
471	Magnetic Resonance Imaging of Glioma in the Era of Antiangiogenic Therapy. PET Clinics, 2013, 8, 163-182.	3.0	4
472	Protocolo de estudio por neuroimágenes de los tumores del sistema nervioso central. Neurologia Argentina, 2013, 5, 37-43.	0.3	2
473	Distinctive MRI Features of Pediatric Medulloblastoma Subtypes. American Journal of Roentgenology, 2013, 200, 895-903.	2.2	91
474	Brain Tumors. Magnetic Resonance Imaging Clinics of North America, 2013, 21, 199-239.	1.1	49

ARTICLE IF CITATIONS # Magnetic resonance spectroscopy and perfusion weighted imaging as predictors for tumor response to gamma knife radiosurgery: A single center experience. Egyptian Journal of Radiology and Nuclear 475 0.6 0 Medicine, 2013, 44, 83-91. Diffusion Weighted Magnetic Resonance Imaging of the Breast. Magnetic Resonance Imaging Clinics of 476 1.1 142 North America, 2013, 21, 601-624. 477 Neoplastic Diseases of the Central Nervous System., 2013, , 551-594. 0 Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably 2.0 distinguish cysts from solid masses?. Skeletal Radiology, 2013, 42, 1583-1592. Combined Diffusion and Perfusion MR Imaging as Biomarkers of Prognosis in Immunocompetent Patients with Primary Central Nervous System Lymphoma. American Journal of Neuroradiology, 2013, 479 2.4 54 34, 35-40. Improved Conspicuity and Delineation of High-Grade Primary and Metastatic Brain Tumors Using "Restriction Spectrum Imaging†Quantitative Comparison with High B-Value DWI and ADC. American Journal of Neuroradiology, 2013, 34, 958-964. 480 2.4 87 Longitudinal Restriction Spectrum Imaging Is Resistant to Pseudoresponse in Patients with High-Grade 481 2.4 35 Gliomas Treated with Bevacizumab. American Journal of Neuroradiology, 2013, 34, 1752-1757. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging 1.2 254 strategies. Neuro-Oncology, 2013, 15, 515-534. 483 Advanced MR Imaging of Gliomas: An Update. BioMed Research International, 2013, 2013, 1-14. 1.9 65 Restriction-Spectrum Imaging of Bevacizumab-Related Necrosis in a Patient with GBM. Frontiers in 484 2.8 Oncology, 2013, 3, 258. Can MRI-derived factors predict the survival in glioblastoma patients treated with postoperative 485 1.1 27 chemoradiation therapy? Acta Radiologica, 2013, 54, 214-220. Proton magnetic resonance spectroscopy and apparent diffusion coefficient in evaluation of solid brain lesions. Vojnosanitetski Pregled, 2013, 70, 637-644. 486 The role of pre-treatment diffusion-weighted MRI in predicting long-term outcome of colorectal liver 487 2.2 32 metastasis. British Journal of Radiology, 2013, 86, 20130281. Diffusion-Weighted MRI: Distinction of Skull Base Chordoma from Chondrosarcoma. American Journal of Neuroradiology, 2013, 34, 1056-1061. 2.4 123 Common Pediatric Cerebellar Tumors: Correlation between Cell Densities and Apparent Diffusion 489 7.3 53 Coefficient Metrics. Radiology, 2013, 268, 532-537. Differentiation of True Progression from Pseudoprogression in Glioblastoma Treated with Radiation Therapy and Concomitant Temozolomide: Comparison Study of Standard and High-<i>b</i>>Value 147 Diffusión-weighted Imaging. Radiology, 2013, 269, 831-840. Quantitative probabilistic functional diffusion mapping in newly diagnosed glioblastoma treated with 491 1.2 38 radiochemotherapy. Neuro-Oncology, 2013, 15, 382-390. Effects of perfusion on diffusion changes in human brain tumors. Journal of Magnetic Resonance 492 3.4 Imaging, 2013, 38, 868-875.

#	Article	IF	CITATIONS
493	Temporal MRI characterization of gelatin/hyaluronic acid/chondroitin sulfate sponge for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2174-2180.	4.0	10
494	ADC Values and Prognosis of Malignant Astrocytomas: Does Lower ADC Predict a Worse Prognosis Independent of Grade of Tumor?à€"A Meta-Analysis. American Journal of Roentgenology, 2013, 200, 624-629.	2.2	69
495	Agreement and Reproducibility of Apparent Diffusion Coefficient Measurements of Dual-b-Value and Multi-b-Value Diffusion-Weighted Magnetic Resonance Imaging at 1.5 Tesla in Phantom and in Soft Tissues of the Abdomen. Journal of Computer Assisted Tomography, 2013, 37, 46-51.	0.9	38
496	An introduction to molecular imaging in radiation oncology: A report by the AAPM Working Group on Molecular Imaging in Radiation Oncology (WGMIR). Medical Physics, 2013, 40, 101501.	3.0	10
497	Combined DCE- and DW-MRIs in diagnosis of benign and malignant tumors of the tongue. Frontiers in Bioscience - Landmark, 2013, 18, 1098.	3.0	11
498	Pre-Treatment Diffusion-Weighted MR Imaging for Predicting Tumor Recurrence in Uterine Cervical Cancer Treated with Concurrent Chemoradiation: Value of Histogram Analysis of Apparent Diffusion Coefficients. Korean Journal of Radiology, 2013, 14, 616.	3.4	69
499	True Progression versus Pseudoprogression in the Treatment of Glioblastomas: A Comparison Study of Normalized Cerebral Blood Volume and Apparent Diffusion Coefficient by Histogram Analysis. Korean Journal of Radiology, 2013, 14, 662.	3.4	79
500	Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging, 2013, 13, 186-195.	2.8	43
501	Glioma Grading Capability: Comparisons among Parameters from Dynamic Contrast-Enhanced MRI and ADC Value on DWI. Korean Journal of Radiology, 2013, 14, 487.	3.4	67
502	Prognosis Prediction of Measurable Enhancing Lesion after Completion of Standard Concomitant Chemoradiotherapy and Adjuvant Temozolomide in Glioblastoma Patients: Application of Dynamic Susceptibility Contrast Perfusion and Diffusion-Weighted Imaging. PLoS ONE, 2014, 9, e113587.	2.5	15
503	Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique. Journal of Medical Engineering, 2014, 2014, 1-8.	1.1	4
504	MR Imaging and MR Spectroscopy in Prostate Cancer. Medical Radiology, 2014, , 3-14.	0.1	0
505	Emerging techniques and technologies in brain tumor imaging. Neuro-Oncology, 2014, 16, vii12-vii23.	1.2	41
506	Challenges for the functional diffusion map in pediatric brain tumors. Neuro-Oncology, 2014, 16, 449-456.	1.2	6
507	Differentiation of Benign Angiomatous and Microcystic Meningiomas with Extensive Peritumoral Edema from High Grade Meningiomas with Aid of Diffusion Weighted MRI. BioMed Research International, 2014, 2014, 1-7.	1.9	24
508	A Pilot Study of Diffusion-Weighted MRI in Patients Undergoing Neoadjuvant Chemoradiation for Pancreatic Cancer. Translational Oncology, 2014, 7, 644-649.	3.7	63
509	Diffusion-Weighted Imaging with Dual-Echo Echo-Planar Imaging for Better Sensitivity to Acute Stroke. American Journal of Neuroradiology, 2014, 35, 1293-1302.	2.4	11
510	Bevacizumab: radiation combination produces restricted diffusion on brain MRI. CNS Oncology, 2014, 3, 329-335.	3.0	5

#	Article	IF	Citations
511	Comparison of Perfusion, Diffusion, and MR Spectroscopy between Low-Grade Enhancing Pilocytic Astrocytomas and High-Grade Astrocytomas. American Journal of Neuroradiology, 2014, 35, 1495-1502.	2.4	59
512	ADC texture—An imaging biomarker for highâ€grade glioma?. Medical Physics, 2014, 41, 101903.	3.0	70
513	Distinct effects of nuclear volume fraction and cell diameter on high bâ€value diffusion MRI contrast in tumors. Magnetic Resonance in Medicine, 2014, 72, 1435-1443.	3.0	37
514	Longitudinal, intermodality registration of quantitative breast PET and MRI data acquired before and during neoadjuvant chemotherapy: Preliminary results. Medical Physics, 2014, 41, 052302.	3.0	15
515	Glioma grading using apparent diffusion coefficient map: application of histogram analysis based on automatic segmentation. NMR in Biomedicine, 2014, 27, 1046-1052.	2.8	31
516	Primary Atypical Optic Nerve Sheath Meningioma in a Child With Restricted Diffusion on Magnetic Resonance Imaging. Journal of Neuro-Ophthalmology, 2014, 34, 173-176.	0.8	8
517	Precise ex vivo histological validation of heightened cellularity and diffusion-restricted necrosis in regions of dark apparent diffusion coefficient in 7 cases of high-grade glioma. Neuro-Oncology, 2014, 16, 1599-1606.	1.2	71
518	Diffusion-weighted magnetic resonance imaging for early response assessment of chemoradiotherapy in patients with nasopharyngeal carcinoma. Magnetic Resonance Imaging, 2014, 32, 630-637.	1.8	71
519	Diffusion-weighted MR imaging findings of ovarian adenocarcinofibromas and adenofibromas. Clinical Imaging, 2014, 38, 483-489.	1.5	2
520	Comparison of ADC values of intracranial hemangiopericytomas and angiomatous and anaplastic meningiomas. Journal of Neuroradiology, 2014, 41, 188-194.	1.1	32
521	Brain and Spinal Cord. , 2014, , 1384-1426.		0
522	Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2014, 117, 175-182.	2.9	69
523	Predictive significance of mean apparent diffusion coefficient value for responsiveness of temozolomide-refractory malignant glioma to bevacizumab: preliminary report. International Journal of Clinical Oncology, 2014, 19, 16-23.	2.2	15
524	Diffusion-weighted imaging (DWI) of adenomyosis and fibroids of the uterus. Abdominal Imaging, 2014, 39, 562-569.	2.0	21
525	Diffusion-weighted MRI for distinguishing non-neoplastic cysts from solid masses in the mediastinum: problem-solving in mediastinal masses of indeterminate internal characteristics on CT. European Radiology, 2014, 24, 677-684.	4.5	43
526	Diffusion and perfusion MRI prediction of progressionâ€free survival in patients with hepatocellular carcinoma treated with concurrent chemoradiotherapy. Journal of Magnetic Resonance Imaging, 2014, 39, 286-292.	3.4	19
527	Is diffusion-weighted imaging a significant indicator of the development of vascularization in hypovascular hepatocellular lesions?. Clinical Imaging, 2014, 38, 458-463.	1.5	1
528	High-field small animal magnetic resonance oncology studies. Physics in Medicine and Biology, 2014, 59, R65-R127.	3.0	13

	CITATION	Report	
#	Article	IF	CITATIONS
529	Diffusionâ€weighted MRI and its role in prostate cancer. NMR in Biomedicine, 2014, 27, 25-38.	2.8	48
530	Apparent diffusion coefficient (ADC) measurement in endometrial carcinoma: Effect of region of interest methods on ADC values. Journal of Magnetic Resonance Imaging, 2014, 40, 157-161.	3.4	40
531	Analysis of diffusion tensor imaging metrics for gliomas grading at 3T. European Journal of Radiology, 2014, 83, e156-e165.	2.6	48
532	Adult Brain Tumor Imaging: State of the Art. Seminars in Roentgenology, 2014, 49, 39-52.	0.6	21
533	A Macroscopic Model Including Membrane Exchange for Diffusion MRI. SIAM Journal on Applied Mathematics, 2014, 74, 516-546.	1.8	16
534	Combining diffusion and perfusion differentiates tumor from bevacizumab-related imaging abnormality (bria). Journal of Neuro-Oncology, 2014, 120, 539-546.	2.9	15
535	Diffusion Imaging for Tumor Grading of Supratentorial Brain Tumors in the First Year of Life. American Journal of Neuroradiology, 2014, 35, 815-823.	2.4	35
536	Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology, 2014, 16, 441-448.	1.2	312
537	Numerical study of a macroscopic finite pulse model of the diffusion MRI signal. Journal of Magnetic Resonance, 2014, 248, 54-65.	2.1	18
538	Perfusion Measurement in Brain Gliomas with Intravoxel Incoherent Motion MRI. American Journal of Neuroradiology, 2014, 35, 256-262.	2.4	127
539	Variability of Proliferation and Diffusion in Different Lung Cancer Models as Measured by 3′-Deoxy-3′- ¹⁸ F-Fluorothymidine PET and Diffusion-Weighted MR Imaging. Journal of Nuclea Medicine, 2014, 55, 983-988.	ar 5.0	21
540	Toward Distinguishing Recurrent Tumor From Radiation Necrosis: DWI and MTC in a Gamma Knife–Irradiated Mouse Glioma Model. International Journal of Radiation Oncology Biology Physics, 2014, 90, 446-453.	0.8	27
541	Diffusion-weighted imaging <i>vs</i> STIR turbo SE imaging: capability for quantitative differentiation of small-cell lung cancer from non-small-cell lung cancer. British Journal of Radiology, 2014, 87, 20130307.	2.2	11
542	A Prognostic Model Based on Preoperative MRI Predicts Overall Survival in Patients with Diffuse Gliomas. American Journal of Neuroradiology, 2014, 35, 1096-1102.	2.4	58
543	Diffusion-Weighted Imaging in Cancer: Physical Foundations and Applications of Restriction Spectrum Imaging. Cancer Research, 2014, 74, 4638-4652.	0.9	179
544	Prediction of clinical outcome after stereotactic body radiotherapy for non-small cell lung cancer using diffusion-weighted MRI and 18F-FDG PET. European Journal of Radiology, 2014, 83, 2087-2092.	2.6	25
545	Focal Changes in Diffusivity on Apparent Diffusion Coefficient MR Imaging and Amino Acid Uptake on PET Do Not Colocalize in Nonenhancing Low-Grade Gliomas. Journal of Nuclear Medicine, 2014, 55, 546-550.	5.0	23
546	Usefulness of the apparent diffusion coefficient (ADC) for predicting the consistency of intracranial meningiomas. Clinical Imaging, 2014, 38, 802-807.	1.5	28

