Glycosidase-catalysed synthesis of alkyl glycosides

Journal of Molecular Catalysis B: Enzymatic 6, 511-532

DOI: 10.1016/s1381-1177(99)00042-9

Citation Report

#	Article	IF	CITATIONS
1	Glycosidase-catalysed synthesis of alkyl glycosides. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 511-532.	1.8	262
2	Novel enzymatic approach to the synthesis of flavonoid glycosides and their esters. Biotechnology and Bioengineering, 2000, 71, 235-243.	1.7	83
4	Enzymatic Glycosylation in Plasticized Glass Phases: A Novel and Efficient Route to O-Glycosides. Angewandte Chemie - International Edition, 2000, 39, 3804-3808.	7.2	22
5	Assembly of \hat{l}^2 -glucosidase multilayers on spherical colloidal particles and their use as active catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169, 287-293.	2.3	72
6	Synthesis of $\hat{l}\pm$ -D-Glucosylglycerol by $\hat{l}\pm$ -Glucosidase and Some of Its Characteristics. Bioscience, Biotechnology and Biochemistry, 2000, 64, 1821-1826.	0.6	69
7	Tailoring the substrate specificity of the \hat{l}^2 -glycosidase from the thermophilic archaeonSulfolobus solfataricus. FEBS Letters, 2001, 509, 355-360.	1.3	28
8	Enzymatic Transformations in Suspensions (II)., 2001,, 603-610.		3
9	The integrated enzymatic production and downstream processing of hexyl glucoside. Enzyme and Microbial Technology, 2001, 29, 513-520.	1.6	13
10	Influence of water activity on the competition between \hat{l}^2 -glycosidase-catalysed transglycosylation and hydrolysis in aqueous hexanol. Enzyme and Microbial Technology, 2001, 29, 527-534.	1.6	65
11	The catalytic potency of \hat{l}^2 -glucosidase from Pyrococcus furiosus in the direct glucosylation reaction. Enzyme and Microbial Technology, 2001, 29, 621-624.	1.6	8
12	Enhanced transglucosylation/hydrolysis ratio of mutants of Pyrococcus furiosus?-glucosidase: Effects of donor concentration, water content, and temperature on activity and selectivity in hexanol. Biotechnology and Bioengineering, 2001, 75, 656-665.	1.7	45
13	The "Natural Strategy―for the glycosidase-assisted synthesis of simple glycosides. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 189-197.	1.8	17
14	A kinetic study of almond- \hat{l}^2 -glucosidase catalysed synthesis of hexyl-glycosides in low aqueous media. Journal of Molecular Catalysis B: Enzymatic, 2001, 14, 69-76.	1.8	20
15	Use of Ionic Liquids to Increase the Yield and Enzyme Stability in the β-Galactosidase Catalysed Synthesis ofN-Acetyllactosamine. Organic Process Research and Development, 2002, 6, 553-557.	1.3	186
16	Enzymatic synthesis of octyl glucoside catalyzed by almond \hat{l}^2 -glucosidase in organic media. Canadian Journal of Chemistry, 2002, 80, 653-656.	0.6	13
17	2â€fâ€fSynthetic methods : Part (v) Enzyme methods. Annual Reports on the Progress of Chemistry Section B, 2002, 98, 91-122.	0.8	1
18	Screening of various glycosidases for the synthesis of octyl glucoside. Biotechnology and Bioengineering, 2002, 77, 752-757.	1.7	54
19	Synthesis of octyl glucopyranoside by almond β-glucosidase adsorbed onto Celite R-640®. Tetrahedron Letters, 2002, 43, 2005-2008.	0.7	30

#	ARTICLE	IF	Citations
20	Enzymatic synthesis of alkyl arabinofuranosides using a thermostable \hat{l}_{\pm} -l-arabinofuranosidase. Tetrahedron Letters, 2002, 43, 9653-9655.	0.7	31
21	Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions. Enzyme and Microbial Technology, 2002, 31, 1024-1029.	1.6	77
22	Glycosidation of fructose-containing disaccharides using MCM-41 material as the catalyst. Carbohydrate Research, 2002, 337, 1993-1998.	1.1	19
23	The temperature influences the ratio of glucosidase and galactosidase activities of \hat{l}^2 -glycosidases. Biotechnology Letters, 2002, 24, 1465-1471.	1.1	6
24	Application of selectively acylated glycosides for the \hat{l}_{\pm} -galactosidase-catalyzed synthesis of disaccharides. Folia Microbiologica, 2003, 48, 329-337.	1.1	18
25	Penicillin Acylase Catalysed Synthesis of Ampicillin in Hydrophilic Organic Solvents. Advanced Synthesis and Catalysis, 2003, 345, 797-801.	2.1	24
26	Synthesis of alkyl- \hat{l}_{\pm} -l-rhamnosides by water soluble alcohols enzymatic glycosylation. Bioresource Technology, 2003, 90, 297-303.	4.8	18
27	Perspectives for the Industrial Enzymatic Production of Glycosides. Biotechnology Progress, 2003, 19, 1391-1402.	1.3	98
28	Transglucosylation of tertiary alcohols using cassava \hat{l}^2 -glucosidase. Biochemical and Biophysical Research Communications, 2003, 305, 470-475.	1.0	31
29	In situ proton NMR of glycosidase catalyzed hydrolysis and reverse hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 2004, 28, 55-63.	1.8	10
30	Influence of water-miscible solvents on hydrolytic activity of crude almond \hat{l}^2 -glucosidase. Journal of Molecular Catalysis B: Enzymatic, 2004, 28, 15-18.	1.8	4
31	Use of apple seed meal as a new source of \hat{l}^2 -glucosidase for enzymatic glucosylation of 4-substituted benzyl alcohols and tyrosol in monophasic aqueous-dioxane medium. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2095-2097.	1.0	53
32	Synthesis of alkylgalactosides using whole cells of Bacillus pseudofirmus species as catalysts. Journal of Biotechnology, 2004, 110, 273-286.	1.9	32
33	Transglycosylation reaction of xylanase B from the hyperthermophilic Thermotoga maritima with the ability of synthesis of tertiary alkyl \hat{l}^2 -d-xylobiosides and xylosides. Journal of Biotechnology, 2004, 114, 125-134.	1.9	54
34	Kinetic modelling of the thermal and pH inactivation of a thermostable \hat{l}^2 -galactosidase from Thermus sp. strain T2. Enzyme and Microbial Technology, 2005, 37, 505-513.	1.6	26
35	Construction and optimization of a monophasic organic–water system for enzymatic synthesis of p-nitrobenzyl β-d-glucopyranosides by reverse hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 83-88.	1.8	20
36	Transglucosylation of hydroquinone catalysed by $\hat{l}\pm$ -glucosidase from baker's yeast. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 142-146.	1.8	50
37	α-Amylase-catalysed synthesis of alkyl glycosides. Journal of Molecular Catalysis B: Enzymatic, 2005, 37, 84-87.	1.8	25

3

#	ARTICLE	IF	CITATIONS
38	Preparation and Properties of Gelatin-Immobilized \hat{l}^2 -Glucosidase from Pyrococcus furiosus. Bioscience, Biotechnology and Biochemistry, 2005, 69, 128-136.	0.6	28
39	Studies on the transglucosylation reactions of cassava and Thai rosewood \hat{l}^2 -glucosidases using 2-deoxy-2-fluoro-glycosyl-enzyme intermediates. Archives of Biochemistry and Biophysics, 2005, 442, 11-20.	1.4	14
40	Enzymatic Synthesis of Oligosaccharides and Alkylglycosides in Water-Organic Media Via Transglycosylation of Lactose. Biotechnology and Biotechnological Equipment, 2006, 20, 114-119.	0.5	15
41	Integrated operation of continuous chromatography and biotransformations for the generic high yield production of fine chemicals. Journal of Biotechnology, 2006, 124, 146-162.	1.9	57
42	Kinetic modelling of the thermal inactivation of an industrial \hat{l}^2 -galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology, 2006, 38, 1-9.	1.6	40
43	Thermal and pH inactivation of an immobilized thermostable \hat{l}^2 -galactosidase from Thermus sp. strain T2: Comparison to the free enzyme. Biochemical Engineering Journal, 2006, 31, 14-24.	1.8	50
44	Marine glycosyl hydrolases in the hydrolysis and synthesis of oligosaccharides. Biotechnology Journal, 2006, 1, 511-530.	1.8	75
45	Comparison between various commercial sources of almond \hat{l}^2 -glucosidase for the production of alkyl glucosides. Journal of Molecular Catalysis B: Enzymatic, 2006, 38, 91-94.	1.8	15
46	Unique transglycosylation potential of extracellular \hat{l}_{\pm} -d-galactosidase from Talaromyces flavus. Journal of Molecular Catalysis B: Enzymatic, 2006, 39, 128-134.	1.8	20
47	Saturationâ€"transferâ€"difference NMR to characterize substrate binding recognition and catalysis of two broadly specific glycoside hydrolases. Journal of Molecular Catalysis B: Enzymatic, 2006, 42, 85-89.	1.8	15
48	Influence of ionic liquid cosolvent on transgalactosylation reactions catalyzed by thermostable β-glycosylhydrolase CelB fromPyrococcus Furiosus. Biotechnology and Bioengineering, 2006, 95, 1093-1100.	1.7	62
49	Enzymatic Synthesis of Oligosaccharides and Neoglycoconjugates. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1049-1059.	0.6	44
50	Competition between transglycosylation and hydrolysis in almond \hat{l}^2 -glucosidase-catalyzed conversion ofp-nitrophenyl- \hat{l}^2 -d-glucoside in monophasic water/alcohol mixtures. Biocatalysis and Biotransformation, 2007, 25, 382-385.	1,1	9
51	Synthesis of nucleosidic bonds using a nucleoside hydrolase in aqueous-organic media. Biocatalysis and Biotransformation, 2007, 25, 84-91.	1.1	1
52	Transgalactosylation in a Water-Solvent Biphasic Reaction System with \hat{l}^2 -Galactosidase Displayed on the Surfaces of Bacillus subtilis Spores. Applied and Environmental Microbiology, 2007, 73, 2251-2256.	1.4	64
53	Enzymatic Approaches to O-Glycoside Introduction: Glycosyltransferases. , 2007, , 415-451.		7
54	Biocatalysis in Ionic Liquids. Chemical Reviews, 2007, 107, 2757-2785.	23.0	1,465
55	Induction and characterization of an unusual \hat{l} ±-d-galactosidase from Talaromyces flavus. Journal of Biotechnology, 2007, 128, 61-71.	1.9	18