#	Article	IF	CITATIONS
547	Characterization of upper urinary tract urothelial lesions in patients with gross hematuria using diffusion-weighted MRI: A prospective study. Egyptian Journal of Radiology and Nuclear Medicine, 2014, 45, 943-948.	0.6	2
548	Multimodal Magnetic Resonance Imaging Evaluation of Primary Brain Tumors. Seminars in Oncology, 2014, 41, 478-495.	2.2	10
549	Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: A review. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2286-2297.	3.8	93
550	Differentiation of Primary Central Nervous System Lymphomas from High-Grade Gliomas by rCBV and Percentage of Signal Intensity Recovery Derived from Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging. Clinical Neuroradiology, 2014, 24, 329-336.	1.9	46
551	Histogram analysis of apparent diffusion coefficient for the assessment of local aggressiveness of cervical cancer. Archives of Gynecology and Obstetrics, 2014, 290, 341-348.	1.7	62
552	Nonlinear distortion correction of diffusion MR images improves quantitative DTI measurements in glioblastoma. Journal of Neuro-Oncology, 2014, 116, 551-558.	2.9	12
553	Short-interval estimation of proliferation rate using serial diffusion MRI predicts progression-free survival in newly diagnosed glioblastoma treated with radiochemotherapy. Journal of Neuro-Oncology, 2014, 116, 601-608.	2.9	6
554	Application of diffusion-weighted magnetic resonance imaging to predict the intracranial metastatic tumor response to gamma knife radiosurgery. Journal of Neuro-Oncology, 2014, 118, 351-361.	2.9	44
555	Histogram analysis of apparent diffusion coefficient within enhancing and nonenhancing tumor volumes in recurrent glioblastoma patients treated with bevacizumab. Journal of Neuro-Oncology, 2014, 119, 149-158.	2.9	41
556	Apparent diffusion coefficient in glioblastoma with PNET-like components, a GBM variant. Journal of Neuro-Oncology, 2014, 119, 353-360.	2.9	19
557	Lower apparent diffusion coefficients indicate distinct prognosis in low-grade and high-grade glioma. Journal of Neuro-Oncology, 2014, 119, 377-385.	2.9	26
558	Whole Body MRI and Diffusion Weighed Images in Pediatric Oncology: Lymphomas and Several Others Tumors. Current Radiology Reports, 2014, 2, 1.	1.4	1
559	Advanced Magnetic Resonance Imaging of the Physical Processes in Human Glioblastoma. Cancer Research, 2014, 74, 4622-4637.	0.9	123
560	Infiltrative patterns of glioblastoma: Identification of tumor progress using apparent diffusion coefficient histograms. Journal of Magnetic Resonance Imaging, 2014, 39, 1096-1103.	3.4	25
561	Diffusion-weighted MR imaging vs. multi-detector row CT: Direct comparison of capability for assessment of management needs for anterior mediastinal solitary tumors. European Journal of Radiology, 2014, 83, 835-842.	2.6	48
562	The added value of advanced neuro-imaging (MR diffusion, perfusion and proton spectroscopy) in diagnosis of primary CNS lymphoma. Alexandria Journal of Medicine, 2014, 50, 303-310.	0.6	2
563	Clinical Applications for Diffusion Magnetic Resonance Imaging in Radiotherapy. Seminars in Radiation Oncology, 2014, 24, 218-226.	2.2	80
564	Characterization of breast tissues by diffusion weighted MR imaging. Biomedical Spectroscopy and Imaging, 2014, 3, 1-13.	1.2	3

#	Article	IF	CITATIONS
565	Parametric Response Mapping of Apparent Diffusion Coefficient as an Imaging Biomarker to Distinguish Pseudoprogression from True Tumor Progression in Peptide-Based Vaccine Therapy for Pediatric Diffuse Intrinsic Pontine Glioma. American Journal of Neuroradiology, 2015, 36, 2170-2176.	2.4	41
566	Part I: The challenge of functional preservation: an integrated systems approach using diffusion-weighted, image-guided, exoscopic-assisted, transulcal radial corridors. Innovative Neurosurgery, 2015, 3, 5-23.	0.1	3
567	Magnetic resonance diffusion metrics indexing high focal cellularity and sharp transition at the tumour boundary predict poor outcome in glioblastoma multiforme. Clinical Radiology, 2015, 70, 1400-1407.	1.1	4
568	Brain gliomas: reporting essentials and treatment response. Cancer Imaging, 2015, 15, O39.	2.8	0
569	Characterization of Liver Tumors by Diffusion-Weighted Imaging. Journal of Computer Assisted Tomography, 2015, 39, 453-461.	0.9	24
570	Evaluation of apparent diffusion coefficient associated with pathological grade of lung carcinoma, before therapy. Journal of Magnetic Resonance Imaging, 2015, 42, 595-601.	3.4	12
571	Esophageal carcinoma: Evaluation with qâ€space diffusionâ€weighted MR imaging ex vivo. Magnetic Resonance in Medicine, 2015, 73, 2262-2273.	3.0	22
572	Response Assessment and Magnetic Resonance Imaging Issues for Clinical Trials Involving High-Grade Gliomas. Topics in Magnetic Resonance Imaging, 2015, 24, 127-136.	1.2	20
573	Dosimetric Effects of Magnetic Resonance Imaging-assisted Radiotherapy Planning: Dose Optimization for Target Volumes at High Risk and Analytic Radiobiological Dose Evaluation. Journal of Korean Medical Science, 2015, 30, 1522.	2.5	4
574	MRI in differentiation of benign and malignant tongue tumors. Frontiers in Bioscience - Landmark, 2015, 20, 614-620.	3.0	6
575	Nuclear Overhauser Enhancement Imaging of Glioblastoma at 7 Tesla: Region Specific Correlation with Apparent Diffusion Coefficient and Histology. PLoS ONE, 2015, 10, e0121220.	2.5	36
576	Multi-Site Clinical Evaluation of DW-MRI as a Treatment Response Metric for Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. PLoS ONE, 2015, 10, e0122151.	2.5	55
577	Preoperative Radiologic Classification of Convexity Meningioma to Predict the Survival and Aggressive Meningioma Behavior. PLoS ONE, 2015, 10, e0118908.	2.5	33
578	Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues. PLoS Biology, 2015, 13, e1002203.	5.6	184
579	Quantitative Evaluation of Diffusion and Dynamic Contrast-Enhanced MR in Tumor Parenchyma and Peritumoral Area for Distinction of Brain Tumors. PLoS ONE, 2015, 10, e0138573.	2.5	39
580	Assessing Biological Response to Bevacizumab Using 18F-Fluoromisonidazole PET/MR Imaging in a Patient with Recurrent Anaplastic Astrocytoma. Case Reports in Radiology, 2015, 2015, 1-4.	0.3	16
581	Prognostication and response assessment in liver and pancreatic tumors: The new imaging. World Journal of Gastroenterology, 2015, 21, 6794-6808.	3.3	20
582	Mathematical justification of macroscopic models for diffusion MRI through the periodic unfolding method. Asymptotic Analysis, 2015, 93, 219-258.	0.5	1

#	Article	IF	CITATIONS
583	Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors. Journal of Advanced Research, 2015, 6, 1045-1069.	9.5	16
584	Assessment of diffusion-weighted imaging for characterizing focal liver lesions. Clinical Imaging, 2015, 39, 278-284.	1.5	21
585	Pitfalls in the Neuroimaging of Glioblastoma in the Era of Antiangiogenic and Immuno/Targeted Therapy ââ,¬â€œ Detecting Illusive Disease, Defining Response. Frontiers in Neurology, 2015, 6, 33.	2.4	139
586	Susceptibility changes in meningiomas influence the apparent diffusion coefficient in diffusion-weighted MRI. Journal of Neuroradiology, 2015, 42, 332-337.	1.1	9
587	Radiogenomics and Imaging Phenotypes in Glioblastoma: Novel Observations and Correlation with Molecular Characteristics. Current Neurology and Neuroscience Reports, 2015, 15, 506.	4.2	114
588	Rapid in vivo apparent diffusion coefficient mapping of hyperpolarized ¹³ C metabolites. Magnetic Resonance in Medicine, 2015, 74, 622-633.	3.0	27
589	Functional MRI and CT biomarkers in oncology. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 562-578.	6.4	19
590	Luminal-Type Breast Cancer: Correlation of Apparent Diffusion Coefficients with the Ki-67 Labeling Index. Radiology, 2015, 274, 66-73.	7.3	113
591	Diffusion-weighted MRI in the differential diagnosis of uterine endometrial cavity tumors. Wiener Klinische Wochenschrift, 2015, 127, 266-273.	1.9	10
592	Diffusion-weighted magnetic resonance imaging for predicting and detecting the response of ocular melanoma to proton beam therapy: initial results. Radiologia Medica, 2015, 120, 526-535.	7.7	18
593	Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. Journal of Neuro-Oncology, 2015, 122, 339-348.	2.9	75
594	Hypercellularity Components of Glioblastoma Identified by High b-Value Diffusion-Weighted Imaging. International Journal of Radiation Oncology Biology Physics, 2015, 92, 811-819.	0.8	41
595	High-definition fiber tractography for the evaluation of perilesional white matter tracts in high-grade glioma surgery. Neuro-Oncology, 2015, 17, nov113.	1.2	51
596	Advanced MR Imaging in Neuro-oncology. Clinical Neuroradiology, 2015, 25, 143-149.	1.9	6
597	Relative percentage signal intensity recovery of perfusion metrics—an efficient tool for differentiating grades of glioma. British Journal of Radiology, 2015, 88, 20140784.	2.2	20
598	MR imaging, apparent diffusion coefficient and histopathological features of desmoplastic infantile tumors—own experience and review of the literature. Child's Nervous System, 2015, 31, 251-259.	1.1	18
599	Evaluation of absolute and normalized apparent diffusion coefficient (ADC) values within the post-operative T2/FLAIR volume as adverse prognostic indicators in glioblastoma. Journal of Neuro-Oncology, 2015, 122, 549-558.	2.9	30
600	Decreased tumor apparent diffusion coefficient correlates with objective response of pediatric low-grade glioma to bevacizumab. Journal of Neuro-Oncology, 2015, 122, 491-496.	2.9	12