#	Article	IF	CITATIONS
56	A novel variant of Thermotoga neapolitana \hat{l}^2 -glucosidase B is an efficient catalyst for the synthesis of alkyl glucosides by transglycosylation. Journal of Biotechnology, 2007, 130, 67-74.	1.9	65
57	Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 2007, 107, 2411-2502.	23.0	5,297
58	Enzymatic Approaches to O-Glycoside Introduction: Glycosidases. , 2007, , 453-487.		13
59	Nonconventional Biocatalysis for Production of Chemicals and Polymers from Biomass. , 2007, , 325-350.		4
60	In vitro synthesis of artificial polysaccharides by glycosidases and glycosynthases. Carbohydrate Research, 2007, 342, 1581-1594.	1.1	99
61	Facile synthesis of alkyl \hat{l}^2 -d-glucopyranosides from d-glucose and the corresponding alcohols using fruit seed meals. Journal of Molecular Catalysis B: Enzymatic, 2007, 44, 72-77.	1.8	30
62	Exploration of transfructosylation activity in cell walls from Cryptococcus laurentii for production of functionalised \hat{l}^2 -d-fructofuranosides. Journal of Molecular Catalysis B: Enzymatic, 2007, 45, 27-33.	1.8	17
63	Production of alkyl glucoside from cellooligosaccharides using yeast strains displaying Aspergillus aculeatus \hat{l}^2 -glucosidase 1. Journal of Molecular Catalysis B: Enzymatic, 2007, 49, 92-97.	1.8	13
64	Methylation in methanol–water mixtures: The effect of solvent composition and high pressure. Biophysical Chemistry, 2008, 134, 207-213.	1.5	0
65	Purification and characterization of a novel glycosidase from the china white jade snail (Achatina) Tj ETQq $1\ 1\ 0.7$	84314 rgE 1.6	BT /Overlock
66	Transglycosylation reaction of endoxylanase from Trichoderma longibrachiatum. Food Chemistry, 2008, 106, 466-474.	4.2	18
67	Enzymatic Synthesis of Oligosaccharides and Conversion to Glycolipids. , 2008, , 85-111.		3
70	Studies of the molecular basis of ethanol tolerance of self-flocculating yeast. Journal of Biotechnology, 2008, 136, S455.	1.9	0
71	Synthesis of rutinosides and rutinose by reverse hydrolysis catalyzed by fungal $\hat{l}\pm -l$ -rhamnosidases. Biocatalysis and Biotransformation, 2008, 26, 177-185.	1.1	14
72	Glucosylated Suspensosides, Water-Soluble Pheromone Conjugates from the Oral Secretions of Male Anastrepha suspensa. Journal of Natural Products, 2008, 71, 1726-1731.	1.5	5
73	Enhancement of the Alcoholytic Activity of α-Amylase AmyA from <i>Thermotoga maritima</i> MSB8 (DSM 3109) by Site-Directed Mutagenesis. Applied and Environmental Microbiology, 2008, 74, 5168-5177.	1.4	15
74	Fundamentals of Biocatalysis in Neat Organic Solvents. , 0, , 1-24.		6
75	Evaluation of the transglycosylation activities of a GH 39 \hat{l}^2 -d-xylosidase for the synthesis of xylose-based glycosides. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 1-5.	1.8	27

#	ARTICLE	IF	CITATIONS
76	Enzymatic synthesis of $\hat{l}^2\hat{a}$ glucosylglycerol using a continuous \hat{a} flow microreactor containing thermostable $\hat{l}^2\hat{a}$ glycoside hydrolase CelB immobilized on coated microchannel walls. Biotechnology and Bioengineering, 2009, 103, 865-872.	1.7	41
77	Efficient synthesis of a long carbohydrate chain alkyl glycoside catalyzed by cyclodextrin glycosyltransferase (CGTase). Biotechnology and Bioengineering, 2009, 104, 854-861.	1.7	43
78	Antarctic, cold-adapted \hat{l}^2 -galactosidase of Pseudoalteromonas sp. 22b as an effective tool for alkyl galactopyranosides synthesis. Enzyme and Microbial Technology, 2009, 44, 59-64.	1.6	18
79	Deoxynojirimycin enhanced the transglycosylation activity of a glycosidase from the China white jade snail. Journal of Biotechnology, 2009, 139, 229-235.	1.9	4
80	A response surface methodological study on prediction of glucosylation yields of thiamin using immobilized \hat{l}^2 -glucosidase. Process Biochemistry, 2009, 44, 251-255.	1.8	9
81	Gas chromatographic–mass spectrometric analysis of galactosyl derivatives obtained by the action of two different β-galactosidases. Food Chemistry, 2009, 114, 1099-1105.	4.2	33
82	\hat{l}_{\pm} -Galactosidases and their applications in biotransformations. Biocatalysis and Biotransformation, 2009, 27, 79-89.	1,1	33
83	Enzymatic route to alkyl glycosides having oligomeric head groups. Green Chemistry, 2009, 11, 1222.	4.6	35
84	Fragmentation Mechanism of Alkyl-monoglycosides by Mass Spectrometry. Tenside, Surfactants, Detergents, 2010, 47, 217-221.	0.5	0
85	Microbial conversion of ruscogenin by Gliocladium deliquescens NRRL1086: glycosylation at C-1. Applied Microbiology and Biotechnology, 2010, 86, 491-497.	1.7	12
86	Highly regioselective galactosylation of floxuridine catalyzed by \hat{l}^2 -galactosidase from bovine liver. Biotechnology Letters, 2010, 32, 1251-1254.	1.1	12
87	Substitution of the catalytic acid–base Glu237 by Gln suppresses hydrolysis during glucosylation of phenolic acceptors catalyzed by Leuconostoc mesenteroides sucrose phosphorylase. Journal of Molecular Catalysis B: Enzymatic, 2010, 65, 24-29.	1.8	8
88	Regio- and stereoselective glucosylation of diols by sucrose phosphorylase using sucrose or glucose 1-phosphate as glucosyl donor. Journal of Molecular Catalysis B: Enzymatic, 2010, 67, 219-224.	1.8	15
89	Highly Efficient and Regioâ€selective Glucosylation of 25(<i>S</i>) Ruscogenin by <i>Gliocladium deliquescens</i> NRRL1086. Chinese Journal of Chemistry, 2010, 28, 439-442.	2.6	7
90	Synthesis of Surfactants Using Enzymes. , 0, , 143-165.		2
91	The effects of organic solvents on the efficiency and regioselectivity of <i>N</i> â€acetylâ€lactosamine synthesis, using the βâ€galactosidase from <i>Bacillus circulans</i> in hydroâ€organic media. Biotechnology Progress, 2010, 26, 1278-1289.	1.3	25
92	Surfactants from xylan: Production of n-octyl xylosides using a highly thermostable xylanase from Thermotoga neapolitana. Process Biochemistry, 2010, 45, 700-705.	1.8	17
93	A novel direct screening method for alkyl glucoside production by glucosidases expressed in E. coli in 96-well plates. Journal of Biotechnology, 2010, 145, 186-192.	1.9	5

#	Article	IF	CITATIONS
94	l̂²-Glucosidase catalyzed synthesis of octyl-l̂²-d-glucopyranoside using whole cells of Pichia etchellsii in micro aqueous media. Journal of Biotechnology, 2010, 150, 490-496.	1.9	29
95	Expanding the application scope of glycosidases using click chemistry. Tetrahedron, 2010, 66, 750-757.	1.0	24
96	Regioselective O-glucosylation by sucrose phosphorylase: a promising route for functional diversification of a range of 1,2-propanediols. Carbohydrate Research, 2010, 345, 1736-1740.	1.1	17
98	Improvements in enzymatic preparation of alkyl glycosides. Czech Journal of Food Sciences, 2010, 28, 69-73.	0.6	4
99	Enzymatic Synthesis of Complex Carbohydrates. , 2010, , 5-54.		2
100	Structural and Functional Analyses of \hat{l}^2 -Glucosidase 3B from Thermotoga neapolitana: A Thermostable Three-Domain Representative of Glycoside Hydrolase 3. Journal of Molecular Biology, 2010, 397, 724-739.	2.0	117
101	Enzymatic synthesis of alkyl \hat{l}^2 -d-xylosides and oligoxylosides from xylans and from hydrothermally pretreated wheat bran. Green Chemistry, 2011, 13, 2380.	4.6	42
102	Biocatalytic Applications. , 2011, , 31-313.		12
103	Glycosides as compatible solutes: biosynthesis and applications. Natural Product Reports, 2011, 28, 875.	5.2	28
104	Enzymatic fructosylation of aromatic and aliphatic alcohols by Bacillus subtilis levansucrase: Reactivity of acceptors. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 41-48.	1.8	23
105	Study of the kinetic parameters for synthesis and hydrolysis of pharmacologically active salicin isomer catalyzed by baker's yeast maltase. Russian Journal of Physical Chemistry A, 2011, 85, 2317-2321.	0.1	6
106	Enzymatic glycosyl transfer: mechanisms and applications. Biocatalysis and Biotransformation, 2011, 29, 1-18.	1.1	67
107	\hat{l}_{\pm} -Rhamnosyl- \hat{l}^2 -glucosidase-Catalyzed Reactions for Analysis and Biotransformations of Plant-Based Foods. Journal of Agricultural and Food Chemistry, 2011, 59, 11238-11243.	2.4	23
108	Synthesis of alkyl glycosides from cyclodextrin using cyclodextrin glycosyltransferase from Paenibacillus sp. RB01. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 70, 359-368.	1.6	7
109	Correlation between thermostability and stability of glycosidases in ionic liquid. Biotechnology Letters, 2011, 33, 1215-1219.	1.1	46
110	A comparative study of the regioselectivity of the βâ€galactosidases from <i>Kluyveromyces lactis</i> and <i>Bacillus circulans</i> in the enzymatic synthesis of <i>N</i> â€Acetylâ€lactosamine in aqueous media. Biotechnology Progress, 2011, 27, 386-394.	1.3	24
111	The role of subsite $+2$ of the Trichoderma reesei \hat{l}^2 -mannanase TrMan5A in hydrolysis and transglycosylation. Biocatalysis and Biotransformation, 2012, 30, 338-352.	1.1	27
112	Enzymatic transglycosylation of PEG brushes by \hat{l}^2 -galactosidase. Chemical Communications, 2012, 48, 11208.	2.2	14

#	Article	IF	CITATIONS
113	7.5 Reaction Engineering of Biotransformations. , 2012, , 71-100.		5
114	Specificity of maltase to maltose in three different directions of reaction: Hydrolytic, vanillyl alcohol glucoside and vanillyl alcohol isomaltoside synthesis. Biotechnology Progress, 2012, 28, 1450-1456.	1.3	5
115	Cross-linked enzyme aggregates of \hat{l}^2 -glucosidase from Prunus domestica seeds. Biotechnology Letters, 2012, 34, 1673-1678.	1.1	11
117	Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts. Chemistry - A European Journal, 2012, 18, 10786-10801.	1.7	183
118	Significantly Improved Equilibrium Yield of Long-Chain Alkyl Glucosides via Reverse Hydrolysis in a Water-Poor System Using Cross-Linked Almond Meal as a Cheap and Robust Biocatalyst. Chinese Journal of Catalysis, 2012, 33, 275-280.	6.9	13
119	Protein-carbohydrate Interactions Leading to Hydrolysis and Transglycosylation in Plant Glycoside Hydrolase Family 1 Enzymes. Journal of Applied Glycoscience (1999), 2012, 59, 51-62.	0.3	6
120	Cyclodextrin glucanotransferase (CGTase) catalyzed synthesis of dodecyl glucooligosides by transglycosylation using α-cyclodextrin or starch. Carbohydrate Polymers, 2012, 87, 574-580.	5.1	8
121	Enzymatic routes for the production of mono- and di-glucosylated derivatives of hydroxytyrosol. Bioresource Technology, 2012, 115, 79-83.	4.8	20
122	Characterization of a \hat{l}^2 -glucosidase with transgalactosylation capacity from the zygomycete Rhizomucor miehei. Bioresource Technology, 2012, 114, 555-560.	4.8	45
123	Structural analysis, enzymatic characterization, and catalytic mechanisms of βâ€galactosidase from <i>Bacillus circulans</i> sp. <i>alkalophilus</i> . FEBS Journal, 2012, 279, 1788-1798.	2.2	59
124	A Novel Extracellular βâ€Clucosidase from <i>Trichosporon asahii</i> : Yield Prediction, Evaluation and Application for Aroma Enhancement of Cabernet Sauvignon. Journal of Food Science, 2012, 77, M505-15.	1.5	21
125	Using ionic liquid cosolvents to improve enzymatic synthesis of arylalkyl \hat{l}^2 -d-glucopyranosides. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 24-28.	1.8	25
126	Bacillus circulans \hat{l}^2 -galactosidase catalyses the synthesis of N-acetyl-lactosamine in a hydro-organic medium via a steady-state ordered Bi Bi reaction mechanism. Journal of Molecular Catalysis B: Enzymatic, 2012, 77, 24-31.	1.8	5
127	Facile and regioselective enzymatic 5′-galactosylation of pyrimidine 2′-deoxynucleosides catalyzed by β-glycosidase from bovine liver. Journal of Molecular Catalysis B: Enzymatic, 2012, 79, 35-40.	1.8	10
128	Isolation and characterization of a novel $\hat{l}\pm$ -glucosidase with transglycosylation activity from Arthrobacter sp. DL001. Journal of Molecular Catalysis B: Enzymatic, 2012, 80, 48-57.	1.8	1
129	A glucose-tolerant \hat{I}^2 -glucosidase from Prunus domestica seeds: Purification and characterization. Process Biochemistry, 2012, 47, 127-132.	1.8	26
130	Regio- and enantio-selective glycosylation of tetrahydroprotoberberines by Gliocladium deliquescens NRRL1086 resulting in unique alkaloidal glycosides. Applied Microbiology and Biotechnology, 2012, 93, 2357-2364.	1.7	17
131	Organic solvent tolerance and thermostability of a \hat{l}^2 -glucosidase co-engineered by random mutagenesis. Journal of Molecular Catalysis B: Enzymatic, 2013, 96, 61-66.	1.8	21