#	ARTICLE Evaluation of pre-radiotherapy apparent diffusion coefficient (ADC): patterns of recurrence and	IF	Citations
601	survival outcomes analysis in patients treated for glioblastoma multiforme. Journal of Neuro-Oncology, 2015, 123, 179-188.	2.9	21
602	Relationship Between [18F]FDOPA PET Uptake, Apparent Diffusion Coefficient (ADC), and Proliferation Rate in Recurrent Malignant Gliomas. Molecular Imaging and Biology, 2015, 17, 434-442.	2.6	28
603	Treating recurrent glioblastoma: an update. CNS Oncology, 2015, 4, 91-104.	3.0	57
604	Chordoid Meningioma: Differentiating a Rare World Health Organization Grade II Tumor from Other Meningioma Histologic Subtypes Using MRI. American Journal of Neuroradiology, 2015, 36, 1253-1258.	2.4	21
605	Background on Imaging Structural Imaging. , 2015, , 25-61.		1
606	Radiographic Evaluation of Children with Hearing Loss. Otolaryngologic Clinics of North America, 2015, 48, 913-932.	1.1	23
607	Structural information revealed by the dispersion of ADC with frequency. Magnetic Resonance Imaging, 2015, 33, 1083-1090.	1.8	8
608	Assessing and monitoring intratumor heterogeneity in glioblastoma: how far has multimodal imaging come?. CNS Oncology, 2015, 4, 399-410.	3.0	8
609	Brainstem white matter integrity is related to loss of consciousness and postconcussive symptomatology in veterans with chronic mild to moderate traumatic brain injury. Brain Imaging and Behavior, 2015, 9, 500-512.	2.1	45
610	Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro-Oncology, 2015, 17, 1188-98.	1.2	346
611	Brain: Radiotherapy. Medical Radiology, 2015, , 45-59.	0.1	0
612	Whole body diffusion weighted <scp>MRI</scp> – a new view of myeloma. British Journal of Haematology, 2015, 171, 29-37.	2.5	80
613	The effect of region of interest strategies on apparent diffusion coefficient assessment in patients treated with palliative radiation therapy to brain metastases. Acta Oncológica, 2015, 54, 1529-1534.	1.8	14
614	Locally advanced rectal cancer: post-chemoradiotherapy ADC histogram analysis for predicting a complete response. Acta Radiologica, 2015, 56, 1042-1050.	1.1	43
615	Changes in Epithelium, Stroma, and Lumen Space Correlate More Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics. Radiology, 2015, 277, 751-762.	7.3	138
616	Differential diagnosis of uterine smooth muscle tumors using diffusion-weighted imaging: correlations with the apparent diffusion coefficient and cell density. Abdominal Imaging, 2015, 40, 1742-1752.	2.0	37
617	Differentiating white matter lesions in multiple sclerosis and migraine using monoexponential and biexponential diffusion measurements. Journal of Magnetic Resonance Imaging, 2015, 41, 676-683.	3.4	5
618	Correlation of apparent diffusion coefficient value with prognostic parameters of endometrioid carcinoma. Journal of Magnetic Resonance Imaging, 2015, 41, 213-219.	3.4	41

#	Article	IF	Citations
" 619	Preoperative Grading of Astrocytic Supratentorial Brain Tumors with Diffusion-Weighted Magnetic Resonance Imaging and Apparent Diffusion Coefficient. Iranian Journal of Radiology, 2016, 13, e30426.	0.2	2
620	3 Functional imaging techniquesGoing Beyond the Conventional Morphological Imaging: An Overview of Functional Imaging Techniques. , 2016, , .		0
621	8 Diffusion-Weighted Imaging for Gliomas. , 2016, , .		0
622	Potential of Diffusion-Weighted Imaging in the Characterization of Malignant, Benign, and Healthy Breast Tissues and Molecular Subtypes of Breast Cancer. Frontiers in Oncology, 2016, 6, 126.	2.8	41
623	Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast. Frontiers in Oncology, 2016, 6, 179.	2.8	20
624	Diffusion tensor imaging and functional MRI. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 136, 1065-1087.	1.8	28
625	Early Detection of Malignant Transformation in Resected WHO II Low-Grade Clioma Using Diffusion Tensor-Derived Quantitative Measures. PLoS ONE, 2016, 11, e0164679.	2.5	8
626	Hepatocellular Carcinoma and Diffusion-Weighted MRI: Detection and Evaluation of Treatment Response. Journal of Cancer, 2016, 7, 1565-1570.	2.5	43
627	Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know. Korean Journal of Radiology, 2016, 17, 598.	3.4	34
628	Apparent diffusion coefficient (ADC) measurement in ovarian tumor: Effect of regionâ€ofâ€interest methods on ADC values and diagnostic ability. Journal of Magnetic Resonance Imaging, 2016, 43, 720-725.	3.4	33
629	Quantification of cell size using temporal diffusion spectroscopy. Magnetic Resonance in Medicine, 2016, 75, 1076-1085.	3.0	66
630	Retrospective Assessment of Histogram-Based Diffusion Metrics for Differentiating Benign and Malignant Endometrial Lesions. Journal of Computer Assisted Tomography, 2016, 40, 723-729.	0.9	20
631	Characterization of clear cell renal cell carcinoma with diffusion kurtosis imaging: correlation between diffusion kurtosis parameters and tumor cellularity. NMR in Biomedicine, 2016, 29, 873-881.	2.8	31
632	Intravoxel incoherent motion diffusionâ€weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. Journal of Magnetic Resonance Imaging, 2016, 44, 620-632.	3.4	73
633	Diagnostic utility of intravoxel incoherent motion mr imaging in differentiating primary central nervous system lymphoma from glioblastoma multiforme. Journal of Magnetic Resonance Imaging, 2016, 44, 1256-1261.	3.4	35
634	q-space MR imaging of gastric carcinoma ex vivo: Correlation with histopathologic findings. Magnetic Resonance in Medicine, 2016, 76, 602-612.	3.0	10
635	Functional assessment of glioma pathogenesis by in vivo multi-parametric magnetic resonance imaging and in vitro analyses. Scientific Reports, 2016, 6, 26050.	3.3	9
636	Progressing Bevacizumab-Induced Diffusion Restriction Is Associated with Coagulative Necrosis Surrounded by Viable Tumor and Decreased Overall Survival in Patients with Recurrent Glioblastoma. American Journal of Neuroradiology, 2016, 37, 2201-2208.	2.4	59

#	Article	IF	Citations
" 637	Incremental Prognostic Value of ADC Histogram Analysis over MGMT Promoter Methylation Status in	7.3	51
	Patients with Glioblastoma. Radiology, 2016, 281, 175-184.		
638	Normalized Apparent Diffusion Coefficient in the Prognostication of Patients with Glioblastoma Multiforme. Canadian Journal of Neurological Sciences, 2016, 43, 127-133.	0.5	3
639	Restriction spectrum imaging predicts response to bevacizumab in patients with high-grade glioma. Neuro-Oncology, 2016, 18, now063.	1.2	21
640	Diffusion Imaging of Brain Tumors. , 2016, , 301-315.		0
641	Lymphomas–Part 1. Neuroimaging Clinics of North America, 2016, 26, 511-536.	1.0	11
642	Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. NeuroImage: Clinical, 2016, 12, 753-764.	2.7	64
643	The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). NeuroImage, 2016, 142, 522-532.	4.2	141
644	Clinical, Morphologic, and Pathologic Features Associated With Increased FDG Uptake in Schwannoma. American Journal of Roentgenology, 2016, 207, 1288-1296.	2.2	35
645	The development of biomarkers to reduce attrition rate in drug discovery focused on oncology and central nervous system. Expert Opinion on Drug Discovery, 2016, 11, 939-956.	5.0	10
646	Apparent diffusion coefficient value for estimating clinicohistological factors in bladder cancer including infiltration style and lymphatic invasion. SpringerPlus, 2016, 5, 848.	1.2	5
647	Advanced Magnetic Resonance Imaging of Brain Tumors. , 2016, , 167-181.		0
648	Communicating Hydrocephalus Associated with Small- to Medium-Sized Vestibular Schwannomas: Clinical Significance of the Tumor Apparent Diffusion Coefficient Map. World Neurosurgery, 2016, 94, 261-267.	1.3	11
649	Do perfusion and diffusion MRI predict glioblastoma relapse sites following chemoradiation?. Journal of Neuro-Oncology, 2016, 130, 181-192.	2.9	20
650	Fractal dimension and lacunarity of tractography images of the human brain. Physica Medica, 2016, 32, 333-334.	0.7	0
651	Adapting the Käger model to account for finite diffusion-encoding pulses in diffusion MRI. IMA Journal of Applied Mathematics, 2016, 81, 779-794.	1.6	10
653	Clinical PET/MR Imaging in Dementia and Neuro-Oncology. PET Clinics, 2016, 11, 441-452.	3.0	32
654	Response Assessment in Neuro-Oncology Criteria and Clinical Endpoints. Magnetic Resonance Imaging Clinics of North America, 2016, 24, 705-718.	1.1	25
655	3D turbo field echo with diffusion-sensitized driven-equilibrium preparation technique (DSDE-TFE) <i>versus</i> echo planar imaging in evaluation of diffusivity of retinoblastoma. British Journal of Radiology, 2016, 89, 20160074.	2.2	5

#	Article	IF	CITATIONS
656	On the properties of the intensity-curvature measurement approaches: the signal resilient to interpolation and the resilient curvature. International Journal of Innovative Computing and Applications, 2016, 7, 91.	0.2	2
657	A Macroscopic Model for the Diffusion MRI Signal Accounting for Time-Dependent Diffusivity. SIAM Journal on Applied Mathematics, 2016, 76, 930-949.	1.8	10
658	Apparent diffusion coefficient mapping in medulloblastoma predicts non-infiltrative surgical planes. Child's Nervous System, 2016, 32, 2183-2187.	1.1	7
659	Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas. Neuroradiology, 2016, 58, 1217-1231.	2.2	68
660	Could ADC values be a promising diagnostic criterion for differentiating malignant and benign hepatic lesions in Asian populations. Medicine (United States), 2016, 95, e5470.	1.0	5
661	Diffusion Magnetic Resonance Imaging in Brain Tumors. , 2016, , 273-300.		0
662	Imaging of Oligodendrogliomas. , 2016, , 461-469.		0
663	Imaging of Epidural Spinal Cord Compression. , 2016, , 723-744.		1
664	Neuroimaging. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 27-50.	1.8	6
665	MRI Evaluation of Non-Necrotic T2-Hyperintense Foci in Pediatric Diffuse Intrinsic Pontine Glioma. American Journal of Neuroradiology, 2016, 37, 1930-1937.	2.4	7
666	Impact of Angiotensin-II receptor blockers on vasogenic edema in glioblastoma patients. Journal of Neurology, 2016, 263, 524-530.	3.6	19
667	Large-volume low apparent diffusion coefficient lesions predict poor survival in bevacizumab-treated glioblastoma patients. Neuro-Oncology, 2016, 18, 735-743.	1.2	28
668	Residual low ADC and high FA at the resection margin correlate with poor chemoradiation response and overall survival in high-grade glioma patients. European Journal of Radiology, 2016, 85, 657-664.	2.6	20
669	Estimation of the Number of Compartments Associated With the Apparent Diffusion Coefficient in MRI: The Theoretical and Experimental Investigations. American Journal of Roentgenology, 2016, 206, 455-462.	2.2	10
670	Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future. Radiology, 2016, 278, 13-32.	7.3	380
671	The diagnostic accuracy of multiparametric MRI to determine pediatric brain tumor grades and types. Journal of Neuro-Oncology, 2016, 127, 345-353.	2.9	27
672	Diffusion-weighted imaging and the apparent diffusion coefficient on 3T MR imaging in the differentiation of craniopharyngiomas and germ cell tumors. Neurosurgical Review, 2016, 39, 207-213.	2.4	18
673	Multiparametric MR Imaging in the Assessment of Brain Tumors. Magnetic Resonance Imaging Clinics of North America, 2016, 24, 87-122.	1.1	31