#	Article	IF	CITATIONS
132	\hat{l}^2 -Glycosidases: An alternative enzyme based method for synthesis of alkyl-glycosides. Sustainable Chemical Processes, 2013, 1, 7.	2.3	55
133	Characterisation of Two Bifunctional Cellulase–Xylanase Enzymes Isolated from a Bovine Rumen Metagenome Library. Current Microbiology, 2013, 66, 145-151.	1.0	44
134	Recent biotechnological progress in enzymatic synthesis of glycosides. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1329-1356.	1.4	42
135	Enzymatic Synthesis of Novel Phenol Acid Rutinosides Using Rutinase and Their Antiviral Activity in Vitro. Journal of Agricultural and Food Chemistry, 2013, 61, 9617-9622.	2.4	35
136	A study of transglucosylation kinetic in an enzymatic synthesis of benzyl alcohol glucoside by α-glucosidase from S. cerevisiae. Russian Journal of Physical Chemistry A, 2013, 87, 2285-2288.	0.1	5
137	Enzymatic processing of renewable glycerol into value-added glycerol carbonate. RSC Advances, 2013, 3, 18596.	1.7	16
138	Synthesis and characterisation of galactosyl glycerol by \hat{l}^2 -galactosidase catalysed reverse hydrolysis of galactose and glycerol. Food Chemistry, 2013, 141, 3085-3092.	4.2	20
139	Glycosidases., 2013,, 5-21.		4
140	Synthesis of hexyl \hat{l}_{\pm} -glucoside and \hat{l}_{\pm} -polyglucosides by a novel Microbacterium isolate. Applied Microbiology and Biotechnology, 2013, 97, 5293-5301.	1.7	16
141	Enzymatic Glycosylation of Alcohols. , 2013, , 123-135.		0
142	Substrate-like inhibition of the transgalactosylation reaction catalyzed by \hat{l}^2 -galactosidase from Aspergillus oryzae. Biocatalysis and Biotransformation, 2013, 31, 57-65.	1.1	1
143	Improved Transferase/Hydrolase Ratio through Rational Design of a Family 1 \hat{I}^2 -Glucosidase from Thermotoga neapolitana. Applied and Environmental Microbiology, 2013, 79, 3400-3405.	1.4	40
144	Enzymatic Approaches to O-Glycoside Introduction: Glycosyltransferases., 2013,,.		0
145	Enzymeâ€Catalyzed Synthesis of Saccharide Acrylate Monomers from Nonedible Biomass. Chemistry - an Asian Journal, 2014, 9, 2156-2161.	1.7	9
146	Amylase catalyzed synthesis of glycosyl acrylates and their polymerization. Green Chemistry, 2014, 16, 203-210.	4.6	18
147	Chemoenzymatic synthesis of "click―xylosides and xylobiosides from lignocellulosic biomass. RSC Advances, 2014, 4, 9330.	1.7	8
148	Chiral resolution through stereoselective transglycosylation by sucrose phosphorylase: application to the synthesis of a new biomimetic compatible solute, (R)-2-O-α-d-glucopyranosyl glyceric acid amide. Chemical Communications, 2014, 50, 436-438.	2.2	14
149	Chemo-enzymatic synthesis route to poly(glucosyl-acrylates) using glucosidase from almonds. Green Chemistry, 2014, 16, 1837-1846.	4.6	27

#	Article	IF	Citations
150	First enzymatic galactosylation of acyclic nucleoside drugs by \hat{l}^2 -galactosidase: Synthesis of water-soluble \hat{l}^2 -D-galactosidic prodrugs. Biotechnology and Bioprocess Engineering, 2014, 19, 586-591.	1.4	8
151	Preparation of two glycoside hydrolases for use in micro-aqueous media. Journal of Molecular Catalysis B: Enzymatic, 2014, 108, 1-6.	1.8	9
153	An Aspergillus nidulans \hat{l}^2 -mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5. Applied Microbiology and Biotechnology, 2014, 98, 10091-10104.	1.7	42
154	Biphasic Catalysis with Disaccharide Phosphorylases: Chemoenzymatic Synthesis of α-d-Glucosides Using Sucrose Phosphorylase. Organic Process Research and Development, 2014, 18, 781-787.	1.3	21
155	Methods for Improving Enzymatic Trans-glycosylation for Synthesis of Human Milk Oligosaccharide Biomimetics. Journal of Agricultural and Food Chemistry, 2014, 62, 9615-9631.	2.4	76
156	Dual effect of benzyl alcohol on α-glucosidase activity: efficient substrate for high yield transglucosylation and non-competitive inhibitor of its hydrolytic activity. Carbohydrate Research, 2014, 387, 14-18.	1.1	5
157	Hydrophobic Complexation Promotes Enzymatic Surfactant Synthesis from Alkyl Glucoside/Cyclodextrin Mixtures. ACS Catalysis, 2014, 4, 2623-2634.	5 . 5	15
158	Continuous synthesis of lactulose in an enzymatic membrane reactor reduces lactulose secondary hydrolysis. Bioresource Technology, 2014, 167, 108-115.	4.8	34
159	X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 11-23.	2.5	34
160	Glycosylation of Phenolic Compounds by the Site-Mutated \hat{I}^2 -Galactosidase from Lactobacillus bulgaricus L3. PLoS ONE, 2015, 10, e0121445.	1.1	7
161	Î ² -Xylopyranosides: synthesis and applications. RSC Advances, 2015, 5, 91026-91055.	1.7	24
162	Enzymatic synthesis of 3-aminopropyl-1-O-Î ² -D-galactopyranoside catalyzed byAspergillus oryzaeÎ ² -galactosidase. Biocatalysis and Biotransformation, 2015, 33, 197-207.	1.1	4
163	Convenient synthesis of alkyl and phenylalkyl \hat{l}^2 -d-glucopyranosides using facile and novel biocatalysts of plant origin. Industrial Crops and Products, 2015, 74, 918-924.	2.5	7
164	Influences of operating conditions on continuous lactulose synthesis in an enzymatic membrane reactor system: A basis prior to long-term operation. Journal of Biotechnology, 2015, 203, 89-96.	1.9	26
165	Biotransformation of sucrose into hexyl-α-d-glucopyranoside and -polyglucosides by whole cells of Microbacterium paraoxydans. Biotechnology Letters, 2015, 37, 1431-1437.	1.1	7
166	Multi-objective optimization for the economic production of d-psicose using simulated moving bed chromatography. Journal of Chromatography A, 2015, 1398, 47-56.	1.8	17
168	Gene clone and characterization of a novel thermostable \hat{l}^2 -galactosidase with transglycosylation activity from Thermotoga naphthophila RUK-10. Chemical Research in Chinese Universities, 2015, 31, 564-568.	1.3	3
169	\hat{l}^2 -galactosidase-catalyzed synthesis of 3-O- \hat{l}^2 -D-galactopyranosyl-sn-glycerol: Optimization by response surface methodology. Biocatalysis and Biotransformation, 2016, 34, 152-160.	1.1	O

#	Article	IF	Citations
170	Biocatalytic Approaches Using Lactulose: End Product Compared with Substrate. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 878-896.	5.9	19
171	Recent progress in the enzymatic glycosylation of phenolic compounds. Journal of Carbohydrate Chemistry, 2016, 35, 1-23.	0.4	47
172	The influence of the carbohydrate anomeric linkage on the free radical scavenging activity of enzymatically-synthesized phenolic glycosides. RSC Advances, 2016, 6, 45452-45461.	1.7	2
173	Recent advances on prebiotic lactulose production. World Journal of Microbiology and Biotechnology, 2016, 32, 154.	1.7	36
174	Chromatographic separation of ethyl- \hat{l}^2 -d-glucopyranoside and d-glucose with steady-state recycling chromatography. Separation and Purification Technology, 2016, 169, 262-272.	3.9	12
175	Enzymatic synthesis of propyl-α-glycosides and their application as emulsifying and antibacterial agents. Biotechnology and Bioprocess Engineering, 2016, 21, 389-401.	1.4	16
176	A Single Point Mutation Alters the Transglycosylation/Hydrolysis Partition, Significantly Enhancing the Synthetic Capability of an <i>endo</i> -Glycoceramidase. ACS Catalysis, 2016, 6, 8264-8275.	5.5	17
177	Characterization of recombinant \hat{l}^2 - galactosidase and its use in enzymatic synthesis of lactulose from lactose and fructose. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 253-260.	1.8	14
178	Chromatographic purification of enzymatically synthesized alkyl glucopyranosides. Journal of Chemical Technology and Biotechnology, 2016, 91, 2419-2431.	1.6	2
179	Site-directed mutagenesis of \hat{l} ±-l-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design. Applied Microbiology and Biotechnology, 2016, 100, 10385-10394.	1.7	15
180	Biochemical characterization of an acidophilic \hat{l}^2 -mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability. Food Chemistry, 2016, 197, 474-481.	4.2	27
181	Galactosylation of steroidal saponins by \hat{l}^2 -galactosidase from Lactobacillus bulgaricus L3. Glycoconjugate Journal, 2016, 33, 53-62.	1.4	12
182	Microwave-assisted synthesis of butyl galactopyranoside catalyzed by \hat{l}^2 -galactosidase from Thermotoga naphthophila RKU-10. Process Biochemistry, 2016, 51, 53-58.	1.8	6
183	Heterologous expression of a GH3 \hat{l}^2 -glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides. Protein Expression and Purification, 2016, 119, 75-84.	0.6	19
184	Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions. Food Chemistry, 2017, 214, 556-563.	4.2	53
185	Trans-glycosylation capacity of a highly glycosylated multi-specific \hat{l}^2 -glucosidase from Fusarium solani. Bioprocess and Biosystems Engineering, 2017, 40, 559-571.	1.7	18
186	Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 \hat{l}^2 -glucosidase. Applied Microbiology and Biotechnology, 2017, 101, 1121-1131.	1.7	39
187	Synthesis of butyl- \hat{l}^2 - d -galactoside with commercial \hat{l}^2 -galactosidases. Food and Bioproducts Processing, 2017, 103, 66-75.	1.8	11