#	Article	IF	CITATIONS
674	MR Imaging–Based Analysis of Glioblastoma Multiforme: Estimation of <i>IDH1</i> Mutation Status. American Journal of Neuroradiology, 2016, 37, 58-65.	2.4	109
675	Endometrial cancer: correlation of apparent diffusion coefficient (ADC) with tumor cellularity and tumor grade. Acta Radiologica, 2016, 57, 1021-1028.	1.1	41
676	Advanced MRI may complement histological diagnosis of lower grade gliomas and help in predicting survival. Journal of Neuro-Oncology, 2016, 126, 279-288.	2.9	33
677	Peritumoral apparent diffusion coefficients for prediction of lymphovascular invasion in clinically node-negative invasive breast cancer. European Radiology, 2016, 26, 331-339.	4.5	55
678	Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusion-weighted MR Imaging and Diffusion Kurtosis MR Imaging. Radiology, 2016, 278, 496-504.	7.3	184
679	Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging. Neuro-Oncology, 2016, 18, 132-141.	1.2	109
680	Simultaneous assessment of cerebral blood volume and diffusion heterogeneity using hybrid IVIM and DK MR imaging: initial experience with brain tumors. European Radiology, 2017, 27, 306-314.	4.5	27
681	A comparative assessment of preclinical chemotherapeutic response of tumors using quantitative non-Gaussian diffusion MRI. Magnetic Resonance Imaging, 2017, 37, 195-202.	1.8	8
682	The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts. Scientific Reports, 2017, 7, 42905.	3.3	16
683	A Multiparametric Model for Mapping Cellularity in Glioblastoma Using Radiographically Localized Biopsies. American Journal of Neuroradiology, 2017, 38, 890-898.	2.4	90
684	Integration of PET/MR Hybrid Imaging into Radiation Therapy Treatment. Magnetic Resonance Imaging Clinics of North America, 2017, 25, 377-430.	1.1	8
685	From K-space to Nucleotide. Topics in Magnetic Resonance Imaging, 2017, 26, 33-41.	1.2	2
686	Imaging Studies in Immunotherapy. , 2017, , 149-179.		1
687	Diffusion-Weighted Imaging for Differentiating Uterine Leiomyosarcoma From Degenerated Leiomyoma. Journal of Computer Assisted Tomography, 2017, 41, 599-606.	0.9	43
688	Evaluation of cerebral glioma using 3T diffusion kurtosis tensor imaging and the relationship between diffusion kurtosis metrics and tumor cellularity. Journal of International Medical Research, 2017, 45, 1347-1358.	1.0	13
689	Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. Journal of Neuro-Oncology, 2017, 134, 495-504.	2.9	160
690	A mechanically coupled reaction–diffusion model that incorporates intra-tumoural heterogeneity to predict <i>in vivo</i> glioma growth. Journal of the Royal Society Interface, 2017, 14, 20161010.	3.4	66
691	Multiparametric MR Imaging of Diffusion and Perfusion in Contrast-enhancing and Nonenhancing Components in Patients with Glioblastoma. Radiology, 2017, 284, 180-190.	7.3	48

#	Article	IF	CITATIONS
692	Comparisons among MRI signs, apparent diffusion coefficient, and fractional anisotropy in dogs with a solitary intracranial meningioma or histiocytic sarcoma. Veterinary Radiology and Ultrasound, 2017, 58, 422-432.	0.9	9
693	Renal clear cell carcinoma: diffusion tensor imaging diagnostic accuracy and correlations with clinical and histopathological factors. Clinical Radiology, 2017, 72, 560-564.	1.1	20
694	The effect of noise and lipid signals on determination of Gaussian and nonâ€Gaussian diffusion parameters in skeletal muscle. NMR in Biomedicine, 2017, 30, e3718.	2.8	15
695	The Added Value of Diffusion Magnetic Resonance Imaging in the Diagnosis and Posttreatment Evaluation of Skull Base Chordomas. Journal of Neurological Surgery, Part B: Skull Base, 2017, 38, 256-265.	0.8	10
696	Integrative Diffusion-Weighted Imaging and Radiogenomic Network Analysis of Glioblastoma multiforme. Scientific Reports, 2017, 7, 43523.	3.3	20
697	The relationship between MRI quantitative parameters and the expression of hypoxia inducible factor-1 alpha in cerebral astrocytoma. Clinical Neurology and Neurosurgery, 2017, 153, 14-19.	1.4	3
698	What's the clinical significance of adding diffusion and perfusion MRI in the differentiation of glioblastoma multiforme and solitary brain metastasis?. Egyptian Journal of Radiology and Nuclear Medicine, 2017, 48, 661-669.	0.6	3
699	MR-guided radiation therapy: transformative technology and its role in the central nervous system. Neuro-Oncology, 2017, 19, ii16-ii29.	1.2	49
700	Uveal melanoma: quantitative evaluation of diffusion-weighted MR imaging in the response assessment after proton-beam therapy, long-term follow-up. Radiologia Medica, 2017, 122, 131-139.	7.7	28
701	Apparent diffusion coefficient measurement in glioma: Influence of regionâ€ofâ€interest determination methods on apparent diffusion coefficient values, interobserver variability, time efficiency, and diagnostic ability. Journal of Magnetic Resonance Imaging, 2017, 45, 722-730.	3.4	33
702	In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy. Magnetic Resonance in Medicine, 2017, 78, 156-164.	3.0	71
703	Role of diffusion-weighted MRI in the differential diagnosis of endometrioid and non-endometrioid cancer of the uterus. Acta Radiologica, 2017, 58, 758-767.	1.1	18
704	Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy. Computer Methods in Applied Mechanics and Engineering, 2017, 314, 494-512.	6.6	53
705	Assessment of Once Daily Sustained Release Hydrophilic Matrix Tablet of Carvedilol. Dhaka University Journal of Pharmaceutical Sciences, 2017, 16, 43-53.	0.2	4
706	Value of Minimum Apparent Diffusion Coefficient on Magnetic Resonance Imaging as a Biomarker for Predicting Progression of Disease Following Surgery and Radiotherapy in Glial Tumors from a Tertiary Care Center in Northern India. Journal of Neurosciences in Rural Practice, 2017, 08, 185-193.	0.8	4
707	Time-Dependent Diffusion MRI in Cancer: Tissue Modeling and Applications. Frontiers in Physics, 2017, 5,	2.1	62
708	Analysis of DTI-Derived Tensor Metrics in Differential Diagnosis between Low-grade and High-grade Gliomas. Frontiers in Aging Neuroscience, 2017, 9, 271.	3.4	16
709	MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives. Journal of Immunology Research, 2017, 2017, 1-16.	2.2	61

#	Article	IF	CITATIONS
710	A systematic review on multiparametric MR imaging in prostate cancer detection. Infectious Agents and Cancer, 2017, 12, 57.	2.6	46
711	Cerebral Metastases of Lung Cancer Mimicking Multiple Ischaemic Lesions – A Case Report and Review of Literature. Polish Journal of Radiology, 2017, 82, 530-535.	0.9	3
712	Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget, 2017, 8, 5834-5842.	1.8	42
713	Differentiating Between Primary Central Nervous System Lymphomas and Glioblastomas: Combined Use of Perfusion-Weighted and Diffusion-Weighted Magnetic Resonance Imaging. World Neurosurgery, 2018, 112, e1-e6.	1.3	18
714	Glioma infiltration sign on high bâ€value diffusionâ€weighted imaging in gliomas and its prognostic value. Journal of Magnetic Resonance Imaging, 2018, 48, 643-651.	3.4	11
715	Advantages of high b-value diffusion-weighted imaging for preoperative differential diagnosis between embryonal and ependymal tumors at 3†T MRI. European Journal of Radiology, 2018, 101, 136-143.	2.6	8
716	Differentiation between benign and atypical cranial Meningiomas. Can ADC measurement help? MRI findings with hystopathologial correlation. Egyptian Journal of Radiology and Nuclear Medicine, 2018, 49, 172-175.	0.6	5
717	Multiparametric (mp) MRI of prostate cancer. Progress in Nuclear Magnetic Resonance Spectroscopy, 2018, 105, 23-40.	7.5	29
718	Radiographic patterns of recurrence and pathologic correlation in malignant gliomas treated with bevacizumab. CNS Oncology, 2018, 7, 7-13.	3.0	3
719	Mechanically Coupled Reaction-Diffusion Model to Predict Glioma Growth: Methodological Details. Methods in Molecular Biology, 2018, 1711, 225-241.	0.9	27
720	Biophysical Modeling of InÂVivo Glioma Response After Whole-Brain Radiation Therapy in a Murine Model of Brain Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 100, 1270-1279.	0.8	29
721	Diagnostic Usefulness of Combination of Diffusion-weighted Imaging and T2WI, Including Apparent Diffusion Coefficient in Breast Lesions. Academic Radiology, 2018, 25, 643-652.	2.5	21
722	Oral carcinoma: Clinical evaluation using diffusion kurtosis imaging and its correlation with histopathologic findings. Magnetic Resonance Imaging, 2018, 51, 69-78.	1.8	14
723	Colorectal carcinoma: Ex vivo evaluation using qâ€space imaging; Correlation with histopathologic findings. Journal of Magnetic Resonance Imaging, 2018, 48, 1059-1068.	3.4	3
724	Voxel-wise prostate cell density prediction using multiparametric magnetic resonance imaging and machine learning. Acta Oncológica, 2018, 57, 1540-1546.	1.8	19
725	Short Diffusion Time Diffusion-Weighted Imaging With Oscillating Gradient Preparation as an Early Magnetic Resonance Imaging Biomarker for Radiation Therapy Response Monitoring in Glioblastoma: A Preclinical Feasibility Study. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1014-1023.	0.8	11
726	Multimodal Imaging of Pathologic Response to Chemoradiation in Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 102, 996-1001.	0.8	34
727	Historadiological correlations in high-grade glioma with the histone 3.3 G34R mutation. Journal of Neuroradiology, 2018, 45, 316-322.	1.1	26

#	Article	IF	CITATIONS
728	Understanding the Time-Dependent Effective Diffusion Coefficient Measured by Diffusion MRI: the IntraCellular Case. SIAM Journal on Applied Mathematics, 2018, 78, 774-800.	1.8	5
729	Current Clinical State of Advanced Magnetic Resonance Imaging for Brain Tumor Diagnosis and Follow Up. Seminars in Roentgenology, 2018, 53, 45-61.	0.6	10
730	Diagnostic performance of apparent diffusion coefficient parameters for glioma grading. Journal of Neuro-Oncology, 2018, 139, 61-68.	2.9	12
731	Whole-Tumor Histogram and Texture Analyses of DTI for Evaluation of <i>IDH1</i> -Mutation and 1p/19q-Codeletion Status in World Health Organization Grade II Gliomas. American Journal of Neuroradiology, 2018, 39, 693-698.	2.4	56
732	High Resolution Diffusion-Weighted Imaging for Solitary Orbital Tumors. Clinical Neuroradiology, 2018, 28, 261-266.	1.9	8
733	Orbital infantile hemangioma and rhabdomyosarcoma in children: differentiation using diffusion-weighted magnetic resonance imaging. Journal of AAPOS, 2018, 22, 27-31.	0.3	29
734	Tumor Volume Assessment in Low-Grade Gliomas: A Comparison of Preoperative Magnetic Resonance Imaging to Coregistered Intraoperative 3-Dimensional Ultrasound Recordings. Neurosurgery, 2018, 83, 288-296.	1.1	10
735	Diffusivity of intraorbital lymphoma vs. inflammation: comparison of single shot turbo spin echo and multishot echo planar imaging techniques. European Radiology, 2018, 28, 325-330.	4.5	22
736	Improved differentiation between high- and low-grade gliomas by combining dual-energy CT analysis and perfusion CT. Medicine (United States), 2018, 97, e11670.	1.0	15
737	Microstructural White Matter Abnormalities in the Dorsal Cingulum of Adolescents with IBS. ENeuro, 2018, 5, ENEURO.0354-17.2018.	1.9	13
738	Apparent diffusion coefficient reproducibility in brain tumors measured on 1.5 and 3 T clinical scanners: A pilot study. European Journal of Radiology, 2018, 108, 249-253.	2.6	11
739	Grading and proliferation assessment of diffuse astrocytic tumors with monoexponential, biexponential, and stretched-exponential diffusion-weighted imaging and diffusion kurtosis imaging. European Journal of Radiology, 2018, 109, 188-195.	2.6	29
740	Clinical efficacy of simplified intravoxel incoherent motion imaging using three b-values for differentiating high- and low-grade gliomas. PLoS ONE, 2018, 13, e0209796.	2.5	9
741	Intratumoral heterogeneity of endogenous tumor cell invasive behavior in human glioblastoma. Scientific Reports, 2018, 8, 18002.	3.3	29
742	Volumetric voxelwise apparent diffusion coefficient histogram analysis for differentiation of the fourth ventricular tumors. Neuroradiology Journal, 2018, 31, 554-564.	1.2	14
743	Prediction of Isocitrate Dehydrogenase Genotype in Brain Gliomas with MRI: Single-Shell versus Multishell Diffusion Models. Radiology, 2018, 289, 788-796.	7.3	31
744	Whole-Body Imaging in Multiple Myeloma. Magnetic Resonance Imaging Clinics of North America, 2018, 26, 509-525.	1.1	15
745	The Evolving Role of the Oncologic Neurosurgeon: Looking Beyond Extent of Resection in the Modern Era. Frontiers in Oncology, 2018, 8, 406.	2.8	1

#	Article	IF	CITATIONS
746	Predicting Genotype and Survival in Glioma Using Standard Clinical MR Imaging Apparent Diffusion Coefficient Images: A Pilot Study from The Cancer Genome Atlas. American Journal of Neuroradiology, 2018, 39, 1814-1820.	2.4	53
747	Detection of the differences in the apparent diffusion coefficient values in different histopathological types of malignant breast lesions and comparison of cellular region/ stroma ratio and histopathological results. Turkish Journal of Medical Sciences, 2018, 48, 817-825.	0.9	4
748	Contribution of susceptibility‑ and diffusion‑weighted magnetic resonance imaging for grading gliomas. Experimental and Therapeutic Medicine, 2018, 15, 5113-5118.	1.8	5
749	Mono-exponential, diffusion kurtosis and stretched exponential diffusion MR imaging response to chemoradiation in newly diagnosed glioblastoma. Journal of Neuro-Oncology, 2018, 139, 651-659.	2.9	25
750	Noninvasive Glioblastoma Testing: Multimodal Approach to Monitoring and Predicting Treatment Response. Disease Markers, 2018, 2018, 1-11.	1.3	34
751	Diffusion-weighted MRI in solitary pulmonary lesions: associations between apparent diffusion coefficient and multiple histopathological parameters. Scientific Reports, 2018, 8, 11248.	3.3	5
752	Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest. Oncology Letters, 2018, 15, 7297-7304.	1.8	18
753	Perilesional apparent diffusion coefficient in the preoperative evaluation of glioma grade. Clinical Imaging, 2018, 52, 88-94.	1.5	3
754	Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results. Physics in Medicine and Biology, 2018, 63, 105015.	3.0	41
755	Imaging brain tumour microstructure. NeuroImage, 2018, 182, 232-250.	4.2	62
756	Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics. Journal of Neuro-Oncology, 2018, 139, 633-642.	2.9	26
757	Survival Associations Using Perfusion and Diffusion Magnetic Resonance Imaging in Patients With Histologic and Genetic Defined Diffuse Glioma World Health Organization Grades II and III. Journal of Computer Assisted Tomography, 2018, 42, 807-815.	0.9	4
758	Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone—Searching for a practical approach. PLoS ONE, 2018, 13, e0191341.	2.5	83
759	MR Imaging Features of Anaplastic Pleomorphic Xanthoastrocytoma Mimicking High-Grade Astrocytoma. American Journal of Neuroradiology, 2018, 39, 1446-1452.	2.4	21
760	An adjoint-based method for a linear mechanically-coupled tumor model: application to estimate the spatial variation of murine glioma growth based on diffusion weighted magnetic resonance imaging. Computational Mechanics, 2019, 63, 159-180.	4.0	8
761	Noninvasive Quantification of Cell Density in Three-Dimensional Gels by MRI. IEEE Transactions on Biomedical Engineering, 2019, 66, 821-830.	4.2	3
762	Monitoring the Early Antiproliferative Effect of the Analgesic–Antitumor Peptide, BmK AGAP on Breast Cancer Using Intravoxel Incoherent Motion With a Reduced Distribution of Four b-Values. Frontiers in Physiology, 2019, 10, 708.	2.8	3
763	Whole Body Diffusion-Weighted Magnetic Resonance Imaging: A New Era for Whole Body Imaging in Myeloma?. , 2019, , 73-85.		1

#	Article	IF	CITATIONS
764	Comparison of 3T diffusion-weighted MRI and ¹⁸ F-FDG PET/CT in musculoskeletal tumours: quantitative analysis of apparent diffusion coefficients and standardized uptake values. British Journal of Radiology, 2019, 92, 20181051.	2.2	7
765	Diffusion kurtosis MRI as a predictive biomarker of response to neoadjuvant chemotherapy in high grade serous ovarian cancer. Scientific Reports, 2019, 9, 10742.	3.3	10
766	Accuracy of multi-parametric breast MR imaging for predicting pathological complete response of operable breast cancer prior to neoadjuvant systemic therapy. Magnetic Resonance Imaging, 2019, 62, 242-248.	1.8	11
767	Comparison between MRI-derived ADC maps and 18FLT-PET in pre-operative glioblastoma. Journal of Neuroradiology, 2019, 46, 359-366.	1.1	5
769	Beyond T2 and 3T: New MRI techniques for clinicians. Clinical and Translational Radiation Oncology, 2019, 18, 87-97.	1.7	10
770	Brain MR findings in patients treated with particle therapy for skull base tumors. Insights Into Imaging, 2019, 10, 94.	3.4	9
771	Decreased APE-1 by Nitroxoline Enhances Therapeutic Effect in a Temozolomide-resistant Glioblastoma: Correlation with Diffusion Weighted Imaging. Scientific Reports, 2019, 9, 16613.	3.3	8
772	Pre-operative apparent diffusion coefficient values and tumour region volumes as prognostic biomarkers in glioblastoma: correlation and progression-free survival analyses. Insights Into Imaging, 2019, 10, 36.	3.4	14
773	Increased intratumoral infiltration in IDH wild-type lower-grade gliomas observed with diffusion tensor imaging. Journal of Neuro-Oncology, 2019, 145, 257-263.	2.9	5
774	Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis. IEEE Transactions on Medical Imaging, 2019, 38, 1750-1762.	8.9	158
775	Whole-tumor histogram analysis of apparent diffusion coefficient in differentiating intracranial solitary fibrous tumor/hemangiopericytoma from angiomatous meningioma. European Journal of Radiology, 2019, 112, 186-191.	2.6	28
776	Diagnostic performance of DWI for differentiating primary central nervous system lymphoma from glioblastoma: a systematic review and meta-analysis. Neurological Sciences, 2019, 40, 947-956.	1.9	18
777	MRI for Radiotherapy. , 2019, , .		4
778	Imaging of Central Nervous System Tumors. , 2019, , 111-142.		Ο
779	MR imaging phenotype correlates with extent of genome-wide copy number abundance in IDH mutant gliomas. Neuroradiology, 2019, 61, 1023-1031.	2.2	8
779 780		2.2 2.4	8
	gliomas. Neuroradiology, 2019, 61, 1023-1031. Assessment of Glioblastoma Response in the Era of Bevacizumab: Longstanding and Emergent		

#	Article	IF	CITATIONS
783	Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Frontiers in Oncology, 2019, 9, 426.	2.8	54
784	Intravoxel Incoherent Motion MR Imaging of Pediatric Intracranial Tumors: Correlation with Histology and Diagnostic Utility. American Journal of Neuroradiology, 2019, 40, 878-884.	2.4	16
785	Monoexponential, Biexponential, and stretchedâ€exponential models using diffusionâ€weighted imaging: A quantitative differentiation of breast lesions at 3.0T. Journal of Magnetic Resonance Imaging, 2019, 50, 1461-1467.	3.4	21
786	Revealing Tumor Habitats from Texture Heterogeneity Analysis for Classification of Lung Cancer Malignancy and Aggressiveness. Scientific Reports, 2019, 9, 4500.	3.3	31
787	Calibrating a Predictive Model of Tumor Growth and Angiogenesis with Quantitative MRI. Annals of Biomedical Engineering, 2019, 47, 1539-1551.	2.5	30
788	Post-operative perfusion and diffusion MR imaging and tumor progression in high-grade gliomas. PLoS ONE, 2019, 14, e0213905.	2.5	15
789	Combination of three-dimensional arterial spin labeling and stretched-exponential model in grading of gliomas. Medicine (United States), 2019, 98, e16012.	1.0	5
790	High-Grade Gliomas in Children with Neurofibromatosis Type 1: Literature Review and Illustrative Cases. American Journal of Neuroradiology, 2019, 40, 366-369.	2.4	7
791	The added prognostic value of radiological phenotype combined with clinical features and molecular subtype in anaplastic gliomas. Journal of Neuro-Oncology, 2019, 142, 129-138.	2.9	9
792	Apparent Diffusion Coefficient as a Predictive Biomarker for Survival in Patients with Treatment-Naive Glioblastoma Using Quantitative Multiparametric Magnetic Resonance Profiling. World Neurosurgery, 2019, 122, e812-e820.	1.3	13
793	Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions. Japanese Journal of Radiology, 2019, 37, 109-116.	2.4	40
794	Prospective Inclusion of Apparent Diffusion Coefficients in Multiparametric Prostate MRI Structured Reports: Discrimination of Clinically Insignificant and Significant Cancers. American Journal of Roentgenology, 2019, 212, 109-116.	2.2	24
795	Preoperative evaluation of small bowel complications in Crohn's disease: comparison of diffusion-weighted and contrast-enhanced MR imaging. European Radiology, 2019, 29, 2034-2044.	4.5	12
796	Glioma grade classification using wavelet transform-local binary pattern based statistical texture features and geometric measures extracted from MRI. Journal of Experimental and Theoretical Artificial Intelligence, 2019, 31, 57-76.	2.8	12
797	Tensorâ€valued diffusion MRI in under 3 minutes: an initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors. Magnetic Resonance in Medicine, 2020, 83, 608-620.	3.0	55
798	Intravoxel Incoherent Motion Diffusionâ€Weighted Imaging for Evaluation of the Cell Density and Angiogenesis of Cirrhosisâ€Related Nodules in an Experimental Rat Model: Comparison and Correlation With Dynamic Contrastâ€Enhanced MRI. Journal of Magnetic Resonance Imaging, 2020, 51, 812-823.	3.4	11
800	Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. European Radiology, 2020, 30, 2142-2151.	4.5	93
801	Magnetic resonance imaging of mean cell size in human breast tumors. Magnetic Resonance in Medicine, 2020, 83, 2002-2014.	3.0	43

#	Article	IF	CITATIONS
803	Diagnostic utility of Restriction Spectrum Imaging in the characterization of the peritumoral brain zone in glioblastoma: Analysis of overall and progression-free survival. European Journal of Radiology, 2020, 132, 109289.	2.6	10
804	Assessment of histologic prognostic factors of resectable rectal cancer: comparison of diagnostic performance using various apparent diffusion coefficient parameters. Scientific Reports, 2020, 10, 11554.	3.3	5
806	Decorin expression is associated with predictive diffusion MR phenotypes of anti-VEGF efficacy in glioblastoma. Scientific Reports, 2020, 10, 14819.	3.3	13
807	Structural anomalies in brain networks induce dynamical pacemaker effects. Chaos, 2020, 30, 113137.	2.5	14
808	Integrating Quantitative Assays with Biologically Based Mathematical Modeling for Predictive Oncology. IScience, 2020, 23, 101807.	4.1	22
809	Differentiation of high-grade from low-grade diffuse gliomas using diffusion-weighted imaging: a comparative study of mono-, bi-, and stretched-exponential diffusion models. Neuroradiology, 2020, 62, 815-823.	2.2	12
810	Validation of diffusion MRI phenotypes for predicting response to bevacizumab in recurrent glioblastoma: post-hoc analysis of the EORTC-26101 trial. Neuro-Oncology, 2020, 22, 1667-1676.	1.2	9
811	The impact of position-orientation adaptive smoothing in diffusion weighted imaging—From diffusion metrics to fiber tractography. PLoS ONE, 2020, 15, e0233474.	2.5	1
812	Advantage of high b value diffusion-weighted imaging for differentiation of common pediatric brain tumors in posterior fossa. European Journal of Radiology, 2020, 128, 108983.	2.6	4
813	A Neural Network Approach to Identify the Peritumoral Invasive Areas in Glioblastoma Patients by Using MR Radiomics. Scientific Reports, 2020, 10, 9748.	3.3	25
814	Emerging MRI Techniques to Redefine Treatment Response in Patients With Glioblastoma. Journal of Magnetic Resonance Imaging, 2020, 52, 978-997.	3.4	14
815	Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of therapeutic response. Scientific Reports, 2020, 10, 9223.	3.3	29
816	Assessment of early treatment response on MRI in multiple myeloma: Comparative study of whole-body diffusion-weighted and lumbar spinal MRI. PLoS ONE, 2020, 15, e0229607.	2.5	21
817	Apparent Diffusion Coefficient of Diffusion Weighted Imaging have Strong Correlation with the Malignancy Grading of Intracranial Tumor. Journal of Physics: Conference Series, 2020, 1445, 012019.	0.4	0
818	Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 2020, 22, 1073-1113.	1.2	543
819	Imaging-Based Algorithm for the Local Grading of Glioma. American Journal of Neuroradiology, 2020, 41, 400-407.	2.4	9
820	Turbo Spin-echo Diffusion-weighted Imaging Compared with Single-shot Echo-planar Diffusion-weighted Imaging: Image Quality and Diagnostic Performance When Differentiating between Ductal Carcinoma <i>in situ</i> and Invasive Ductal Carcinoma. Magnetic Resonance in Medical Sciences, 2021, 20, 60-68.	2.0	12
821	Gaussian mixture model-based cluster analysis of apparent diffusion coefficient values: a novel approach to evaluate uterine endometrioid carcinoma grade. European Radiology, 2021, 31, 55-64.	4.5	7