#	Article	IF	CITATIONS
188	Screening and quantification of the enzymatic deglycosylation of the plant flavonoid rutin by UV–visible spectrometry. Food Chemistry, 2017, 229, 44-49.	4.2	19
189	Comparison of lipases and glycoside hydrolases as catalysts in synthesis reactions. Applied Microbiology and Biotechnology, 2017, 101, 513-519.	1.7	23
190	What makes a lipase a valuable acyltransferase in water abundant medium?. Catalysis Science and Technology, 2017, 7, 2566-2578.	2.1	30
191	Functionalization of natural compounds by enzymatic fructosylation. Applied Microbiology and Biotechnology, 2017, 101, 5223-5234.	1.7	13
192	Synthesis of propyl- \hat{l}^2 -d-galactoside with free and immobilized \hat{l}^2 -galactosidase from Aspergillus oryzae. Process Biochemistry, 2017, 53, 162-171.	1.8	14
193	Metagenomics for the Discovery of Novel Biosurfactants. , 2017, , 95-117.		21
194	Synthesis, structural characterization, and biological properties of pentyl- and isopentyl-α-D-glucosides. Applied Biochemistry and Microbiology, 2017, 53, 410-420.	0.3	4
195	Improved octyl glucoside synthesis using immobilized \hat{l}^2 -glucosidase on PA-M with reduced glucose surplus inhibition. Biocatalysis and Biotransformation, 2017, 35, 349-362.	1.1	11
196	Optimization of reaction conditions and the donor substrate in the synthesis of hexyl- \hat{l}^2 - d -galactoside. Process Biochemistry, 2017, 58, 128-136.	1.8	11
197	Saccharide Primers Comprising Xylosyl-Serine Primed Phosphorylated Oligosaccharides Act as Intermediates in Glycosaminoglycan Biosynthesis. ACS Omega, 2017, 2, 3110-3122.	1.6	5
198	â€~Click'â€xylosides as initiators of the biosynthesis of glycosaminoglycans: Comparison of monoâ€xylosides with xylobiosides. Chemical Biology and Drug Design, 2017, 89, 319-326.	1.5	7
199	α-Galactosidases. , 2017, , 369-394.		4
200	Exploring the aglycone subsite of a GH11 xylanase for the synthesis of xylosides by transglycosylation reactions. Journal of Biotechnology, 2018, 272-273, 56-63.	1.9	13
201	\hat{l}^2 -Mannanase-catalyzed synthesis of alkyl mannooligosides. Applied Microbiology and Biotechnology, 2018, 102, 5149-5163.	1.7	19
202	Synthesis of (meth)acrylamide-based glycomonomers using renewable resources and their polymerization in aqueous systems. Green Chemistry, 2018, 20, 476-484.	4.6	27
203	Microbial production of neryl-α-d-glucopyranoside from nerol by Agrobacterium sp. M-12 reflects glucosyl transfer activity. Bioscience, Biotechnology and Biochemistry, 2018, 82, 2205-2211.	0.6	2
204	Lipases/Acyltransferases for Lipid Modification in Aqueous Media., 2018,, 45-68.		3
205	Enzymatic Synthesis of Glycolipid Surfactants. , 2018, , 293-313.		6

#	Article	IF	CITATIONS
206	Direct conversion of cellulose into ethanol and ethylâ€î²â€ <scp>d</scp> â€glucoside via engineered <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2018, 115, 2859-2868.	1.7	5
207	Bioactive Properties and Biotechnological Production of Human Milk Oligosaccharides. , 2018, , 425-460.		1
208	Enzymatic rhamnosylation of anticancer drugs by an α-l-rhamnosidase from Alternaria sp. L1 for cancer-targeting and enzyme-activated prodrug therapy. Applied Microbiology and Biotechnology, 2019, 103, 7997-8008.	1.7	12
209	Production and Surfactant Properties of Tert-Butyl α-d-Glucopyranosides Catalyzed by Cyclodextrin Glucanotransferase. Catalysts, 2019, 9, 575.	1.6	10
210	Synthesis of glycomonomers via biocatalytic methods. Methods in Enzymology, 2019, 627, 215-247.	0.4	6
211	Biosynthesis of methyl glucoside and its antibacterial activity against Staphylococcus aureus and Escherichia coli. Bioactive Carbohydrates and Dietary Fibre, 2019, 20, 100197.	1.5	7
212	Enzymatic glycolipid surfactant synthesis from renewables. Process Biochemistry, 2019, 87, 45-54.	1.8	39
213	Preparation of salidroside with $\langle i \rangle n < i \rangle$ -butyl $\langle i \rangle \hat{l}^2 < i \rangle$ -D-glucoside as the glycone donor via a two-step enzymatic synthesis catalyzed by immobilized $\langle i \rangle \hat{l}^2 < i \rangle$ -glucosidase from bitter almonds. Biocatalysis and Biotransformation, 2019, 37, 246-260.	1.1	5
214	Transglycosylation products generated by Talaromyces amestolkiae GH3 $\hat{1}^2$ -glucosidases: effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells. Microbial Cell Factories, 2019, 18, 97.	1.9	28
215	Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation. Molecules, 2019, 24, 2033.	1.7	83
216	Biobased Surfactants: Overview and Industrial State of the Art. , 2019, , 3-38.		36
217	Enzymatic synthesis and polymerisation of \hat{l}^2 -mannosyl acrylates produced from renewable hemicellulosic glycans. Green Chemistry, 2019, 21, 2104-2118.	4.6	14
220	Enzymatic synthesis of non-natural trisaccharides and galactosides; Insights of their interaction with galectins as a function of their structure. Carbohydrate Research, 2019, 472, 1-15.	1.1	3
221	Conventional and non-conventional applications of \hat{l}^2 -galactosidases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140271.	1.1	62
222	\hat{l}^2 -Galactosidases: A great tool for synthesizing galactose-containing carbohydrates. Biotechnology Advances, 2020, 39, 107465.	6.0	67
223	Improved Alkyl Glycoside Synthesis by transâ€Glycosylation through Tailored Microenvironments of Immobilized βâ€Glucosidase. ChemPlusChem, 2020, 85, 137-141.	1.3	9
224	Cloning and characterization of a recombinant \hat{l} ±-glucosidase from Ensifer adhaerens NBRC 100388 and evaluation of its glucosyl transfer activity. Biocatalysis and Agricultural Biotechnology, 2020, 30, 101837.	1.5	3
225	Increased yield of enzymatic synthesis by chromatographic selection of differentNâ€glycoforms of yeast invertase. Electrophoresis, 2020, 42, 2626-2636.	1.3	2