		CITATION REPORT		
#	Article		IF	CITATIONS
822	Normalized apparent diffusion coefficient: a novel paradigm for characterization of end- subendometrial lesions. British Journal of Radiology, 2021, 94, 20201069.	ometrial and	2.2	5
823	Effective apparent diffusion coefficient parameters for differentiation between mass-for autoimmune pancreatitis and pancreatic ductal adenocarcinoma. Abdominal Radiology, 1640-1647.		2.1	10
824	Imaging of glioblastoma recurrence. , 2021, , 9-39.			1
825	Regional and Volumetric Parameters for Diffusion-Weighted WHO Grade II and III Gliom Method Comparison. American Journal of Neuroradiology, 2021, 42, 441-447.	a Genotyping: A	2.4	9
826	Characterization of high-grade pineal region lesions: the usefulness of apparent diffusio volumetric values. Acta Radiologica, 2022, 63, 222-231.	n coefficient	1.1	2
827	Medical Imaging Based Diagnosis Through Machine Learning and Data Analysis. Compu 2021, , 179-225.	tational Biology,	0.2	0
828	Intra-tumoral susceptibility signal: a post-processing technique for objective grading of with susceptibility-weighted imaging. Quantitative Imaging in Medicine and Surgery, 20	astrocytoma 22, 12, 558-567.	2.0	1
829	From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potent Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Fronti Neurology, 2021, 12, 633209.	ialities of ers in	2.4	7
830	Pseudoprogression versus true progression in glioblastoma patients: A multiapproach li review. Part 2 – Radiological features and metric markers. Critical Reviews in Oncolog 2021, 159, 103230.	terature y/Hematology,	4.4	32
831	Analysis of 7-tesla diffusion-weighted imaging in the prediction of pituitary macroadeno consistency. Journal of Neurosurgery, 2021, 134, 771-779.	ma	1.6	18
832	Comparison of Differential Diagnosis of Lung Cancer by Diffuse Weighted Imaging and with Short Inversion Recovery Sequence. Journal of Medical Imaging and Health Informa 822-826.	Sagittal Imaging itics, 2021, 11,	0.3	0
833	Clinical and diffusion parameters may noninvasively predict TERT promoter mutation sta meningiomas. Journal of Neuroradiology, 2021, 49, 59-59.	atus in grade ll	1.1	5
834	Novel Radiation Approaches. Neurosurgery Clinics of North America, 2021, 32, 211-223		1.7	7
835	Prognostic Value of Apparent Diffusion Coefficient in Oropharyngeal Carcinoma. Clinica Neuroradiology, 2021, 31, 1037-1048.	I	1.9	5
836	Image-based personalization of computational models for predicting response of high-g chemoradiation. Scientific Reports, 2021, 11, 8520.	rade glioma to	3.3	34
837	A Clinical-Radiomics Nomogram for Functional Outcome Predictions in Ischemic Stroke. and Therapy, 2021, 10, 819-832.	Neurology	3.2	27
838	High-Resolution Diffusion-Weighted Imaging of C6 Glioma on a 7T BioSpec MRI Scanne Tumor Cellularity and Nuclear-to-Cytoplasmic Ratio with Apparent Diffusion Coefficient. Radiology, 2022, 29, S80-S87.	r: Correlation of . Academic	2.5	5
839	MRI biomarkers in neuro-oncology. Nature Reviews Neurology, 2021, 17, 486-500.		10.1	40

		15	2
#	ARTICLE	IF	CITATIONS
840	Diffusion magnetic resonance imaging data: development of methods and tools for diagnosis and treatment of brain diseases. Bulletin of Siberian Medicine, 2021, 20, 191-201.	0.3	1
841	Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Journal of Computer Assisted Tomography, 2021, 45, 606-613.	0.9	5
842	A Phase 2 Study of Dose-intensified Chemoradiation Using Biologically Based Target Volume Definition in Patients With Newly Diagnosed Glioblastoma. International Journal of Radiation Oncology Biology Physics, 2021, 110, 792-803.	0.8	23
843	Survival Prediction Analysis in Glioblastoma With Diffusion Kurtosis Imaging. Frontiers in Oncology, 2021, 11, 690036.	2.8	2
844	Prognostic factors in adult brainstem glioma: a tertiary care center analysis and review of the literature. Journal of Neurology, 2022, 269, 1574-1590.	3.6	10
845	Accuracy and precision of apparent diffusion coefficient measurements on a 1.5ÅT MR-Linac in central nervous system tumour patients. Radiotherapy and Oncology, 2021, 164, 155-162.	0.6	19
846	Therapeutic Response Assessment of High-Grade Gliomas During Early-Phase Drug Development in the Era of Molecular and Immunotherapies. Cancer Journal (Sudbury, Mass), 2021, 27, 395-403.	2.0	2
847	Prediction of Malignant Transformation of WHO II Astrocytoma Using Mathematical Models Incorporating Apparent Diffusion Coefficient and Contrast Enhancement. Frontiers in Oncology, 2021, 11, 744827.	2.8	1
848	Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting. Nature Protocols, 2021, 16, 5309-5338.	12.0	15
849	χ-separation: Magnetic susceptibility source separation toward iron and myelin mapping in the brain. NeuroImage, 2021, 240, 118371.	4.2	46
850	Texture Analysis in Brain Tumor MR Imaging. Magnetic Resonance in Medical Sciences, 2022, 21, 95-109.	2.0	8
851	Brain Neoplasm. , 2021, , 521-625.		1
852	Clinical importance of ADC in the prediction of 125I in the treatment for gliomas. Journal of Cancer, 2021, 12, 1945-1951.	2.5	4
853	Molecular and Functional Imaging in Radiation Oncology. Cancer Treatment and Research, 2008, , 62-94.	0.5	3
854	Anatomic, Physiologic and Metabolic Imaging in Neuro-Oncology. Cancer Treatment and Research, 2008, 143, 3-42.	0.5	8
855	Advances in Imaging Brain Cancer. , 2013, , 119-140.		2
856	Functional Imaging-Based Diagnostic Strategy: Intra-axial Brain Masses. , 2011, , 197-220.		6
857	Advanced Physiologic Imaging: Diffusion– Theory and Applications. , 2020, , 93-108.		2

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
858	Clinical MR Biomarkers. Recent Results in Cancer Research, 2020, 216, 719-745.	1.8	2
859	Advances in imaging low-grade gliomas. Advances and Technical Standards in Neurosurgery, 2010, 35, 1-34.	0.5	31
860	Imaging Modalities in Brain Tumors. , 2011, , 13-33.		42
861	High-Grade Gliomas. , 2002, , 109-135.		2
862	MODERN NEURORADIOLOGY RELEVANT TO ANESTHETIC AND PERIOPERATIVE MANAGEMENT. , 2010, , 95-114.		1
863	DIFFUSION-WEIGHTED IMAGING OF THE BRAIN IN NEONATES AND INFANTS. Magnetic Resonance Imaging Clinics of North America, 2001, 9, 83-98.	1.1	24
864	NEW TECHNIQUES IN MR IMAGING OF BRAIN TUMORS. Magnetic Resonance Imaging Clinics of North America, 2000, 8, 691-713.	1.1	27
865	Ex vivo tissue imaging for radiology–pathology correlation: a pilot study with a small bore 7-T MRI in a rare pigmented ganglioglioma exhibiting complex MR signal characteristics associated with melanin and hemosiderin. Journal of Medical Imaging, 2017, 4, 1.	1.5	3
866	Imaging Tutorial: Differential Diagnosis of Bright Lesions on Diffusion-weighted MR Images. Radiographics, 2003, 23, e7-e7.	3.3	100
867	Diffusion MRI: A New Strategy for Assessment of Cancer Therapeutic Efficacy. Molecular Imaging, 2002, 1, 336-343.	1.4	120
868	Diffusion-Weighted Imaging With Calculated Apparent Diffusion Coefficient of Enhancing Extra-Axial Masses. , 2005, 15, 341-347.		9
869	Central Nervous System Lymphoma in a 3-Year-Old Male Suffering from a Severe Juvenile Xanthogranuloma – the Usefulness of Perfusion Weighted Imaging and Diffusion Weighted Imaging in the Diagnostics of Pediatric Brain Tumors. Polski Przeglad Radiologii I Medycyny Nuklearnej, 2015, 80, 31-35.	1.0	4
870	Characterizing Tumor Response to Chemotherapy at Various Length Scales Using Temporal Diffusion Spectroscopy. PLoS ONE, 2012, 7, e41714.	2.5	40
871	Preoperative Diffusion-Weighted Imaging of Single Brain Metastases Correlates with Patient Survival Times. PLoS ONE, 2013, 8, e55464.	2.5	38
872	The Correlation between Apparent Diffusion Coefficient and Tumor Cellularity in Patients: A Meta-Analysis. PLoS ONE, 2013, 8, e79008.	2.5	197
873	Glioma: Application of Whole-Tumor Texture Analysis of Diffusion-Weighted Imaging for the Evaluation of Tumor Heterogeneity. PLoS ONE, 2014, 9, e108335.	2.5	159
874	Intravoxel Incoherent Motion Metrics as Potential Biomarkers for Survival in Glioblastoma. PLoS ONE, 2016, 11, e0158887.	2.5	32
875	Automatic Analysis of Cellularity in Glioblastoma and Correlation with ADC Using Trajectory Analysis and Automatic Nuclei Counting. PLoS ONE, 2016, 11, e0160250.	2.5	35

#	Article	IF	CITATIONS
876	Evaluation of connectivity map-discovered celastrol as a radiosensitizing agent in a murine lung carcinoma model: Feasibility study of diffusion-weighted magnetic resonance imaging. PLoS ONE, 2017, 12, e0178204.	2.5	8
877	THE ROLE OF DIFFUSION-WEIGHTED MRI IN DIFFERENTIAL DIAGNOSIS AND PREDICTION OF SURVIVAL IN PATIENTS WITH BRAIN METASTASES. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 2017, 72, 442-449.	0.6	4
878	Diffusion weighted imaging in the detection of upper urinary tract urothelial tumors. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2010, 36, 18-28.	1.5	30
879	A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma. Zhurnal Voprosy Nejrokhirurgii Imeni N N Burdenko, 2015, 79, 5.	0.2	6
880	The History of Neuroscience and Neurosurgery in Japan. International Neuroscience Journal, 2015, 1, 31-40.	0.4	5
881	Diffusion MRI Characteristics after Concurrent Radiochemotherapy Predicts Progression-Free and Overall Survival in Newly Diagnosed Glioblastoma. Tomography, 2015, 1, 37-43.	1.8	12
882	Semiautomated Workflow for Clinically Streamlined Glioma Parametric Response Mapping. Tomography, 2016, 2, 267-275.	1.8	8
883	Developing a Pipeline for Multiparametric MRI-Guided Radiation Therapy: Initial Results from a Phase II Clinical Trial in Newly Diagnosed Glioblastoma. Tomography, 2019, 5, 118-126.	1.8	22
884	Microstructure Modeling of High b-Value Diffusion-Weighted Images in Glioblastoma. Tomography, 2020, 6, 34-43.	1.8	3
885	Evaluation and validation of the diagnostic value of the apparent diffusion coefficient for differentiating early-stage endometrial carcinomas from benign mimickers at 3T MRI. Oncotarget, 2017, 8, 46390-46397.	1.8	8
886	Diffusion-weighted MRI-derived ADC values reflect collagen I content in PDX models of uterine cervical cancer. Oncotarget, 2017, 8, 105682-105691.	1.8	19
887	Imaging markers of response to combined BRAF and MEK inhibition in BRAF mutated vemurafenib-sensitive and resistant melanomas. Oncotarget, 2018, 9, 16832-16846.	1.8	5
888	Grading of Glioma Tumors by Analysis of Minimum Apparent Diffusion Coefficient and Maximum Relative Cerebral Blood Volume. Caspian Journal of Neurological Sciences, 2016, 2, 42-53.	0.2	4
889	Effect of Passive Muscle Length Change on Apparent Diffusion Coefficient: Detection with Clinical MR Imaging. Magnetic Resonance in Medical Sciences, 2008, 7, 59-63.	2.0	22
890	Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quantitative Imaging in Medicine and Surgery, 2015, 5, 407-22.	2.0	113
891	Functional MRI Measurements to Predict Early Adenoviral Gene Therapy Response in Ovarian Cancer Mouse Model. Journal of Genetic Syndromes & Gene Therapy, 2013, 04, .	0.2	3
892	Diffusion-weighted imaging of pancreatic cancer. World Journal of Radiology, 2015, 7, 319.	1.1	55
893	Diffusion-weighted magnetic resonance imaging in cancer: Reported apparent diffusion coefficients, <i>in-vitro</i> and <i>in-vivo</i> reproducibility. World Journal of Radiology, 2016, 8, 21.	1.1	45

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
895	Technical Progress in Neuroradiology and Its Application. Medical Radiology, 2001, , 23-46.	0.1	2
896	Recent Developments in Brain Tumour Diagnosis. Medical Radiology, 2001, , 119-135.	0.1	3
897	Imaging in AIDS. Medical Radiology, 2001, , 249-273.	0.1	0
901	MRI & PET Imaging in Malignant Brain Tumors(< SPECIAL ISSUE>Pathology and Treatment of Malignant) Tj ETQq1	1 0,7843 0.0	l4rgBT /Ov
902	Imaging Tumor Biology. , 2007, , 141-159.		0
903	Imaging of Epidural Spinal Cord Compression. , 2008, , 537-558.		0
904	Diffusion Imaging of Brain Tumors. , 2008, , 239-247.		1
905	Imaging of Oligodendrogliomas. , 2008, , 355-363.		0
906	Benign and Malignant Intracranial Tumours in Adults. , 2008, , 1271-1294.		1
907	Brain Neoplasms. , 2009, , 239-296.		0
908	Diffusion Tensor Imaging and Drug Development. , 2010, , 47-65.		0
909	DW-MRI for Disease Characterization in the Abdomen. Medical Radiology, 2010, , 117-141.	0.1	1
910	Bevacizumab Monotherapy for Temozolomide-Refractory Malignant Glioma. Japanese Journal of Neurosurgery, 2010, 19, 758-766.	0.0	0
911	Cancer of the Hypopharynx. , 2010, , 613-641.		Ο
912	Brain Tumors: Apparent Diffusion Coefficient at Magnetic Resonance Imaging. , 2011, , 279-296.		1
913	Imaging Efficacy in Tumor Models. , 2011, , 215-241.		1
914	Magnetic Resonance Imaging of Breast Cancer and MRI-Guided Breast Biopsy. , 2011, , 239-296.		1
915	Magnetic Resonance Imaging of Gliomas. , 0, , .		0

# 916	ARTICLE Bone Marrow-Derived Cells Support Malignant Transformation of Low-Grade Glioma. , 0, , .	IF	CITATIONS 0
918	MR Perfusion Imaging: ASL, T2*-Weighted DSC, and T1-Weighted DCE Methods. , 2014, , 3-25.		0
919	Functional Magnetic Resonance Techniques in CNS Tumors. , 2014, , 553-602.		0
920	Functional Imaging of Gallbladder and Biliary Malignancies. , 2014, , 1065-1076.		0
921	Evaluation of Solid Brain Metastases in Lung Cancers with Diffusion MRI [Akciger Kanserli Hastalarda Solid Beyin Metastazlarinin Difuzyon MRG ile Degerlendirilmesi]. Medicine Science, 2014, 3, 1079.	0.1	1
922	Glioblastoma Multiforme of Optic Nerve in Adults with Hyper intense Diffuse Weighted Imaging. IOSR Journal of Dental and Medical Sciences, 2014, 13, 09-12.	0.0	0
923	Diffusion MR Imaging of White Matter Pathways. Juntendo Medical Journal, 2014, 60, 100-106.	0.1	1
924	Differentiation of True Recurrence from Delayed Radiation Therapy-related Changes in Primary Brain Tumors Using Diffusion-weighted Imaging, Dynamic Susceptibility Contrast Perfusion Imaging, and Susceptibility-weighted Imaging. Journal of the Korean Society of Magnetic Resonance in Medicine, 2014, 18, 120.	0.1	0
925	Diffusion-weighted MRI: role in the differential diagnosis of breast lesions. Journal of the Belgian Society of Radiology, 2015, 97, 211.	0.2	6
926	Measurement of Apparent Diffusion Coefficient Values from Diffusion-Weighted MRI: A Comparison of Manual and Semiautomatic Segmentation Methods. Investigative Magnetic Resonance Imaging, 2015, 19, 88.	0.4	1
927	Threshold of Apparent Diffusion Coefficient in the Differentiation between Benign and Malignant Breast Lesions on MR Mammography. Journal of Medical Diagnostic Methods, 2015, 04, .	0.0	0
928	Complications and Management in Radiosurgery. , 2015, , 785-805.		0
929	Efficacy of 1H-MRSI and DWI for Non-invasive Grading of Brain Gliomas. Iranian Journal of Radiology, 2016, inpress, .	0.2	0
930	A Bayesian spatial random effects model characterisation of tumour heterogeneity implemented using Markov chain Monte Carlo (MCMC) simulation. F1000Research, 0, 5, 2082.	1.6	3
931	3.0T Imaging of Brain Gliomas. , 2017, , 271-319.		0
932	Application of Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) in Preclinical Cancer Models. , 2017, , 1-21.		0
935	Application of Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) in Preclinical Cancer Models. , 2018, , 121-140.		0
936	Correlations among Apparent Diffusion Coefficient and Permeability Parameters from Dynamic Contrast-enhanced MR in Brain Tumor Parenchyma and Peritumoral Area. Journal of Neurology & Neurophysiology, 2018, 09, .	0.1	0

#	Article	IF	CITATIONS
937	Gliom Evrelemesinde Patolojik İndekslerin (Ki-67, p53) ve Perfüzyon/Difüzyon MR Parametrelerinin Karşılaştırılması. Duzce Universitesi Tip Fakültesi Dergisi, 2018, 20, 11-15.	0.7	0
938	Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging. Journal of Biomedical Physics and Engineering, 0, , .	0.9	6
939	Will We Still Need Radiotherapy in 20ÂYears?. , 2019, , 191-201.		1
940	The application of the local histograms of apparent difusion coefficient in differentiation of brain astrocytomas. Vojnosanitetski Pregled, 2019, 76, 385-391.	0.2	0
941	Measurement of Apparent Diffusion Coefficient (ADC) Values of Ependymoma and Medulloblastoma Tumors: a Patient-based Study. Journal of Biomedical Physics and Engineering, 2021, 11, 39-46.	0.9	3
942	The Path Forward: The Standardized Brain Tumor Imaging Protocol (BTIP) for Multicenter Trials. , 2020, , 267-282.		0
943	THE ROLE OF DIFFUSION-WEIGHTED MRI OF PATIENTS WITH SPINE METASTASES. Coluna/ Columna, 2019, 18, 289-293.	0.2	1
944	Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of <i>IDH1</i> mutation in WHO grade Il–III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI. Radiology and Oncology, 2020, 54, 301-310.	1.7	9
945	Diffusion MRI: Applications in the Brain. Advances in Magnetic Resonance Technology and Applications, 2020, 1, 605-636.	0.1	0
946	Simulated Diffusion Weighted Images Based on Model-Predicted Tumor Growth. Lecture Notes in Computer Science, 2020, , 32-40.	1.3	0
947	The relationship between diffusion heterogeneity and microstructural changes in high-grade gliomas using Monte Carlo simulations. Magnetic Resonance Imaging, 2022, 85, 108-120.	1.8	2
948	The Role of Advanced Imaging in the Management of Brain Metastases. , 2020, , 95-113.		0
949	Current Applications and Future Perspectives of Brain Tumor Imaging. Journal of the Korean Society of Radiology, 2020, 81, 467.	0.2	1
950	Intravoxel Incoherent Motion (IVIM). , 2020, , 229-237.		0
951	Diffusion Kurtosis Imaging. , 2020, , 215-228.		3
952	Grading Gliomas Capability: Comparison between Visual Assessment and Apparent Diffusion Coefficient (ADC) Value Measurement on Diffusion-Weighted Imaging (DWI). Asian Pacific Journal of Cancer Prevention, 2020, 21, 385-390.	1.2	6
953	Relación Entre El Coeficiente De Difusión Aparente y la celularidad. [Relación Entre El Coeficiente De Difusión Aparente yLa Celularidad De Gliomas en Centro de tercer nivel de Panamá]. Revista Medica De Panama, 2020, 40, .	0.0	0
954	Grading Gliomas - Role of Diffusion Weighted Magnetic Resonance Imaging and Apparent Diffusion Coefficient (ADC) Values in Grading Gliomas. Journal of Evidence Based Medicine and Healthcare, 2020, 7, 716-721.	0.0	0

#	Article	IF	CITATIONS
956	Differentiation of True Progression from Pseudoprogression in Glioblastoma Treated with Radiation Therapy and Concomitant Temozolomide: Comparison Study of Standard and High- <i>b-Value Diffusion-weighted Imaging. Radiology, 0, , 122024.</i>	7.3	0
957	Brain, Head, and Neck. , 2008, , 169-533.		1
959	Functional and molecular imaging in cancer drug development. Chinese Clinical Oncology, 2014, 3, 17.	1.2	6
960	Infratentorial tumors in children - value of ADC in prediction of grade of neoplasms. Polish Journal of Radiology, 2010, 75, 18-23.	0.9	6
961	Correlation of ADC value with pathologic indexes in colorectal tumor homografts in Balb/c mouse. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2014, 26, 444-50.	2.2	11
962	Stretched-exponential model diffusion-weighted imaging as a potential imaging marker in preoperative grading and assessment of proliferative activity of gliomas. American Journal of Translational Research (discontinued), 2018, 10, 2659-2668.	0.0	7
963	Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging. Journal of Biomedical Physics and Engineering, 2018, 8, 251-260.	0.9	10
964	Survival prediction of high-grade glioma patients with diffusion kurtosis imaging. American Journal of Translational Research (discontinued), 2019, 11, 3680-3688.	0.0	7
965	Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. American Journal of Neuroradiology, 2003, 24, 1627-34.	2.4	237
966	Differential chemosensitivity of tumor components in a malignant oligodendroglioma: assessment with diffusion-weighted, perfusion-weighted, and serial volumetric MR imaging. American Journal of Neuroradiology, 2005, 26, 274-8.	2.4	28
967	Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. American Journal of Neuroradiology, 2004, 25, 201-9.	2.4	296
968	The role of diffusion-weighted imaging in patients with brain tumors. American Journal of Neuroradiology, 2001, 22, 1081-8.	2.4	511
969	Diffusion tensor MR imaging of high-grade cerebral gliomas. American Journal of Neuroradiology, 2002, 23, 520-7.	2.4	192
970	Neuroimaging in pediatric brain tumors: Gd-DTPA-enhanced, hemodynamic, and diffusion MR imaging compared with MR spectroscopic imaging. American Journal of Neuroradiology, 2002, 23, 322-33.	2.4	56
971	Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. American Journal of Neuroradiology, 2002, 23, 165-70.	2.4	91
972	Appearance of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings. American Journal of Neuroradiology, 2001, 22, 65-72.	2.4	201
973	Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. American Journal of Neuroradiology, 2001, 22, 60-4.	2.4	205
974	Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. American Journal of Neuroradiology, 2003, 24, 937-41.	2.4	296

#	Article	IF	CITATIONS
975	Diffusion tensor imaging at the crossroads: fiber tracking meets tissue characterization in brain tumors. American Journal of Neuroradiology, 2005, 26, 2168-9.	2.4	13
976	Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. American Journal of Neuroradiology, 2000, 21, 881-90.	2.4	101
977	Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. American Journal of Neuroradiology, 2002, 23, 906-12.	2.4	112
978	Update on brain tumor imaging: from anatomy to physiology. American Journal of Neuroradiology, 2006, 27, 475-87.	2.4	319
979	Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. American Journal of Neuroradiology, 2006, 27, 1419-25.	2.4	218
980	Apparent diffusion coefficients for differentiation of cerebellar tumors in children. American Journal of Neuroradiology, 2006, 27, 1362-9.	2.4	248
981	Differentiation of toxoplasmosis and lymphoma in AIDS patients by using apparent diffusion coefficients. American Journal of Neuroradiology, 2003, 24, 633-7.	2.4	93
982	Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. American Journal of Neuroradiology, 2005, 26, 1455-60.	2.4	176
983	Usefulness of the apparent diffusion coefficient in line scan diffusion-weighted imaging for distinguishing between squamous cell carcinomas and malignant lymphomas of the head and neck. American Journal of Neuroradiology, 2005, 26, 1186-92.	2.4	130
984	Diffusion MRI is an early biomarker of overall survival benefit in IDH wild-type recurrent glioblastoma treated with immune checkpoint inhibitors. Neuro-Oncology, 2022, 24, 1020-1028.	1.2	12
985	PET/MR in recurrent glioblastoma patients treated with regorafenib: [¹⁸ F]FET and DWI-ADC for response assessment and survival prediction. British Journal of Radiology, 2022, 95, 20211018.	2.2	13
986	Advanced Imaging Techniques for Differentiating Pseudoprogression and Tumor Recurrence After Immunotherapy for Glioblastoma. Frontiers in Immunology, 2021, 12, 790674.	4.8	14
987	Differential diagnosis of parotid gland tumours: Application of SWI combined with DWI and DCE-MRI. European Journal of Radiology, 2022, 146, 110094.	2.6	6
988	Modeling Tumor Cellularity in Newly Diagnosed GBMs using MR Imaging and Spectroscopy. , 2010, , .		0
989	Targeting Glioblastoma via Selective Alteration of Mitochondrial Redox State. Cancers, 2022, 14, 485.	3.7	8
991	Medical Imaging Biomarker Discovery and Integration Towards AI-Based Personalized Radiotherapy. Frontiers in Oncology, 2021, 11, 764665.	2.8	4
992	Visualization of tumor heterogeneity and prediction of isocitrate dehydrogenase mutation status for human gliomas using multiparametric physiologic and metabolic MRI. Scientific Reports, 2022, 12, 1078.	3.3	5
994	The potential of advanced MR techniques for precision radiotherapy of glioblastoma. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2022, 35, 127-143.	2.0	5