#	Article	IF	CITATIONS
226	Improved synthesis of long-chain alkyl glucosides catalyzed by an engineered \hat{l}^2 -glucosidase in organic solvents and ionic liquids. Biotechnology Letters, 2020, 42, 2379-2387.	1.1	4
227	Glycosyl hydrolase catalyzed glycosylation in unconventional media. Applied Microbiology and Biotechnology, 2020, 104, 9523-9534.	1.7	7
228	Synthesis of Butyl- \hat{l}^2 -D-Galactoside in the Ternary System: Acetone/1-Butanol/Aqueous Solution. Frontiers in Bioengineering and Biotechnology, 2020, 8, 859.	2.0	7
229	On the donor substrate dependence of groupâ€transfer reactions by hydrolytic enzymes: Insight from kinetic analysis of sucrose phosphorylaseâ€catalyzed transglycosylation. Biotechnology and Bioengineering, 2020, 117, 2933-2943.	1.7	13
230	Enzymatic Synthesis of 2-(Î ² -Galactosyl)-ethyl Methacrylate by Î ² -Galactosidase from <i>Pyrococcus woesei</i> and Application for Glycopolymer Synthesis and Lectin Studies. Biomacromolecules, 2020, 21, 974-987.	2.6	12
231	Synthesis of butyl glucoside over sulphated Zr-SBA-15 and tungstophosphoric acid incorporated SBA-15 catalysts. Catalysis Today, 2021, 367, 213-219.	2.2	7
232	Transrutinosylation of tyrosol by flower buds of Sophora japonica. Food Chemistry, 2021, 336, 127674.	4.2	13
233	An Integrated Enzymatic Approach to Produce Pentyl Xylosides and Glucose/Xylose Laurate Esters From Wheat Bran. Frontiers in Bioengineering and Biotechnology, 2021, 9, 647442.	2.0	5
234	Improvement of Fucosylated Oligosaccharides Synthesis by \hat{l}_{\pm} -L-Fucosidase from Thermotoga maritima in Water-Organic Cosolvent Reaction System. Applied Biochemistry and Biotechnology, 2021, 193, 3553-3569.	1.4	1
235	l̂²-Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. International Journal of Biological Macromolecules, 2021, 191, 881-898.	3.6	39
236	Effect of product partition on the synthesis of butyl-Î ² -D-galactoside from Aspergillus oryzae. Bioresource Technology, 2021, 340, 125697.	4.8	2
237	Biocatalytic Applications. , 2018, , 31-313.		6
238	The Uses of Glycoprocessing Enzymes in Synthesis. , 2003, , 385-426.		2
239	Synthesis of long-chain alkyl glucosides via reverse hydrolysis reactions catalyzed by an engineered l²-glucosidase. Enzyme and Microbial Technology, 2020, 140, 109591.	1.6	5
240	Enzymatic Synthesis of Rhamnose Containing Chemicals by Reverse Hydrolysis. PLoS ONE, 2015, 10, e0140531.	1.1	9
241	Two fungal flavonoid-specific glucosidases/rutinosidases for rutin hydrolysis and rutinoside synthesis under homogeneous and heterogeneous reaction conditions. AMB Express, 2021, 11, 136.	1.4	5
242	Identification and Characterization of a Thermostable GH36 α-Galactosidase from Anoxybacillus vitaminiphilus WMF1 and Its Application in Synthesizing Isofloridoside by Reverse Hydrolysis. International Journal of Molecular Sciences, 2021, 22, 10778.	1.8	8
243	Polyglucosylation of Rutin Catalyzed by Cyclodextrin Glucanotransferase from <i>Geobacillus</i> sp.: Optimization and Chemical Characterization of Products. Industrial & Engineering Chemistry Research, 2021, 60, 18651-18659.	1.8	6

#	Article	IF	CITATIONS
244	Biocatalysis in Organic Media using Enzymes. , 2006, , 105-121.		2
245	Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides. Tenside, Surfactants, Detergents, 2017, 54, 71-77.	0.5	0
246	Transglycosylation by \hat{I}^2 -mannanase TrMan5A variants and enzyme synergy for synthesis of allyl glycosides from galactomannan. Process Biochemistry, 2022, 112, 154-166.	1.8	5
247	Enzymatic Synthesis of Alkyl Glucosides by <i>β</i> à€Glucosidases in a 2â€inâ€1 Deep Eutectic Solvent System. Chemie-Ingenieur-Technik, 2022, 94, 417-426.	0.4	9
248	Enzymatic transglycosylation by the Ping Pong bi bi mechanism: Selectivity for transglycosylation versus primary and secondary hydrolysis. Biochemical Engineering Journal, 2022, 182, 108440.	1.8	3
250	A Comparison of the Transglycosylation Capacity between the Guar GH27 Aga27A and Bacteroides GH36 BoGal36A α-Galactosidases. Applied Sciences (Switzerland), 2022, 12, 5123.	1.3	1
251	Functions and applications of glycolipid-hydrolyzing microbial glycosidases. Bioscience, Biotechnology and Biochemistry, 2022, 86, 974-984.	0.6	1
252	Selective and high-yield production of ethyl î±-d-glucopyranoside by the î±-glucosyl transfer enzyme of Xanthomonas campestris WU-9701 and glucose isomerase. Journal of Bioscience and Bioengineering, 2022, , .	1.1	2
253	Lactulose production from lactose isomerization by chemo-catalysts and enzymes: Current status and future perspectives. Biotechnology Advances, 2022, 60, 108021.	6.0	11
254	Estimation of selectivities in transglycosylation systems with multiple transglycosylation products. Biochemical Engineering Journal, 2022, 189, 108737.	1.8	2
255	The use of biocatalysis for biosurfactant production. , 2023, , 265-301.		0
256	Toward Sustainable Production of Sugar-Based Alkyl Polyglycoside Surfactant─A Comprehensive Review on Synthesis Route and Downstream Processing. Industrial & Engineering Chemistry Research, 2023, 62, 4210-4232.	1.8	3