#	Article	IF	CITATIONS
998	ADC Histogram Analysis of Pediatric Low-Grade Glioma Treated with Selumetinib: A Report from the Pediatric Brain Tumor Consortium. American Journal of Neuroradiology, 2022, 43, 455-461.	2.4	3
999	Comparison of apparent diffusion coefficient and relative apparent diffusion coefficient values for differential diagnosis of breast lesions. The European Research Journal, 0, , 1-10.	0.3	0
1000	Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma. NMR in Biomedicine, 2022, 35, e4719.	2.8	11
1001	Role of NODDI in the MRI Characterization of Hippocampal Abnormalities in Temporal Lobe Epilepsy. Neurology, 2022, 98, e1771-e1782.	1.1	2
1002	Evaluation of the malignant potential of gliomas using diffusion-weighted and gadolinium-enhanced magnetic resonance imaging. Brain Science Advances, 2021, 7, 248.	0.9	3
1003	Differentiation of Prostate Cancer and Stromal Hyperplasia in the Transition Zone With Monoexponential, Stretched-Exponential Diffusion-Weighted Imaging and Diffusion Kurtosis Imaging in a Reduced Number of b Values: Correlation With Whole-Mount Pathology. Journal of Computer Assisted Tomography. 2022. Publish Ahead of Print.	0.9	1
1004	Apparent diffusion coefficient and intravoxel incoherent motion-diffusion kurtosis model parameters in invasive breast cancer: Correlation with the histological parameters of whole-slide imaging. Magnetic Resonance Imaging, 2022, 90, 53-60.	1.8	6
1005	Consideration of transmembrane water exchange in pharmacokinetic model significantly improves the accuracy of DCE-MRI in estimating cellular density: A pilot study in glioblastoma multiforme. Magnetic Resonance Letters, 2022, 2, 243-254.	1.3	0
1006	Applications of diffusion tensor imaging and fiber tractography. , 0, , 36-37.		1
1008	A prospective study to evaluate the role of multiparametric magnetic resonance imaging in the grading of gliomas using magnetic resonance imaging perfusion and diffusion and multivoxel magnetic resonance spectroscopy. The Journal of Clinical and Scientific Research, 2022, 11, 150.	0.1	0
1009	Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging. Frontiers in Radiology, 0, 2, .	2.0	6
1010	Clinical feasibility of accelerated diffusion weighted imaging of the abdomen with deep learning reconstruction: Comparison with conventional diffusion weighted imaging. European Journal of Radiology, 2022, 154, 110428.	2.6	13
1011	Advanced magnetic resonance imaging of brain tumours. , 2022, , 185-201.		0
1012	Role of Diffusion-Weighted Magnetic Resonance Imaging in Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer and Its Molecular Subtypes. Indian Journal of Radiology and Imaging, 0, , .	0.8	0
1013	Imaging and measuring diffusion in brain tumours. , 2022, , 351-372.		0
1014	Multiparametric breast MRI in clinical practice. Advances in Magnetic Resonance Technology and Applications, 2022, , 5-17.	0.1	0
1015	Diffusion magnetic resonance imaging in brain tumours. , 2022, , 319-349.		0
1016	Imaging of oligodendrogliomas. , 2022, , 547-556.		0

#	Article	IF	CITATIONS
1017	Preoperative Assessment and Prediction of Consistency of Intracranial Meningioma Utilizing the Apparent Diffusion Coefficient Values. Indian Journal of Neurosurgery, 0, , .	0.2	0
1018	Challenges and opportunities for advanced neuroimaging of glioblastoma. British Journal of Radiology, 2023, 96, .	2.2	1
1019	Differentiation of true progression from treatment response in highâ€grade glioma treated with chemoradiation: a comparison study of 3Dâ€APTW and 3Dâ€PcASL imaging and DWI. NMR in Biomedicine, 2023, 36, .	2.8	5
1020	MR imaging profile and histopathological characteristics of tumour vasculature, cell density and proliferation rate define two distinct growth patterns of human brain metastases from lung cancer. Neuroradiology, 2023, 65, 275-285.	2.2	2
1021	Diffusion imaging could aid to differentiate between glioma progression and treatment-related abnormalities: a meta-analysis. Insights Into Imaging, 2022, 13, .	3.4	3
1022	Characterization of meningiomas with synthetic imaging. Brain and Behavior, 2022, 12, .	2.2	1
1023	Deep learning characterization of brain tumours with diffusion weighted imaging. Journal of Theoretical Biology, 2023, 557, 111342.	1.7	4
1024	Potential of specimen diffusionâ€weighted imaging to assess the intraoperative margin for ductal carcinoma in situ and invasive breast cancer. Journal of Surgical Oncology, 2023, 127, 514-516.	1.7	0
1025	High grade glioma radiation therapy on a high field 1.5 Tesla MR-Linac - workflow and initial experience with daily adapt-to-position (ATP) MR guidance: AÂfirst report. Frontiers in Oncology, 0, 12, .	2.8	12
1026	Added value of histogram analysis of ADC in predicting radiation-induced temporal lobe injury of patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy. Insights Into Imaging, 2022, 13, .	3.4	1
1028	Correlation of Shear-Wave Elastography and Apparent Diffusion Coefficient Values in Breast Cancer and Their Relationship with the Prognostic Factors. Diagnostics, 2022, 12, 3021.	2.6	2
1029	Diffusion MRI With High to Ultrahigh b-Values: How It Will Benefit the Discovery of Brain Microstructure and Pathological Changes. Investigative Magnetic Resonance Imaging, 2022, 26, 200.	0.4	0
1030	Update on the Use of Artificial Intelligence in Hepatobiliary MR Imaging. Magnetic Resonance in Medical Sciences, 2023, 22, 147-156.	2.0	3
1031	Structural Neuroimaging: From Macroscopic to Microscopic Scales. , 2023, , 2917-2951.		0
1032	Diffusion Weighted Imaging in Neuro-Oncology: Diagnosis, Post-Treatment Changes, and Advanced Sequences—An Updated Review. Cancers, 2023, 15, 618.	3.7	5
1033	Meningioma microstructure assessed by diffusion MRI: An investigation of the source of mean diffusivity and fractional anisotropy by quantitative histology. NeuroImage: Clinical, 2023, 37, 103365.	2.7	2
1034	Diffusion Encoding Methods in MRI: Perspectives and Challenges. Investigative Magnetic Resonance Imaging, 2022, 26, 208.	0.4	3
1035	Value of quantitative apparent diffusion coefficients in differentiating low-grade gliomas from mixed neuronal-glial tumors. World Neurosurgery: X, 2023, 18, 100159.	1.1	Ο

#	Article	IF	CITATIONS
1036	Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers, 2023, 15, 2081.	3.7	5
1037	Multi-b-value diffusion stretched-exponential model parameters correlate with MIB-1 and CD34 expression in Glioma patients, an intraoperative MR-navigated, biopsy-based histopathologic study. Frontiers in Oncology, 0, 13, .	2.8	0
1038	Functional Imaging-Based Diagnostic Strategy: Intra-axial Brain Masses. , 2023, , 311-343.		0
1039	Diffusion-weighted imaging of the brain for glioblastoma: Implications for radiation oncology. Applied Radiation Oncology, 0, , 5-13.	0.5	6
1040	Revealing tumor microstructure with oscillating diffusion encoding <scp>MRI</scp> in preâ€surgical and postâ€treatment glioma patients. Magnetic Resonance in Medicine, 2023, 90, 1789-1801.	3.0	3
1041	Comprehensive Brain Tumour Characterisation with VERDICT-MRI: Evaluation of Cellular and Vascular Measures Validated by Histology. Cancers, 2023, 15, 2490.	3.7	1
1042	Isotoxic dose escalated radiotherapy for glioblastoma based on diffusion-weighted MRI and tumor control probability—an in-silico study. British Journal of Radiology, 2023, 96, .	2.2	1
1043	Quantitative and Physiological Magnetic Resonance Imaging in Glioma. , 2023, , 433-457.		0
1044	Advances in Functional Imaging for Sinus Disease. Advances in Clinical Radiology, 2023, 5, 223-234.	0.2	0
1045	Radiologic-pathologic correlation should be considered to place the region of interest on the intravoxel incoherent motion imaging and diffusion kurtosis imaging maps. European Journal of Radiology, 2023, 166, 110975.	2.6	0
1046	Effects of Neuron Axons Degeneration in 2D Networks of Neuronal Oscillators. , 2023, , 391-407.		0
1047	Diffusion histogram profiles predict molecular features of grade 4 in histologically lower-grade adult diffuse gliomas following WHO classification 2021. European Radiology, 2024, 34, 1367-1375.	4.5	0
1048	Tolerable treatment of glioblastoma with redox-cycling â€~mitocans': a comparative study in vivo. Redox Report, 2023, 28, .	4.5	1
1049	Primary brain tumours in adults. Lancet, The, 2023, 402, 1564-1579.	13.7	13
1050	Diffusion-weighted imaging on an MRI-linear accelerator to identify adversely prognostic tumour regions in glioblastoma during chemoradiation. Radiotherapy and Oncology, 2023, 188, 109873.	0.6	2
1052	Modelling cardiovascular system using Fermi functions on capillary bed. Sadhana - Academy Proceedings in Engineering Sciences, 2023, 48, .	1.3	0
1053	Ultra high b-value diffusion weighted imaging enables better molecular grading stratification over histological grading in adult-type diffuse glioma. European Journal of Radiology, 2023, 168, 111140.	2.6	1
1054	Apparent Diffusion Coefficient Metrics to Differentiate between Treatment-Related Abnormalities and Tumor Progression in Post-Treatment Glioblastoma Patients: A Retrospective Study. Cancers, 2023, 15, 4990.	3.7	0

#	Article	IF	CITATIONS
1055	Treatment of Central Nervous System Tumors on Combination MR-Linear Accelerators: Review of Current Practice and Future Directions. Cancers, 2023, 15, 5200.	3.7	1
1056	Accurate, repeatable, and geometrically precise diffusion-weighted imaging on a 0.35ÂT magnetic resonance imaging-guided linear accelerator. Physics and Imaging in Radiation Oncology, 2023, 28, 100505.	2.9	2
1058	Brain Tumor Imaging: Review of Conventional and Advanced Techniques. Seminars in Neurology, 0, , .	1.4	0
1059	Can the ADC Value Be Used as an Imaging "Biopsy―in Endometrial Cancer?. Diagnostics, 2024, 14, 325.	2.6	0
1060	Role of diffusion-weighted imaging in early ankylosing spondylitis. Chinese Medical Journal, 2013, 126, 668-673.	2.3	0
1061	Meme Kanserine Bağlı Beyin Metastazlarında Difüzyon Ağırlıklı Görüntüleme ile Histopatoloj Arasında Bir İlişki Var mı?. , 2024, 14, 133-139.	ik Tip	0
1062	Glioblastoma Pseudoprogression Discrimination Using Multiparametric Magnetic Resonance Imaging, Principal Component Analysis, and Supervised and Unsupervised Machine Learning. World Neurosurgery, 2024, 183, e953-e962.	1.3	0
1063	Integrating multi-modal imaging in radiation treatments for glioblastoma. Neuro-Oncology, 2024, 26, S17-S25.	1.2	0
1064	Understanding ADC variation by fat content effect using a dual-function MRI phantom. European Radiology Experimental, 2024, 8, .	3.4	0
1065	ReeGAN: MRI image edge-preserving synthesis based on GANs trained with misaligned data. Medical and Biological Engineering and Computing, 2024, 62, 1851-1868.	2.8	0
1066	Chest Magnetic Resonance Imaging. Clinics in Chest Medicine, 2024, , .	2.1	0
1067	Tumor-like Lesions in Primary Angiitis of the Central Nervous System: The Role of Magnetic Resonance Imaging in Differential Diagnosis. Diagnostics, 2024, 14, 618.	2.6	0